JP6596877B2 - Stabilized lithium powder and lithium ion secondary battery using the same - Google Patents

Stabilized lithium powder and lithium ion secondary battery using the same Download PDF

Info

Publication number
JP6596877B2
JP6596877B2 JP2015070591A JP2015070591A JP6596877B2 JP 6596877 B2 JP6596877 B2 JP 6596877B2 JP 2015070591 A JP2015070591 A JP 2015070591A JP 2015070591 A JP2015070591 A JP 2015070591A JP 6596877 B2 JP6596877 B2 JP 6596877B2
Authority
JP
Japan
Prior art keywords
lithium
stabilized
lithium powder
compound
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015070591A
Other languages
Japanese (ja)
Other versions
JP2016191101A (en
Inventor
智彦 長谷川
匡広 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015070591A priority Critical patent/JP6596877B2/en
Publication of JP2016191101A publication Critical patent/JP2016191101A/en
Application granted granted Critical
Publication of JP6596877B2 publication Critical patent/JP6596877B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、安定化リチウム粉及びそれを用いたリチウムイオン二次電池に関する。   The present invention relates to a stabilized lithium powder and a lithium ion secondary battery using the same.

リチウムイオン二次電池は、ニッケルカドミウム電池、ニッケル水素電池等と比べ、軽量、高容量であるため、携帯電子機器用電源として広く応用されている。また、ハイブリッド自動車や、電気自動車用に搭載される電源として有力な候補ともなっている。そして、近年の携帯電子機器の小型化、高機能化に伴い、これらの電源となるリチウムイオン二次電池への更なる高容量化が期待されている。   Lithium ion secondary batteries are widely applied as power sources for portable electronic devices because they are lighter and have a higher capacity than nickel cadmium batteries, nickel metal hydride batteries, and the like. It is also a promising candidate as a power source for use in hybrid vehicles and electric vehicles. With the recent miniaturization and higher functionality of portable electronic devices, further increase in capacity is expected for lithium ion secondary batteries that serve as these power sources.

リチウムイオン二次電池の容量は主に電極の活物質に依存する。負極活物質には、一般に黒鉛が利用されているが、上記の要求に対応するためにはより高容量な負極活物質を用いることが必要である。そのため、黒鉛の理論容量(372mAh/g)に比べてはるかに大きな理論容量(4210mAh/g)をもつ金属シリコン(Si)が注目されている。   The capacity of the lithium ion secondary battery mainly depends on the active material of the electrode. In general, graphite is used as the negative electrode active material, but it is necessary to use a higher capacity negative electrode active material in order to meet the above requirements. Therefore, metallic silicon (Si) having a much larger theoretical capacity (4210 mAh / g) than the theoretical capacity of graphite (372 mAh / g) has attracted attention.

一方、金属シリコンよりもサイクル特性が優れる酸化シリコン(SiO)の使用も検討されている。しかし、酸化シリコンは金属シリコンに比べ不可逆容量が大きい。充放電に寄与するリチウムの量は正極中のリチウム量で一義的に決定されるため、負極における不可逆容量の増加は電池全体の容量低下に繋がる。 On the other hand, the use of silicon oxide (SiO x ), which has better cycle characteristics than metallic silicon, is also being studied. However, silicon oxide has a larger irreversible capacity than metal silicon. Since the amount of lithium that contributes to charging and discharging is uniquely determined by the amount of lithium in the positive electrode, an increase in irreversible capacity in the negative electrode leads to a decrease in the capacity of the entire battery.

この不可逆容量を低減するため、充放電を開始する前にあらかじめ金属リチウムを負極に接触させ、リチウムを負極にドープする技術(リチウムプレドープ)が提案されている(例えば、特許文献1〜2参照)。特許文献1には、リチウムを含む膜を負極に形成することでリチウムを負極にドープする方法が開示されている。また、特許文献2には、リチウム粒子を負極活物質層中に含有させることでリチウムを負極にドープする方法が開示されている。   In order to reduce this irreversible capacity, a technique (lithium pre-doping) has been proposed in which metallic lithium is brought into contact with the negative electrode in advance before starting charging and discharging, and lithium is doped into the negative electrode (for example, see Patent Documents 1 and 2). ). Patent Document 1 discloses a method of doping lithium into the negative electrode by forming a film containing lithium on the negative electrode. Patent Document 2 discloses a method of doping lithium into the negative electrode by incorporating lithium particles in the negative electrode active material layer.

このようなドープ作業に用いるリチウムは、その反応性の高さからより安全性に優れたものが要望され、リチウム粒子の表面を大気中で安定な被膜で覆い安全性を高め、取扱いを改善した安定化リチウム粉が提案されている(特許文献3参照)。   Lithium used for such doping work is required to have higher safety due to its high reactivity, and the surface of lithium particles is covered with a stable coating in the atmosphere to improve safety and improve handling. Stabilized lithium powder has been proposed (see Patent Document 3).

通常、リチウムイオン二次電池に用いる負極は負極活物質を含む層を集電体上に形成した後、プレスにより密着させる工程を有するが、このプレスによって安定化リチウム粉のリチウム金属が露出することで負極へのドープが進行する。したがって、安定化リチウム粉に求められる特性は、リチウムの安定性向上のみならず、優れた電池特性を生み出すためのドープ特性も求められている。   Usually, a negative electrode used in a lithium ion secondary battery has a step of forming a layer containing a negative electrode active material on a current collector, and then bringing it into close contact with a press, and this press exposes the lithium metal of the stabilized lithium powder. The dope into the negative electrode proceeds. Therefore, the characteristics required for the stabilized lithium powder are required not only to improve the stability of lithium but also to dope characteristics for producing excellent battery characteristics.

特許第5196118号公報Japanese Patent No. 5196118 特開2010−160986号公報JP 2010-160986 A 特許第2699026号公報Japanese Patent No. 2699026

しかしながら、上記特許文献に記載されている安定化リチウム粉を用いても電池にした際の初期充放電効率の劣化を十分には改善できていない。本発明者らは鋭意研究を重ねた結果、安定化リチウム粉をプレスによって密着させる工程において、負極にクラック等の欠陥が生じていることが原因だということを見出した。   However, even if the stabilized lithium powder described in the above-mentioned patent document is used, the deterioration of the initial charge / discharge efficiency when the battery is made cannot be sufficiently improved. As a result of intensive studies, the present inventors have found that a defect such as a crack occurs in the negative electrode in the step of bringing the stabilized lithium powder into close contact with the press.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、電池にした際の初期充放電効率を向上させることが可能な安定化リチウム粉及びこれを用いたリチウムイオン二次電池を提供することを目的とする。   This invention is made | formed in view of the subject which the said prior art has, The lithium ion secondary battery using the stabilized lithium powder which can improve the initial stage charge / discharge efficiency at the time of making a battery, and this The purpose is to provide.

上記課題を解決するため、本発明の安定化リチウム粉は、金属リチウム粒子の表面に無機化合物と有機高分子化合物を含有する安定化膜を有することを特徴とする。   In order to solve the above-mentioned problems, the stabilized lithium powder of the present invention is characterized by having a stabilizing film containing an inorganic compound and an organic polymer compound on the surface of metallic lithium particles.

これによれば、安定化膜を無機化合物と有機高分子化合物で形成すると、従来の安定化リチウム粉よりも安定化膜の密度が低下するので、負極にダメージを与えない小さなプレス圧で安定化リチウム粒子の破砕が可能となり、初期充放電効率を劣化させずにリチウムのドープを行うことが可能となる。 According to this, when the stabilizing film is formed of an inorganic compound and an organic polymer compound, the density of the stabilizing film is lower than that of the conventional stabilized lithium powder, so stabilization is achieved with a small press pressure that does not damage the negative electrode. Lithium particles can be crushed, and lithium can be doped without deteriorating initial charge / discharge efficiency.

本発明の安定化リチウム粉は、さらに前記無機化合物が、リチウム化合物あるいは無機固体電解質から選択される少なくとも1種を含むことが好ましい。   In the stabilized lithium powder of the present invention, it is preferable that the inorganic compound further contains at least one selected from a lithium compound or an inorganic solid electrolyte.

本発明の安定化リチウム粉は、さらに前記リチウム化合物が、LiO、LiCO、LiOHから選択される少なくとも1種を含むことが好ましい。 In the stabilized lithium powder of the present invention, it is preferable that the lithium compound further contains at least one selected from Li 2 O, Li 2 CO 3 , and LiOH.

本発明の安定化リチウム粉は、さらに前記有機高分子化合物が熱可塑性高分子化合物であることが好ましい。   In the stabilized lithium powder of the present invention, the organic polymer compound is preferably a thermoplastic polymer compound.

本発明の安定化リチウム粉は、さらに前記熱可塑性高分子化合物がポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリテトラフロオロエチレン、ポリビニルアルコール、ポリアセタール、ポリアクリル酸、ポリアクリル酸メチル、ポリアミド、ポリイミド、ポリアミドイミドの群から選ばれる少なくとも1種を含むことが好ましい。   In the stabilized lithium powder of the present invention, the thermoplastic polymer compound further includes polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, polyacetal, It is preferable to include at least one selected from the group consisting of polyacrylic acid, polymethyl acrylate, polyamide, polyimide, and polyamideimide.

本発明の安定化リチウム粉は、さらに前記安定化膜中の前記無機化合物と前記有機高分子化合物の質量部比率が50:50〜95:5であることが好ましい。   In the stabilized lithium powder of the present invention, the mass part ratio of the inorganic compound and the organic polymer compound in the stabilization film is preferably 50:50 to 95: 5.

本発明の安定化リチウム粉は、さらに粒径比が0.2以下であることが好ましい。ここで、前記安定化リチウム粉の平均フェレ径をFD1、前記無機化合物の平均フェレ径をFD2としたとき、粒径比は下記式1で定義される。また、フェレ径は観察像に外接する長方形の長辺の長さで定義される。
式1:粒径比=FD2/FD1
The stabilized lithium powder of the present invention preferably further has a particle size ratio of 0.2 or less. Here, when the average ferret diameter of the stabilized lithium powder is FD1, and the average ferret diameter of the inorganic compound is FD2, the particle size ratio is defined by the following formula 1. The ferret diameter is defined by the length of the long side of the rectangle that circumscribes the observation image.
Formula 1: Particle size ratio = FD2 / FD1

本発明の安定化リチウム粉は、さらに前記安定化膜の断面における前記有機高分子化合物が占める面積率が5%以上50%以下であることが好ましい。   In the stabilized lithium powder of the present invention, the area ratio occupied by the organic polymer compound in the cross section of the stabilizing film is preferably 5% or more and 50% or less.

本発明の安定化リチウム粉は、さらに前記安定化膜が安定化リチウム粉全体に対して占める安定化膜比率が、1質量%以上10質量%以下であることが好ましい。   In the stabilized lithium powder of the present invention, it is preferable that the stabilizing film ratio of the stabilizing film to the entire stabilized lithium powder is 1% by mass or more and 10% by mass or less.

このように、安定化膜中に有機高分子化合物を含有させることで、従来の安定化膜が無機化合物のみから成る安定化リチウム粉よりも安定化膜の密度が低くなり、破砕されやすい安定化リチウム粉を得ることが可能となる。更に、この安定化リチウム粉を用いることでリチウムイオン二次電池の初期充放電効率を向上させることができる。   In this way, by including an organic polymer compound in the stabilization film, the stabilization film has a lower density than the stabilized lithium powder made of inorganic compounds only, and is stabilized easily. Lithium powder can be obtained. Furthermore, the use of this stabilized lithium powder can improve the initial charge / discharge efficiency of the lithium ion secondary battery.

本発明によれば、電池にした際の初期充放電効率を向上させることが可能な安定化リチウム粉及びこれを用いたリチウムイオン二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the stabilized lithium powder which can improve the initial stage charge / discharge efficiency at the time of making a battery, and a lithium ion secondary battery using the same can be provided.

本実施形態の安定化リチウム粉の模式断面図である。It is a schematic cross section of the stabilized lithium powder of this embodiment. 本実施形態のリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery of this embodiment.

以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

<安定化リチウム粉>
本実施形態の安定化リチウム粉は金属リチウム粒子の表面に無機化合物と有機高分子化合物を含有する安定化膜を有することを特徴とする。
<Stabilized lithium powder>
The stabilized lithium powder of this embodiment is characterized by having a stabilizing film containing an inorganic compound and an organic polymer compound on the surface of metallic lithium particles.

上記無機化合物としてはリチウム化合物や無機固体電解質等が挙げられ、前記リチウム化合物として、LiO、LiCO、LiOH等が挙げられる。 Examples of the inorganic compound include lithium compounds and inorganic solid electrolytes, and examples of the lithium compound include Li 2 O, Li 2 CO 3 , and LiOH.

上記無機固体電解質としては、Ti、Al、La、Zr、Ge及びSiからなる群より選択される少なくとも1種の元素の酸化物、硫化物、窒化物又はリン酸化合物の固体電解質が好ましい。例えば、β−アルミナ、ZrO、LaO、TiO、GeO、LiZnGeO(LISICON)、LiAlTiPO(LATP)、LiLaZrO(LLZ)、LiPON(LiPON)、LiO−SiO、LiS−GeS、LiS−P等が挙げられる。 The inorganic solid electrolyte is preferably a solid electrolyte of an oxide, sulfide, nitride, or phosphate compound of at least one element selected from the group consisting of Ti, Al, La, Zr, Ge, and Si. For example, β-alumina, ZrO x , LaO x , TiO x , GeO x , LiZnGeO (LISICON), LiAlTiPO 4 (LATP), LiLaZrO (LLZ), LiPO 4 N (LiPON), Li 2 O—Si 2 O, Li 2 S—Ge 2 S, Li 2 S—P 2 S 5 and the like.

また、上記有機高分子化合物としては熱可塑性高分子化合物であることが好ましく、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリテトラフロオロエチレン、ポリビニルアルコール、ポリアセタール、ポリアクリル酸、ポリアクリル酸メチル、ポリアミド、ポリイミド、ポリアミドイミド等が挙げられる。   The organic polymer compound is preferably a thermoplastic polymer compound, for example, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, Examples thereof include polyvinyl alcohol, polyacetal, polyacrylic acid, polymethyl acrylate, polyamide, polyimide, polyamideimide and the like.

上記無機化合物と有機高分子化合物の質量部比率は、安定化膜の密度と保存安定性の観点から50:50〜95:5であることが好ましく、80:20〜95:5であることがより好ましい。   The mass part ratio of the inorganic compound to the organic polymer compound is preferably 50:50 to 95: 5, and preferably 80:20 to 95: 5, from the viewpoint of the density of the stabilization film and storage stability. More preferred.

また、上記安定化リチウム粉の粒径比(FD2/FD1)は、安定化膜の破砕を容易にするために0.2以下であることが好ましく、0.1以下であることがより好ましい。   In addition, the particle size ratio (FD2 / FD1) of the stabilized lithium powder is preferably 0.2 or less, and more preferably 0.1 or less, in order to facilitate crushing of the stabilized film.

安定化リチウム粉のFD1は、安定化膜の破砕を容易にするためにFD1≦53μmであることが好ましい。 The FD1 of the stabilized lithium powder is preferably FD1 ≦ 53 μm in order to facilitate crushing of the stabilized film.

更に、上記安定化膜の断面における上記有機高分子化合物が占める面積率は、安定化膜の密度と保存安定性の観点から5%以上50%以下であることが好ましく、5%以上20%以下であることがより好ましい。   Furthermore, the area ratio occupied by the organic polymer compound in the cross section of the stabilization film is preferably 5% or more and 50% or less from the viewpoint of the density and storage stability of the stabilization film, and is preferably 5% or more and 20% or less. It is more preferable that

これらによれば、従来技術の安定化リチウム粉の安定化膜に対して、上記安定化膜は密度が小さく、また破砕しやすい形態であるため、負極へダメージを与えずにリチウムをドープすることが可能となる。上記安定化リチウム粉を用いてリチウムをドープした負極を用いることでリチウムイオン二次電池の初期充放電効率が向上する。   According to these, compared with the stabilization film of the stabilized lithium powder of the prior art, the above-mentioned stabilization film has a low density and is easily crushed, so that it can be doped with lithium without damaging the negative electrode. Is possible. The use of the negative electrode doped with lithium using the stabilized lithium powder improves the initial charge / discharge efficiency of the lithium ion secondary battery.

また、上記安定化リチウム粉において、ドープ効率の観点から上記安定化膜の占める割合が1質量%以上、10質量%以下であることが好ましい。   In the stabilized lithium powder, the proportion of the stabilized film is preferably 1% by mass or more and 10% by mass or less from the viewpoint of doping efficiency.

(安定化リチウム粉の製造方法)
次に本発明の安定化リチウム粉の製造方法について説明する。まず、炭化水素油にリチウムインゴットを投入し、これをリチウムの融点以上に加熱し、この溶融リチウム−炭化水素油混合物を十分な時間撹拌して分散液を作ったのち、冷却することで金属リチウム粒子を作製する。
(Method for producing stabilized lithium powder)
Next, the manufacturing method of the stabilized lithium powder of this invention is demonstrated. First, a lithium ingot is introduced into a hydrocarbon oil, heated to a temperature higher than the melting point of lithium, this molten lithium-hydrocarbon oil mixture is stirred for a sufficient time to form a dispersion, and then cooled to form a metallic lithium. Make particles.

本発明の安定化リチウム粉を作製する際の原料となる金属リチウムとしては、リチウムイオン二次電池の使用に支障のない範囲のリチウムであれば特に限定されず、角状、粒状、粉末状、箔状等の金属リチウムを用いることができる。   The lithium metal used as a raw material for producing the stabilized lithium powder of the present invention is not particularly limited as long as it is lithium in a range that does not hinder the use of the lithium ion secondary battery, and is square, granular, powdery, Metallic lithium such as foil can be used.

本発明の安定化リチウム粉を作製するために必要な炭化水素油は、多様な炭化水素油を使用することができる。本明細書中で使用される炭化水素油とは、主に炭化水素混合物からなる種々の油性液体を含み、鉱油、即ち油と認識される粘度制限を有する鉱物起源の液体産物を含み、従って、石油、ケツ岩油、パラフィン油等を含むが、これらに限定はされない。典型的な炭化水素油は、例えば、三光化学工業社製の流動パラフィン、Sタイプ、工業用タイプ、MORESCO社の商品名:モレスコホワイトP−40、P−55、P−60、P−70、P−80、P−100、P−120、P−150、P−200、P−260、P−350Pや、カネダ社製のハイコールMシリーズ(ハイコールM−52、ハイコールM−72、ハイコールM−172、ハイコールM−352、Kシリーズ(ハイコールK−140N、ハイコールK−160、ハイコールK−230、ハイコールK−290、ハイコールK−350、およびハイコールE−7のような炭化水素油である。これらに限らずリチウム又はナトリウム金属の融点以上で沸騰する精製炭化水素溶媒であれば使用できる。   Various hydrocarbon oils can be used as the hydrocarbon oil necessary for producing the stabilized lithium powder of the present invention. As used herein, hydrocarbon oils include various oily liquids consisting primarily of hydrocarbon mixtures, including mineral oils, i.e., liquid products of mineral origin with viscosity limitations recognized as oils, and therefore Including but not limited to petroleum, shale oil, paraffin oil and the like. Typical hydrocarbon oils are, for example, liquid paraffin manufactured by Sanko Chemical Co., Ltd., S type, industrial type, trade names of MORESCO: Moresco White P-40, P-55, P-60, P-70 , P-80, P-100, P-120, P-150, P-200, P-260, P-350P, and Kaneda High Call M series (High Call M-52, High Call M-72, High Call M -172, High Coal M-352, K Series (High Coal K-140N, High Coal K-160, High Coal K-230, High Coal K-290, High Coal K-350, and High Coal E-7. Not limited to these, any purified hydrocarbon solvent boiling above the melting point of lithium or sodium metal can be used.

上記炭化水素油は、リチウムインゴットを1質量部としたとき、溶融後の均一分散性の観点から1〜30質量部であることが好ましく、2〜15質量部であることがより好ましい。   From the viewpoint of uniform dispersibility after melting, the hydrocarbon oil is preferably 1 to 30 parts by mass, more preferably 2 to 15 parts by mass when the lithium ingot is 1 part by mass.

本発明の安定化リチウム粉を作製するために必要な温度は、リチウム金属が溶融する温度以上であることが好ましい。具体的には、190℃〜250℃、好ましくは195℃〜240℃、より好ましくは200℃〜220℃である。低すぎるとリチウムが固体化しリチウムの粉末の製造が困難となり、温度が高すぎると炭化水素油の種類によっては気化が起こり、製造上扱いにくくなるためである。   The temperature required to produce the stabilized lithium powder of the present invention is preferably equal to or higher than the temperature at which lithium metal melts. Specifically, it is 190 degreeC-250 degreeC, Preferably it is 195 degreeC-240 degreeC, More preferably, it is 200 degreeC-220 degreeC. If the temperature is too low, lithium is solidified, making it difficult to produce lithium powder. If the temperature is too high, vaporization may occur depending on the type of hydrocarbon oil, making it difficult to handle in production.

本発明の安定化リチウム粉を作製するために必要な撹拌能力は、その容器サイズや処理量にもよるが、所望の粒径が得られる撹拌方法であれば、撹拌装置を限定する必要はなく、様々な撹拌、分散機での微粒子化が可能である。   The stirring ability necessary to produce the stabilized lithium powder of the present invention depends on the container size and the amount of treatment, but there is no need to limit the stirring device as long as the stirring method can obtain a desired particle size. It is possible to make fine particles with various agitators and dispersers.

その後、上記金属リチウム粒子に無機化合物を加え、粉砕機によって乾式粉砕することによって、金属リチウム粒子が無機化合物で被覆された安定化リチウム粉前駆体が得られる。   Thereafter, an inorganic compound is added to the metal lithium particles, and dry pulverization is performed by a pulverizer to obtain a stabilized lithium powder precursor in which the metal lithium particles are coated with the inorganic compound.

上記無機化合物としては特に限定ないが、例えば、リチウム化合物や無機固体電解質を用いることができる。また、上記無機化合物の粒径を変えることで安定化リチウム粉の粒径比を制御することが可能となる。   Although it does not specifically limit as said inorganic compound, For example, a lithium compound and an inorganic solid electrolyte can be used. Further, the particle size ratio of the stabilized lithium powder can be controlled by changing the particle size of the inorganic compound.

上記粉砕機としては、例えば、アトライター装置、遊星ボールミル、振動ミル、コニカルミル、チューブミル等が挙げられる。ボールミルでの乾式粉砕は、基本的には粉砕機内において鋼球等のボール同士の衝突により、粒子が衝撃作用を受けて粉砕や、合金化、非晶質化が起こるが、微粒子においては、この衝撃作用によって粒子同士が凝集、凝着して複合粒子を形成する。   Examples of the pulverizer include an attritor device, a planetary ball mill, a vibration mill, a conical mill, and a tube mill. In dry pulverization with a ball mill, basically, particles such as steel balls collide with each other in a pulverizer, and the particles are impacted to cause pulverization, alloying, or amorphization. Particles are aggregated and adhered by impact action to form composite particles.

その後、上記安定化リチウム粉前駆体を高分子有機化合物が溶解した有機溶媒中に分散させ、加熱乾燥して前記有機溶媒を除去することで無機化合物と有機高分子化合物を含有する安定化膜を備えた安定化リチウム粉を得た。   Thereafter, the stabilized lithium powder precursor is dispersed in an organic solvent in which a high molecular organic compound is dissolved, heated and dried to remove the organic solvent, thereby forming a stabilized film containing an inorganic compound and an organic high molecular compound. The provided stabilized lithium powder was obtained.

上記加熱乾燥は上記有機溶媒が蒸発する温度であれば特に制限はなく、例えば、有機溶媒としてメチルエチルケトンを用いた場合は100℃で乾燥できる。   The heat drying is not particularly limited as long as the organic solvent evaporates. For example, when methyl ethyl ketone is used as the organic solvent, it can be dried at 100 ° C.

<リチウムをドープした負極>
(リチウムをドープした負極の製造方法)
リチウムをドープした負極は、前記安定化リチウム粉を負極作製時に負極にドープし、その後リチウムイオン二次電池を完成させることにより初期充放電効率を改善させたリチウムイオン二次電池が得られる。負極20は後述するように負極用集電体22上に負極活物質層24を形成することで作製することができる。
<Lithium-doped negative electrode>
(Method for producing lithium-doped negative electrode)
The lithium-doped negative electrode is obtained by doping the above-described stabilized lithium powder into the negative electrode at the time of preparing the negative electrode, and then completing the lithium ion secondary battery to obtain a lithium ion secondary battery with improved initial charge / discharge efficiency. The negative electrode 20 can be produced by forming a negative electrode active material layer 24 on a negative electrode current collector 22 as described later.

(負極用集電体)
負極用集電体22は、導電性の板材であればよく、例えば、銅、ニッケル又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
(Current collector for negative electrode)
The negative electrode current collector 22 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as copper, nickel, an alloy thereof, or stainless steel can be used.

(負極活物質層)
負極活物質層24は、負極活物質、負極用バインダー、及び、必要に応じた量の負極用導電助剤から主に構成されるものである。
(Negative electrode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a negative electrode binder, and an amount of a negative electrode conductive additive as required.

(負極活物質)
負極活物質としては不可逆容量が大きいものが好ましく、例えば、金属シリコン(Si)、酸化シリコン(SiO)等が挙げられる。
(Negative electrode active material)
The negative electrode active material preferably has a large irreversible capacity, and examples thereof include metal silicon (Si) and silicon oxide (SiO x ).

(負極用バインダー)
負極用バインダーは、負極活物質同士を結合すると共に、負極活物質と集電体22とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂が挙げられる。更に、上記の他に、バインダーとして、例えば、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、バインダーが導電助剤粒子の機能も発揮するので導電助剤を添加しなくてもよい。イオン伝導性の導電性高分子としては、例えば、リチウムイオン等のイオンの伝導性を有するものを使用することができ、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリフォスファゼン等)のモノマーと、LiClO、LiBF、LiPF等のリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。
(Binder for negative electrode)
The negative electrode binder bonds the negative electrode active materials and the current collector 22 together with the negative electrode active materials. The binder is not particularly limited as long as the above-described bonding is possible, and examples thereof include fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE). In addition to the above, for example, cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamideimide resin, or the like may be used as the binder. Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene. In this case, since the binder also exhibits the function of the conductive assistant particles, it is not necessary to add the conductive assistant. As the ion-conductive conductive polymer, for example, those having ion conductivity such as lithium ion can be used. For example, polymer compounds (polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide) , Polyphosphazene, etc.) and a lithium salt such as LiClO 4 , LiBF 4 , LiPF 6 , or an alkali metal salt mainly composed of lithium, and the like. Examples of the polymerization initiator used for the combination include a photopolymerization initiator or a thermal polymerization initiator that is compatible with the above-described monomer.

負極活物質層24中のバインダーの含有量も特に限定されないが、添加する場合には正極活物質の質量に対して0.5〜5質量%であることが好ましい。   The content of the binder in the negative electrode active material layer 24 is not particularly limited, but when added, it is preferably 0.5 to 5% by mass with respect to the mass of the positive electrode active material.

(負極用導電助剤)
負極用導電助剤も、負極活物質層24の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
(負極の製造方法)
上記安定化リチウム粉を溶媒に分散させた分散液を、負極用集電体上に形成した負極活物質層の上に塗布し、乾燥後にこれをプレスすることで負極活物質へのリチウムのドープが進行し、リチウムをドープした負極が完成する。
(Conductive aid for negative electrode)
The conductive aid for the negative electrode is not particularly limited as long as it improves the conductivity of the negative electrode active material layer 24, and a known conductive aid can be used. Examples thereof include carbon-based materials such as graphite and carbon black, metal fine powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal fine powders, and conductive oxides such as ITO.
(Method for producing negative electrode)
The dispersion liquid in which the above stabilized lithium powder is dispersed in a solvent is applied on the negative electrode active material layer formed on the negative electrode current collector, and dried and then pressed to dope lithium into the negative electrode active material. Progresses to complete the negative electrode doped with lithium.

上記分散液の溶媒としては蒸気圧が高いものが好ましく、例えば、ノルマルヘプタン、ノルマルヘキサン、メチルエチルケトン等が挙げられる。   As the solvent for the dispersion, those having a high vapor pressure are preferable, and examples thereof include normal heptane, normal hexane, and methyl ethyl ketone.

上記プレス方法としては特に限定は無く、ハンドプレスやローラープレス等、既知の方法を使うことが可能である。   The pressing method is not particularly limited, and a known method such as a hand press or a roller press can be used.

<リチウムイオン二次電池>
図2に本実施形態のリチウムイオン二次電池の模式断面図を示す。
<Lithium ion secondary battery>
FIG. 2 shows a schematic cross-sectional view of the lithium ion secondary battery of the present embodiment.

上記の通り作製されたリチウムをドープした負極20と、正極10と、電解質を含浸させたセパレータ18とを図2のように作製することでリチウムイオン二次電池100を作製することができる。ここで、正極10は、正極集電体12上に正極活物質層14を形成することで作製することができる。なお、図面中60と62は、それぞれ正極と負極の引出し電極を示す。   The lithium ion secondary battery 100 can be manufactured by manufacturing the lithium-doped negative electrode 20, the positive electrode 10, and the separator 18 impregnated with the electrolyte as shown in FIG. 2 as described above. Here, the positive electrode 10 can be produced by forming the positive electrode active material layer 14 on the positive electrode current collector 12. In the drawings, reference numerals 60 and 62 denote a positive electrode and a negative electrode, respectively.

<正極>
(正極用集電体)
正極用集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
<Positive electrode>
(Current collector for positive electrode)
The positive electrode current collector 12 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as aluminum, an alloy thereof, or stainless steel can be used.

(正極活物質層)
正極活物質層14は、正極活物質、正極用バインダー、及び、必要に応じた量の正極用導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a positive electrode binder, and a necessary amount of positive electrode conductive additive.

(正極活物質)
正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンと該リチウムイオンのカウンターアニオン(例えば、PF6)とのドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMnMaO(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物が挙げられる。
(Positive electrode active material)
Examples of the positive electrode active material include occlusion and release of lithium ions, desorption and insertion (intercalation) of lithium ions, or doping and dedoping of lithium ions and counter anions (for example, PF6 ) of the lithium ions. If it can be made to advance reversibly, it will not specifically limit, A well-known electrode active material can be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and the general formula: LiNi x Co y Mn z MaO 2 (x + y + z + a = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0 ≦ a ≦ 1, and M is one or more elements selected from Al, Mg, Nb, Ti, Cu, Zn, and Cr) Oxide, lithium vanadium compound (LiV 2 O 5 ), olivine type LiMPO 4 (where M is one or more elements selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr, or VO) shown), and composite metal oxides of lithium titanate (Li 4 Ti 5 O 12) , LiNi x Co y Al z O 2 (0.9 <x + y + z <1.1) , etc.

(正極用バインダー)
正極用バインダーとしては特に限定は無く、上記で記載した負極用バインダーと同様のものを用いることが出来る。
(Binder for positive electrode)
There is no limitation in particular as a binder for positive electrodes, The thing similar to the binder for negative electrodes described above can be used.

(正極用導電助剤)
正極用導電助剤としては特に限定は無く、上記で記載した負極用導電助剤と同様のものを用いることが出来る。
(Conductive aid for positive electrode)
There is no limitation in particular as a conductive support agent for positive electrodes, The thing similar to the conductive support agent for negative electrodes described above can be used.

<電解質>
電解質は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解液を使用することができる。
<Electrolyte>
The electrolyte is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18. The electrolyte is not particularly limited, and for example, in the present embodiment, an electrolytic solution containing a lithium salt can be used.

前記電解液としては高い電圧で作動可能な有機溶媒を使用することが好ましく、例えば、エチレンカーボネート、プロピレンカーボネート、等の非プロトン性高誘電率溶媒や、ジメチルカーボネート、エチルメチルカーボネート、等の酢酸エステル類あるいはプロピオン酸エステル類等の非プロトン性低粘度溶媒が挙げられる。更に、これらの非プロトン性高誘電率溶媒と非プロトン性低粘度溶媒は適当な混合比で併用されて使用することが望ましい。   It is preferable to use an organic solvent that can be operated at a high voltage as the electrolyte, for example, an aprotic high dielectric constant solvent such as ethylene carbonate or propylene carbonate, or an acetate ester such as dimethyl carbonate or ethyl methyl carbonate. Or aprotic low-viscosity solvents such as propionates. Furthermore, it is desirable to use these aprotic high dielectric constant solvents and aprotic low viscosity solvents in combination at an appropriate mixing ratio.

また、前記有機溶媒としてイミダゾリウム、アンモニウム、及びピリジニウム型のカチオンを用いたイオン性液体を使用しても良い。対アニオンは特に限定されるものではないが、BF 、PF 、(CFSO等が挙げられ、前述の有機溶媒と混合して使用しても良い。 Further, an ionic liquid using imidazolium, ammonium, and pyridinium type cations may be used as the organic solvent. The counter anion is not particularly limited, and examples thereof include BF 4 , PF 6 , (CF 3 SO 2 ) 2 N − and the like, and they may be used by mixing with the above-mentioned organic solvent.

前記リチウム塩としては特に限定されず、リチウムイオン二次電池の電解質として用いられるリチウム塩を用いることが出来る。例えば、LiPF、LiBF、LiClO、LiFSI、LiBOB等の無機酸陰イオン塩、LiCFSO、(CFSONLi等の有機酸陰イオン塩等を用いることが出来る。 It does not specifically limit as said lithium salt, The lithium salt used as an electrolyte of a lithium ion secondary battery can be used. For example, inorganic acid anion salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiFSI, and LiBOB, organic acid anion salts such as LiCF 3 SO 3 , (CF 3 SO 2 ) 2 NLi, and the like can be used.

更に、前記リチウム塩の濃度は、電気伝導性の点から、0.5〜2.0Mが好ましい。なお、この電解質の温度25℃における導電率は0.01S/m以上であることが好ましく、リチウム塩の種類あるいはその濃度により調整される。   Furthermore, the concentration of the lithium salt is preferably 0.5 to 2.0 M from the viewpoint of electrical conductivity. The conductivity of the electrolyte at 25 ° C. is preferably 0.01 S / m or more, and is adjusted by the type of lithium salt or its concentration.

電解質を固体電解質やゲル電解質とする場合には、ポリ(ビニリデンフルオライド)等を高分子材料として含有することが可能である。   When the electrolyte is a solid electrolyte or gel electrolyte, poly (vinylidene fluoride) or the like can be contained as a polymer material.

更に、本実施形態の電解液中には、必要に応じて各種添加剤を添加してもよい。添加剤としては、例えば、サイクル寿命向上を目的としたビニレンカーボネート、メチルビニレンカーボネート等や、過充電防止を目的としたビフェニル、アルキルビフェニル等や、脱酸や脱水を目的とした各種カーボネート化合物、各種カルボン酸無水物、各種含窒素及び含硫黄化合物が挙げられる。 Furthermore, you may add various additives in the electrolyte solution of this embodiment as needed. Examples of additives include vinylene carbonate and methyl vinylene carbonate for the purpose of improving cycle life, biphenyl and alkyl biphenyl for the purpose of preventing overcharge, various carbonate compounds for the purpose of deoxidation and dehydration, Carboxylic anhydride, various nitrogen-containing and sulfur-containing compounds can be mentioned.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

[実施例1]
(安定化リチウム粉の製造)
ステンレススチール樹脂フラスコ反応器に関東化学社のリチウムインゴット100gおよびWitco社のCarnation炭化水素油を加え、容器内を乾燥アルゴンで置換した。次いでこの反応器を200℃まで加熱し、リチウムを溶融させた。溶融状態でこの混合物を5分間高速度撹拌した。これを室温まで冷却した後、得られた粉をヘキサンで洗浄することで金属リチウム粒子を得た。
[Example 1]
(Production of stabilized lithium powder)
A stainless steel resin flask reactor was charged with 100 g of lithium ingot from Kanto Chemical Co. and Carnation hydrocarbon oil from Witco, and the inside of the vessel was replaced with dry argon. The reactor was then heated to 200 ° C. to melt the lithium. The mixture was stirred at high speed for 5 minutes in the molten state. After cooling this to room temperature, the obtained powder was washed with hexane to obtain metallic lithium particles.

上記の方法で得られた金属リチウム粒子95質量部に、無機化合物としてFD2が4.8μmであるLiO4質量部を加え、アルゴン雰囲気下、ボールミルによって回転速度300rpm/minで2分間回転させ、安定化リチウム粉前駆体を得た。 To 95 parts by mass of the metal lithium particles obtained by the above method, Li 2 O4 part by mass of FD2 of 4.8 μm is added as an inorganic compound, and rotated for 2 minutes at a rotational speed of 300 rpm / min with a ball mill under an argon atmosphere. A stabilized lithium powder precursor was obtained.

上記の方法で得られた安定化リチウム粉前駆体99質量部、有機高分子化合物としてポリスチレン1質量部、および溶媒としてメチルエチルケトン200質量部を混合し、オーバーヘッドスターラーによって回転速度300rpm/minで10時間撹拌後、混合物を100℃で10時間乾燥させることで安定化リチウム粉を得た。   99 parts by mass of the stabilized lithium powder precursor obtained by the above method, 1 part by mass of polystyrene as the organic polymer compound, and 200 parts by mass of methyl ethyl ketone as the solvent were mixed, and stirred for 10 hours at a rotational speed of 300 rpm / min with an overhead stirrer. Thereafter, the mixture was dried at 100 ° C. for 10 hours to obtain stabilized lithium powder.

(リチウムをドープした負極の作製)
酸化シリコン(SiO)83質量部、アセチレンブラック2質量部、ポリアミドイミド15質量部、N−メチルピロリドン100質量部を混合し、負極活物質層形成用のスラリーを調製した。このスラリーを、集電体として厚さ14μmの銅箔の一面に、負極活物質の塗布量が2.0mg/cmとなるように塗布し、100℃で乾燥することで負極活物質層を形成した。その後、ローラープレスによって加圧成形し、真空中、350℃で3時間熱処理することで、負極活物質層の厚さが22μmである負極を得た。
(Preparation of negative electrode doped with lithium)
83 parts by mass of silicon oxide (SiO x ), 2 parts by mass of acetylene black, 15 parts by mass of polyamideimide, and 100 parts by mass of N-methylpyrrolidone were mixed to prepare a slurry for forming a negative electrode active material layer. The slurry was applied to one surface of a copper foil having a thickness of 14 μm as a current collector so that the amount of the negative electrode active material applied was 2.0 mg / cm 2 and dried at 100 ° C. to thereby form the negative electrode active material layer. Formed. Then, the negative electrode whose thickness of a negative electrode active material layer is 22 micrometers was obtained by pressure-molding with a roller press, and heat-processing in a vacuum at 350 degreeC for 3 hours.

上記の方法で得られた負極の上に、上記安定化リチウム粉100質量部をメチルエチルケトン100質量部に分散させた分散液を、安定化リチウム粉の塗布量が0.5mg/cmとなるように塗布し、100℃で乾燥を行った。その後、ハンドプレスによって30kNの力で加圧して負極へリチウムをドープさせ、リチウムをドープした負極を得た。 A dispersion obtained by dispersing 100 parts by mass of the above stabilized lithium powder in 100 parts by mass of methyl ethyl ketone on the negative electrode obtained by the above method is applied so that the coating amount of the stabilized lithium powder becomes 0.5 mg / cm 2. And dried at 100 ° C. Then, it pressurized by the force of 30 kN with the hand press, and lithium was doped to the negative electrode, and the negative electrode doped with lithium was obtained.

(評価用リチウムイオン二次電池の作製)
上記で作製したリチウムをドープした負極と、対極として銅箔にリチウム金属箔を貼り付けた対極と、それらの間にポリエチレン微多孔膜からなるセパレータを挟んでアルミラミネートパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液(溶媒:エチレンカーボネート/ジエチルカーボネート=3/7(体積比))を注入した後、真空シールし、評価用のリチウムイオン二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
The negative electrode doped with lithium prepared above, the counter electrode obtained by attaching a lithium metal foil to a copper foil as a counter electrode, and a separator made of a polyethylene microporous film sandwiched between them, and put in an aluminum laminate pack, this aluminum laminate pack After injecting 1M LiPF 6 solution (solvent: ethylene carbonate / diethyl carbonate = 3/7 (volume ratio)) as an electrolytic solution, vacuum sealing was performed to produce a lithium ion secondary battery for evaluation.

<粒径比の測定>
上記の方法で作製した安定化リチウム粉および上記で用いた無機化合物(LiO)について、光学顕微鏡を用いて粒子を観察した。得られた観察像を二値化し、画像解析によって粒子のフェレ径を求めた。ここで、フェレ径は観察像に外接する長方形の長辺の長さで定義される。
<Measurement of particle size ratio>
The above methods inorganic compounds used in stabilized lithium powder and said prepared in the (Li 2 O), was determined by observing the particles with an optical microscope. The obtained observation image was binarized, and the particle diameter was determined by image analysis. Here, the ferret diameter is defined by the length of the long side of the rectangle circumscribing the observation image.

最低500個以上の粒子に対して上記の画像解析を行い、安定化リチウム粉の平均フェレ径FD1と無機化合物の平均フェレ径FD2を測定し、粒径比を求めた。   The above image analysis was performed on at least 500 particles, the average ferret diameter FD1 of the stabilized lithium powder and the average ferret diameter FD2 of the inorganic compound were measured, and the particle size ratio was determined.

<面積率の測定>
上記の方法で作製した安定化リチウム粉の中心部を通る任意の断面について、光学顕微鏡を用いて粒子を観察した。得られた観察像について、安定化膜中の無機化合物と有機高分子化合物が明確に区別されるように二値化を行い、画像解析によってそれぞれの面積を求め、面積率を測定した。ここで、無機化合物の占める面積をS1、有機化合物の占める面積をS2としたとき、面積率は下記式2で定義される。
式2:面積率(%)={S2/(S1+S2)}×100
<Measurement of area ratio>
Particles were observed using an optical microscope for an arbitrary cross section passing through the central portion of the stabilized lithium powder produced by the above method. The obtained observation image was binarized so that the inorganic compound and the organic polymer compound in the stabilization film were clearly distinguished, the respective areas were determined by image analysis, and the area ratio was measured. Here, when the area occupied by the inorganic compound is S1, and the area occupied by the organic compound is S2, the area ratio is defined by the following formula 2.
Formula 2: Area ratio (%) = {S2 / (S1 + S2)} × 100

<安定化膜比率の測定>
上記の方法で作製した安定化リチウム粉を厚さ14μmの銅箔の一面に1g散布し、ハンドプレスによって20kNの力で加圧して圧着させた。前記銅箔を負極とし、正極として新たな銅箔と、それらの間にポリエチレン微多孔膜からなるセパレータを挟んでアルミラミネートパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液(溶媒:エチレンカーボネート/ジエチルカーボネート=3/7(体積比))を注入した後、真空シールし、安定化膜比率測定用のリチウムイオン二次電池を作製した。
<Measurement of Stabilized Film Ratio>
1 g of the stabilized lithium powder produced by the above method was sprayed on one surface of a copper foil having a thickness of 14 μm, and pressed and pressed by a hand press with a force of 20 kN. The copper foil is used as a negative electrode, a new copper foil is used as a positive electrode, and a separator made of a polyethylene microporous film is sandwiched between them and placed in an aluminum laminate pack. In this aluminum laminate pack, a 1M LiPF 6 solution ( After injecting the solvent: ethylene carbonate / diethyl carbonate = 3/7 (volume ratio)), the mixture was vacuum-sealed to prepare a lithium ion secondary battery for measuring the stabilized film ratio.

上記の方法で作製した安定化膜比率測定用のリチウムイオン二次電池について、二次電池充放電試験装置を用い、電圧範囲を0.005Vから2.5Vとして100mAの電流値で放電を行った。ここで得られた放電容量C(mAh)を、金属リチウムの理論容量3861mAh/gで割ると、式3に示すように安定化リチウム粉中の金属リチウムの質量wが得られる。
式3:w=C(mAh)/3861(mAh/g)
wは、安定化リチウム粉の質量Wから充放電に寄与しない安定化膜の質量だけ減少した値となる。したがって、Wとwの差が安定化膜の質量となり、これより安定化膜の比率は式4で表される。
式4:安定化膜比率(質量%)=(W(g)−w(g))/W(g)×100
用いた安定化リチウム粉は1gであるから、安定化膜比率は最終的に式5で求めることが出来る。
式5:安定化膜比率(質量%)=(1−C/3861)×100
About the lithium ion secondary battery for measuring the stabilized film ratio manufactured by the above method, the secondary battery charge / discharge test apparatus was used, and the voltage range was 0.005 V to 2.5 V, and discharge was performed at a current value of 100 mA. . When the discharge capacity C (mAh) obtained here is divided by the theoretical capacity 3861 mAh / g of metallic lithium, the mass w of metallic lithium in the stabilized lithium powder is obtained as shown in Equation 3.
Formula 3: w = C (mAh) / 3861 (mAh / g)
w is a value obtained by decreasing the mass W of the stabilized lithium powder by the mass of the stabilizing film that does not contribute to charge / discharge. Therefore, the difference between W and w becomes the mass of the stabilization film, and the ratio of the stabilization film is expressed by Equation 4 from this.
Formula 4: Stabilized film ratio (% by mass) = (W (g) −w (g)) / W (g) × 100
Since the stabilized lithium powder used is 1 g, the stabilized film ratio can be finally obtained from Equation 5.
Formula 5: Stabilized film ratio (% by mass) = (1−C / 3861) × 100

<初期充放電効率の測定>
上記の方法で作製した評価用リチウムイオン二次電池について、二次電池充放電試験装置を用い、電圧範囲を0.005Vから2.5Vまでとし、1C=1600mA/hとして0.05Cでの電流値で充放電を行った。これにより、初期放電容量を求めた。この初期放電容量が高いほど、不可逆容量が低減されており、優れたドーピング効率が得られていることを意味する。初期充放電効率は従来技術である無機化合物のみの安定化被膜を有する安定化リチウム粉を使用した比較例1の結果を100%とした時の比較値として表1に示す。
<Measurement of initial charge / discharge efficiency>
About the lithium ion secondary battery for evaluation produced by the above method, using a secondary battery charge / discharge test apparatus, the voltage range is 0.005 V to 2.5 V, and the current at 0.05 C is 1C = 1600 mA / h. Charging / discharging was performed with the value. This determined the initial discharge capacity. The higher the initial discharge capacity, the lower the irreversible capacity, which means that excellent doping efficiency is obtained. The initial charge / discharge efficiency is shown in Table 1 as a comparative value when the result of Comparative Example 1 using a stabilized lithium powder having a stabilized coating of only an inorganic compound, which is a prior art, is 100%.

[実施例2]
無機化合物としてLiCOを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 2]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were produced using the same method as in Example 1 except that Li 2 CO 3 was used as the inorganic compound.

[実施例3]
無機化合物としてLiOHを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 3]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were produced using the same method as in Example 1 except that LiOH was used as the inorganic compound.

[実施例4]
有機高分子化合物としてポリエチレンを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 4]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that polyethylene was used as the organic polymer compound.

[実施例5]
有機高分子化合物としてポリプロピレンを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 5]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were produced using the same method as in Example 1 except that polypropylene was used as the organic polymer compound.

[実施例6]
有機高分子化合物としてポリ塩化ビニルを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 6]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that polyvinyl chloride was used as the organic polymer compound.

[実施例7]
有機高分子化合物としてポリ塩化ビニリデンを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 7]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were produced in the same manner as in Example 1 except that polyvinylidene chloride was used as the organic polymer compound.

[実施例8]
有機高分子化合物としてポリフッ化ビニルを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 8]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that polyvinyl fluoride was used as the organic polymer compound.

[実施例9]
有機高分子化合物としてポリフッ化ビニリデンを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 9]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were produced in the same manner as in Example 1 except that polyvinylidene fluoride was used as the organic polymer compound.

[実施例10]
有機高分子化合物としてポリテトラフルオロエチレンを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 10]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that polytetrafluoroethylene was used as the organic polymer compound.

[実施例11]
有機高分子化合物としてポリビニルアルコールを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 11]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that polyvinyl alcohol was used as the organic polymer compound.

[実施例12]
有機高分子化合物としてポリアセタールを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 12]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were produced in the same manner as in Example 1 except that polyacetal was used as the organic polymer compound.

[実施例13]
有機高分子化合物としてポリアクリル酸を用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 13]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that polyacrylic acid was used as the organic polymer compound.

[実施例14]
有機高分子化合物としてポリアクリル酸メチルを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 14]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were produced using the same method as in Example 1 except that polymethyl acrylate was used as the organic polymer compound.

[実施例15]
有機高分子化合物としてポリアミドを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 15]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that polyamide was used as the organic polymer compound.

[実施例16]
有機高分子化合物としてポリイミドを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 16]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that polyimide was used as the organic polymer compound.

[実施例17]
有機高分子化合物としてポリアミドイミドを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 17]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that polyamideimide was used as the organic polymer compound.

[実施例18]
無機化合物としてLiO2.5質量部、有機高分子化合物としてポリスチレン2.5質量部として用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 18]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were used in the same manner as in Example 1 except that 2.5 parts by mass of Li 2 O as an inorganic compound and 2.5 parts by mass of polystyrene as an organic polymer compound were used. Produced.

[実施例19]
無機化合物としてLiO3.5質量部、有機高分子化合物としてポリスチレン1.5質量部として用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 19]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were used in the same manner as in Example 1 except that 3.5 parts by mass of Li 2 O as an inorganic compound and 1.5 parts by mass of polystyrene as an organic polymer compound were used. Produced.

[実施例20]
無機化合物としてLiO4.75質量部、有機高分子化合物としてポリスチレン0.25質量部として用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 20]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were used in the same manner as in Example 1 except that 4.75 parts by mass of Li 2 O as an inorganic compound and 0.25 parts by mass of polystyrene as an organic polymer compound were used. Produced.

[実施例21]
有機高分子化合物としてポリスチレン5質量部として用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 21]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that 5 parts by mass of polystyrene was used as the organic polymer compound.

[実施例22〜24]
無機化合物としてFD2が6.5μm〜13.1μmのLiOを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Examples 22 to 24]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared in the same manner as in Example 1 except that LiO 2 having an FD2 of 6.5 μm to 13.1 μm was used as the inorganic compound.

[実施例25]
金属リチウム粒子90質量部、無機化合物としてLiO9質量部として用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 25]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were produced using the same method as in Example 1 except that 90 parts by mass of metallic lithium particles and 9 parts by mass of Li 2 O as an inorganic compound were used.

[実施例26]
金属リチウム粒子88質量部、無機化合物としてLiO9.6質量部、有機高分子化合物としてポリスチレン2.4質量部として用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 26]
Evaluation as stabilized lithium powder using the same method as in Example 1 except that 88 parts by mass of metallic lithium particles, 9.6 parts by mass of Li 2 O as an inorganic compound, and 2.4 parts by mass of polystyrene as an organic polymer compound were used. A lithium ion secondary battery was prepared.

[実施例27]
金属リチウム粒子99質量部、無機化合物としてLiO0.8質量部、有機高分子化合物としてポリスチレン0.2質量部として用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 27]
Evaluation as stabilized lithium powder using the same method as in Example 1 except that 99 parts by mass of metallic lithium particles, 0.8 part by mass of Li 2 O as an inorganic compound, and 0.2 parts by mass of polystyrene as an organic polymer compound were used. A lithium ion secondary battery was prepared.

[実施例28]
金属リチウム粒子99.5質量部、無機化合物としてLiO0.4質量部、有機高分子化合物としてポリスチレン0.1質量部として用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 28]
Stabilized lithium powder using the same method as in Example 1 except that 99.5 parts by mass of metallic lithium particles, 0.4 part by mass of Li 2 O as an inorganic compound, and 0.1 part by mass of polystyrene as an organic polymer compound were used. A lithium ion secondary battery for evaluation was prepared.

[実施例29]
無機化合物としてLATPを用いた以外は実施例1と同様の方法を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製した。
[Example 29]
A stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared using the same method as in Example 1 except that LATP was used as the inorganic compound.

実施例2〜29の評価用リチウムイオン二次電池に対し、実施例1に記載される各種試験を実施した結果を表1に示す。実施例1〜3では無機化合物の種類によらず、また実施例4〜17では有機高分子化合物の種類によらず、比較例1に対して140%以上の高い充放電効率を示した。また、実施例1〜17に示されるように、無機:有機高分子質量部比率が80:20、粒径比が0.1以下、面積率が20%以下、安定化膜比率が10%以下の条件を満たす場合は、いずれも比較例1に対して140%以上の高い充放電効率を示した。   Table 1 shows the results of various tests described in Example 1 performed on the evaluation lithium ion secondary batteries of Examples 2 to 29. In Examples 1 to 3, high charge / discharge efficiency of 140% or more was shown with respect to Comparative Example 1 regardless of the type of inorganic compound, and in Examples 4 to 17 regardless of the type of organic polymer compound. As shown in Examples 1 to 17, the inorganic: organic polymer mass part ratio is 80:20, the particle size ratio is 0.1 or less, the area ratio is 20% or less, and the stabilization film ratio is 10% or less. In the case where the above condition is satisfied, all showed high charge / discharge efficiency of 140% or more with respect to Comparative Example 1.

[比較例1]
安定化リチウム粒子としてFMC社の無機化合物のみからなる安定化被膜を有する安定化リチウム粉(商品名:SLMP)を用いた以外は実施例1と同様にして比較例1の評価用リチウムイオン二次電池を作製し、実施例1に記載される各種試験を実施したところ、表1に示すように実施例に比べて劣る結果が得られた。これは、無機化合物のみで被膜が形成されているため、安定化リチウム粉をプレスによって密着させる工程において、負極にクラック等の欠陥が生じていたためである。
[Comparative Example 1]
The lithium ion secondary for evaluation of Comparative Example 1 was evaluated in the same manner as in Example 1 except that stabilized lithium powder (trade name: SLMP) having a stabilized coating composed only of an inorganic compound of FMC was used as the stabilized lithium particles. When the battery was produced and the various tests described in Example 1 were performed, as shown in Table 1, results inferior to those of the Examples were obtained. This is because defects such as cracks were generated in the negative electrode in the step of bringing the stabilized lithium powder into close contact with the press because the film was formed only from the inorganic compound.

[比較例2]
実施例1の方法に従い無機化合物としてLiO5質量部を用い、得られた安定化リチウム前駆体を用いて安定化リチウム粉と評価用リチウムイオン二次電池を作製し、実施例1に記載される各種試験を実施したところ、表1に示すように実施例に比べて劣る結果が得られた。比較例1と同様、無機化合物のみで被膜が形成されているため、安定化リチウム粉をプレスによって密着させる工程において、負極にクラック等の欠陥が生じていたためである。
[Comparative Example 2]
According to the method of Example 1, using Li 2 O5 parts by mass as an inorganic compound, using the obtained stabilized lithium precursor, a stabilized lithium powder and a lithium ion secondary battery for evaluation were prepared. As shown in Table 1, results inferior to those of the examples were obtained. This is because, as in Comparative Example 1, since the film was formed only with the inorganic compound, defects such as cracks were generated in the negative electrode in the step of bringing the stabilized lithium powder into close contact with the press.

[比較例3]
実施例1の方法において無機化合物を用いず、安定化リチウム前駆体を有機高分子化合物としてポリスチレン10質量部で直接被覆することで安定化リチウム粉と、評価用リチウムイオン二次電池を作製し、実施例1に記載される各種試験を実施したところ、表1に示すように実施例に比べて劣る結果が得られた。有機高分子化合物のみで形成された安定化膜は水分や酸素を通しやすく、安定化リチウム粉内部の金属リチウムがドープ工程中に水分や酸素と反応してしまったために、安定化リチウム粉全体に占める金属リチウムの割合が減少し、負極への十分なドープが進行しなかったためである。
[Comparative Example 3]
In the method of Example 1, a stabilized lithium powder and an evaluation lithium ion secondary battery were prepared by directly coating a stabilized lithium precursor with 10 parts by mass of polystyrene as an organic polymer compound without using an inorganic compound. When various tests described in Example 1 were performed, results inferior to those of the Examples were obtained as shown in Table 1. The stabilization film formed only with organic polymer compounds easily allows moisture and oxygen to pass through, and the metal lithium inside the stabilized lithium powder has reacted with moisture and oxygen during the doping process. This is because the proportion of metallic lithium occupied decreases and sufficient doping to the negative electrode has not progressed.

Figure 0006596877
Figure 0006596877

本発明の安定化リチウム粉を用いてドープした負極を用いることで、初期充放電効率が改善されたリチウムイオン二次電池を提供することができる。   By using the negative electrode doped with the stabilized lithium powder of the present invention, a lithium ion secondary battery with improved initial charge / discharge efficiency can be provided.

1…金属リチウム、2…無機化合物、3…有機高分子化合物、4…安定化膜、10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池。 DESCRIPTION OF SYMBOLS 1 ... Metallic lithium, 2 ... Inorganic compound, 3 ... Organic polymer compound, 4 ... Stabilization film, 10 ... Positive electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 20 ... Negative electrode, 22 DESCRIPTION OF SYMBOLS ... Negative electrode collector, 24 ... Negative electrode active material layer, 30 ... Laminated body, 50 ... Case, 60, 62 ... Lead, 100 ... Lithium ion secondary battery.

Claims (5)

金属リチウム粒子の表面に無機化合物と有機高分子化合物を含有する安定化膜を有し、
前記安定化膜中の前記無機化合物と前記有機高分子化合物の質量部比率が80:20〜95:5であって、
前記無機化合物が、リチウム化合物あるいは無機固体電解質から選択される少なくとも1種を含み、
前記リチウム化合物があるいは無機固体電解質は、Li O、Li CO 、LiOH、LiAlTiPO から選択される少なくとも1種を含み、
前記有機高分子化合物が熱可塑性高分子化合物であって、
前記熱可塑性高分子化合物が、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリテトラフロオロエチレン、ポリビニルアルコール、ポリアセタール、ポリアクリル酸、ポリアクリル酸メチル、ポリアミド、ポリイミド、ポリアミドイミドの群から選ばれる少なくとも1種を含むことを特徴とする、安定化リチウム粉。
Having a stabilizing film containing an inorganic compound and an organic polymer compound on the surface of the metallic lithium particles,
The mass part ratio of the inorganic compound and the organic polymer compound in the stabilization film is 80:20 to 95: 5 ,
The inorganic compound includes at least one selected from a lithium compound or an inorganic solid electrolyte,
The lithium compound or the inorganic solid electrolyte includes at least one selected from Li 2 O, Li 2 CO 3 , LiOH, and LiAlTiPO 4 ,
The organic polymer compound is a thermoplastic polymer compound,
The thermoplastic polymer compound is polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, polyacetal, polyacrylic acid, polymethyl acrylate, A stabilized lithium powder comprising at least one selected from the group consisting of polyamide, polyimide and polyamideimide.
前記安定化リチウム粉の粒径比が0.2以下であることを特徴とする請求項1に記載の安定化リチウム粉。ただし、前記安定化リチウム粉の平均フェレ径をFD1、前記無機化合物の平均フェレ径をFD2としたとき、粒径比は下記式1で定義される。
式1:粒径比=FD2/FD1
The stabilized lithium powder according to claim 1, wherein the stabilized lithium powder has a particle size ratio of 0.2 or less. However, when the average ferret diameter of the stabilized lithium powder is FD1, and the average ferret diameter of the inorganic compound is FD2, the particle size ratio is defined by the following formula 1.
Formula 1: Particle size ratio = FD2 / FD1
前記安定化膜の断面における前記有機高分子化合物が占める面積率が5%以上50%以下であることを特徴とする請求項1または2のいずれか1項に記載の安定化リチウム粉。 3. The stabilized lithium powder according to claim 1, wherein an area ratio of the organic polymer compound in a cross section of the stabilizing film is 5% or more and 50% or less. 4. 前記安定化膜が安定化リチウム粉全体に対して占める安定化膜比率が、1質量%以上10質量%以下であることを特徴とする請求項1ないしのいずれか1項に記載の安定化リチウム粉。 The stabilization film according to any one of claims 1 to 3 , wherein the stabilization film ratio of the stabilization film to the entire stabilized lithium powder is 1 mass% or more and 10 mass% or less. Lithium powder. 請求項1ないしのいずれか1項に記載の安定化リチウム粉を用いてドーピングを施した負極と、正極と、電解質と、を有するリチウムイオン二次電池。
A negative electrode was subjected to doping with a stabilized lithium powder according to any one of claims 1 to 4, the positive electrode and a lithium ion secondary battery having an electrolyte, a.
JP2015070591A 2015-03-31 2015-03-31 Stabilized lithium powder and lithium ion secondary battery using the same Expired - Fee Related JP6596877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015070591A JP6596877B2 (en) 2015-03-31 2015-03-31 Stabilized lithium powder and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070591A JP6596877B2 (en) 2015-03-31 2015-03-31 Stabilized lithium powder and lithium ion secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2016191101A JP2016191101A (en) 2016-11-10
JP6596877B2 true JP6596877B2 (en) 2019-10-30

Family

ID=57246219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070591A Expired - Fee Related JP6596877B2 (en) 2015-03-31 2015-03-31 Stabilized lithium powder and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP6596877B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210056504A (en) * 2019-11-08 2021-05-20 삼성에스디아이 주식회사 Negative electrode layer for all solid secondary battery, all solid secondary battery including the same, and preparing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250207A (en) * 2006-03-13 2007-09-27 Kyocera Chemical Corp Conductive wax, conductive molding material, and conductive molded product
US20090035663A1 (en) * 2006-10-13 2009-02-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
US20090061321A1 (en) * 2007-08-31 2009-03-05 Fmc Corporation, Lithium Division Stabilized lithium metal powder for li-ion application, composition and process
JP2010160986A (en) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd Anode for lithium-ion secondary battery and lithium-ion secondary battery using this
JP5760593B2 (en) * 2011-03-30 2015-08-12 Tdk株式会社 Method for producing active material, electrode and lithium ion secondary battery
US9029013B2 (en) * 2013-03-13 2015-05-12 Uchicago Argonne, Llc Electroactive compositions with poly(arylene oxide) and stabilized lithium metal particles
CN105392737B (en) * 2013-04-19 2018-05-18 罗克伍德锂有限责任公司 The stabilized lithium metal structure and its manufacturing method applied with nitrogenous shell

Also Published As

Publication number Publication date
JP2016191101A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
KR102600726B1 (en) Manufacturing method of electrode active material molded body for lithium ion battery and manufacturing method of lithium ion battery
JP5133020B2 (en) Method for producing positive electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode plate
JP6690189B2 (en) Stabilized lithium powder, negative electrode using the same, and lithium ion secondary battery
JP6460400B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP6375843B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP6375842B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
KR20230148175A (en) Conductive undercoat agent
JP6668642B2 (en) Stabilized lithium powder, negative electrode and lithium ion secondary battery using the same
JP2018063755A (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP6147797B2 (en) Nonaqueous electrolyte battery and battery pack
JP6596877B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP2020158835A (en) Metal halide foil, and all-solid battery and nonaqueous lithium ion battery including the same
JP2020158834A (en) Metal halide particle, and all-solid battery and nonaqueous lithium ion battery including the same
US12074313B2 (en) Methods of forming lithium-silicon alloys for electrochemical cells
JP2018172781A (en) Lithium powder, negative electrode for lithium ion secondary battery prepared therewith, and lithium ion secondary battery prepared with the negative electrode for lithium ion secondary battery
CN105489870B (en) stabilized lithium powder
JP2021150111A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6631363B2 (en) Negative electrode active material, negative electrode including negative electrode active material, and lithium ion secondary battery including negative electrode
JP6610089B2 (en) Stabilized lithium powder and lithium ion secondary battery using the same
WO2024195471A1 (en) Positive electrode and lithium-ion secondary battery
WO2024150390A1 (en) Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2019061828A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
US20220340693A1 (en) Production method of sulfur-modified polyacrylonitrile
Guillaume Development of high power hybrid cathodes for lithium ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R150 Certificate of patent or registration of utility model

Ref document number: 6596877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees