JP6598610B2 - Slope frost heave suppression structure and slope frost heave suppression construction method - Google Patents

Slope frost heave suppression structure and slope frost heave suppression construction method Download PDF

Info

Publication number
JP6598610B2
JP6598610B2 JP2015180574A JP2015180574A JP6598610B2 JP 6598610 B2 JP6598610 B2 JP 6598610B2 JP 2015180574 A JP2015180574 A JP 2015180574A JP 2015180574 A JP2015180574 A JP 2015180574A JP 6598610 B2 JP6598610 B2 JP 6598610B2
Authority
JP
Japan
Prior art keywords
slope
frost heave
honeycomb
cell
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015180574A
Other languages
Japanese (ja)
Other versions
JP2017057563A (en
Inventor
大悟 石井
寿夫 濱中
賢治 金子
英彦 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Advance Corp
Original Assignee
Asahi Kasei Advance Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Advance Corp filed Critical Asahi Kasei Advance Corp
Priority to JP2015180574A priority Critical patent/JP6598610B2/en
Publication of JP2017057563A publication Critical patent/JP2017057563A/en
Application granted granted Critical
Publication of JP6598610B2 publication Critical patent/JP6598610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Retaining Walls (AREA)

Description

本発明は、法面における凍上を抑制できる、法面凍上抑制構造体および法面凍上抑制工法に関する。   The present invention relates to a slope frost heave restraining structure and a slope frost heave restraining method capable of restraining frost heave on a slope.

地盤が凍結する際に、未凍土から凍結土へ間隙水が吸水され、アイスレンズ(0℃等温面に平行な氷層)が成長し、土の体積が増加する、いわゆる凍上現象が土木建築等の分野で問題となっている。例えば、八戸周辺では高舘ローム(火山灰質粘性土)が広く堆積しており、これらは凍上しやすい土として有名である。
地盤の凍上は土質、温度、水分および荷重の4つの因子がそろったときに発生する。特に前者の3つの因子は従来から凍上の3要素と言われており、したがって、凍上現象を抑制するには、この要素のうちどれか一つ以上に対し対策をおこなえばよい。
すなわち、従来より凍上を抑制するため、以下のような方法がとられてきた。
When the ground freezes, interstitial water is absorbed from unfrozen soil to frozen soil, ice lenses (ice layers parallel to the 0 ° C isothermal surface) grow, and the volume of the soil increases. Is a problem in the field. For example, Takahata loam (volcanic ash cohesive soil) is widely deposited around Hachinohe, and these are well-known as freezing soils.
The freezing of the ground occurs when the four factors of soil quality, temperature, moisture and load are collected. In particular, the former three factors are conventionally said to be three elements of frost heaving. Therefore, in order to suppress the frost heaving phenomenon, it is only necessary to take measures against one or more of these elements.
That is, conventionally, the following methods have been taken to suppress frost heave.

まず土質条件に対する対策として、凍結時に凍上を生じないような材料で凍結深さの範囲内を置き換える置換工法が挙げられる。次に、温度条件に対する対策として、断熱材などによって地表面からの寒気の浸入を防ぐいわゆる断熱工法が挙げられる。そして、水分条件に対する対策として、最大凍結深さよりも下の位置に凍上発生に必要な毛細管上昇水を遮断する層を設ける遮水工法が挙げられる。
道路舗装分野では凍上対策工法がある程度確立されており、北海道の国道歩道部では全道一律で置換え厚30cmの置換工法が採用されている。しかしながら、法面部における凍上対策は研究も含め未解決な部分が多い。
First, as a countermeasure against soil conditions, there is a replacement method that replaces the freezing depth with a material that does not cause freezing during freezing. Next, as a countermeasure against the temperature condition, there is a so-called heat insulation method that prevents the invasion of cold air from the ground surface by a heat insulating material or the like. As a countermeasure against the moisture condition, there is a water shielding method in which a layer for blocking capillary rising water necessary for frost heave occurrence is provided at a position below the maximum freezing depth.
In the field of road pavement, frost heaving countermeasures have been established to some extent, and in Hokkaido's national highway sidewalks, all roads are replaced uniformly and a replacement method with a thickness of 30 cm is adopted. However, there are many unsolved measures for frost heave measures in the slope, including research.

法面などの斜面では表層が凍上すると、土は斜面に対して垂直に隆起する。そして融解したときには、土は重力で鉛直下向きに移動する。このように土は凍上するたびに移動を繰り返す。切土部での凍上により、表層劣化が急速に進展し、降雨による斜面崩壊が発生し、切土のコンクリート構造物が損傷する例もある。   When the surface layer freezes on slopes such as slopes, the soil rises perpendicular to the slope. And when it melts, the soil moves vertically downward by gravity. In this way, the soil repeats moving every time it freezes. In some cases, frost heaving in cuts causes surface layer deterioration to progress rapidly, causing slope failures due to rainfall, and damaging the cut concrete structure.

従来、土木建築等の分野では、道路の路盤材、歩道の基礎材、仮設道路、擁壁、堤防斜面又は法面等の土木用途の地盤補強材として、重荷重の支持、浸食防止等のために、ハニカム状のセルを多数有する3次元立体セル構造体が使用されている。   Conventionally, in the field of civil engineering and construction, as a ground reinforcement for civil engineering applications such as road base materials, sidewalk foundation materials, temporary roads, retaining walls, levee slopes or slopes, to support heavy loads and prevent erosion, etc. In addition, a three-dimensional three-dimensional cell structure having a large number of honeycomb cells is used.

このようなハニカム状3次元立体セル構造体は、そのセル構造により、軽量で、強度が優れるという特徴がある。かかるハニカム状3次元立体セル構造体は、通常、一定の大きさのブロックとして、折り畳まれた状態で、敷設現場に運ばれ、現場で展張されて使用される。そして、一般に、略平面又は法面の地表面に複数のブロックとして敷設され、各ブロックを互いに連結し、ハニカム状の各セル内に、1つの塊でなく、多数の塊、粒状物、粉体、固化物の形状である、砂、砕石、又は現地発生土の充填材を、立体セル構造体の天端まで充填し、転圧して、地盤補強材としての機能を発揮しうるものとされる。
例えば特許文献1には、成形した法面上に、ハニカム状立体補強材を展張して設置し、セルに火山灰を充填することにより、凍上によって崩壊せず、法面が植生可能で、簡単に施工できるハニカム補強法面が記載されている。
Such a honeycomb-like three-dimensional three-dimensional cell structure is characterized by being lightweight and excellent in strength due to the cell structure. Such a honeycomb-shaped three-dimensional three-dimensional cell structure is usually transported to a laying site in a folded state as a block having a certain size, and is used after being expanded on the site. In general, the blocks are laid as a plurality of blocks on the substantially flat or sloped ground surface, and the blocks are connected to each other, and not a single lump, but a large number of lumps, granular materials, and powders in each honeycomb cell. It is assumed that the solid material is filled with sand, crushed stone, or locally generated soil filler up to the top of the three-dimensional cell structure and rolled to exert its function as a ground reinforcement. .
For example, in Patent Document 1, a honeycomb-shaped three-dimensional reinforcing material is stretched and installed on a formed slope, and the cell is filled with volcanic ash, so that the slope can be vegetated without collapse by freezing. A honeycomb reinforcing slope that can be applied is described.

特開2010−168888号公報JP 2010-168888 A

しかしながら、特許文献1に記載の技術では、凍上抑制工事を施したい現場近隣で火山灰を入手することが困難である、という問題があった。遠方から火山灰を運搬するとなると、輸送費などのコストがかかってしまう。また、火山灰をセルの中詰め材に用いた場合、雨などによりセルの隙間から流出するおそれもある。   However, the technique described in Patent Document 1 has a problem that it is difficult to obtain volcanic ash near the site where frost heave suppression work is desired. If volcanic ash is transported from a distance, costs such as transportation costs will be incurred. In addition, when volcanic ash is used as a cell filling material, it may flow out of the cell gap due to rain or the like.

本発明は、上述した従来の実情に鑑みてなされたものであり、施工が容易であるとともに、より確実に凍上を抑制できる法面凍上抑制構造体および法面凍上抑制工法を提供することを目的とする。   The present invention has been made in view of the above-described conventional circumstances, and an object thereof is to provide a slope frost heave restraint structure and a slope frost heave restraint construction method that are easy to construct and can more reliably restrain frost heave. And

本発明者らは、鋭意検討を進めた結果、ハニカム状3次元立体セル構造体の中詰め材を最適化することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。すなわち、本発明は以下のとおりである。
[1]
法面を覆うように配される法面凍上抑制構造体であって、
複数の長片状の樹脂又は繊維シートが幅方向に並設され互いに所定の間隔で千鳥状に繰り返し部分的に接合されてなり、これが前記幅方向と直交する方向に展張されたハニカム状のセルを有するハニカム状3次元立体セル構造体と、該各セル内に充填された中詰め材とを有するブロックを備え、
前記中詰め材が、膨張性頁岩が焼成・発泡されてなる人工軽量骨材であることを特徴とする、法面凍上抑制構造体。
[2]
前記人工軽量骨材の粒径が0.075mm以上、37mm以下である、[1]に記載の法面凍上抑制構造体。
[3]
以下の工程:
(1)幅方向に並設された複数の長辺状の樹脂又は繊維シートを互いに所定の間隔で繰り返し部分的に接合し、これを前記幅方向と直交する方向に展張することによってハニカム状のセルを形成するハニカム状3次元立体セル構造体のブロックを用意し、
(2)膨張性頁岩を焼成・発泡させることで製造された人工軽量骨材を用意し、
(3)前記ハニカム状3次元立体セル構造体のブロックを、補助枠を用いて展張しつつ、法面における所定の設置箇所に敷設し、
(4)該展張されたセル構造体の各セル内に、前記人工軽量骨材を充填し、前記補助枠を外し、次いで転圧する、
を含むことを特徴とする法面凍上抑制工法。
As a result of diligent study, the present inventors have found that the above object can be achieved by optimizing the filling material of the honeycomb-shaped three-dimensional solid cell structure, and have completed the present invention. That is, the present invention is as follows.
[1]
A structure that suppresses frost heaving so as to cover the slope,
A honeycomb-like cell in which a plurality of long pieces of resin or fiber sheets are juxtaposed in the width direction and partially joined in a staggered manner at predetermined intervals to each other, and this is stretched in a direction perpendicular to the width direction A block having a honeycomb-shaped three-dimensional three-dimensional cell structure having a filling material filled in each cell,
The slope frost heave suppression structure, wherein the filling material is an artificial lightweight aggregate obtained by firing and foaming expansive shale.
[2]
The slope frost heave suppression structure according to [1], wherein the artificial lightweight aggregate has a particle size of 0.075 mm to 37 mm.
[3]
The following steps:
(1) A plurality of long-sided resins or fiber sheets arranged in parallel in the width direction are partially joined to each other repeatedly at a predetermined interval, and this is stretched in a direction perpendicular to the width direction to form a honeycomb-like Prepare a block of a honeycomb-shaped three-dimensional cell structure forming a cell,
(2) Prepare artificial lightweight aggregate manufactured by firing and foaming expansive shale,
(3) While extending the block of the honeycomb-shaped three-dimensional cell structure using an auxiliary frame, laying it at a predetermined installation location on the slope,
(4) Filling each cell of the expanded cell structure with the artificial lightweight aggregate, removing the auxiliary frame, and then rolling.
Slope frost heave suppression construction method characterized by containing.

本発明では、ハニカム状3次元立体セル構造体の中詰め材として人工軽量骨材を用いることにより、断熱効果により地中の温度低下が抑えられて凍上が効果的に抑制され、ひいては、凍上および融解による地面表層の変位を防止できる。また、人工軽量骨材は入手しやすく施工も容易である。したがって本発明では、施工が容易であるとともに、より確実に凍上を抑制できる法面の凍上抑制構造体および凍上抑制工法を提供することができる。   In the present invention, by using the artificial lightweight aggregate as the filling material of the honeycomb-shaped three-dimensional cell structure, the temperature decrease in the ground is suppressed by the heat insulation effect, and the frost heave is effectively suppressed. Displacement of the ground surface layer due to melting can be prevented. Artificial lightweight aggregate is easy to obtain and easy to install. Therefore, according to the present invention, it is possible to provide a frost heave restraining structure and a frost heaving restraint construction method that are easy to construct and can more reliably restrain frost heave.

本発明の法面凍上抑制構造体の一構成例を模式的に示す図である。It is a figure which shows typically the example of 1 structure of the slope frost heave suppression structure of this invention. 本発明の法面凍上抑制構造体に使用されるハニカム状3次元立体セル構造体の一例の概略図である。It is the schematic of an example of the honeycomb-shaped three-dimensional solid cell structure used for the slope frost heave suppression structure of this invention. 図2の3次元立体セル構造体に中詰め材が充填されてなるブロックの一例の概略図である。It is the schematic of an example of the block formed by filling the filling material in the three-dimensional three-dimensional cell structure of FIG. 凍上実験を行った斜面の様子を模式的に示す図である。It is a figure which shows typically the mode of the slope which conducted the frost heaving experiment. 凍上実験を行った期間における日射量を示す図である。It is a figure which shows the amount of solar radiation in the period when the frost heave experiment was conducted. 凍上実験を行った期間における外気温を示す図である。It is a figure which shows the external temperature in the period which performed the frost heaving experiment. 実施例1において地中の温度を示す図である。It is a figure which shows the underground temperature in Example 1. FIG. 比較例1において地中の温度を示す図である。It is a figure which shows the underground temperature in the comparative example 1. FIG. 比較例2において地中の温度を示す図である。It is a figure which shows the underground temperature in the comparative example 2. FIG. 実施例2において地面表層の変位を示す図である。It is a figure which shows the displacement of the ground surface layer in Example 2. FIG. 比較例1において地面表層の変位を示す図である。It is a figure which shows the displacement of the ground surface layer in the comparative example 1. FIG. 比較例2において地面表層の変位を示す図である。It is a figure which shows the displacement of the ground surface layer in the comparative example 2. FIG.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の法面凍上抑制構造体の一構成例を模式的に示す図である。
本発明の法面凍上抑制構造体(法面構造体10)は、法面20を覆うように配される法面凍上抑制構造体であって、幅方向に並設された複数の長片状の樹脂又は繊維シート2を互いに所定の間隔で千鳥状に繰り返し部分的に接合し、これを幅方向と直交する方向に展張することによってハニカム状のセル3を形成するハニカム状3次元立体セル構造体1の各セル3内に、中詰め材4が充填されてなる。
そして本発明の法面構造体10は、中詰め材4が、膨張性頁岩を焼成・発泡させることで製造された人工軽量骨材であることを特徴とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically illustrating a configuration example of a slope frost heave suppression structure according to the present invention.
The slope frost heave restraining structure (slope structure 10) of the present invention is a slope frost heave restraining structure disposed so as to cover the slope 20, and is a plurality of long pieces arranged in parallel in the width direction. Honeycomb or three-dimensional three-dimensional cell structure in which honeycomb-like cells 3 are formed by repeatedly joining the resin or fiber sheets 2 in a staggered manner at predetermined intervals and stretching them in a direction perpendicular to the width direction. The filling material 4 is filled in each cell 3 of the body 1.
The slope structure 10 of the present invention is characterized in that the filling material 4 is an artificial lightweight aggregate produced by firing and foaming expansive shale.

本発明に係る法面凍上抑制構造体10を構成する、ハニカム状3次元立体セル構造体1(立体セル構造体1)とは、図2及び図3に示すように、幅方向に並設された複数の長片状の樹脂又は繊維シート2を互いに所定の間隔で千鳥状に繰り返し部分的に接合し、これを前記幅方向と直交する方向に展張することによってハニカム状のセル3を形成する。このようなハニカム状3次元立体セル構造体1としては、一般に、土木建築等の分野で、道路の路盤材、歩道の基礎材、仮設道路や擁壁等の土木用途の地盤補強材として、重荷重の支持や浸食防止等のために使用されている、図2に示すような、ハニカム状3次元立体セル構造体1であることができるが、これに限定されるものではない。該立体セル構造体1は、例えば、ジオウェブ(登録商標)であることができる。   The honeycomb-shaped three-dimensional three-dimensional cell structure 1 (three-dimensional cell structure 1) constituting the slope frost heave suppression structure 10 according to the present invention is juxtaposed in the width direction as shown in FIGS. A plurality of long pieces of resin or fiber sheets 2 are repeatedly partially joined in a staggered manner at predetermined intervals, and are stretched in a direction perpendicular to the width direction to form a honeycomb-like cell 3. . Such a honeycomb-shaped three-dimensional three-dimensional cell structure 1 is generally used as a ground reinforcing material for civil engineering applications such as road base materials, sidewalk foundation materials, temporary roads and retaining walls in the field of civil engineering and construction. Although it can be a honeycomb-like three-dimensional three-dimensional cell structure 1 as shown in FIG. 2 that is used for supporting a load or preventing erosion, the present invention is not limited to this. The three-dimensional cell structure 1 can be, for example, Geoweb (registered trademark).

前記樹脂又は繊維シート2の材質は特に限定されないが、耐候性の観点から、ポリエチレンが好ましい。樹脂又は繊維シート2の接合の間隔(ピッチ)は400〜800mmが好ましい。前記接合は、例えば、熱融着等の手段によって行われる。接合部の幅は通常10〜20mmであり、かかる接合部の一定幅の存在により、展張時に略菱形となるセル形状において、対抗する2つの角はセルの内側に向かって潰れたものとなる(図2参照)。   The material of the resin or fiber sheet 2 is not particularly limited, but polyethylene is preferable from the viewpoint of weather resistance. The bonding interval (pitch) of the resin or fiber sheet 2 is preferably 400 to 800 mm. The joining is performed by means such as heat fusion. The width of the joint is usually 10 to 20 mm, and due to the presence of the constant width of the joint, two opposing corners are crushed toward the inner side of the cell in the cell shape that becomes a substantially rhombus during expansion ( (See FIG. 2).

図2に示すように、前記立体セル構造体1の長片状の樹脂又は繊維シート2として、予め大小複数の孔2aが設けられた有孔シートを用いてもよい。これらの孔2aは、例えば、各ブロックを連結するための孔、立体セル構造体自体を軽量化するための孔としても機能する。   As shown in FIG. 2, a perforated sheet in which a plurality of large and small holes 2 a are provided in advance may be used as the long piece-like resin or fiber sheet 2 of the three-dimensional cell structure 1. These holes 2a also function as, for example, holes for connecting the blocks and holes for reducing the weight of the three-dimensional cell structure itself.

かかる立体セル構造体1は、ブロック毎に、折り畳んで現場に搬入され、施工地表面上で展張され、ブロック同士を連結し、形成された各セル3に、中詰め材4を、樹脂又は繊維シート2の高さ(立体セル構造体1の天端)まで充填(中詰め)し、転圧し、締め固めることにより、法面20に敷設される。   The three-dimensional cell structure 1 is folded for each block, carried to the site, spread on the surface of the construction site, and the blocks are connected to each other. The sheet 2 is laid on the slope 20 by filling (inner packing) to the height of the sheet 2 (the top of the three-dimensional cell structure 1), rolling and compacting.

本発明に係る法面構造体10に使用されるハニカム状3次元立体セル構造体1の樹脂又は繊維シート2の高さは75〜300mmであり、セル3の一辺の長さ(内寸)Lは200〜500mmであることができる。セル3の大きさを上記範囲にすることで、敷設作業が容易となる。セル3の一辺の長さが500mmを超えると、中詰め材が流出しやすくなり、また、セル3の一辺の長さが200mmよりも小さいとセル内部に人工軽量骨材を充填する作業が困難となり、全体としての法面構造体10の構築速度が低下する。   The height of the resin or fiber sheet 2 of the honeycomb-shaped three-dimensional three-dimensional cell structure 1 used for the slope structure 10 according to the present invention is 75 to 300 mm, and the length (inside dimension) L of one side of the cell 3 Can be 200-500 mm. By setting the size of the cell 3 within the above range, the laying operation is facilitated. If the length of one side of the cell 3 exceeds 500 mm, the filling material tends to flow out, and if the length of one side of the cell 3 is smaller than 200 mm, it is difficult to fill the cell with artificial lightweight aggregate. Thus, the construction speed of the slope structure 10 as a whole is reduced.

中詰め材4が、膨張性頁岩を焼成・発泡させることで製造された人工軽量骨材である。中詰め材4として人工軽量骨材を用いることで、本発明の法面構造体10は、優れた断熱性能を有するものとなる。また、人工軽量骨材を用いることで透水性がよく、中詰め材4中に水が溜まらないため、凍上が起こりにくい。   The filling material 4 is an artificial lightweight aggregate manufactured by firing and foaming expansive shale. By using an artificial lightweight aggregate as the filling material 4, the slope structure 10 of the present invention has excellent heat insulation performance. Further, by using the artificial lightweight aggregate, water permeability is good and water does not accumulate in the filling material 4, so that freezing is unlikely to occur.

このような人工軽量骨材としては、例えば太平洋セメント株式会社の太平洋カルストーン等が挙げられる。
太平洋カルストーンは、高強度かつ、飽和土の単位容積重量が11kN/m3と軽量であるが、水に浮かない軽量盛土材である。高い内部摩擦角があり、側圧等の負荷も低減できる。さらに、太平洋カルストーンは無機系セラミック骨材であり、スレーキング率が低く耐久性が高い。透水係数が高いことも液状化抵抗性を有し総合的に安定した土木資材である。このように、太平洋カルストーンは水回りの多い箇所の埋め立てや盛り土に適しており、盛土として高い安定性を有している。また、施工性が良好なことから工期短縮が可能で、プラント設置が不要であること、および、敷均し転圧のみの施工で特殊機器が必要ないことから、小規模物件でも経済性に優れている。
Examples of such artificial lightweight aggregates include Pacific Calstone manufactured by Taiheiyo Cement Co., Ltd.
Pacific Calstone is a lightweight embankment material that is high in strength and has a light unit weight of 11 kN / m 3 of saturated soil, but does not float on water. It has a high internal friction angle and can reduce loads such as lateral pressure. Furthermore, Pacific Calstone is an inorganic ceramic aggregate with a low slaking rate and high durability. The high hydraulic conductivity is also a civil engineering material that is resistant to liquefaction and is totally stable. In this way, Pacific Calstone is suitable for landfills and fills in places with a lot of water, and has high stability as fills. In addition, because construction is good, the work period can be shortened, plant installation is not necessary, and special equipment is not required for construction only by rolling and rolling, so it is economical even for small-scale properties. ing.

人工軽量骨材の粒径としては、特に限定されるものではないが、例えば、0.075mm以上37mm以下とすることが好ましい。   The particle size of the artificial lightweight aggregate is not particularly limited, but is preferably 0.075 mm or more and 37 mm or less, for example.

なお、上述した特許文献1(特開2010−168888号公報)では、セルの中詰め材として火山灰を用いているが、この技術は、凍上しやすい土壌を凍上しにくい火山灰で置き換えること(土壌改質)を目的としている。これに対し、本願発明では、優れた断熱性能を有する人工軽量骨材で法面を覆うことで、地面の温度低下を防いで凍上を抑制するものである。このように両者の技術はその本質を異にするものである。
また、火山灰は粒径が小さく、内部摩擦角も小さい。中詰め材として火山灰を用いた場合、雨などによりセルの隙間から火山灰が流出するおそれがあるが、本願のように人工軽量骨材を用いることで、安定した法面構造体10を形成することができる。さらに、人工軽量骨材は工業製品であるため火山灰に比べて入手も容易である。
In Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-168888) described above, volcanic ash is used as a filling material for the cell. However, this technique replaces soil that is likely to freeze with volcanic ash that is difficult to freeze (soil modification). Quality). On the other hand, in the present invention, the slope is covered with an artificial lightweight aggregate having excellent heat insulation performance, thereby preventing a decrease in the temperature of the ground and suppressing freezing. In this way, both technologies are different in nature.
In addition, volcanic ash has a small particle size and a small internal friction angle. When volcanic ash is used as the filling material, volcanic ash may flow out from the gap between cells due to rain or the like, but by using an artificial lightweight aggregate as in the present application, a stable slope structure 10 can be formed. Can do. Furthermore, since artificial lightweight aggregate is an industrial product, it is easier to obtain than volcanic ash.

つぎに、このような法面構造の敷設方法について説明する。
(1)ブロックの幅方向が斜面方向と略直交するように、ブロックの一端を斜面(法面)の上部に固定し、
(2)斜面上部から下部に向かって、ブロックを展張する。
(3)2以上のブロックを敷設する場合、ブロックの他端に、次のブロックの一端を連結した後、前記ステップ(1)〜(2)を繰り返し、そして
(4)各セルの内部に、中詰め材(人工軽量骨材)を充填して、転圧する。
(1)におけるブロックの固定には、例えば、ブロックの幅方向の上端列のセル内部に杭を打つ方法が好ましく用いられる。
Next, a method for laying such a slope structure will be described.
(1) Fix one end of the block to the top of the slope (slope) so that the width direction of the block is substantially perpendicular to the slope direction,
(2) Expand the block from the top to the bottom of the slope.
(3) When laying two or more blocks, after connecting one end of the next block to the other end of the block, the steps (1) to (2) are repeated, and (4) inside each cell, Fill with intermediate filling material (artificial lightweight aggregate) and roll.
For fixing the block in (1), for example, a method of hitting a pile inside the cell in the upper end row in the width direction of the block is preferably used.

以下、本発明の効果を確認するために行った実施例について説明する。なお、以下の説明では、具体的な数値等を挙げているが、本発明はこれらに限定されるものではない。
凍上抑制の効果を確認するために行った実施例および比較例について説明する。
なお、この実験は、2014年12月下旬〜2015年5月中旬にかけて、青森県八戸市の傾斜地(斜面勾配1:1.5)において行われた。
図4に模式的に示すように、施工平面としては、斜面を横方向に並んだ区画30に分け、それぞれの区画に、以下に示すように異なる施工を行った。1つの区画30の大きさは幅2.5m×高さ2.5mとした。
図4に示すように、地表面及び地中に温度計31を配し、ブロック部分、および、地表面から略垂直に350mm、700mm、1400mmの各地中深さにおける温度を測定した。
また、各区画毎に、位置を示す変位基準杭32を立てた。該基準杭32の位置を測定することにより、地面表層の変位を評価した。位置測定は、2014年12月25日、2015年2月23日、2015年5月18日の3回行い、それらを比較することにより、斜面の変位を評価した。
この期間の日射量の変化を図5に示し、外気温の変化を図6に示す。
Examples performed to confirm the effects of the present invention will be described below. In the following description, specific numerical values are given, but the present invention is not limited to these.
Examples and comparative examples performed for confirming the effect of suppressing frost heave will be described.
This experiment was conducted from the end of December 2014 to the middle of May 2015 on a sloping land (slope gradient 1: 1.5) in Hachinohe City, Aomori Prefecture.
As schematically shown in FIG. 4, the construction plane was divided into sections 30 aligned in the lateral direction, and different construction was performed in each section as shown below. The size of one section 30 was 2.5 m wide × 2.5 m high.
As shown in FIG. 4, a thermometer 31 was placed on the ground surface and in the ground, and the temperatures at the block portions and the depths in various locations of 350 mm, 700 mm, and 1400 mm were measured substantially perpendicularly from the ground surface.
Moreover, the displacement reference | standard pile 32 which shows a position was stood for every division. By measuring the position of the reference pile 32, the displacement of the ground surface layer was evaluated. Position measurement was performed three times on December 25, 2014, February 23, 2015, and May 18, 2015, and the displacement of the slope was evaluated by comparing them.
The change in the amount of solar radiation during this period is shown in FIG. 5, and the change in the outside air temperature is shown in FIG.

<実施例1>
上記(1)〜(4)の工程により法面上にブロックを展張し、中詰め材として人工軽量骨材である、太平洋セメント株式会社製 太平洋カルストーンを充填した。セル構造体の厚みは100mmとした。
<Example 1>
A block was stretched on the slope by the steps (1) to (4) described above, and filled with Taiheiyo Culstone manufactured by Taiheiyo Cement Co., Ltd., which is an artificial lightweight aggregate. The thickness of the cell structure was 100 mm.

<実施例2>
実施例1と同様にして法面上にブロックを展張し、中詰め材として太平洋カルストーンを充填した。セル構造体の厚みは150mmとした。
<Example 2>
In the same manner as in Example 1, the block was spread on the slope, and Pacific calstone was filled as a filling material. The thickness of the cell structure was 150 mm.

<比較例1>
実施例1と同様にして法面上にブロックを展張し、中詰め材として砕石を充填した。セル構造体の厚みは100mmとした。
<Comparative Example 1>
In the same manner as in Example 1, the block was spread on the slope, and crushed stone was filled as the filling material. The thickness of the cell structure was 100 mm.

<比較例2>
セル構造体の対策を施さず、法面がむき出しの状態とした。
<Comparative example 2>
No measures were taken for the cell structure, and the slope was exposed.

実施例1、比較例1,2について、地中の温度変化を図7〜図9にそれぞれ示す。また、実施例2,比較例1,2について、変位基準杭のY方向(水平方向)及びZ方向(高さ方向)の変位を図10〜図12にそれぞれ示す。   About Example 1 and Comparative Examples 1 and 2, the underground temperature change is shown in FIGS. Moreover, about Example 2, Comparative example 1 and 2, the displacement of the Y direction (horizontal direction) and Z direction (height direction) of a displacement reference | standard pile is shown in FIGS.

まず、地中温度について、無対策の比較例2(図9)では、地表温度地中温度ともに低いが、これに対し、対策を施した実施例1、比較例1(図7,図8)では、温度低下が抑えられている。砕石を中詰めした比較例1(図8)と、カルストーンを中詰めした実施例1(図7)とを比較すると、実施例1は比較例1に比べて地中温度が高く、特に地表に近い部分(ブロック部分、350mm、700mm)ではその差が大きくなっている。
ブロック部分の温度についてみると、中詰め材として砕石や発生土を用いた比較例では、外気温が低い時期には0℃以下になっていることが多いが、カルストーンを用いた実施例1では概して0℃以上を安定して保っている。すなわち、中詰め材としてカルストーン(人工軽量骨材)を用いることによって、断熱性能が向上していることがわかる。
First, regarding the underground temperature, in Comparative Example 2 (FIG. 9) without countermeasures, both the ground surface temperature and the underground temperature are low. Then, the temperature drop is suppressed. Comparing Comparative Example 1 (FIG. 8) filled with crushed stone with Example 1 (FIG. 7) filled with calstone, Example 1 has a higher underground temperature than Comparative Example 1, especially the ground surface. The difference is large in a portion close to (block portion, 350 mm, 700 mm).
As for the temperature of the block part, in the comparative example using crushed stone or generated soil as the filling material, it is often 0 ° C. or less when the outside air temperature is low, but Example 1 using calstone In general, the temperature of 0 ° C. or higher is stably maintained. That is, it can be seen that the heat insulation performance is improved by using calstone (artificial lightweight aggregate) as the filling material.

地面の変位について、比較例2(無対策)では、図12において12月と2月とを比較することにより、凍上によって地面表層が持ち上がっており、また、2月と5月とを比較すると、融解することによって地面が沈下していることがわかる。このとき、沈下した地面表層は、初めと同じ位置には戻らず、より低い位置に移動していることがわかる。
中詰め材として砕石を用いた比較例1(図11)では、無対策の比較例6に比べてその変位量が小さくなってはいるものの、凍上が発生しており、凍上及び融解により地面が変位していることがわかる。
Regarding the displacement of the ground, in Comparative Example 2 (no countermeasures), the surface of the ground is lifted by freezing by comparing December and February in FIG. 12, and comparing February and May, It can be seen that the ground is sinking by melting. At this time, it can be seen that the sinking ground surface layer does not return to the same position as the beginning, but moves to a lower position.
In Comparative Example 1 (FIG. 11) using crushed stone as the filling material, although the amount of displacement is smaller than that of Comparative Example 6 without countermeasures, frost heave has occurred, and the ground due to frost heaving and thawing has occurred. It can be seen that it is displaced.

中詰め材としてカルストーンを用いた実施例2では、図10に示すように、12月〜5月の評価期間中に亘って、地面位置がほとんど変位していないことがわかる。すなわち、凍上による地面の持ち上がり、および融解による地面の下降が発生していないことが推測される。   In Example 2 using calstone as the filling material, it can be seen that the ground position is hardly displaced over the evaluation period from December to May as shown in FIG. That is, it is presumed that the ground is not lifted due to freezing and the ground is not lowered due to melting.

以上の結果から明らかなように、本発明の法面凍上抑制構造を採用することで、断熱効果により地中の温度低下が抑えられて凍上が効果的に抑制され、ひいては、凍上および融解による地面の変位を防止できることがわかった。   As is clear from the above results, by adopting the slope frost heave suppression structure of the present invention, the temperature decrease in the ground is suppressed by the heat insulation effect, and the frost heave is effectively suppressed. It was found that this displacement can be prevented.

以上、本発明の実施の形態について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更可能である。   Although the embodiment of the present invention has been described above, the present invention is not limited to this, and can be appropriately changed without departing from the spirit of the invention.

本発明による法面凍上抑制構造を用いることで、凍上を効果的に抑制できるものとなり、法面の凍上抑制構造体および凍上抑制工法として広く利用することができる。   By using the slope frost heave suppression structure according to the present invention, frost heave can be effectively suppressed and can be widely used as a slope frost heave suppression structure and a frost heave suppression construction method.

1 ハニカム状3次元立体セル構造体(立体セル構造体)
2 樹脂又は繊維シート
3 セル
4 中詰め材
10 法面凍上抑制構造体
20 法面
1 Honeycomb three-dimensional cell structure (3D cell structure)
2 resin or fiber sheet 3 cell 4 filling material 10 slope frost heave suppression structure 20 slope

Claims (3)

法面を覆うように配される法面凍上抑制構造体であって、
複数の長片状の樹脂又は繊維シートが幅方向に並設され互いに所定の間隔で千鳥状に繰り返し部分的に接合されてなり、これが前記幅方向と直交する方向に展張されたハニカム状のセルを有するハニカム状3次元立体セル構造体と、該各セル内に充填された中詰め材とを有するブロックを備え、
前記中詰め材が、膨張性頁岩が焼成・発泡されてなる人工軽量骨材であることを特徴とする、法面凍上抑制構造体。
A structure that suppresses frost heaving so as to cover the slope,
A honeycomb-like cell in which a plurality of long pieces of resin or fiber sheets are juxtaposed in the width direction and partially joined in a staggered manner at predetermined intervals to each other, and this is stretched in a direction perpendicular to the width direction A block having a honeycomb-shaped three-dimensional three-dimensional cell structure having a filling material filled in each cell,
The slope frost heave suppression structure, wherein the filling material is an artificial lightweight aggregate obtained by firing and foaming expansive shale.
前記人工軽量骨材の粒径が0.075mm以上、37mm以下である、請求項1に記載の法面凍上抑制構造体。   The slope frost heave suppression structure according to claim 1, wherein the artificial lightweight aggregate has a particle size of 0.075 mm or more and 37 mm or less. 以下の工程:
(1)幅方向に並設された複数の長辺状の樹脂又は繊維シートを互いに所定の間隔で繰り返し部分的に接合し、これを前記幅方向と直交する方向に展張することによってハニカム状のセルを形成するハニカム状3次元立体セル構造体のブロックを用意し、
(2)膨張性頁岩を焼成・発泡させることで製造された人工軽量骨材を用意し、
(3)前記ハニカム状3次元立体セル構造体のブロックを、補助枠を用いて展張しつつ、法面における所定の設置箇所に敷設し、
(4)該展張されたセル構造体の各セル内に、前記人工軽量骨材を充填し、前記補助枠を外し、次いで転圧する、
を含むことを特徴とする法面凍上抑制工法。
The following steps:
(1) A plurality of long-sided resins or fiber sheets arranged in parallel in the width direction are partially joined to each other repeatedly at a predetermined interval, and this is stretched in a direction perpendicular to the width direction to form a honeycomb-like Prepare a block of a honeycomb-shaped three-dimensional cell structure forming a cell,
(2) Prepare artificial lightweight aggregate manufactured by firing and foaming expansive shale,
(3) While extending the block of the honeycomb-shaped three-dimensional cell structure using an auxiliary frame, laying it at a predetermined installation location on the slope,
(4) Filling each cell of the expanded cell structure with the artificial lightweight aggregate, removing the auxiliary frame, and then rolling.
Slope frost heave suppression construction method characterized by containing.
JP2015180574A 2015-09-14 2015-09-14 Slope frost heave suppression structure and slope frost heave suppression construction method Active JP6598610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015180574A JP6598610B2 (en) 2015-09-14 2015-09-14 Slope frost heave suppression structure and slope frost heave suppression construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015180574A JP6598610B2 (en) 2015-09-14 2015-09-14 Slope frost heave suppression structure and slope frost heave suppression construction method

Publications (2)

Publication Number Publication Date
JP2017057563A JP2017057563A (en) 2017-03-23
JP6598610B2 true JP6598610B2 (en) 2019-10-30

Family

ID=58391104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015180574A Active JP6598610B2 (en) 2015-09-14 2015-09-14 Slope frost heave suppression structure and slope frost heave suppression construction method

Country Status (1)

Country Link
JP (1) JP6598610B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6909101B2 (en) * 2017-08-25 2021-07-28 西日本旅客鉄道株式会社 Embankment widening method and embankment
JP7117263B2 (en) * 2019-03-29 2022-08-12 公益財団法人鉄道総合技術研究所 Construction method for constructing a slope surface layer, rainwater flow down control method, and construction method for controlling rainwater outflow to the downstream area
CN114277815A (en) * 2022-01-30 2022-04-05 湖北工业大学 Geogrid reverse-wrapped modified expansive soil flexible ecological slope protection structure and construction method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004161609A (en) * 2002-10-25 2004-06-10 Hiromitsu Habaguchi Firing and sintering method for incineration ash or for lightweight fine-grained material using the incineration ash as raw material, and sintered product obtained by the method
JP2005126282A (en) * 2003-10-23 2005-05-19 Hiromitsu Habaguchi Method for firing and sintering incineration ash and sintered material obtained by the same
JP2006036547A (en) * 2004-07-22 2006-02-09 Kumagai Gumi Co Ltd Concrete composition containing aggregate having different specific gravity and process of producing the same
JP5511327B2 (en) * 2008-12-26 2014-06-04 東京インキ株式会社 Slope and method of forming slope
US8790036B2 (en) * 2010-03-05 2014-07-29 Prs Mediterranean Ltd. Geotechnical structures and processes for forming the same
JP5719128B2 (en) * 2010-07-28 2015-05-13 旭化成ジオテック株式会社 Flood control method and dike

Also Published As

Publication number Publication date
JP2017057563A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
US10753049B2 (en) Pavement systems with geocell and geogrid
JP6598611B2 (en) Slope frost heave suppression structure and slope frost heave suppression construction method
AU2014326302A1 (en) Pavement systems with geocell and geogrid
JP6598610B2 (en) Slope frost heave suppression structure and slope frost heave suppression construction method
Jutkofsky et al. Stabilization of embankment slope with geofoam
CA2949481C (en) Method and structure for in situ field repair of severed drain tile
Emersleben et al. The use of recycled glass for the construction of pavements
CN113463458A (en) Stable road structure and construction method thereof
RU80168U1 (en) DEVELOPMENT OF ROAD CLOTHES
RU89858U1 (en) ROAD FILL ON THE FROZEN BASES
KR101187681B1 (en) Erosion control structure using the piles with wasted tires
RU143210U1 (en) DEVELOPMENT OF ROAD CLOTHING
KR101351075B1 (en) Underground apparatus for prevention of differential settlement of block pavement using multi-vertex mesh and method thereof
CN103711104B (en) Homogeneous earth dam revetment and anti-frost method thereof
Akimitsu et al. Experimental study on rainwater infiltration countermeasures by reinforcing base course with geotextile
RU83510U1 (en) CELL EARTH CONSTRUCTION
RU2583107C1 (en) Cooling structure for earth structures on permanently frozen soils and erection method thereof
RU2802766C1 (en) Multilayer mat for device of road embanking and method for its manufacture
JP7266086B2 (en) honeycomb reinforced slope
CN221566693U (en) Deep soil-containing heavy ice layer ventilation roadbed structure
Mahajan et al. Drainage applications of geosynthetics in India–untapped potential
RU165499U1 (en) FRAMES AND STAIN SUPPORT WITH SHADOW-SHAPED SUMMARY OF THE TEMPORARY BRIDGE
WO2024181890A1 (en) Multilayered mat for creating a roadway embankment and method of manufacturing same
JP2021032012A (en) Honeycomb reinforced sloped face
CN117488833A (en) Protective device for high and cold area overlying rock layer expansive soil unstable side slope

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191001

R150 Certificate of patent or registration of utility model

Ref document number: 6598610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250