JP6585875B2 - Hybrid vehicle operation control method - Google Patents
Hybrid vehicle operation control method Download PDFInfo
- Publication number
- JP6585875B2 JP6585875B2 JP2013178942A JP2013178942A JP6585875B2 JP 6585875 B2 JP6585875 B2 JP 6585875B2 JP 2013178942 A JP2013178942 A JP 2013178942A JP 2013178942 A JP2013178942 A JP 2013178942A JP 6585875 B2 JP6585875 B2 JP 6585875B2
- Authority
- JP
- Japan
- Prior art keywords
- soc
- engine
- target torque
- torque
- hybrid vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 35
- 230000001965 increasing effect Effects 0.000 claims description 20
- 230000000994 depressogenic effect Effects 0.000 claims description 12
- 230000003247 decreasing effect Effects 0.000 claims description 8
- 239000000446 fuel Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
- B60W10/26—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/13—Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0666—Engine torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/24—Energy storage means
- B60W2710/242—Energy storage means for electrical energy
- B60W2710/244—Charge state
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
Description
本発明はハイブリッド車両の運転制御方法に関し、さらに詳細には、車両のエネルギー活用能力を能動的に知能化して、効率的なエネルギーの使用によって車両の燃費を一層向上させるようにしたハイブリッド車両の運転制御方法に関するものである。 The present invention relates to a driving control method for a hybrid vehicle, and more specifically, driving a hybrid vehicle in which the energy utilization capability of the vehicle is actively made intelligent and the fuel consumption of the vehicle is further improved by the efficient use of energy. It relates to a control method.
並列型ハイブリッドのコンセプトは、エンジンと駆動モーターの間にエンジンクラッチが位置していることにより、エンジンの動力伝達をホイールまで伝達する制御が容易であり、特に減速の際にエンジンを停止させてエンジンクラッチを解除することで、純粋に制動エネルギーをモーターで吸収する回生制動モードに入ることに大きな特徴がある。 The concept of the parallel hybrid is that the engine clutch is located between the engine and the drive motor, so that it is easy to control the transmission of the engine power to the wheel. By releasing the clutch, there is a great feature in entering a regenerative braking mode in which braking energy is purely absorbed by the motor.
SOC(State Of Charge)は、高電圧バッテリー充電状態、つまり充電量を意味する。この際、高電圧バッテリーは、エンジンを最適運転効率にするために、モーターの充放電によるダンパーの役目をしている。 SOC (State Of Charge) means a high voltage battery charge state, that is, a charge amount. At this time, the high voltage battery serves as a damper by charging and discharging the motor in order to make the engine have an optimum operating efficiency.
しかし、エンジンの起動と停止を多数回繰り返すと、燃費の低下とシステムの負荷として作用するので、適切な制御入力と結果によって運転者の意志を最大限に反映して安定的にエンジンのオン/オフを達成する必要がある。 However, if the engine is started and stopped a number of times, it will act as a reduction in fuel consumption and load on the system. Therefore, the engine will be turned on and off stably, reflecting the driver's will to the maximum with appropriate control inputs and results. Need to achieve off.
近年には、自動車の燃費向上の持続的な要求と各国の排出規制の強化に従って環境に優しい自動車に対する要求が高まっている。これに対する現実的な代案としてハイブリッド車両が注目されている。
このようなハイブリッド車両は、内燃機関であるエンジン以外に電気エネルギーを使うモーターを一緒に動力源として使用する関係で、電気エネルギーの貯蔵装置であるバッテリーのSOC管理が重要な意味を持つことになる。
In recent years, there has been a growing demand for environmentally friendly automobiles in accordance with the continuous demand for improving fuel economy of automobiles and the tightening of emission regulations in each country. Hybrid vehicles are attracting attention as a realistic alternative to this.
In such a hybrid vehicle, in addition to an engine that is an internal combustion engine, a motor that uses electric energy is used as a power source, and therefore, SOC management of a battery that is a storage device for electric energy has an important meaning. .
したがって、ハイブリッド車両はSOCの高低状態を考慮しながら最適の燃費水準を達成することができる運転戦略を適用するように努力している。そこで、SOCを管理して効率的なエネルギー使用を行うハイブリッド車の運転制御方法が提案された〔特許文献1参照〕。この方法によれば、バッテリーの充電状態であるSOCを一連の複数領域に分割し、各SOC領域別に別個の動力配分戦略を適用し、各領域別に備えられた別個の運転マップなどの動力配分戦略によってエンジンから発生させなければならないトルクとモーターから発生させなければならないトルクなどを選定するように構成し、現在のSOCがどのSOC領域に属するかを判断し、それに対応する動力配分戦略によって車両の走行がなされるようにするものである。 Therefore, hybrid vehicles strive to apply driving strategies that can achieve optimal fuel economy levels while taking into account the high and low SOC conditions. Therefore, a hybrid vehicle operation control method that manages the SOC and efficiently uses energy has been proposed [see Patent Document 1]. According to this method, the SOC that is the state of charge of the battery is divided into a series of a plurality of regions, and a separate power distribution strategy is applied to each SOC region, and a power distribution strategy such as a separate operation map provided for each region. To select the torque that must be generated from the engine and the torque that must be generated from the motor, etc., determine which SOC area the current SOC belongs to, and according to the corresponding power distribution strategy, It is intended to be run.
この動力配分戦略は、基本的に低SOC領域ではモーターから発生させるトルクを減らしてSOCの追加低下を抑制し、エンジンから発生する動力で車両の走行及びバッテリーの充電を行ってSOCの上昇を許容ないし誘発し、またSOCが低いときエンジンの動力を用いてアイドル充電を行い、SOCがさらに低い場合には、バッテリーを電子装備から遮断するようにする。また、高SOC領域では、SOCの低下を許容ないし誘発することによってモーターから発生するトルクの比重を高め、エンジンの使用をできるだけ抑制して車両の燃費を向上させるようにするものである。 This power allocation strategy basically reduces the torque generated by the motor in the low SOC region to suppress the additional decrease in SOC, and allows the vehicle to run and the battery to be charged with the power generated from the engine to allow the SOC to rise. If the SOC is low, the engine power is used to perform idle charging. If the SOC is lower, the battery is disconnected from the electronic equipment. Also, in the high SOC region, the specific gravity of torque generated from the motor is increased by allowing or inducing a decrease in SOC, and the use of the engine is suppressed as much as possible to improve the fuel consumption of the vehicle.
その他、バッテリの充電効率の低下を抑制しながらエンジンの運転効率を上昇させることができ、自動車全体のエネルギ効率の向上を図ることができるハイブリッド自動車の提案がある〔特許文献2参照〕。 In addition, there is a proposal of a hybrid vehicle that can increase the operating efficiency of the engine while suppressing a decrease in the charging efficiency of the battery, and can improve the energy efficiency of the entire vehicle [see Patent Document 2].
一方、近年には車両に係わる情報技術(IT;information technology)の急速な発展によって、車両は、走行する道路についての多様な情報を比較的容易に入手することができ、これを反映して車両の運転戦略を改善して燃費の追加的な向上などが可能である。例えば、道路状況、現在の車両状況および過去の操作状況に関する情報を取得し、これらの情報に基づいて車両の燃費の悪化を招くことになるか否かを予測し、燃費の悪化を招くことが予測された場合に、燃費を向上するための操作が車両の乗員に事前に報知する運転支援装置の提案がある〔例えば、特許文献3参照〕。 On the other hand, in recent years, due to the rapid development of information technology (IT) related to vehicles, the vehicle can relatively easily obtain various information about the road on which the vehicle travels. It is possible to improve fuel efficiency by improving the driving strategy. For example, information on road conditions, current vehicle conditions, and past operation conditions is acquired, and it is predicted whether or not fuel efficiency of the vehicle will be deteriorated based on these information, resulting in deterioration of fuel efficiency. There is a proposal of a driving assistance device that, when predicted, notifies a vehicle occupant in advance of an operation for improving fuel consumption [see, for example, Patent Document 3].
本発明の目的は、車両のエネルギー活用能力を能動的に知能化して効率的なエネルギー使用を行い、車両の燃費を向上させるようにしたハイブリッド車両の運転制御方法を提供することにある。 An object of the present invention is to provide an operation control method for a hybrid vehicle in which the energy utilization capability of the vehicle is actively made intelligent to use the energy efficiently and improve the fuel efficiency of the vehicle.
本発明は、充電状態(SOC)が高領域、中領域及び低領域で区分されるSOC領域と各SOC領域別に事前設定されたエンジン目標トルクを備えたハイブリッド車両の運転制御方法であって、
現在の充電状態(SOC)が属するSOC領域からエンジン目標トルクを算出し、現在のSOCが一定範囲の最大値よりも大きいとき、算出されたエンジン目標トルクの大きさを減少させた修正エンジン目標トルクにエンジンを制御し、SOCが一定範囲の最小値よりも小さいとき、算出されたエンジン目標トルクの大きさを増加させた修正エンジン目標トルクに前記エンジンを制御し、現在のSOCが一定範囲内であれば算出された前記エンジン目標トルクに前記エンジンを制御し、アクセルペダルと制動ペダルのいずれも踏まない慣性走行のとき、一定のSOC以上で前記エンジンとモーターの間のクラッチをオフにし、車速が増すほどクラッチオフの基準となる前記SOCを徐々に下げることを特徴とする。
The present invention is an operation control method for a hybrid vehicle having an SOC target in which a state of charge (SOC) is divided into a high region, a middle region, and a low region, and an engine target torque preset for each SOC region,
The engine target torque is calculated from the SOC region to which the current state of charge (SOC) belongs, and when the current SOC is larger than the maximum value within a certain range , the corrected engine target torque is obtained by reducing the magnitude of the calculated engine target torque. When the engine is controlled and the SOC is smaller than the minimum value in the certain range, the engine is controlled to the corrected engine target torque obtained by increasing the magnitude of the calculated engine target torque, and the current SOC is within the certain range. If the engine is controlled to the calculated engine target torque if there is an inertial running in which neither the accelerator pedal nor the brake pedal is depressed, the clutch between the engine and the motor is turned off at a certain SOC or more, and the vehicle speed is The SOC is gradually lowered as the clutch-off criterion increases as the value increases.
走行路が上り坂で前記SOCが一定値以上のとき、前記算出されたエンジン目標トルクの大きさを減少させた前記修正エンジン目標トルクに前記エンジンを制御し、傾斜が大きくなるほど前記算出されたエンジン目標トルクの大きさの減少度を大きくすることを特徴とする。 When the SOC traveling road is uphill is higher than a certain value, the engine is controlled to the corrected target engine torque reduced the size of the target engine torque the calculated were the calculated higher slope increases engine It is characterized in that the degree of reduction in the magnitude of the target torque is increased.
アクセルペダルと制動ペダルのいずれも踏まない慣性走行のとき、車速が増すほどモーターのクリープトルクを負の方向に大きくし、このとき、走行路が上り坂のとき平地の場合より緩やかに大きくし、走行路が下り坂のとき平地の場合より急に大きくするようにする。 In inertial driving where neither the accelerator pedal nor the brake pedal is depressed, the creep torque of the motor is increased in a negative direction as the vehicle speed increases. When the road is downhill, make it suddenly larger than on flat ground.
充電状態(SOC)が高領域、中領域及び低領域で区分されるSOC領域と各SOC領域別に事前設定されたエンジン目標トルクを備えたハイブリッド車両の運転制御方法であって、
現在の充電状態(SOC)が属するSOC領域からエンジン目標トルクを算出し、現在のSOCが一定範囲以上のとき算出されたエンジン目標トルクの大きさを減少させた 修正エンジン目標トルクにエンジンを制御し、SOCが一定範囲以下のとき算出されたエンジン目標トルクの大きさを増加させた修正エンジン目標トルクにエンジンを制御し、 現在のSOCが一定範囲内であれば算出されたエンジン目標トルクにエンジンを制御し、
アクセルペダルと制動ペダルのいずれも踏まない慣性走行のとき、一定のSOC以上でエンジンとモーターの間のクラッチをオフにし、クラッチオフの基準となるSOCは、走行路の傾斜度によって、走行路が平地の場合と比較して、 走行路が上り坂の場合は最も高く、下り坂の場合は最も低くすることを特徴とする。
A driving control method for a hybrid vehicle having an SOC target in which a state of charge (SOC) is divided into a high region, a middle region, and a low region and an engine target torque preset for each SOC region,
The engine target torque is calculated from the SOC range to which the current state of charge (SOC) belongs, and the engine is controlled to the corrected engine target torque that is reduced when the current SOC is above a certain range. The engine is controlled to the corrected engine target torque obtained by increasing the calculated engine target torque when the SOC is below a certain range. If the current SOC is within the certain range, the engine is adjusted to the calculated engine target torque. Control
When the inertial running without the accelerator pedal or the brake pedal is performed, the clutch between the engine and the motor is turned off at a certain SOC or more, and the SOC that becomes the reference for clutch-off is determined based on the slope of the running road. Compared to the case of flat ground, it is characterized in that it is highest when the road is uphill and lowest when it is downhill.
前記一定範囲以上で前記現在のSOCが高くなるほど前記エンジン目標トルクの大きさをより大きく下げ、前記一定範囲以下で前記現在のSOCが低くなるほど前記エンジン目標トルクの大きさをより大きく上げ、走行路が上り坂のときは、平地や下り坂の場合より前記エンジン目標トルクを低くすることを特徴とする。 Wherein in a range above about the current SOC is higher lowers greater the magnitude of the target engine torque, the current SOC is higher up greater the magnitude of the target engine torque lower below the predetermined range, the travel path There when uphill, characterized in that to lower the said engine target torque than the flat or downhill.
本発明のハイブリッド車両の走行モード制御方法によれば、エンジンの頻繁な起動/停止を防止して、それによる燃費節減の効果がある。
また、エンジンとクラッチを保護することができ、バッテリー充電量を有効に確保することができる。そして、車速や傾斜度によってそれぞれ異なるマップを持って動力制御を行うので、燃費の向上と運転質感の向上及び車両の耐久安定化を同時に成すことができる。
According to the traveling mode control method for a hybrid vehicle of the present invention, frequent start / stop of the engine is prevented, and the fuel consumption is thereby reduced.
Further, the engine and the clutch can be protected, and the battery charge amount can be effectively ensured. Since power control is performed with different maps depending on the vehicle speed and the inclination, it is possible to simultaneously improve fuel consumption, improve driving texture, and stabilize vehicle durability.
以下、本発明に係るハイブリッド車両の運転制御方法について、好適な実施形態を挙げ、添付図面を参照しつつ詳細に説明する。
図1は、ハイブリッド車両の運転制御方法のブロック図、図2は、走行モードを示す図、図3は、ハイブリッド車両の運転制御方法の別の実施形態でのブロック図である。
Hereinafter, a hybrid vehicle operation control method according to the present invention will be described in detail with reference to the accompanying drawings by way of preferred embodiments.
FIG. 1 is a block diagram of a driving control method for a hybrid vehicle, FIG. 2 is a diagram showing a driving mode, and FIG. 3 is a block diagram in another embodiment of a driving control method for a hybrid vehicle.
本発明のハイブリッド車両の運転制御方法は、高領域/中領域/低領域のSOC領域、及びそれぞれのSOC領域に相応するエンジン目標トルクを備えたハイブリッド車両の運転制御方法であって、現在のSOCからエンジン目標トルクを算出し、現在のSOCが一定範囲以上のときエンジン目標トルクを下げ、SOCが一定範囲以下のときエンジン目標トルクを上げる。 The hybrid vehicle operation control method of the present invention is a hybrid vehicle operation control method having a high region / medium region / low region SOC region, and an engine target torque corresponding to each SOC region, which is a current SOC. The engine target torque is calculated from the above, and when the current SOC is above a certain range, the engine target torque is decreased, and when the SOC is below the certain range, the engine target torque is increased.
本発明のハイブリッド車両の運転制御方法は、SOC領域を高領域/中領域/低領域に分け、高領域/中領域/低領域のSOC領域は、さらに車速によって細分化した細部領域に区分し、各細部領域毎にエンジン目標トルクが設定できる。図1は、ハイブリッド車両の運転制御方法のブロック図で、エンジン目標トルクマップが高領域/中領域/低領域のSOC領域に分けられ、これらはさらに高高領域(VERY HIGH)/高領域(HIGH)/中高領域(NORMAL HIGH)/中低領域(NORMAL LOW)/低領域(LOW)/低低領域(VERY LOW)に区分される。そして、各領域では、車速によってさらに細分化(一般、高速、都心など)する。 In the hybrid vehicle operation control method of the present invention, the SOC region is divided into a high region / medium region / low region, and the SOC region of the high region / medium region / low region is further divided into detailed regions subdivided according to the vehicle speed, The engine target torque can be set for each detail area. FIG. 1 is a block diagram of a hybrid vehicle operation control method, in which an engine target torque map is divided into a high region / middle region / low region SOC region, and these are further divided into a high region (VERY HIGH) / high region (HIGH). ) / Medium-high region (NORMAL HIGH) / Medium-low region (NORMAL LOW) / Low region (LOW) / Low-low region (VERY LOW). Each area is further subdivided (general, high speed, city center, etc.) depending on the vehicle speed.
すなわち、エンジン目標トルクは、現在のSOCと車速を共に考慮して算出するもので、SOCと車速を入力とし、各細部領域にあたるエンジン目標トルクを出力とするデータマップによって現状況での最適のエンジントルクを出力していく。 That is, the engine target torque is calculated by taking into account both the current SOC and the vehicle speed, and the optimum engine in the current situation is determined by a data map in which the SOC and the vehicle speed are input and the engine target torque corresponding to each detail area is output. Output torque.
このように、現在のSOCと車速を考慮し、エンジン目標トルクマップを用いてエンジンの目標トルクを算出しても精細に調整する必要がある。現在のSOCが一定範囲以上のときエンジン目標トルクを下げ、SOCが一定範囲以下のときエンジン目標トルクを上げる。 Thus, even if the target torque of the engine is calculated using the engine target torque map in consideration of the current SOC and vehicle speed, fine adjustment is required. When the current SOC is above a certain range, the engine target torque is decreased, and when the SOC is below a certain range, the engine target torque is increased.
すなわち、エンジン目標トルクをSOCの変動に拘わらず一様にするときには、SOCが高い場合には予め最適化した目標エンジントルクで出力されるが、車両の耐久性、運転者の偏差、運転者搭乗人員によって走行負荷が変わって、より高いSOC領域に進む可能性があり、SOCが低い場合は高負荷の条件で車両の耐久性、運転者の偏差、運転者搭乗人員によって走行負荷が過多になると、目標エンジントルクに比べて過度な使用によってSOCが大きく落ちる可能性がある。 In other words, when the engine target torque is made uniform regardless of the variation in the SOC, if the SOC is high, it is output with the target engine torque optimized in advance, but the vehicle durability, driver deviation, driver boarding There is a possibility that the traveling load may change depending on the personnel, and it may proceed to a higher SOC region. If the SOC is low, the vehicle's durability, driver deviation, and excessive traveling load due to the driver's occupant under high load conditions There is a possibility that the SOC is greatly reduced by excessive use compared to the target engine torque.
したがって、平均車速と傾斜角による走行負荷条件を確認し、SOC状態によってエンジントルクを補償する可変制御を行うことで、現在のSOCが一定範囲以上の高SOCのときには、走行負荷によってエンジントルクを下向きに可変制御してSOCが充電されないように調節し、燃費を向上させる。一方、現在のSOCが一定範囲以下の低SOCのときには、走行負荷によってSOCが低いSOC領域に進入すると、まずエンジントルクを補償する制御を実施してSOCの急激な下落を防止するようにする。図4はこのようなエンジン目標トルクの制御を示すもので、SOCが一定範囲以下である45〜70%以上のときはエンジン目標トルクを徐々に下げ、以下のときはエンジン目標トルクを徐々に上げる。 Therefore, by confirming the driving load condition based on the average vehicle speed and the inclination angle and performing variable control for compensating the engine torque according to the SOC state, the engine torque is lowered by the driving load when the current SOC is a high SOC exceeding a certain range. The SOC is variably controlled so that the SOC is not charged to improve fuel efficiency. On the other hand, when the current SOC is a low SOC below a certain range, when the SOC enters the SOC region where the SOC is low due to the traveling load, first, a control for compensating the engine torque is performed to prevent a sudden drop in the SOC. FIG. 4 shows such engine target torque control. When the SOC is 45 to 70% or more, which is below a certain range, the engine target torque is gradually decreased, and when the SOC is below, the engine target torque is gradually increased. .
走行路が上り坂でSOCが一定値以上のときは、エンジン目標トルクを下げるが、傾斜が大きくなるほどエンジン目標トルクの減少度を大きくする。走行路が下り坂の場合、傾斜が大きくなるほどエンジンの停止時点が早くなるようにする。 When the travel path is uphill and the SOC is equal to or higher than a certain value, the engine target torque is decreased, but the degree of decrease in the engine target torque is increased as the inclination increases. When the road is downhill, the stop point of the engine is advanced as the inclination increases.
このような上り坂や下り坂の状況は、予め備えられた走行負荷別走行モードを参照して反映することができる。具体的に、図2は本発明によるハイブリッド車両の運転制御方法の走行モードを示す図であり、車速と走行路の傾斜を考慮して複数の精細な走行モードを設け、それぞれの優先順位を決めておくことが可能である。 Such an uphill or downhill situation can be reflected with reference to a travel mode according to travel load provided in advance. Specifically, FIG. 2 is a diagram showing a driving mode of the driving control method for a hybrid vehicle according to the present invention. A plurality of fine driving modes are provided in consideration of the vehicle speed and the inclination of the driving path, and each priority order is determined. It is possible to keep.
すなわち、走行モードは、車速によって区分されるモードと走行路の傾斜によって区分されるモードとからなっている。車速と走行路の傾斜を入力し、走行モードを出力とするデータマップが備えられ、データマップには車速と傾斜にマッチする各場合毎に車速によって区分されるモードまたは傾斜によって区分されるモードのいずれか一方を優先して結果として保存することができる。 In other words, the travel mode includes a mode that is classified according to the vehicle speed and a mode that is classified according to the inclination of the travel path. A data map that inputs the vehicle speed and the slope of the road and outputs the driving mode is provided. The data map includes a mode that is classified by the vehicle speed or a mode that is classified by the slope for each case that matches the vehicle speed and the slope. Either one can be prioritized and saved as a result.
図示している例は、車速が非常に遅い極渋滞の場合と傾斜が一般平地の場合では、車速によって区分される走行モードを選択して制御し、その他の場合は傾斜によって区分される走行モードを選択して運用するようにするものである。 In the example shown in the figure, the driving mode is controlled by selecting the driving mode according to the vehicle speed when the vehicle speed is very slow and the slope is general flat, and the driving mode is determined by the inclination in other cases. Is to select and operate.
走行モードを参照することで傾斜度が分かり、これを考慮して、走行路が上り坂でSOCが一定値以上の場合は、エンジン目標トルクを下げるが、傾斜が大きくなるほどエンジン目標トルクの減少度を大きくする。図5はこのような制御状況を示すもので、SOCが55%以上の状況では、上り坂ではエンジン目標トルクを徐々に下げ、傾斜が大きくなったとき、つまり上り坂の勾配が大きくなるほどエンジン目標トルクをより下げるようにする。 By referring to the driving mode, the degree of inclination can be found, and considering this, when the road is uphill and the SOC is above a certain value, the engine target torque is reduced, but the degree of decrease in the engine target torque increases as the inclination increases. Increase FIG. 5 shows such a control situation. In a situation where the SOC is 55% or more, the engine target torque is gradually decreased on the uphill, and the engine target torque increases as the slope increases, that is, as the slope of the uphill increases. Try to lower the torque.
これは上り坂走行中に車両負荷が小さい場合にSOC充電することがあり、上り坂の後の下り坂走行の際にSOC充電を行って燃費の悪化が発生するが、平均車速と傾斜角による走行負荷条件を確認し、SOC状態によってエンジントルクを可変制御することで、上り坂走行時のSOC状態によってエンジントルクを可変制御して、その後の下り坂走行時に発生する充電状況に備えてSOCを適正水準(55%)に維持するように制御することができる。 This may cause SOC charging when the vehicle load is small during uphill traveling, and SOC charging may occur when traveling downhill after uphill, resulting in a deterioration in fuel consumption. However, depending on the average vehicle speed and inclination angle By checking the driving load condition and variably controlling the engine torque according to the SOC state, the engine torque is variably controlled according to the SOC state during the uphill driving, and the SOC is prepared in preparation for the charging situation that occurs during the subsequent downhill driving. It can be controlled to maintain an appropriate level (55%).
下り坂の場合は、傾斜が大きくなるほどエンジンの停止時点が早くなるようにすることで電気自動車モード(EVモード)がより早く開始するようにする。従来では、下り坂走行の際には、EVで走行することができる状況でもEVに進入しないと、エンジン最適運転点を目標としてエンジントルクを制御するときに燃費の悪化が発生(エンジンでは最適運転点であるが、目標トルクが高くて燃料消耗量が多い)したが、このような可変制御によってEVへの進入を早く進めて無駄な燃費悪化を防止することができる。 In the case of a downhill, the electric vehicle mode (EV mode) starts earlier by making the engine stop point earlier as the inclination increases. Conventionally, when traveling downhill, if the vehicle does not enter the EV even if it can travel on EV, the fuel consumption deteriorates when the engine torque is controlled with the engine optimum operating point as the target (optimal operation on the engine). However, although the target torque is high and the amount of fuel consumption is large), by such variable control, entry into the EV can be advanced quickly to prevent unnecessary fuel consumption deterioration.
車速によって極渋滞、都心、一般などのモードを判断するにあたり、車速だけでなく車両の停車回数も一緒に考慮すると、より正確なモードの判断が可能となる。すなわち、車速が非常に速いといっても停車回数が前もって備えた一定基準以上の場合には市内走行と見なして“都心”モードと判断し、車速が非常に遅くても停車しない場合には高速道路走行と見なして“高速”モードに判断する。このように、車速と停車回数を考慮してモードを判断することで、車速によって区分されるより正確なモードの判断が可能となる。 When determining modes such as extreme traffic jam, city center, and general according to the vehicle speed, more accurate mode determination can be made by considering not only the vehicle speed but also the number of times the vehicle has stopped. In other words, even if the vehicle speed is very fast, if the number of stops is more than a certain standard prepared in advance, it is considered as “city center” mode when traveling in the city, and if the vehicle does not stop even if the vehicle speed is very slow It is determined that the vehicle is traveling on a highway and is in “high speed” mode. Thus, by determining the mode in consideration of the vehicle speed and the number of stops, it is possible to determine a more accurate mode classified by the vehicle speed.
図3は、本発明によるハイブリッド車両の運転制御方法の別のブロック図であり、アクセルペダルと制動ペダルのいずれも踏まない慣性走行の場合、車速が増すほどモーターのクリープトルクを負の方向に大きくするようにする。すなわち、アクセルペダルと制動ペダルのいずれも踏まない場合は、車両が走行する車速による慣性走行を行う。この場合、車速が高い状態であればあるほどモーターのクリープトルクを負の方向に大きくする。モーターのクリープトルクを負の方向にするというのは、回生制動によって減速されることを意味し、車速が高くて慣性が高いほどそのクリープトルクを負の方向に増加させて回生制動と減速がより円滑に行われるようにする。 FIG. 3 is another block diagram of the driving control method for a hybrid vehicle according to the present invention. In the case of inertia traveling where neither the accelerator pedal nor the brake pedal is depressed, the creep torque of the motor increases in the negative direction as the vehicle speed increases. To do. That is, when neither the accelerator pedal nor the brake pedal is depressed, inertial traveling is performed at the vehicle speed at which the vehicle travels. In this case, the creep torque of the motor is increased in the negative direction as the vehicle speed is higher. Making the motor creep torque negative means that the motor is decelerated by regenerative braking.The higher the vehicle speed and the higher the inertia, the more the creep torque is increased in the negative direction and the more the regenerative braking and deceleration are. Make it happen smoothly.
図6のように車速がさらに高い状況で慣性走行を行う場合には、モーターのクリープトルクを負の方向に徐々に大きくする。特に走行路が上り坂のとき、平地の場合より緩やかに大きくし、走行路が下り坂のとき、平地の場合より急に大きくするようにする。これにより、上り坂ではモーターのクリープトルクが相対的に小さく、減速と回生が不十分になり、下り坂ではモーターのクリープトルクが相対的に大きくなって制動操作が減少して車両の耐久に有利であり、回生と減速をすることが可能となる。それにより、運転者がもつ、上り坂と下り坂で減速に対する違和感をなくす効果も得ることができる。 As shown in FIG. 6, when the inertial running is performed at a higher vehicle speed, the creep torque of the motor is gradually increased in the negative direction. In particular, when the traveling road is uphill, the road is gradually increased as compared with the case of flat ground, and when the traveling road is downhill, the road is suddenly increased as compared with the case of flat ground. As a result, the creep torque of the motor is relatively small on the uphill, resulting in insufficient deceleration and regeneration, and the creep torque of the motor is relatively large on the downhill, which reduces the braking operation and is advantageous for vehicle durability. It is possible to regenerate and decelerate. As a result, it is possible to obtain an effect of eliminating the uncomfortable feeling of deceleration on the uphill and downhill that the driver has.
アクセルペダルと制動ペダルのいずれも踏まない慣性走行の場合、一定SOC以上でエンジンとモーターの間のクラッチをオフするとともに車速が高いほどクラッチオフの基準となる一定SOCが徐々に低くなるようにすることができる。すなわち、一般的なハイブリッド車両の場合、エンジンはクラッチを介してモーターに連結され、モーターは駆動軸に直結される。そして、エンジンにはクラッチとは反対側にスタートモーター/ジェネレーター(HSG)が備えられる。クラッチをオフせずに慣性走行を行う場合は、エンジンの最小駆動によってモーターとHSGは同時にバッテリーに回生による充電を行うようにする。 In inertial driving in which neither the accelerator pedal nor the brake pedal is depressed, the clutch between the engine and the motor is turned off at a certain SOC or higher, and the constant SOC that is the reference for clutch-off is gradually lowered as the vehicle speed increases. be able to. That is, in the case of a general hybrid vehicle, the engine is connected to a motor via a clutch, and the motor is directly connected to the drive shaft. The engine is provided with a start motor / generator (HSG) on the side opposite to the clutch. When the inertial running is performed without turning off the clutch, the motor and the HSG simultaneously charge the battery by regeneration by the minimum driving of the engine.
したがって、アクセルペダルと制動ペダルのいずれも踏まない慣性走行の場合、一定のSOC以上でエンジンとモーターの間のクラッチをオフさせ、頻繁なクラッチのオン/オフによる駆動損失を防止し、特に車速が高いほどクラッチオフの基準となるSOCが徐々に低くなるようにすることで、車速が高いときはクラッチがオフされる時間を長くする。
Therefore, in the case of inertial running where neither the accelerator pedal nor the brake pedal is depressed, the clutch between the engine and the motor is turned off at a certain SOC or more to prevent drive loss due to frequent on / off of the clutch. The higher the speed, the lower the SOC, which is the reference for clutch-off, and the longer the time during which the clutch is turned off when the vehicle speed is high.
アクセルペダルと制動ペダルのいずれも踏まない慣性走行の場合、一定のSOC以上でエンジンとモーターの間のクラッチをオフするとともに、クラッチオフの基準となるSOCは走行路が上り坂の場合が高く、下り坂の場合が低くなるようにすることができる。 In inertial running where neither the accelerator pedal nor the brake pedal is depressed, the clutch between the engine and the motor is turned off at a certain SOC or higher, and the SOC that is the reference for clutch-off is high when the road is uphill. The downhill case can be lowered.
これは、図7のグラフで示すように、アクセルペダルと制動ペダルのいずれも踏まない慣性走行において一定のSOC以上のとき、つまりグラフにおいてSOC境界線を超える場合にクラッチがオフすると言える。しかし、このような基準となるSOCラインは、上り坂のときは高く、下り坂のときは低くなるようにし、車速が高いほどSOCラインが低くなるようにする。 As shown in the graph of FIG. 7, it can be said that the clutch is turned off when the inertial travel in which neither the accelerator pedal nor the brake pedal is depressed exceeds a certain SOC, that is, when the SOC boundary is exceeded in the graph. However, such a reference SOC line is high when going uphill and low when going downhill, and the SOC line is lowered as the vehicle speed increases.
これにより、クラッチのオン/オフとエンジンの頻繁なオン/オフを防止し、HSGによる充電をさらに行うことでSOCを上昇させるようにする。 As a result, on / off of the clutch and frequent on / off of the engine are prevented, and the SOC is increased by further charging with HSG.
上述したような構造のハイブリッド車両の走行モード制御方法によれば、頻繁なエンジンの起動/停止を防止し、それによる燃費節減の効果がある。
また、エンジンとクラッチを保護することができ、バッテリーの充電量を有効に確保することができる。そして、車速や傾斜度によってそれぞれ異なるマップを持って動力制御を行い、燃費の向上と運転質感の向上及び車両耐久安定化を同時に達成することができる。
According to the traveling mode control method for a hybrid vehicle having the above-described structure, frequent start / stop of the engine can be prevented, and the fuel consumption can be reduced accordingly.
Further, the engine and the clutch can be protected, and the amount of charge of the battery can be effectively ensured. Then, power control is performed with different maps depending on the vehicle speed and the degree of inclination, so that improvement in fuel consumption, improvement in driving texture, and stabilization of vehicle durability can be achieved simultaneously.
以上、本発明のハイブリッド車両の運転制御方法について、特定の実施形態を挙げて図示し、説明したが、特許請求の範囲によって提供される本発明の技術的思想を外れない限度内において、本発明に多様な改良及び変化を加え得るのは、当業界における通常の知識を有する者には自明であろう。 The hybrid vehicle operation control method of the present invention has been illustrated and described with reference to specific embodiments. However, the present invention is within the scope of the technical idea of the present invention provided by the claims. It will be apparent to those skilled in the art that various modifications and changes can be made.
本発明は、車速と傾斜度を用いてハイブリッド車両のSOC管理方法を可変的に具現することで、車両のエネルギー活用能力をより能動的で知能化して効率的なエネルギー使用で車両の燃費をもっと向上させるようにしたハイブリッド車両に適用可能である。 The present invention variably embodies the hybrid vehicle SOC management method using the vehicle speed and the inclination, thereby making the vehicle's energy utilization more active and intelligent, and more efficient use of the vehicle to improve the fuel efficiency of the vehicle. The present invention can be applied to a hybrid vehicle that is improved.
Claims (7)
現在の充電状態(SOC)が属するSOC領域からエンジン目標トルクを算出し、現在のSOCが一定範囲の最大値よりも大きいとき、算出されたエンジン目標トルクの大きさを減少させた修正エンジン目標トルクにエンジンを制御し、SOCが一定範囲の最小値よりも小さいとき、算出されたエンジン目標トルクの大きさを増加させた修正エンジン目標トルクに前記エンジンを制御し、現在のSOCが一定範囲内であれば算出された前記エンジン目標トルクに前記エンジンを制御し、アクセルペダルと制動ペダルのいずれも踏まない慣性走行のとき、一定のSOC以上で前記エンジンとモーターの間のクラッチをオフにし、車速が増すほどクラッチオフの基準となる前記SOCを徐々に下げることを特徴とするハイブリッド車両の運転制御方法。 A driving control method for a hybrid vehicle having an SOC target in which a state of charge (SOC) is divided into a high region, a middle region, and a low region and an engine target torque preset for each SOC region,
The engine target torque is calculated from the SOC region to which the current state of charge (SOC) belongs, and when the current SOC is larger than the maximum value within a certain range , the corrected engine target torque is obtained by reducing the magnitude of the calculated engine target torque. When the engine is controlled and the SOC is smaller than the minimum value in the certain range, the engine is controlled to the corrected engine target torque obtained by increasing the magnitude of the calculated engine target torque, and the current SOC is within the certain range. If the engine is controlled to the calculated engine target torque if there is an inertial running in which neither the accelerator pedal nor the brake pedal is depressed, the clutch between the engine and the motor is turned off at a certain SOC or more, and the vehicle speed is Driving control of a hybrid vehicle, characterized by gradually decreasing the SOC, which is a reference for clutch-off, as it increases Law.
When the current SOC is higher than the maximum value of the certain range, the engine target torque is further decreased as the current SOC is higher. When the current SOC is lower than the minimum value of the certain range, the engine target torque is decreased. The method for controlling the operation of a hybrid vehicle according to claim 1, characterized in that the engine target torque is made lower when the vehicle travels uphill and the road is uphill than when the road is flat or downhill.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130076960A KR101481288B1 (en) | 2013-07-02 | 2013-07-02 | Driving control method for hybrid vehicle |
KR10-2013-0076960 | 2013-07-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015009803A JP2015009803A (en) | 2015-01-19 |
JP6585875B2 true JP6585875B2 (en) | 2019-10-02 |
Family
ID=52106338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013178942A Active JP6585875B2 (en) | 2013-07-02 | 2013-08-30 | Hybrid vehicle operation control method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6585875B2 (en) |
KR (1) | KR101481288B1 (en) |
CN (1) | CN104276170B (en) |
DE (1) | DE102013217274B4 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105172788B (en) * | 2015-07-23 | 2017-11-07 | 中通客车控股股份有限公司 | A kind of single shaft plug-in hybrid-power automobile HCU in parallel vehicle energy distributing method |
JP6172367B1 (en) * | 2016-10-28 | 2017-08-02 | トヨタ自動車株式会社 | Control device for autonomous driving vehicle |
KR20180051273A (en) * | 2016-11-08 | 2018-05-16 | 현대자동차주식회사 | Method for controlling driving of vehicle using driving information of vehicle and vehicle using the same |
KR102353346B1 (en) * | 2017-01-31 | 2022-01-18 | 현대자동차주식회사 | Braking control apparatus and method for vehicle |
EP3608191B1 (en) * | 2017-04-04 | 2021-01-20 | Nissan Motor Co., Ltd. | Vehicle control method and vehicle control device |
JP2018070135A (en) * | 2017-06-19 | 2018-05-10 | トヨタ自動車株式会社 | Vehicular control apparatus |
KR102440503B1 (en) * | 2017-10-11 | 2022-09-06 | 현대자동차주식회사 | Method for Setting EV On/Off Line of Hybrid Vehicle |
JP7139925B2 (en) * | 2018-04-19 | 2022-09-21 | トヨタ自動車株式会社 | Hybrid vehicle control system |
US20200055402A1 (en) * | 2018-08-14 | 2020-02-20 | Sf Motors, Inc. | Adaptive off-throttle regenerative braking |
CN110588625B (en) * | 2019-09-25 | 2021-07-02 | 一汽解放青岛汽车有限公司 | Method for smoothly controlling engine speed of hybrid electric vehicle |
KR102703174B1 (en) | 2019-11-20 | 2024-09-05 | 현대자동차 주식회사 | Apparatus for controlling of hybrid vehicle and method using the same |
KR102703175B1 (en) | 2019-11-25 | 2024-09-05 | 현대자동차 주식회사 | Apparatus for controlling of hybrid vehicle and method using the same |
CN116691642B (en) * | 2023-08-07 | 2023-10-27 | 成都赛力斯科技有限公司 | Torque setting method and device for hybrid vehicle and hybrid vehicle |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4070401B2 (en) * | 2000-10-31 | 2008-04-02 | 日産ディーゼル工業株式会社 | Vehicle hybrid system |
JP5134632B2 (en) * | 2007-11-30 | 2013-01-30 | ボッシュ株式会社 | Control method of hybrid system |
KR20090128966A (en) * | 2008-06-12 | 2009-12-16 | 현대자동차주식회사 | Method of controlling battery for hybrid electric vehicle |
DE102008050737A1 (en) | 2008-10-08 | 2010-04-15 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Method for operating a drive train |
JP5293212B2 (en) * | 2009-01-15 | 2013-09-18 | 日産自動車株式会社 | Vehicle driving force control device |
KR101181032B1 (en) * | 2010-10-29 | 2012-09-07 | 기아자동차주식회사 | Control device and method of battery charge and discharge in hybrid vehicle |
KR101198808B1 (en) | 2011-06-10 | 2012-11-07 | 기아자동차주식회사 | Method for controling engine idle of hybrid electric vehicle |
KR101305653B1 (en) | 2011-08-31 | 2013-09-09 | 현대자동차주식회사 | Driving control method for hybrid vehicle |
DE102011116132B4 (en) | 2011-10-15 | 2018-09-13 | Volkswagen Aktiengesellschaft | Method for operating a vehicle with hybrid drive |
KR101361384B1 (en) * | 2011-12-26 | 2014-02-21 | 현대자동차주식회사 | Control method for switching mode between electric vehicle and hybrid electric vehicle |
CN102582616B (en) * | 2012-02-22 | 2014-08-13 | 清华大学 | CVT (continuously variable transmission) hybrid electric vehicle power source torque optimizing distribution method |
-
2013
- 2013-07-02 KR KR20130076960A patent/KR101481288B1/en active IP Right Grant
- 2013-08-29 DE DE102013217274.5A patent/DE102013217274B4/en active Active
- 2013-08-30 JP JP2013178942A patent/JP6585875B2/en active Active
- 2013-09-23 CN CN201310435321.XA patent/CN104276170B/en active Active
Also Published As
Publication number | Publication date |
---|---|
DE102013217274A1 (en) | 2015-01-08 |
KR101481288B1 (en) | 2015-01-09 |
CN104276170B (en) | 2019-07-23 |
DE102013217274B4 (en) | 2024-06-13 |
CN104276170A (en) | 2015-01-14 |
JP2015009803A (en) | 2015-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6585875B2 (en) | Hybrid vehicle operation control method | |
US10259445B2 (en) | Vehicle and method of control thereof | |
KR101481283B1 (en) | Driving control method for hybrid vehicle | |
US10513255B2 (en) | Hybrid electric vehicle control system and method | |
KR102310547B1 (en) | Auto cruise control method for hybrid electric vehicle | |
KR101481282B1 (en) | Method for controlling driving mode for hybrid vehicle | |
US9849804B2 (en) | Method and system for controlling battery SOC of hybrid vehicle | |
JP6023480B2 (en) | Engine control method for hybrid vehicle | |
KR101807012B1 (en) | Control system for hybrid electric vehicle and method thereof | |
KR101251502B1 (en) | System for learning driver's propensity to drive of hybrid vehicle and method thereof | |
JP5338351B2 (en) | Control device for hybrid vehicle | |
KR102444667B1 (en) | Hybrid vehicle and method of changing operation mode for the same | |
JP2014518802A (en) | Hybrid drive control device | |
JP6435789B2 (en) | Output control device for hybrid drive vehicle | |
JP4858060B2 (en) | Vehicle drive torque control device | |
JP2012240566A (en) | Electric travel controller for hybrid vehicle | |
EP3015332B1 (en) | Vehicle control apparatus and vehicle control method | |
JP2005225282A (en) | Driving force switching control device | |
JP5212749B2 (en) | Control device and control method for hybrid vehicle | |
WO2017065265A1 (en) | Control device and control method for hybrid vehicle | |
JP6424731B2 (en) | Vehicle control device | |
JP2014004924A (en) | Power generation control device and hybrid vehicle | |
JP2016088441A (en) | Hybrid drive vehicle output control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130930 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170726 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180320 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6585875 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |