JP6579281B2 - Adsorbing member and manufacturing method thereof - Google Patents

Adsorbing member and manufacturing method thereof Download PDF

Info

Publication number
JP6579281B2
JP6579281B2 JP2018562146A JP2018562146A JP6579281B2 JP 6579281 B2 JP6579281 B2 JP 6579281B2 JP 2018562146 A JP2018562146 A JP 2018562146A JP 2018562146 A JP2018562146 A JP 2018562146A JP 6579281 B2 JP6579281 B2 JP 6579281B2
Authority
JP
Japan
Prior art keywords
alumina
partition wall
pore diameter
volume
adsorption member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018562146A
Other languages
Japanese (ja)
Other versions
JPWO2019027047A1 (en
Inventor
石澤 俊崇
俊崇 石澤
佐伯 智則
智則 佐伯
未映子 菓子
未映子 菓子
敬子 中野
敬子 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPWO2019027047A1 publication Critical patent/JPWO2019027047A1/en
Application granted granted Critical
Publication of JP6579281B2 publication Critical patent/JP6579281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

本発明は、汚染物質を吸着除去するために用いられる水処理用吸着部材に関する。   The present invention relates to a water treatment adsorbing member used for adsorbing and removing contaminants.

溶液中から不要な成分を除去し、より目的に適した溶液にする溶液処理システムが知られている。その中で、特に水を処理する水処理システムが多用されている。   There is known a solution processing system that removes unnecessary components from a solution to make the solution more suitable for the purpose. In particular, water treatment systems for treating water are often used.

水処理システムでは、原水(被処理水)から被分離物質を除去する分離膜(逆浸透膜等)を用いているが、分離膜にファウリング(Fouling:目詰まり)が発生すると、被分離物質を原水から除去する分離性能が低下する。   In water treatment systems, separation membranes (reverse osmosis membranes, etc.) that remove substances to be separated from raw water (treated water) are used. When fouling occurs in the separation membrane, the substances to be separated are used. Separation performance for removing water from raw water is reduced.

そこで、分離膜の交換寿命を延ばすために、分離膜の性能を劣化させる原因となる膜目詰まり物質(異物)を、分離膜の前段に設けた吸着部材にあらかじめ吸着させて原水から選択的に除去する方法が知られている。例えば、海水、河川、湖等の水を処理する場合、主な膜目詰まり物質としては溶存有機物が挙げられる。溶存有機物のうち、特に多糖類は粘性があり分離膜を目詰まりさせやすいため、あらかじめ除去することが求められている。   Therefore, in order to extend the exchange life of the separation membrane, a membrane clogging substance (foreign matter) that causes the degradation of the performance of the separation membrane is preliminarily adsorbed on the adsorption member provided in the previous stage of the separation membrane and selectively from raw water. A method of removing is known. For example, when processing water such as seawater, rivers, lakes, etc., dissolved organic matter can be cited as a main membrane clogging substance. Of the dissolved organic matter, polysaccharides are particularly viscous and are likely to clog the separation membrane, and therefore are required to be removed in advance.

特開2012-91151号は、外壁と、前記外壁の内側に設けられた複数の流路と、前記複数の流路を隔てる隔壁とを備え、前記隔壁は、隣り合う前記流路を連通する連通孔を有し、被処理水中の有機物を吸着する吸着構造体を開示しており、前記隔壁がアルミナ又はアルミナを含む複合酸化物からなる構成、及び前記隔壁の表面又は隔壁内の連通孔面にアルミナを含有する被膜を形成した構成を開示している。特開2012-91151号は、アルミナによって隔壁の一部を構成することにより、処理水中の溶存有機物を吸着・除去できると記載している。   Japanese Patent Application Laid-Open No. 2012-91151 includes an outer wall, a plurality of flow paths provided inside the outer wall, and a partition wall that separates the plurality of flow paths, and the partition wall communicates with the adjacent flow paths. Disclosed is an adsorption structure that has pores and adsorbs organic matter in the water to be treated. The partition is made of alumina or a composite oxide containing alumina, and the surface of the partition or the communication hole surface in the partition The structure which formed the film containing an alumina is disclosed. Japanese Patent Application Laid-Open No. 2012-91151 describes that dissolved organic substances in the treated water can be adsorbed and removed by constituting a part of the partition walls with alumina.

特開2016-198742号は、外壁と、前記外壁の内側に設けられた複数の流路と、前記複数の流路のそれぞれを互いに隔てる隔壁とを備え、前記隔壁は、隣り合う流路間を連通させる複数の連通孔を有しており、前記隔壁の少なくとも表面がアルミナで形成された多孔質セラミックハニカム構造体からなる吸着構造体を開示している。特開2016-198742号は、前記吸着構造体としては、コーディエライト等のセラミックからなる隔壁上にアルミナが形成されたものであっても、隔壁の全体がアルミナで形成されたものであってもよいと記載している。特開2016-198742号は、コーディエライト等のセラミック上にアルミナを形成する方法として、アルミナを含むスラリーを、コーディエライトからなるセラミック多孔体の内部に吸引して供給した後、乾燥して焼成する方法を記載している。   JP 2016-198742 includes an outer wall, a plurality of flow paths provided inside the outer wall, and a partition wall that separates each of the plurality of flow paths from each other, and the partition wall is formed between adjacent flow paths. An adsorption structure comprising a porous ceramic honeycomb structure having a plurality of communicating holes to be communicated and having at least the surface of the partition walls formed of alumina is disclosed. Japanese Patent Laid-Open No. 2016-198742 discloses that the adsorbing structure is one in which alumina is formed on a partition wall made of a ceramic such as cordierite, but the entire partition wall is formed of alumina. It is described as good. JP-A-2016-198742 discloses a method for forming alumina on a ceramic such as cordierite, and a slurry containing alumina is sucked into a porous ceramic body made of cordierite and then dried. A method of firing is described.

しかしながら、特開2012-91151号及び特開2016-198742号に記載のコーディエライト等のセラミック上にアルミナが形成された吸着構造体は、アルミナを焼成によってコーディエライトにコーティングする際、アルミナ粒子とバインダの組成によっては微細な細孔が形成されにくい場合や、焼成により比表面積が著しく低下してしまう場合があるため、吸着剤としての機能が十分に働かないことがある。また隔壁の全体がアルミナからなる吸着構造体は、微細な細孔が形成されにくいため吸着能力を十分に高めることができない。   However, the adsorption structure in which alumina is formed on a ceramic such as cordierite described in JP 2012-91151 A and JP 2016-198742 A, when alumina is coated on cordierite by firing, the alumina particles Depending on the composition of the binder, fine pores may be difficult to form, or the specific surface area may be significantly reduced by firing, so that the function as an adsorbent may not work sufficiently. In addition, the adsorption structure made of alumina as a whole of the partition walls cannot sufficiently increase the adsorption capacity because fine pores are hardly formed.

国際公開第2015/199017号は、外壁と、前記外壁の内側に設けられた流路を備え、親水性物質と疎水性物質とが含有された被処理水を投入される吸着部材であって、前記流路は、前記親水性物質を吸着する部材と前記疎水性物質を吸着する部材とを有する吸着部を有しており、前記親水性物質を吸着する部材又は前記疎水性物質を吸着する部材が粒子状に形成されている吸着部材を開示しており、(a)親水性微粒子と、疎水性微粒子とを、アクリル系ポリマー、メチルセルロース等のバインダを用いて、前記隔壁の表面及び連通孔の内面に固定する方法、(b)疎水性微粒子を、アルミナゾル、シリカゾル等の無機ゾル系の親水性バインダを用いて、前記隔壁の表面及び連通孔の内面に固定する方法、及び(c) 親水性微粒子を、芳香族カルボン酸と芳香族アミンとの混合溶液等の疎水性バインダを用いて、前記隔壁の表面及び連通孔の内面に固定する方法を記載している。   International Publication No. 2015/199017 is an adsorbing member having an outer wall and a flow path provided inside the outer wall, into which water to be treated containing a hydrophilic substance and a hydrophobic substance is introduced, The flow path has an adsorbing portion having a member that adsorbs the hydrophilic substance and a member that adsorbs the hydrophobic substance, and a member that adsorbs the hydrophilic substance or a member that adsorbs the hydrophobic substance Is disclosed in the form of particles, and (a) the hydrophilic fine particles and the hydrophobic fine particles are combined with a surface of the partition wall and the communication holes using a binder such as an acrylic polymer or methyl cellulose. A method of fixing to the inner surface, (b) a method of fixing hydrophobic fine particles to the surface of the partition wall and the inner surface of the communication hole using an inorganic sol-based hydrophilic binder such as alumina sol or silica sol, and (c) hydrophilicity Fine particles, aromatic carboxylic acid and aromatic Using a hydrophobic binder of the mixed solution or the like and Min, describes a method of fixing to the inner surface of the surface and the communicating hole of the partition wall.

しかしながら、国際公開第2015/199017号は、このようにして得られた吸着部材は、親水性及び疎水性微粒子の表面にバインダが被覆していることにより、前記微粒子の吸着能力が十分に発揮されないため、あらかじめ表面を覆っているバインダを除去することが望ましいと記載しており、使用に際し余分な作業が必要になる。それに加えて、バインダを除去することにより前記微粒子の一部が剥脱し、吸着部材の吸着能力が低下する場合がある。   However, in International Publication No. 2015/199017, the adsorbing member thus obtained does not sufficiently exhibit the adsorbing ability of the fine particles because the surface of the hydrophilic and hydrophobic fine particles is coated with a binder. Therefore, it is described that it is desirable to remove the binder covering the surface in advance, and extra work is required for use. In addition, by removing the binder, a part of the fine particles may be exfoliated and the adsorption capacity of the adsorption member may be reduced.

一方、国際公開第2015/083628号は、金属酸化物Aからなる多孔質セラミック支持体と、前記支持体の表面に被覆した金属酸化物Aの粒子からなる濾過膜層と、前記粒子表面に担持された金属酸化物B(金属酸化物Aとは異なる)とからなり、金属酸化物Bは、濾過膜層の表面電荷をファウリング原因物質の表面電荷と同極性となる金属酸化物であるセラミックフィルタを開示している。このように、濾過膜層の粒子表面にファウリング物質の表面電荷と同極性となる金属酸化物Bを担持することにより、フィルタの濾過膜層表面とファウリング原因物質とが電気的に反発することになるため、目詰まりを発生しにくく、一旦、目詰まりを発生させても容易に除去できるという利点を有している。   On the other hand, WO 2015/083628 discloses a porous ceramic support made of metal oxide A, a filtration membrane layer made of metal oxide A particles coated on the surface of the support, and supported on the particle surface. The metal oxide B (which is different from the metal oxide A) is a ceramic that is a metal oxide in which the surface charge of the filtration membrane layer has the same polarity as the surface charge of the fouling-causing substance. A filter is disclosed. In this way, by supporting the metal oxide B having the same polarity as the surface charge of the fouling substance on the particle surface of the filtration membrane layer, the filter membrane layer surface of the filter and the fouling-causing substance are electrically repelled. Therefore, there is an advantage that clogging is difficult to occur and can be easily removed even once clogging occurs.

しかしながら、国際公開第2015/083628号に記載のセラミックフィルタは、基本構成としては、フィルタに形成した細孔により、その細孔径以上の異物を遮断することで異物を除去する細孔遮断型のフィルタであるため、ファウリング物質によるフィルタの圧力損失は避けられない。   However, the ceramic filter described in International Publication No. 2015/083628 basically has a pore blocking type filter that removes foreign matters by blocking foreign matters larger than the pore diameter by pores formed in the filter. Therefore, the pressure loss of the filter due to the fouling substance is inevitable.

従って、本発明の目的は、多糖類等の溶存有機物の吸着能力に優れた多孔質セラミックハニカム構造体からなる吸着部材を提供することである。   Accordingly, an object of the present invention is to provide an adsorbing member comprising a porous ceramic honeycomb structure excellent in adsorbing ability of dissolved organic substances such as polysaccharides.

上記目的に鑑み鋭意研究の結果、本発明者らは、多孔質セラミックからなる基材と、前記基材の表面及び連通孔内面の少なくとも一部に固定された金属酸化物の粒子とで構成された隔壁を有する多孔質セラミックハニカム構造体であって、水銀圧入法で測定した10〜200 nmの細孔径を有する全細孔容積が、前記隔壁の見かけ体積当たり0.1%以上である吸着部材が、被処理水中の溶存有機物(多糖類等)の吸着能力に著しく優れていることを見出し、本発明に想到した。   As a result of diligent research in view of the above object, the present inventors are composed of a base material made of porous ceramic and metal oxide particles fixed to at least a part of the surface of the base material and the inner surface of the communication hole. A porous ceramic honeycomb structure having a partition wall, wherein the total pore volume having a pore diameter of 10 to 200 nm measured by a mercury intrusion method is 0.1% or more per apparent volume of the partition wall, The inventors have found that the ability to adsorb dissolved organic substances (polysaccharides, etc.) in the water to be treated is remarkably excellent, and have arrived at the present invention.

すなわち、本発明の吸着部材は、多孔質の隔壁に仕切られた軸方向に延びる複数の流路を備え、前記複数の流路に被処理水を通過させて前記被処理水内の異物を吸着除去する多孔質セラミックハニカム構造体からなり、
前記流路は、被処理水流入側又は処理水流出側が交互に目封止されており、
前記隔壁は、
前記流路間を接続する連通孔を有し、
多孔質セラミックからなる基材と、
前記基材の表面及び連通孔内面の少なくとも一部に固定された金属酸化物の粒子とで構成されており、
水銀圧入法で測定した10〜200 nmの細孔径を有する全細孔容積が、前記隔壁の見かけ体積当たり0.1%以上
であることを特徴とする。
That is, the adsorbing member of the present invention includes a plurality of axially extending flow paths partitioned by a porous partition wall, and adsorbs foreign matter in the treated water by passing the treated water through the plurality of flow paths. Consisting of a porous ceramic honeycomb structure to be removed,
The flow path is alternately plugged on the treated water inflow side or the treated water outflow side,
The partition is
Having communication holes connecting the flow paths;
A substrate made of porous ceramic;
It is composed of metal oxide particles fixed to at least a part of the surface of the base material and the inner surface of the communication hole,
The total pore volume having a pore diameter of 10 to 200 nm measured by a mercury intrusion method is 0.1% or more per apparent volume of the partition wall.

前記10〜200 nmの細孔径を有する全細孔容積は、前記隔壁の見かけ体積当たり1.0%以上であるのが好ましく、8%以下であるのが好ましい。   The total pore volume having a pore diameter of 10 to 200 nm is preferably 1.0% or more, more preferably 8% or less, per apparent volume of the partition wall.

前記吸着部材において、水銀圧入法で測定した容積基準のメジアン細孔径(ただし、容積基準のメジアン細孔径は、前記隔壁の細孔径と累積細孔容積との関係を示す曲線において、全細孔容積の50%に相当する細孔容積での細孔径である。)は、表面積基準のメジアン細孔径(ただし、表面積基準のメジアン細孔径は、前記隔壁の細孔径と累積細孔表面積との関係を示す曲線において、全細孔表面積の50%に相当する細孔表面積での細孔径である。)の50〜5000倍であるのが好ましい。   In the adsorbing member, the volume-based median pore diameter measured by the mercury intrusion method (however, the volume-based median pore diameter is the total pore volume in a curve indicating the relationship between the pore diameter of the partition walls and the cumulative pore volume). Is the median pore diameter based on the surface area (however, the median pore diameter based on the surface area is the relationship between the pore diameter of the partition wall and the cumulative pore surface area). In the curve shown, it is preferably 50 to 5000 times the pore diameter at the pore surface area corresponding to 50% of the total pore surface area.

前記隔壁の厚さをd、前記流路の幅をwとしたとき、
dが0.1〜2 mmであり、
式:0.20≦d/w≦1.25
を満たすのが好ましい。
When the thickness of the partition wall is d and the width of the flow path is w,
d is 0.1-2 mm,
Formula: 0.20 ≦ d / w ≦ 1.25
It is preferable to satisfy.

前記隔壁は、
気孔率が25〜70%、及び
水銀圧入法で測定した容積基準のメジアン細孔径(ただし、容積基準のメジアン細孔径は、前記隔壁の細孔径と累積細孔容積との関係を示す曲線において、全細孔容積の50%に相当する細孔容積での細孔径である。)が1〜50μmであり、前記隔壁の厚さdの0.005〜0.15倍であるのが好ましい。
The partition is
The porosity is 25 to 70%, and the volume-based median pore diameter measured by the mercury intrusion method (however, the volume-based median pore diameter is a curve indicating the relationship between the pore diameter of the partition wall and the cumulative pore volume, The pore diameter at a pore volume corresponding to 50% of the total pore volume.) Is preferably 1 to 50 μm, and preferably 0.005 to 0.15 times the thickness d of the partition wall.

前記金属酸化物の粒子は、前記被処理水に接触したときに表面が正に帯電する材料からなるのが好ましい。前記金属酸化物の粒子は、pH8〜10の等電点を有する材料からなるのが好ましい。   The metal oxide particles are preferably made of a material whose surface is positively charged when in contact with the water to be treated. The metal oxide particles are preferably made of a material having an isoelectric point of pH 8-10.

前記金属酸化物は、アルミナであるのが好ましい。   The metal oxide is preferably alumina.

前記隔壁は、
多孔質のコーディエライトからなる基材と、
前記基材の表面及び連通孔内面の少なくとも一部に被覆されたアルミナの粒子と
からなるのが好ましい。
The partition is
A substrate made of porous cordierite;
Preferably, the substrate comprises alumina particles coated on at least a part of the surface of the substrate and the inner surface of the communication hole.

前記アルミナはαアルミナ又はγアルミナであるのが好ましい。前記アルミナはαアルミナであるのが好ましい。   The alumina is preferably α alumina or γ alumina. The alumina is preferably α-alumina.

本発明の吸着部材の製造方法は、多孔質の隔壁に仕切られた軸方向に延びる複数の流路を備え、前記複数の流路に被処理水を通過させて前記被処理水内の異物を吸着除去する吸着部材を製造する方法であって、
セラミック原料を含む坏土を所定の成形体に押出成形し、前記成形体を乾燥及び焼成し、多孔質の隔壁に仕切られた軸方向に延びる複数の流路を備えたセラミックハニカム構造体を形成する工程と、
前記セラミックハニカム構造体の流路端部に、交互に目封止部を形成する工程と、
前記セラミックハニカム構造体の前記隔壁に金属酸化物の粒子をコーティングし、乾燥及び焼成する工程とを有し、
前記金属酸化物の粒子をコーティングし、乾燥及び焼成する工程により、前記隔壁を、前記流路間を接続する連通孔を有し、水銀圧入法で測定した10〜200 nmの細孔径を有する全細孔容積が前記隔壁の見かけ体積当たり0.1%以上にすることを特徴とする。
The method for producing an adsorbing member of the present invention includes a plurality of axially extending flow paths partitioned by a porous partition wall, and allows the treated water to pass through the plurality of flow paths to remove foreign matters in the treated water. A method of manufacturing an adsorbing member for adsorbing and removing,
The clay containing the ceramic raw material is extruded into a predetermined molded body, and the molded body is dried and fired to form a ceramic honeycomb structure having a plurality of axially extending channels partitioned by porous partition walls. And a process of
Alternately forming plugged portions at the channel end of the ceramic honeycomb structure; and
Coating the partition walls of the ceramic honeycomb structure with metal oxide particles, drying and firing,
By coating the metal oxide particles, drying and firing, the partition wall has communication holes connecting the flow paths, and has a pore diameter of 10 to 200 nm measured by mercury porosimetry. The pore volume is 0.1% or more per apparent volume of the partition wall.

前記セラミック原料はコーディエライト化原料であるのが好ましい。   The ceramic raw material is preferably a cordierite forming raw material.

前記金属酸化物はアルミナであるのが好ましい。   The metal oxide is preferably alumina.

前記金属酸化物の粒子のコーティングに無機バインダとしてアルミナゾルを用いるのが好ましい。   It is preferable to use alumina sol as an inorganic binder for coating the metal oxide particles.

前記金属酸化物の粒子の焼成の温度は900℃以下であるのが好ましい。   The firing temperature of the metal oxide particles is preferably 900 ° C. or lower.

本発明の吸着部材は、溶存有機物等の異物の吸着能力に優れるので水処理システムにおける分離膜(逆浸透膜等)による処理工程の前処理として好適である。本発明の吸着部材を用いた処理を追加するにより、逆浸透膜の寿命を延ばすことが可能となり、水処理にかかるランニングコストを低減することができる。   The adsorbing member of the present invention is suitable as a pretreatment for a treatment step using a separation membrane (such as a reverse osmosis membrane) in a water treatment system because it has an excellent ability to adsorb foreign substances such as dissolved organic matter. By adding the treatment using the adsorbing member of the present invention, it is possible to extend the life of the reverse osmosis membrane and reduce the running cost for water treatment.

本発明の吸着部材を構成するセラミックハニカム構造体の軸方向端面を示す模式図である。It is a schematic diagram which shows the axial direction end surface of the ceramic honeycomb structure which comprises the adsorption | suction member of this invention. 本発明の吸着部材を構成するセラミックハニカム構造体の中心軸を含む断面を示す模式図である。It is a schematic diagram which shows the cross section containing the central axis of the ceramic honeycomb structure which comprises the adsorption | suction member of this invention. 本発明の吸着部材を構成するセラミックハニカム構造体の隔壁断面を示す模式図である。It is a schematic diagram which shows the partition cross section of the ceramic honeycomb structure which comprises the adsorption | suction member of this invention. 本発明の吸着部材を構成するセラミックハニカム構造体の隔壁断面を拡大して示す模式図である。It is a schematic diagram which expands and shows the partition cross section of the ceramic honeycomb structure which comprises the adsorption | suction member of this invention. 隔壁の見かけ体積を説明するための模式断面図である。It is a schematic cross section for demonstrating the apparent volume of a partition. 本発明の吸着部材を用いた水処理設備を模式的に示すフロー図である。It is a flowchart which shows typically the water treatment facility using the adsorption | suction member of this invention. 本発明の吸着部材を組み込んだ吸着モジュールを示す模式図である。It is a schematic diagram which shows the adsorption | suction module incorporating the adsorption | suction member of this invention.

[1]吸着部材
(1) 多孔質セラミックハニカム構造体
図1〜図3に示すように、本発明の吸着部材1は、多孔質の隔壁2に仕切られた軸方向に延びる複数の流路3を備え、前記複数の流路3に被処理水を通過させて前記被処理水内の異物(溶存有機物等)を吸着除去する多孔質セラミックハニカム構造体4からなる。前記隔壁2は、隣接する流路3間を接続する連通孔5を有し、多孔質セラミックからなる基材6と、前記基材6の表面6a及び連通孔内面6bの少なくとも一部に固定された金属酸化物の粒子7とで構成されており、水銀圧入法で測定した10〜200 nmの細孔径を有する全細孔容積が、前記隔壁の見かけ体積当たり0.1%以上であることを特徴とする。
[1] Adsorption member
(1) Porous ceramic honeycomb structure As shown in FIGS. 1 to 3, the adsorbing member 1 of the present invention includes a plurality of flow paths 3 extending in the axial direction partitioned by porous partition walls 2, and the plurality The porous ceramic honeycomb structure 4 is configured to allow the water to be treated to pass through the flow path 3 and adsorb and remove foreign matters (dissolved organic substances and the like) in the water to be treated. The partition wall 2 has a communication hole 5 that connects between the adjacent flow paths 3, and is fixed to at least a part of the base material 6 made of porous ceramic, the surface 6a of the base material 6, and the inner surface 6b of the communication hole. The total pore volume having a pore diameter of 10 to 200 nm measured by a mercury intrusion method is 0.1% or more per apparent volume of the partition wall. To do.

多孔質セラミックハニカム構造体4は、外周壁8と、外周壁8の内側に設けられた軸方向に延びる複数の流路3と、複数の流路3の間を隔てる隔壁2とからなり、前記隔壁2には隣接する流路3同士を接続する連通孔5を有している。   The porous ceramic honeycomb structure 4 is composed of an outer peripheral wall 8, a plurality of axially extending flow paths 3 provided inside the outer peripheral wall 8, and a partition wall 2 separating the plurality of flow paths 3. The partition wall 2 has a communication hole 5 that connects the adjacent flow paths 3 to each other.

多孔質セラミックハニカム構造体4の軸方向(長手方向)に延びる複数の流路3は、ハニカム状に形成されており、多孔質セラミックハニカム構造体4の一方の端部(被処理水の流入側)又は他方の端部(処理水の流出側)に交互に設けられた目封止部9a、9bを有することにより、被処理水の流入側の端面10aが開口し、反対側の処理水の流出側の端面10bが目封止部9aによって目封止された第1の流路3aと、処理水の流出側の端面10bが開口し、反対側の流入側の端面10aが目封止部9bによって目封止された第2の流路3bとを有する。第1の流路3aと第2の流路3bとは、軸方向視で、縦横ともに交互に配置されている。   The plurality of flow paths 3 extending in the axial direction (longitudinal direction) of the porous ceramic honeycomb structure 4 are formed in a honeycomb shape, and one end of the porous ceramic honeycomb structure 4 (inflow side of the water to be treated) ) Or the other end (the outflow side of the treated water) have plugged portions 9a, 9b alternately, so that the end surface 10a on the inflow side of the treated water is opened and the treated water on the opposite side is opened. The first flow path 3a in which the end surface 10b on the outflow side is plugged by the plugging portion 9a, the end surface 10b on the outflow side of the treated water is opened, and the end surface 10a on the opposite inflow side is the plugging portion And a second flow path 3b plugged by 9b. The first flow path 3a and the second flow path 3b are alternately arranged both vertically and horizontally as viewed in the axial direction.

吸着部材1を構成する多孔質セラミックハニカム構造体4に被処理水が流入したときの被処理水の流れを、図2及び図3を用いて説明する。流入側の端面10aに開口した第1の流路3aに流入した被処理水は、隔壁2中の微細な連通孔5を通って、第2の流路3bに流入し、流出側の端面10bから処理水として吸着部材1の外に排出される。被処理水が第1の流路3a及び第2の流路3bを通るとき、並びに隔壁2中の微細な連通孔5を通るときに、隔壁2の基材6の表面6a及び連通孔内面6bに固定された金属酸化物の粒子7に接触し、金属酸化物の粒子7が被処理水中の異物(多糖類等の溶存有機物)を吸着することによって、被処理水から異物を除去することができる。   The flow of the water to be treated when the water to be treated flows into the porous ceramic honeycomb structure 4 constituting the adsorbing member 1 will be described with reference to FIGS. The treated water that has flowed into the first flow path 3a that opens to the end face 10a on the inflow side passes through the fine communication holes 5 in the partition wall 2 and flows into the second flow path 3b, where the end face 10b on the outflow side Is discharged out of the adsorbing member 1 as treated water. When the water to be treated passes through the first flow path 3a and the second flow path 3b, and when passing through the fine communication hole 5 in the partition wall 2, the surface 6a of the base 6 of the partition wall 2 and the inner surface 6b of the communication hole It is possible to remove foreign matter from the water to be treated by contacting the metal oxide particles 7 fixed on the surface and adsorbing foreign matter (dissolved organic matter such as polysaccharides) in the water to be treated. it can.

(2) 隔壁
隔壁2は、多孔質セラミックからなる基材6と、前記基材6の表面6a及び連通孔内面6bの少なくとも一部に固定された金属酸化物の粒子7とで構成されている。金属酸化物の粒子7は、前記基材6の表面6a及び連通孔内面6bの少なくとも一部に固定されていればよく、連通孔内6bに主に固定されているのが好ましい。被処理水が吸着部材を通過する際、被処理水は、基材6の表面6aに固定された金属酸化物の粒子7よりも、連通孔内面6bに固定された金属酸化物の粒子7との接触時間の方が長いため、金属酸化物の粒子7を連通孔内面6bにより多く固定することで溶存有機物等の異物を効率よく吸着除去できる。
(2) Partition Wall The partition wall 2 is composed of a base material 6 made of porous ceramic and metal oxide particles 7 fixed to at least a part of the surface 6a of the base material 6 and the communication hole inner surface 6b. . The metal oxide particles 7 need only be fixed to at least a part of the surface 6a and the communication hole inner surface 6b of the substrate 6, and are preferably fixed mainly to the communication hole 6b. When the water to be treated passes through the adsorbing member, the water to be treated has a metal oxide particle 7 fixed to the inner surface 6b of the communication hole rather than the metal oxide particle 7 fixed to the surface 6a of the substrate 6. Therefore, it is possible to efficiently adsorb and remove foreign substances such as dissolved organic substances by fixing more metal oxide particles 7 to the inner surface 6b of the communication hole.

金属酸化物の粒子7は、図4に示すように、基材6の表面6a及び連通孔内面6bに積層されて固定されているのが好ましい。このような構成を有することにより、1μm以下の微細な細孔が多数形成され、高い比表面積を有する吸着部材を形成することができる。このため被処理水中の溶存有機物等の異物を効率よく吸着除去することが可能になる。すなわち、隔壁2は、連通孔5を構成する比較的大きな細孔と、金属酸化物の粒子7によって形成される1μm以下の微細な細孔とからなる構造を有している。   As shown in FIG. 4, the metal oxide particles 7 are preferably laminated and fixed on the surface 6a of the substrate 6 and the inner surface 6b of the communication hole. By having such a configuration, a large number of fine pores of 1 μm or less are formed, and an adsorbing member having a high specific surface area can be formed. For this reason, it becomes possible to efficiently adsorb and remove foreign substances such as dissolved organic matter in the water to be treated. That is, the partition wall 2 has a structure composed of relatively large pores constituting the communication holes 5 and fine pores of 1 μm or less formed by the metal oxide particles 7.

(a) 細孔構造
隔壁2は、水銀圧入法で測定した10〜200 nmの細孔径を有する全細孔容積が、前記隔壁の見かけ体積当たり0.1%以上である。なおこの値は、「隔壁の見かけ体積当たり」に存在する「10〜200 nmの細孔径を有する全細孔容積」の割合のことであり、隔壁見かけ体積当たりの10〜200 nmの細孔容積の割合とも言う。10〜200 nmの細孔径を有する細孔は、主に金属酸化物の粒子7によって形成され、被処理水中の異物(溶存有機物等)の吸着に大きく寄与する。水銀圧入法で測定した10〜200 nmの細孔径を有する全細孔容積が、前記隔壁の見かけ体積当たり0.1%未満であると10〜200 nmの細孔径を有する細孔が十分に存在しないか、被処理水との接触時間が短い基材6の表面6aに多く存在するため、溶存有機物を吸着除去する効果が不十分となる。水銀圧入法で測定した10〜200 nmの細孔径を有する全細孔容積は、前記隔壁の見かけ体積当たり0.5%以上であるのが好ましく、1.0%以上であるのがより好ましい。ここで隔壁見かけ体積は、金属酸化物の粒子7が連通孔内面6bに固定されても増加しないので、金属酸化物の粒子7が基材6の表面6aよりも連通孔内面6bにより多く固定された場合、隔壁見かけ体積当たりの10〜200 nmの細孔容積の割合がより大きくなる。
(a) Pore structure In the partition wall 2, the total pore volume having a pore diameter of 10 to 200 nm measured by mercury porosimetry is 0.1% or more per apparent volume of the partition wall. This value is the ratio of “total pore volume having a pore diameter of 10 to 200 nm” existing in “per apparent volume of partition wall”, and the pore volume of 10 to 200 nm per apparent volume of partition wall. It is also called the ratio. The pores having a pore diameter of 10 to 200 nm are mainly formed by the metal oxide particles 7 and greatly contribute to the adsorption of foreign substances (dissolved organic substances and the like) in the water to be treated. If the total pore volume having a pore diameter of 10 to 200 nm measured by the mercury intrusion method is less than 0.1% per apparent volume of the partition wall, is there not enough pores having a pore diameter of 10 to 200 nm? Since a large amount of the contact time with the water to be treated is present on the surface 6a of the substrate 6, the effect of adsorbing and removing dissolved organic matter is insufficient. The total pore volume having a pore diameter of 10 to 200 nm measured by the mercury intrusion method is preferably 0.5% or more, more preferably 1.0% or more, per apparent volume of the partition wall. Here, the apparent volume of the partition wall does not increase even when the metal oxide particles 7 are fixed to the communication hole inner surface 6b. Therefore, the metal oxide particles 7 are fixed more to the communication hole inner surface 6b than to the surface 6a of the substrate 6. In this case, the ratio of the pore volume of 10 to 200 nm per apparent partition wall volume becomes larger.

隔壁見かけ体積当たりの10〜200 nmの細孔容積の割合の上限は特に限定されないが、この割合が大き過ぎると過剰に固定された金属酸化物の粒子7が隔壁2の連通孔5を狭め、被処理水の隔壁2の通過を妨げるだけでなく、被処理水と金属酸化物の粒子7とが接触する機会の増加に寄与しなくなる。このため、水銀圧入法で測定した10〜200 nmの細孔径を有する全細孔容積は、前記隔壁の見かけ体積当たり8%以下であるのが好ましく、6%以下であるのがより好ましい。なお、隔壁の見かけ体積とは、図5に枠2sで示すように、隔壁2を構成する連通孔5、母材6及び金属酸化物の粒子7の合計の体積である。   The upper limit of the ratio of the pore volume of 10 to 200 nm per partition wall apparent volume is not particularly limited, but if this ratio is too large, excessively fixed metal oxide particles 7 narrow the communication holes 5 of the partition wall 2, Not only does the passage of the partition wall 2 of the water to be treated interfere, but it also does not contribute to an increase in the chance of contact between the water to be treated and the metal oxide particles 7. For this reason, the total pore volume having a pore diameter of 10 to 200 nm measured by mercury porosimetry is preferably 8% or less, more preferably 6% or less, per apparent volume of the partition wall. The apparent volume of the partition wall is the total volume of the communication holes 5, the base material 6 and the metal oxide particles 7 constituting the partition wall 2, as indicated by a frame 2s in FIG.

以下に、金属酸化物が多糖類等の溶存有機物を吸着除去する機構について簡単に説明する。例えば、海水淡水化処理においては、前述したように、海水中に溶存する有機物のうち、逆浸透膜に選択的に付着し目詰まりを起こす多糖類等の溶存有機物を、前処理で吸着除去することが望まれている。これらの多糖類の多くはカルボキシル基等の酸性基を有しているため海水中で負に帯電している。一方、アルミナのような金属酸化物は、水中で水が吸着することによりその表面に水酸基を有しており、このアルミナ表面の水酸基は通常pH=9付近に等電点を有するため、中性付近のpHを有する海水中ではアルミナ表面は正に帯電している。従って、表面が正に帯電したアルミナは、多糖類等の溶存有機物を吸着し除去することができる。また、アルミナ等の金属酸化物上には酸素原子が多く存在しているため、これらの酸素原子と溶存有機物が有する水酸基との水素結合により、溶存有機物が金属酸化物に吸着される。   Below, the mechanism by which metal oxides adsorb and remove dissolved organic substances such as polysaccharides will be briefly described. For example, in seawater desalination treatment, as described above, among organic substances dissolved in seawater, dissolved organic substances such as polysaccharides that selectively adhere to the reverse osmosis membrane and cause clogging are adsorbed and removed by pretreatment. It is hoped that. Many of these polysaccharides have an acidic group such as a carboxyl group and are therefore negatively charged in seawater. On the other hand, metal oxides such as alumina have hydroxyl groups on the surface due to adsorption of water in water, and the hydroxyl groups on the alumina surface usually have an isoelectric point near pH = 9. The surface of the alumina is positively charged in seawater with a nearby pH. Accordingly, the positively charged alumina can adsorb and remove dissolved organic substances such as polysaccharides. Further, since there are many oxygen atoms on the metal oxide such as alumina, the dissolved organic matter is adsorbed to the metal oxide by hydrogen bonds between these oxygen atoms and the hydroxyl group of the dissolved organic matter.

従って、金属酸化物の粒子7は、前記被処理水に接触したときに表面が正に帯電する材料からなるのが好ましく、特にpH8〜10の等電点を有する材料からなるのが好ましい。等電点がpH8以上であれば、中性に近い大部分の処理水中で隔壁表面の電荷をプラスにすることができ、マイナスに帯電した有機物を吸着・保持することが可能となる。なお海水等は、ややアルカリ性を示すため、このような処理水を処理する場合、これらの処理水中において隔壁表面がプラスに帯電するような等電点を有する金属酸化物を選択するのが好ましい。例えば、8.2以上の等電点を有する金属酸化物を適用するのが好ましい。   Accordingly, the metal oxide particles 7 are preferably made of a material whose surface is positively charged when it comes into contact with the water to be treated, and in particular, a material having an isoelectric point of pH 8 to 10. If the isoelectric point is pH 8 or higher, the charge on the partition wall surface can be made positive in most of the treated water close to neutrality, and it becomes possible to adsorb and hold negatively charged organic substances. In addition, since seawater etc. show a little alkalinity, when processing such treated water, it is preferable to select a metal oxide having an isoelectric point such that the partition wall surface is positively charged in the treated water. For example, it is preferable to apply a metal oxide having an isoelectric point of 8.2 or higher.

金属酸化物の等電点の上限はpH10であるのが好ましい。本発明のように被処理水内の異物を吸着させて除去するタイプの吸着部材においては、吸着性能が低下した場合、洗浄時に表面電荷のプラス/マイナスを逆転させ、吸着保持した異物を表面から剥離することにより吸着部材の吸着性能を再生することができる。pH10を超える等電点を有する金属酸化物を使用すると、より強いアルカリの水溶液を洗浄液として使用しなければ、表面電荷を逆転して十分な反発力を得ることができない。洗浄液として強アルカリを使用した場合、吸着部材及び他の部材へのダメージが大きくなる。従って、強アルカリの使用を極力減らすために、金属酸化物の等電点はpH10以下とする。   The upper limit of the isoelectric point of the metal oxide is preferably pH 10. In the case of an adsorbing member that adsorbs and removes foreign matter in the water to be treated as in the present invention, if the adsorption performance is reduced, the surface charge plus / minus is reversed during cleaning, and the adsorbed and retained foreign matter is removed from the surface. By separating, the adsorption performance of the adsorption member can be regenerated. When a metal oxide having an isoelectric point exceeding pH 10 is used, a sufficient repulsive force cannot be obtained by reversing the surface charge unless a stronger alkaline aqueous solution is used as a cleaning liquid. When strong alkali is used as the cleaning liquid, damage to the adsorbing member and other members increases. Therefore, in order to reduce the use of strong alkali as much as possible, the isoelectric point of the metal oxide is set to pH 10 or less.

金属酸化物の粒子としては、αアルミナ、γアルミナ、酸化亜鉛等の粒子が挙げられるが、特に溶存有機物の吸着能に優れたαアルミナ及びγアルミナが好ましく、中でも、等電点が9.1付近のαアルミナは、耐食性にも優れるため最も好ましい。   Examples of the metal oxide particles include α-alumina, γ-alumina, zinc oxide, and the like. Particularly preferred are α-alumina and γ-alumina which are excellent in the ability to adsorb dissolved organic matter. α-alumina is most preferable because it is excellent in corrosion resistance.

海水中に存在する溶存有機物としては、多糖類が代表的なものとして挙げられる。例えば、多糖類として、分子量が100万の分子を考えた場合、その分子サイズ(密度1 g/cm3の球と仮定)は約15 nmとなり、分子量が500万の分子を考えた場合、その分子サイズ(密度1 g/cm3の球と仮定)は約30 nmとなる。従って、金属酸化物の粒子7によって形成される10〜200 nmの細孔径を有する細孔が多く存在すると、これらの溶存有機物が吸着できる表面が多く存在することになり、効率よく溶存有機物を吸着除去することが可能となる。A typical example of a dissolved organic substance present in seawater is a polysaccharide. For example, when considering a molecule with a molecular weight of 1 million as a polysaccharide, its molecular size (assuming a sphere with a density of 1 g / cm 3 ) is about 15 nm, and when considering a molecule with a molecular weight of 5 million, The molecular size (assuming a sphere with a density of 1 g / cm 3 ) is about 30 nm. Therefore, if there are many pores having a pore diameter of 10 to 200 nm formed by the metal oxide particles 7, there will be many surfaces on which these dissolved organic substances can be adsorbed, and the dissolved organic substances can be adsorbed efficiently. It can be removed.

水銀圧入法とは、真空状態にした隔壁試料を水銀に浸漬して加圧し、加圧時の圧力と試料の細孔内に押し込まれた水銀の体積との関係を求めることにより、細孔分布を求める方法である。水銀圧入法の測定においては、圧力を徐々に上昇させたときに、試料表面の径の大きい細孔から順に水銀が圧入され、最終的に全ての細孔が水銀で満たされる。ただし、実際には数nm未満の径を有する細孔については、材料によっては正確に測定ができない場合があるので、本発明においては、6 nm以上の細孔について得られた測定値を用いて容積基準の細孔分布(隔壁の細孔径と累積細孔容積との関係)を求めた。従って、全細孔容積は、6 nm以上の細孔に満たされた水銀量から求めた値とした。   In the mercury intrusion method, a partition sample in a vacuum state is immersed in mercury and pressurized, and the pore distribution is obtained by determining the relationship between the pressure during pressurization and the volume of mercury pushed into the pores of the sample. It is a method to ask for. In the measurement of the mercury intrusion method, when the pressure is gradually increased, mercury is injected in order from the pore having the largest diameter on the sample surface, and finally all the pores are filled with mercury. However, in practice, pores having a diameter of less than several nm may not be able to be measured accurately depending on the material. Therefore, in the present invention, the measurement values obtained for pores of 6 nm or more are used. The volume-based pore distribution (relationship between the pore diameter of the partition walls and the cumulative pore volume) was determined. Therefore, the total pore volume was a value obtained from the amount of mercury filled in pores of 6 nm or more.

ここで、全細孔容積の50%の容積の水銀が圧入された時点の細孔径が水銀圧入法により測定されるメジアン細孔径(容積基準)である。さらに隔壁の細孔径と累積細孔表面積との関係を求め、その曲線から、全細孔表面積の50%に相当する細孔表面積での細孔径を表面積基準のメジアン細孔径として求める。   Here, the pore diameter at the time when 50% of the total volume of mercury is injected is the median pore diameter (volume basis) measured by the mercury intrusion method. Further, the relationship between the pore diameter of the partition walls and the cumulative pore surface area is obtained, and from the curve, the pore diameter at the pore surface area corresponding to 50% of the total pore surface area is obtained as the median pore diameter based on the surface area.

水銀圧入法で測定した容積基準のメジアン細孔径D50は、表面積基準のメジアン細孔径d50の50〜5000倍、すなわち50≦D50/d50≦5000であるのが好ましい。容積基準のメジアン細孔径D50は、隔壁内の連通孔を形成する細孔のように比較的大きな細孔構造を主に反映する値であり、1〜50μmの範囲であるのが好ましい。一方、金属酸化物の粒子によって形成されるような1μm以下の細孔径を有する細孔が多く含まれると、表面積基準のメジアン細孔径d50が容積基準のメジアン細孔径D50に対して著しく小さい側にシフトする。従って、溶存有機物を吸着除去するのに効果の大きい10〜200 nmの細孔径を有する細孔が多く存在すると、D50/d50の値がより大きくなる。D50/d50の値が50未満であると、10〜200 nmの細孔径を有する細孔が少なくなり、溶存有機物を吸着除去する効果が大きく低下する。D50/d50の値が5000超の場合、10 nm未満のさらに細かい細孔が多く存在し、溶存有機物を吸着する効果としては飽和してしまう。D50/d50の値は、100〜2500であるのがより好ましく、150〜1000であるのが最も好ましい。The volume-based median pore diameter D 50 measured by the mercury intrusion method is preferably 50 to 5000 times the surface area-based median pore diameter d 50 , that is, 50 ≦ D 50 / d 50 ≦ 5000. The volume-based median pore diameter D 50 is a value mainly reflecting a relatively large pore structure such as pores forming communication holes in the partition walls, and is preferably in the range of 1 to 50 μm. On the other hand, when many pores having a pore diameter of 1 μm or less as formed by metal oxide particles are included, the median pore diameter d 50 based on the surface area is remarkably smaller than the median pore diameter D 50 based on the volume. Shift to the side. Therefore, when there are many pores having a pore diameter of 10 to 200 nm that are highly effective for adsorbing and removing dissolved organic substances, the value of D 50 / d 50 becomes larger. When the value of D 50 / d 50 is less than 50, the number of pores having a pore diameter of 10 to 200 nm is reduced, and the effect of adsorbing and removing dissolved organic substances is greatly reduced. When the value of D 50 / d 50 is more than 5000, there are many finer pores of less than 10 nm, and the effect of adsorbing dissolved organic matter is saturated. The value of D 50 / d 50 is more preferably from 100 to 2500, and most preferably from 150 to 1000.

容積基準のメジアン細孔径D50は、前述したように、隔壁内の連通孔を形成する細孔を主に反映する値であり、1〜50μmの範囲であるのが好ましく、1〜30μmであるのがより好ましく、5〜25μmであるのがさらに好ましく、10〜20μmであるのが最も好ましい。また、容積基準のメジアン細孔径D50は、前記隔壁の厚さdの0.005〜0.15倍の範囲であるのが好ましい。容積基準のメジアン細孔径D50が1μm未満である場合及び/又は隔壁の厚さdの0.005倍未満である場合、連通孔の径が小さくなりすぎるため、水の通過時の抵抗(圧力損失)が大きくなり、また吸着成分以外の成分による目詰まりが顕著となって、被処理水に大きな圧力を加えた際、破損する場合がある。容積基準のメジアン細孔径D50が50μm超である場合及び/又は隔壁の厚さdの0.15倍超である場合、細孔が大き過ぎるため金属酸化物の粒子を固定する連通孔内面の面積が小さくなり、金属酸化物の粒子の量が少なくなる。そのため溶存有機物を吸着する能力が低下する。As described above, the volume-based median pore diameter D 50 is a value mainly reflecting the pores that form the communication holes in the partition walls, and is preferably in the range of 1 to 50 μm, and preferably 1 to 30 μm. More preferably, it is 5-25 micrometers, and it is most preferable that it is 10-20 micrometers. The volume-based median pore diameter D 50 is preferably in the range of 0.005 to 0.15 times the partition wall thickness d. When the volume-based median pore diameter D 50 is less than 1 μm and / or when it is less than 0.005 times the partition wall thickness d, the diameter of the communication hole becomes too small, so the resistance (pressure loss) when water passes through In addition, the clogging due to components other than the adsorbed component becomes significant, and may be damaged when a large pressure is applied to the water to be treated. When the volume-based median pore diameter D 50 is more than 50 μm and / or more than 0.15 times the partition wall thickness d, the area of the inner surface of the communication hole for fixing the metal oxide particles is too large because the pores are too large. Smaller and less metal oxide particles. As a result, the ability to adsorb dissolved organic matter decreases.

本発明の吸着部材は、吸着により溶存有機物を除去するので、容積基準のメジアン細孔径D50が1〜50μmの範囲であっても、10〜20 nmの大きさで水中に存在している溶存有機物を除去できる。このため、フィルタに形成した細孔により、その細孔径以上の異物を遮断することで異物を除去する細孔遮断型のフィルタ(濾過膜)と異なり、小さい圧力損失と溶存有機物の高い除去性能が両立できる。Since the adsorbing member of the present invention removes dissolved organic substances by adsorption, even if the volume-based median pore diameter D 50 is in the range of 1 to 50 μm, the dissolved member exists in water with a size of 10 to 20 nm. Organic matter can be removed. For this reason, unlike the pore-blocking filter (filter membrane) that removes foreign matters by blocking foreign matters larger than the pore diameter by the pores formed in the filter, it has a small pressure loss and high removal performance of dissolved organic matter. Can be compatible.

(b)気孔率
隔壁2の気孔率は25〜70%であるのが好ましい。隔壁2の気孔率は基材6の隔壁2内の連通孔5の細孔容積と、基材6の表面6a及び連通孔内面6b、並びに目封止部9a、9bの表面に金属酸化物の粒子7がコーティングされたことで形成される1μm以下の微細な細孔の容積の合計から算出される。連通孔5の細孔容積の方がコーティングで形成される1μm以下の微細な細孔の容積よりも大きいため、気孔率はほとんど連通孔5の細孔容積によって決まる。隔壁2の気孔率が25%未満である場合、連通孔5を形成しない細孔が多く存在するようになり、連通孔5の量が少なくなる。隔壁2の気孔率が70%超では、隔壁2の機械的強度が低下し、処理水に大きな圧力を加えた際、破損する可能性が生じる。
(b) Porosity The porosity of the partition wall 2 is preferably 25 to 70%. The porosity of the partition wall 2 is that the volume of the communication hole 5 in the partition wall 2 of the base material 6, the surface 6a of the base material 6 and the inner surface of the communication hole 6b, and the surface of the plugging portions 9a and 9b are made of metal oxide. It is calculated from the total volume of fine pores of 1 μm or less formed by coating the particles 7. Since the pore volume of the communication hole 5 is larger than the volume of fine pores of 1 μm or less formed by coating, the porosity is almost determined by the pore volume of the communication hole 5. When the porosity of the partition wall 2 is less than 25%, many pores that do not form the communication holes 5 exist, and the amount of the communication holes 5 decreases. When the porosity of the partition wall 2 is more than 70%, the mechanical strength of the partition wall 2 decreases, and there is a possibility that the partition wall 2 may be damaged when a large pressure is applied to the treated water.

(c)構造
隔壁2の厚さdは0.1〜2 mmであるのが好ましく、厚さdと隔壁2によって形成される流路の幅wとの比d/wは、式:0.20≦d/w≦1.25を満たすのが好ましい。隔壁2の厚さが0.1 mm未満及び/又は0.20>d/wである場合には、隔壁2の機械的強度が低下し、被処理水に大きな圧力を加えた際、破損する可能性が生じるとともに、連通孔5の長さを十分確保できず、金属酸化物の粒子の量が少なくなるため、吸着性能が低下する。隔壁2の厚さが2 mm超及び/又はd/w>1.25の場合には、被処理水を透過するのに必要な圧力が大きく(圧力損失が上昇)になり、水処理に時間とエネルギーがかかる。なお、隔壁2の厚さdと、流路の幅wとは、成形用金型の寸法を変化させることで、適宜設定できる。
(c) Structure The thickness d of the partition wall 2 is preferably 0.1 to 2 mm, and the ratio d / w between the thickness d and the width w of the flow path formed by the partition wall 2 is expressed by the formula: 0.20 ≦ d / It is preferable to satisfy w ≦ 1.25. When the thickness of the partition wall 2 is less than 0.1 mm and / or 0.20> d / w, the mechanical strength of the partition wall 2 is reduced, and there is a possibility that the partition wall 2 may be damaged when a large pressure is applied to the water to be treated. At the same time, the length of the communication hole 5 cannot be secured sufficiently, and the amount of metal oxide particles is reduced, so that the adsorption performance is lowered. When the thickness of the partition wall 2 exceeds 2 mm and / or d / w> 1.25, the pressure required to permeate the water to be treated increases (pressure loss increases), and the time and energy required for water treatment It takes. Note that the thickness d of the partition wall 2 and the width w of the flow path can be appropriately set by changing the dimensions of the molding die.

限定されないが、隔壁2は軸方向視で格子状又は網目状に設けられているのが好ましい。従って、例えば、隔壁2が格子状に設けられている場合は、流路3は軸方向視で四角形の形状を有している。この場合、流路3は軸方向視で一辺が0.5〜8 mmの四角形であるのが好ましい。流路3の一辺が0.5 mm未満であると、被処理水中の溶存有機物以外の異物がセラミックハニカム構造体4の流入側の端面10aに開口する流路3aを塞いでしまうことがあり、処理能力が低下する。一方、流路3の一辺が8 mm超の場合、セラミックハニカム構造体4の隔壁2の厚さを十分にとらないと、機械的強度が不十分となり、被処理水に大きな圧力を加えた際に破損する可能性が高くなる。流路3の形状は、図1に示すような正四角形に限られず、他の四角形、三角形、六角形、八角形と四角形との組み合わせ等の平面上に充填できるような形状であっても良い。   Although not limited, the partition walls 2 are preferably provided in a lattice shape or a mesh shape as viewed in the axial direction. Therefore, for example, when the partition walls 2 are provided in a lattice shape, the flow path 3 has a quadrangular shape when viewed in the axial direction. In this case, the flow path 3 is preferably a quadrangle having a side of 0.5 to 8 mm as viewed in the axial direction. If one side of the flow path 3 is less than 0.5 mm, foreign matter other than dissolved organic matter in the water to be treated may block the flow path 3a that opens to the end surface 10a on the inflow side of the ceramic honeycomb structure 4, and the processing capacity Decreases. On the other hand, when one side of the flow path 3 exceeds 8 mm, the mechanical strength becomes insufficient unless the partition wall 2 of the ceramic honeycomb structure 4 is sufficiently thick, and a large pressure is applied to the water to be treated. The possibility of breakage increases. The shape of the flow path 3 is not limited to a regular square as shown in FIG. 1, and may be a shape that can be filled on a plane such as another square, a triangle, a hexagon, a combination of an octagon and a square, or the like. .

(d)材料
隔壁2の基材6は、アルミナ、シリカ、コーディエライト、チタニア、ムライト、ジルコニア、スピネル、炭化珪素、窒化珪素、チタン酸アルミニウム、リチウムアルミニウムシリケート等を主成分とするセラミックからなるのが好ましい。特に基材6としては、アルミナ又はコーディエライトが好ましく、中でもコーディエライトが最も好ましい。コーディエライトとしては、主結晶相がコーディエライトであればよく、スピネル、ムライト、サフィリン等の他の結晶相、さらにガラス成分を含有しても良い。従って、本発明の吸着部材としては、多孔質のコーディエライトからなる基材と、前記基材の表面及び連通孔内面の少なくとも一部に被覆されたアルミナの粒子とからなるものが好ましい。
(d) Material The base material 6 of the partition wall 2 is made of a ceramic mainly composed of alumina, silica, cordierite, titania, mullite, zirconia, spinel, silicon carbide, silicon nitride, aluminum titanate, lithium aluminum silicate, or the like. Is preferred. In particular, the substrate 6 is preferably alumina or cordierite, and most preferably cordierite. As cordierite, the main crystal phase may be cordierite, and may contain other crystal phases such as spinel, mullite, sapphirine, and further glass components. Therefore, the adsorbing member of the present invention is preferably composed of a base material made of porous cordierite and alumina particles coated on at least a part of the surface of the base material and the inner surface of the communicating hole.

本発明においては、前記隔壁の基材はコーディライトであり、金属酸化物の粒子はアルミナであるのが好ましい。コーディライトは、細孔を容易に形成できる基材であり、またアルミナを成分として含むため、アルミナを強固に固定させるのに有効である。   In the present invention, the base material of the partition walls is preferably cordierite, and the metal oxide particles are preferably alumina. Cordierite is a base material on which pores can be easily formed, and contains alumina as a component, and is therefore effective for firmly fixing alumina.

(3)目封止部
セラミックハニカム構造体4の複数の流路3は、被処理水流入側又は処理水流出側が交互に目封止されており、その結果、被処理水の流入側の端面10aが開口し、反対側の処理水の流出側の端面10bが目封止部9aによって目封止された第1の流路3aと、処理水の流出側の端面10bが開口し、反対側の被処理水の流入側の端面10aが目封止部9bによって目封止された第2の流路3bとを有する。第1の流路3aと第2の流路3bとは、1枚の隔壁2を介して、互いに隣接するように配置されており、第1の流路3aから流入した被処理水が隔壁2中の連通孔を通って第2の流路3bから処理水が排出されるように構成されている。
(3) Plugged portion The plurality of flow paths 3 of the ceramic honeycomb structure 4 are alternately plugged on the treated water inflow side or the treated water outflow side, and as a result, the end surface of the treated water inflow side The first flow path 3a in which the end surface 10b on the opposite side of the treated water outflow side is plugged by the plugging portion 9a and the end surface 10b on the outflow side of the treated water is opened on the opposite side The end surface 10a on the inflow side of the water to be treated has the second flow path 3b plugged by the plugging portion 9b. The first flow path 3a and the second flow path 3b are arranged so as to be adjacent to each other via the single partition wall 2, and the water to be treated flowing from the first flow path 3a is separated from the partition wall 2. The treated water is configured to be discharged from the second flow path 3b through the communication hole therein.

目封止部9a、9bは、多孔質のセラミックハニカム構造体4(隔壁2の基材6)と同一の材料、有機材料、その他の無機材料などの処理水に溶解しない材料で形成することができる。多孔質のセラミックハニカム構造体4と同一の材料で形成する場合は、セラミック材料からなるスラリーを流路の所定の端部に注入し焼成することによって形成できる。また有機材料としては、ポリイミド、ポリアミド、ポリイミドアミド、ポリウレタン、アクリル、エポキシ、ポリプロピレン、テフロン(登録商標)等の材料が挙げられ、その他の無機材料としては、隔壁2を構成するセラミック以外のセラミック(アルミナ、シリカ、マグネシア、チタニア、ジルコニア、ジルコン、コージェライト、スピネル、チタン酸アルミニウム、リチウムアルミニウムシリケート等)、ガラス等が挙げられる。また目封止部9a、9bの形成は公知の方法を用いることができる。   The plugging portions 9a and 9b may be formed of the same material as the porous ceramic honeycomb structure 4 (base material 6 of the partition wall 2), an organic material, a material that does not dissolve in the treated water, such as other inorganic materials. it can. When the porous ceramic honeycomb structure 4 is formed of the same material, it can be formed by pouring a slurry made of a ceramic material into a predetermined end of the flow path and firing it. Examples of the organic material include polyimide, polyamide, polyimide amide, polyurethane, acrylic, epoxy, polypropylene, Teflon (registered trademark), and other inorganic materials include ceramics other than the ceramic that forms the partition 2 ( Alumina, silica, magnesia, titania, zirconia, zircon, cordierite, spinel, aluminum titanate, lithium aluminum silicate, etc.) and glass. A known method can be used to form the plugged portions 9a and 9b.

目封止部9a、9bの気孔率は、0〜40%であるのが好ましく、隔壁2の気孔率より小さいのが好ましい。また目封止部9a、9bの軸方向長さは、隔壁2の厚さより厚いのが望ましい。目封止部9a、9bに使用する材料の気孔率が40%超又は隔壁2の気孔率より大きい場合、被処理水が隔壁2だけでなく目封止部9a、9bを通過してしまうため、溶存有機物が金属酸化物の粒子7に吸着されないで吸着部材から排出される。   The porosity of the plugged portions 9a and 9b is preferably 0 to 40%, and is preferably smaller than the porosity of the partition wall 2. Further, it is desirable that the axial lengths of the plugged portions 9a and 9b are thicker than the thickness of the partition wall 2. When the porosity of the material used for the plugging portions 9a and 9b exceeds 40% or is larger than the porosity of the partition walls 2, the water to be treated passes through not only the partition walls 2 but also the plugging portions 9a and 9b. The dissolved organic matter is discharged from the adsorbing member without being adsorbed by the metal oxide particles 7.

[2] 吸着部材の製造方法
本発明の吸着部材を製造する方法は、
セラミック原料を含む坏土を所定の成形体に押出成形し、前記成形体を乾燥及び焼成し、多孔質の隔壁に仕切られた軸方向に延びる複数の流路を備えたセラミックハニカム構造体を形成する工程と、
前記セラミックハニカム構造体の流路端部に、交互に目封止部を形成する工程と、
前記セラミックハニカム構造体の隔壁に金属酸化物の粒子をコーティングし、乾燥及び焼成する工程とを有する。
[2] Method for producing adsorption member The method for producing the adsorption member of the present invention comprises:
The clay containing the ceramic raw material is extruded into a predetermined molded body, and the molded body is dried and fired to form a ceramic honeycomb structure having a plurality of axially extending channels partitioned by porous partition walls. And a process of
Alternately forming plugged portions at the channel end of the ceramic honeycomb structure; and
Coating the partition walls of the ceramic honeycomb structure with metal oxide particles, and drying and firing.

(1) 多孔質セラミック構造体の形成
多孔質セラミック構造体4の形成方法を、コーディエライトからなる多孔質セラミック構造体4の場合を例に挙げて説明する。カオリン、タルク、シリカ、アルミナなどの粉末を調製して、質量比でSiO2:48〜52%、Al2O3:33〜37%、及びMgO:12〜15%となるようにコーディエライト化原料粉末を準備し、造孔材、メチルセルロース、ヒドロキシプロピルメチルセルロース等のバインダ、必要に応じて分散剤、界面活性剤、潤滑剤等の添加剤を加えて乾式で充分混合した後、規定量の水を添加、混錬を行って可塑化したセラミック杯土を作製する。次に、成形用金型を用いて杯土を押し出し成形し、切断して、乾燥し、必要に応じて端面及び外周等の加工を施し、ハニカム構造を有する乾燥体とする。この乾燥体を、焼成(例えば、1400℃)したのち、外周にコーディエライト粒子とコロイダルシリカを含有するコーティング剤を塗布、焼成して、外周壁8の内側に隔壁2で仕切られた断面が四角形状の多数の流路3が形成されたコーディエライト質の多孔質セラミックハニカム構造体4とする。なお外周壁8の形成は後述する目封止部の形成後に行っても良い。
(1) Formation of Porous Ceramic Structure A method for forming the porous ceramic structure 4 will be described by taking the case of the porous ceramic structure 4 made of cordierite as an example. Kaolin, talc, silica, were prepared powders such as alumina, SiO 2 in a weight ratio: 48~52%, Al 2 O 3 : 33~37%, and MgO: 12 to 15% become so cordierite Prepare powdered raw material powder, add binder such as pore former, methylcellulose, hydroxypropylmethylcellulose, etc., and add additives such as dispersant, surfactant, lubricant, etc. Add water and knead to make a plasticized ceramic clay. Next, the clay is extruded using a molding die, cut, cut and dried, and the end face and outer periphery are processed as necessary to obtain a dried body having a honeycomb structure. After the dried body is fired (for example, 1400 ° C.), a coating agent containing cordierite particles and colloidal silica is applied to the outer periphery and fired, and the cross section partitioned by the partition walls 2 inside the outer peripheral wall 8 A cordierite porous ceramic honeycomb structure 4 in which a large number of rectangular channels 3 are formed. The formation of the outer peripheral wall 8 may be performed after the formation of a plugging portion described later.

(2) 目封止部の形成
多孔質セラミック構造体4の製造に用いたコーディエライト化原料粉末に、バインダ及び分散媒(溶剤)を添加して目封止部形成用のスラリーを作製する。このスラリーを、多孔質セラミックハニカム構造体4の流路3に、流路3の被処理水流入側端部と処理水流出側端部とが交互に目封止されるように、複数のノズルを有するディスペンサを用いて注入し、その後、乾燥、焼成して目封止部9a、9bを形成する。
(2) Formation of plugging portion A binder and a dispersion medium (solvent) are added to the cordierite forming raw material powder used for the production of the porous ceramic structure 4 to prepare a plugging portion forming slurry. . The slurry is provided with a plurality of nozzles so as to alternately plug the treated water inflow side end and the treated water outflow side end of the flow path 3 into the flow path 3 of the porous ceramic honeycomb structure 4. Then, the plugging portions 9a and 9b are formed by drying and baking.

目封止部9a、9bの形成には、ディスペンサ以外に、スクリーン印刷法を用いることができる。スクリーン印刷法を用いる場合には、所定の位置が開口した印刷マスクをセラミックハニカム構造体4の所定の位置に合わせて配置し、高粘度のスラリーを印刷マスクの開口部を介して注入し、その後、乾燥、焼成して目封止部9a、9bを形成する。   In addition to the dispenser, a screen printing method can be used for forming the plugged portions 9a and 9b. When using the screen printing method, a print mask having an opening at a predetermined position is arranged in accordance with a predetermined position of the ceramic honeycomb structure 4, and a high-viscosity slurry is injected through the opening of the print mask, and then Then, the plugged portions 9a and 9b are formed by drying and firing.

目封止部9a、9bは、多孔質のセラミックハニカム構造体4と同一材料で形成しても良いし別のセラミック材料で形成しても良い。また有機高分子材料(ポリイミド、ポリアミド、ポリイミドアミド、ポリウレタン、アクリル、エポキシ、ポリプロピレン、テフロン(登録商標)等)、無機材料(ガラス等)又はセラミック粒子(アルミナ、シリカ、マグネシア、チタニア、ジルコニア、ジルコン、コージェライト、スピネル、チタン酸アルミニウム、リチウムアルミニウムシリケート等)と前記有機高分子材料からなる複合材料を使用して形成しても良い。例えば、テフロン(登録商標)等の材料であらかじめ作製しておいた栓を棒やシリンジで押し込み固定することによって目封止部9a、9bを形成してもよい。有機高分子材料を用いる場合には、隔壁2を形成する温度より目封止部9a、9bを形成する温度を低くする。   The plugging portions 9a and 9b may be formed of the same material as that of the porous ceramic honeycomb structure 4 or may be formed of a different ceramic material. Organic polymer materials (polyimide, polyamide, polyimide amide, polyurethane, acrylic, epoxy, polypropylene, Teflon (registered trademark), etc.), inorganic materials (glass, etc.) or ceramic particles (alumina, silica, magnesia, titania, zirconia, zircon) , Cordierite, spinel, aluminum titanate, lithium aluminum silicate, etc.) and a composite material composed of the above organic polymer material. For example, the plugged portions 9a and 9b may be formed by pushing and fixing a stopper prepared in advance using a material such as Teflon (registered trademark) with a stick or syringe. When an organic polymer material is used, the temperature for forming the plugging portions 9a and 9b is set lower than the temperature for forming the partition walls 2.

(3) 金属酸化物の粒子のコーティング
目封止部9a,9bの形成後、多孔質セラミックハニカム構造体4の隔壁2の基材6の表面6a及び連通孔内面6b、並びに目封止部9a,9bの表面に金属酸化物の粒子7をコーティングする。金属酸化物の粒子7のコーティングは、いわゆる公知のウォッシュコート法によって行うことができる。金属酸化物の粒子7(例えば、αアルミナ、γアルミナ)を含むスラリーを、多孔質セラミックハニカム構造体4の内部に吸引して供給した後、乾燥して、900℃以下で焼成することによって行う。前記スラリーには、アルミナゾル等の無機バインダを添加することができる。900℃超で焼成を行った場合、アルミナゾル内の微結晶やγアルミナが結晶成長して粗大な粒子となり比表面積が低下する場合があるので好ましくない。金属酸化物の粒子によって形成される1μm以下の微細な細孔を有する吸着部材を得るためには、金属酸化物の粒子のコーティング後の焼成の温度は900℃以下とする。
(3) Coating of metal oxide particles After the formation of plugging portions 9a and 9b, the surface 6a of the base 6 of the partition wall 2 of the porous ceramic honeycomb structure 4 and the inner surface 6b of the communication hole, and the plugging portion 9a The surface of 9b is coated with metal oxide particles 7. The coating of the metal oxide particles 7 can be performed by a so-called known washcoat method. A slurry containing metal oxide particles 7 (for example, α-alumina, γ-alumina) is sucked and supplied into the porous ceramic honeycomb structure 4, and then dried and fired at 900 ° C. or lower. . An inorganic binder such as alumina sol can be added to the slurry. When firing at a temperature higher than 900 ° C., the crystallites in the alumina sol or γ-alumina grows to form coarse particles, which is not preferable. In order to obtain an adsorbing member having fine pores of 1 μm or less formed by metal oxide particles, the firing temperature after coating the metal oxide particles is 900 ° C. or less.

コーティングする金属酸化物の粒子7としては、例えば、平均粒径0.1〜1μmのアルミナ粉末を用いるのが好ましい。このようなアルミナ粉末としては、住友化学製アルミナA-26を粉砕したものなどが挙げられる。またバインダとしては、平均粒径100〜500 nmのアルミナゾルが好ましく、具体的には日揮触媒化成製Cataloid ASシリーズが挙げられる。   As the metal oxide particles 7 to be coated, for example, alumina powder having an average particle size of 0.1 to 1 μm is preferably used. Examples of such alumina powder include pulverized alumina A-26 manufactured by Sumitomo Chemical. As the binder, alumina sol having an average particle size of 100 to 500 nm is preferable, and specifically, the Cataloid AS series manufactured by JGC Catalysts & Chemicals is exemplified.

隔壁2の基材6への金属酸化物の粒子7のコーティング量は、焼成後形成される金属酸化物の粒子7の厚さとして0.2〜5μmであるのが好ましく、0.5〜2μmであるのがより好ましい。金属酸化物の粒子によって形成される1μm以下の微細な細孔を有し、水銀圧入法で測定した10〜200 nmの細孔径を有する全細孔容積が、隔壁の見かけ体積当たり0.1%以上となる吸着部材を得るためには、金属酸化物の粒子の焼成後の厚さは0.2μm以上とする。コーティング量は、スラリーの粘度、金属酸化物の粒子濃度等により調節することができる。また1回で所定量の金属酸化物の粒子が被覆されない場合は、ウォッシュコート法を複数回繰り返して行っても良い。   The coating amount of the metal oxide particles 7 on the base material 6 of the partition wall 2 is preferably 0.2 to 5 μm as the thickness of the metal oxide particles 7 formed after firing, and is preferably 0.5 to 2 μm. More preferred. The total pore volume having fine pores of 1 μm or less formed by metal oxide particles and having a pore diameter of 10 to 200 nm measured by mercury porosimetry is 0.1% or more per apparent volume of the partition wall. In order to obtain the adsorbing member, the thickness of the metal oxide particles after firing is 0.2 μm or more. The coating amount can be adjusted by the viscosity of the slurry, the particle concentration of the metal oxide, and the like. If a predetermined amount of metal oxide particles is not coated at one time, the wash coat method may be repeated a plurality of times.

[3] 水処理設備
本発明の吸着部材1は、例えば、図6にフロー図で示すような水処理設備100に使用する。水処理設備100は、本発明の吸着部材1を組み込んだ吸着モジュール101と、吸着モジュール101で処理された水を貯水する貯水タンク102と、貯水タンク102の水を給水する給水ポンプ103と、給水ポンプ103から送られた水から被分離物質を除去する逆浸透膜105を備えた逆浸透膜モジュール104とを備えている。
[3] Water Treatment Facility The adsorbing member 1 of the present invention is used in, for example, a water treatment facility 100 as shown in the flowchart in FIG. The water treatment facility 100 includes an adsorption module 101 incorporating the adsorption member 1 of the present invention, a water storage tank 102 for storing water treated by the adsorption module 101, a water supply pump 103 for supplying water from the water storage tank 102, and a water supply And a reverse osmosis membrane module 104 having a reverse osmosis membrane 105 for removing a substance to be separated from water sent from the pump 103.

本発明の吸着部材1を組み込んだ吸着モジュール101を図7に示す。吸着モジュール101は、本発明の吸着部材1と、前記吸着部材1の被処理液流入側端面及び処理水流出側端面を、把持部材(図示せず)を介して支持するフィルタ支持体110と、前記吸着部材1及びフィルタ支持体110を収納するハウジング111(例えば、アクリル製の収納容器)とから構成される。フィルタ支持体110は、被処理水が抵抗なく通過可能で、被処理水の圧力によって容易に変形しない程度の強度を有し、水への溶出物がない材料及び材質のものであれば良く、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリスチレン等の樹脂製メッシュスペーサ、ステンレス、チタン等の金属製メッシュ又はパンチングメタル等を用いることができる。   A suction module 101 incorporating the suction member 1 of the present invention is shown in FIG. The adsorbing module 101 includes the adsorbing member 1 of the present invention, a filter support 110 that supports the treated liquid inflow side end surface and the treated water outflow side end surface of the adsorbing member 1 via a gripping member (not shown), A housing 111 (for example, an acrylic container) that houses the adsorbing member 1 and the filter support 110 is configured. The filter support 110 may be of a material and a material that can pass through the water to be treated without resistance, has a strength that does not easily deform due to the pressure of the water to be treated, and does not have an eluate into the water. For example, a resin mesh spacer such as polyethylene, polypropylene, polyethylene terephthalate, or polystyrene, a metal mesh such as stainless steel or titanium, or a punching metal can be used.

吸着モジュール101には、ごみ等をスクリーンにかけて取り除く処理、砂などの細かい懸濁物を凝集剤添加して沈降除去する処理、微生物を用いて有機物を分解する処理等の処理が施された一次処理水が供給され、この一次処理水には塩類や溶存有機物が含まれている。吸着モジュール101に供給された一次処理水は、吸着部材1を通過することによって被処理水中の異物(溶存有機物等)が吸着除去され、貯水タンク102を経て、給水ポンプ103で加圧しながら逆浸透膜105に通し、処理水中の有機物や塩類が除去された透過水と、有機物や塩類が濃縮された濃縮水とに分離する。吸着部材1によって一次処理水中の異物(溶存有機物等)が吸着除去されることによって、逆浸透膜105の目詰まりの発生を防止し、逆浸透膜105の交換寿命を延ばすことができる。   The adsorption module 101 is subjected to a primary process such as a process of removing dust etc. through a screen, a process of adding fine flocculant such as sand to settle and removing it, and a process of decomposing organic matter using microorganisms. Water is supplied, and this primary treated water contains salts and dissolved organic matter. The primary treated water supplied to the adsorption module 101 passes through the adsorption member 1 to adsorb and remove foreign matter (dissolved organic matter, etc.) in the treated water, and reverse osmosis while being pressurized by the water supply pump 103 via the water storage tank 102. The membrane 105 is separated into permeated water from which organic substances and salts in the treated water have been removed and concentrated water from which organic substances and salts have been concentrated. By adsorbing and removing foreign substances (dissolved organic substances, etc.) in the primary treated water by the adsorbing member 1, clogging of the reverse osmosis membrane 105 can be prevented and the replacement life of the reverse osmosis membrane 105 can be extended.

本発明の吸着部材1は、逆浸透膜105の表面に付着する有機物等を選択的に効率よく吸着除去する前処理工程として機能するため、このような水処理設備100は、海水淡水化、半導体等の精密電子機器製造に用いる純水製造、上水の高度処理、下水・排水の再生処理(微生物処理を併用しないものなどを含む)等の逆浸透膜105を用いた水処理、特に海水の淡水化のプロセスに応用が可能である。   Since the adsorbing member 1 of the present invention functions as a pretreatment step for selectively and efficiently removing organic substances adhering to the surface of the reverse osmosis membrane 105, such a water treatment facility 100 is used for seawater desalination, semiconductor Water treatment using reverse osmosis membrane 105, such as pure water production used in the manufacture of precision electronic equipment such as advanced water treatment, sewage and wastewater regeneration treatment (including those not combined with microbial treatment), especially seawater Applicable to desalination process.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

(1)吸着部材の作製
実施例(本発明)及び比較例の吸着部材を以下のようにして作製した。
(1) Preparation of adsorption member The adsorption members of the example (the present invention) and the comparative example were produced as follows.

実施例1
カオリン、タルク、シリカ、水酸化アルミニウム及びアルミナの粉末を調整して、化学組成が50質量%のSiO2、36質量%のAl2O3及び14質量%のMgOとなるコーディエライト化原料粉末を得た。このコーディエライト化原料粉末に、成形助剤としてメチルセルロース及びヒドロキシプロピルメチルセルロース、造孔材として熱膨張性マイクロカプセルを添加し、規定量の水を注入して、十分な混練を行い、ハニカム構造に押出成形可能な坏土を調整した。
Example 1
Kaolin, talc, silica, by adjusting the powder of aluminum hydroxide and alumina, cordierite-forming raw material powder chemical composition is 50% by weight of SiO 2, 36 wt% of Al 2 O 3 and 14% by weight of MgO Got. To this cordierite-forming raw material powder, methylcellulose and hydroxypropylmethylcellulose are added as molding aids, and thermally expandable microcapsules are added as a pore-forming material, a prescribed amount of water is injected, and sufficient mixing is performed to obtain a honeycomb structure. An extrudable clay was prepared.

得られた坏土を成形用金型を用いて押出してハニカム構造の成形体を作製し、乾燥後、周縁部を除去加工し、1400℃で24時間焼成した。焼成後のセラミックハニカム体の流路に、流路の被処理水流入側端部又は処理水流出側端部が交互に目封止されるように、コーディエライト化原料からなる目封止材スラリーを充填した後、目封止材スラリーの乾燥及び焼成を行った。目封止部を形成後のセラミックハニカム構造体の外周に、コーディエライト粒子とコロイダルシリカを含有するコーティング剤をコーティング、乾燥及び焼成して外周壁を形成して、外径285 mm、全長330 mm、隔壁厚さ0.3 mm及びセルピッチ1.6 mmの多孔質セラミックハニカム構造体を得た。   The obtained kneaded material was extruded using a molding die to produce a honeycomb structure molded body. After drying, the peripheral portion was removed and fired at 1400 ° C. for 24 hours. A plugging material made of cordierite forming raw material so that the treated water inflow side end portion or the treated water outflow side end portion of the flow path of the ceramic honeycomb body after firing is alternately plugged. After filling the slurry, the plugging material slurry was dried and fired. The outer periphery of the ceramic honeycomb structure after forming the plugged portions is coated with a coating agent containing cordierite particles and colloidal silica, dried and fired to form an outer peripheral wall. A porous ceramic honeycomb structure having a thickness of 0.3 mm, a partition wall thickness of 0.3 mm, and a cell pitch of 1.6 mm was obtained.

目封止部を形成した多孔質セラミックハニカム構造体を、γアルミナを起源とするアルミナ微粒子とアルミナゾルバインダとを含むスラリーに浸漬し、多孔質セラミックハニカム構造体の隔壁に形成された連通孔内に前記スラリーを十分に浸透させた後、スラリーから取り出し、乾燥して、500℃で5時間焼成し、多孔質セラミックハニカム構造体の隔壁の基材表面及び連通孔内面、並びに目封止部表面に金属酸化物の粒子(アルミナ微粒子)をコーティングし、本発明の吸着部材を作製した。コーティングされたアルミナの粒子からなる層は、厚さが0.2〜1μmの範囲であった。なおコーティングされたアルミナは、電子線回折によりαアルミナであることを確認した。   The porous ceramic honeycomb structure in which the plugged portions are formed is immersed in a slurry containing alumina fine particles originating from γ-alumina and an alumina sol binder, and is inserted into the communication holes formed in the partition walls of the porous ceramic honeycomb structure. After sufficiently infiltrating the slurry, it is taken out from the slurry, dried, and fired at 500 ° C. for 5 hours to form the base material surface of the partition wall of the porous ceramic honeycomb structure, the inner surface of the communication hole, and the surface of the plugging portion. The adsorption member of the present invention was produced by coating metal oxide particles (alumina fine particles). The layer of coated alumina particles had a thickness in the range of 0.2-1 μm. The coated alumina was confirmed to be α-alumina by electron diffraction.

実施例2
実施例1で使用したγアルミナを起源とするアルミナ微粒子に替えて、αアルミナを起源とするアルミナ微粒子を用いた以外、実施例1と同様にして本発明の吸着部材を作製した。コーティングされたアルミナの粒子からなる層は、厚さが0.3〜0.8μmの範囲であった。コーティングされたアルミナは、電子線回折によりαアルミナであることを確認した。
Example 2
An adsorbing member of the present invention was produced in the same manner as in Example 1 except that alumina fine particles originating in α-alumina were used instead of the alumina fine particles originating in γ-alumina used in Example 1. The layer of coated alumina particles had a thickness in the range of 0.3 to 0.8 μm. The coated alumina was confirmed to be α-alumina by electron beam diffraction.

実施例3
実施例1で使用したγアルミナを起源とするアルミナ微粒子に替えて、別のγアルミナを起源とするアルミナ微粒子を用いた以外、実施例1と同様にして本発明の吸着部材を作製した。コーティングされたアルミナの粒子からなる層は、厚さが0.5〜1.5μmの範囲であった。コーティングされたアルミナは、電子線回折によりαアルミナであることを確認した。
Example 3
An adsorbing member of the present invention was produced in the same manner as in Example 1 except that alumina fine particles originating in another γ alumina were used instead of the alumina fine particles originating in γ alumina used in Example 1. The layer of coated alumina particles had a thickness in the range of 0.5 to 1.5 μm. The coated alumina was confirmed to be α-alumina by electron beam diffraction.

比較例1
αアルミナ粉末に、成形助剤としてメチルセルロース及びヒドロキシプロピルメチルセルロース、及び造孔材として内部が中空構造で平均粒径10〜45μmの球状樹脂を添加し、規定量の水を注入して、十分な混練を行い、ハニカム構造に押出成形可能な坏土を調整した。得られた坏土を成形用金型を用いて押出してハニカム構造の成形体を作製し、乾燥後、周縁部を除去加工し、1400℃で24時間焼成した。焼成後のセラミックハニカム体の流路に、流路の被処理水流入側端部又は処理水流出側端部が交互に目封止されるように、実施例1と同様に、コーディエライト化原料からなる目封止材スラリーを充填した後、目封止材スラリーの乾燥及び焼成を行った。目封止部を形成後のセラミックハニカム構造体の外周に、コーディエライト粒子とコロイダルシリカを含有するコーティング剤をコーティング、乾燥及び焼成して外周壁を形成して、外径285 mm、全長330 mm、隔壁厚さ0.76 mm及びセルピッチ2.66 mmのアルミナからなる多孔質セラミックハニカム構造体を作製し、吸着部材とした。金属酸化物の粒子のコーティングは行っておらず、金属酸化物の粒子の厚さは0μmであった。
Comparative Example 1
Add enough methyl cellulose and hydroxypropyl methylcellulose as molding aids to α-alumina powder, and add spherical resin with hollow inside structure and average particle size of 10-45μm as pore former, inject a specified amount of water, and knead thoroughly To prepare a clay that can be extruded into a honeycomb structure. The obtained kneaded material was extruded using a molding die to produce a honeycomb structure molded body. After drying, the peripheral portion was removed and fired at 1400 ° C. for 24 hours. In the same manner as in Example 1, cordierite is formed so that the treated water inflow side end or the treated water outflow side end of the flow path is alternately plugged into the flow path of the fired ceramic honeycomb body. After filling the plugging material slurry made of the raw material, the plugging material slurry was dried and fired. The outer periphery of the ceramic honeycomb structure after forming the plugged portions is coated with a coating agent containing cordierite particles and colloidal silica, dried and fired to form an outer peripheral wall. A porous ceramic honeycomb structure made of alumina having a thickness of 0.7 mm, a partition wall thickness of 0.76 mm, and a cell pitch of 2.66 mm was produced as an adsorbing member. The metal oxide particles were not coated, and the thickness of the metal oxide particles was 0 μm.

比較例2
隔壁表面及び連通孔内にアルミナをコーティングしなかった以外実施例1と同様にして多孔質コーディエライトからなる吸着部材を作製した。金属酸化物の粒子のコーティングは行っておらず、金属酸化物の粒子の厚さは0μmであった。
Comparative Example 2
An adsorbing member made of porous cordierite was produced in the same manner as in Example 1 except that alumina was not coated on the partition wall surface and the communication holes. The metal oxide particles were not coated, and the thickness of the metal oxide particles was 0 μm.

比較例3
実施例1で得られた吸着部材をさらに1400℃で24時間焼成し吸着部材を作製した。アルミナの粒子からなる層は、1400℃での焼成前は厚さが0.2〜1μmの範囲であったが、1400℃での焼成によりセラミックハニカム構造体の表面とアルミナ粒子が反応して境界部分が一体化し、アルミナの粒子からなる層の厚さは0.2μm未満であった。
Comparative Example 3
The adsorbing member obtained in Example 1 was further baked at 1400 ° C. for 24 hours to produce an adsorbing member. The layer of alumina particles had a thickness in the range of 0.2 to 1 μm before firing at 1400 ° C., but the surface of the ceramic honeycomb structure reacted with the alumina particles by firing at 1400 ° C. The thickness of the integrated layer of alumina particles was less than 0.2 μm.

(2)細孔構造の評価
得られた吸着部材の細孔分布を水銀圧入法により測定した。水銀圧入法による測定は、金属酸化物の粒子をコーティングした後の多孔質セラミックハニカム構造体から切り出した試験片(10 mm×10 mm×10 mm)を、Micromeritics社製オートポアIIIの測定セル内に収納し、セル内を減圧した後、水銀を導入して加圧し、加圧時の圧力と試験片内に存在する細孔中に押し込まれた水銀の体積との関係を求めることにより行った。前記圧力と体積との関係から細孔径と累積細孔容積との関係を求めた。水銀を導入する圧力は0.5 psi(0.35×10-3 kg/mm2)とし、圧力から細孔径を算出する際の常数は、接触角=130°及び表面張力=484 dyne/cmの値を使用した。
(2) Evaluation of pore structure The pore distribution of the obtained adsorbing member was measured by a mercury intrusion method. In the mercury intrusion measurement, a test piece (10 mm x 10 mm x 10 mm) cut out from a porous ceramic honeycomb structure after coating with metal oxide particles was placed in a measurement cell of Autopore III manufactured by Micromeritics. After storing and depressurizing the inside of the cell, mercury was introduced and pressurized, and the relationship between the pressure at the time of pressurization and the volume of mercury pushed into the pores present in the test piece was determined. From the relationship between the pressure and the volume, the relationship between the pore diameter and the cumulative pore volume was determined. The pressure for introducing mercury is 0.5 psi (0.35 × 10 -3 kg / mm 2 ), and the constants for calculating the pore diameter from the pressure are values of contact angle = 130 ° and surface tension = 484 dyne / cm did.

なお本願において、水銀圧入法による測定は、6 nm以上の細孔について行い、それより小さいサイズの細孔は考慮しなかった。従って、全細孔容積とは6 nm以上の細孔径を有する全細孔容積である。細孔径と累積細孔容積との関係(容積基準の細孔分布のデータ)から、全細孔容積の50%に相当する細孔容積での細孔径を容積基準のメジアン細孔径(D50)として求めた。また容積基準の細孔分布から10〜200 nmの細孔径を有する全細孔容積を求め、隔壁の見かけ体積当たりの割合で示した。In the present application, measurement by mercury porosimetry was performed for pores of 6 nm or more, and pores having a smaller size were not considered. Therefore, the total pore volume is the total pore volume having a pore diameter of 6 nm or more. From the relationship between the pore size and the cumulative pore volume (volume-based pore distribution data), the pore size at the pore volume corresponding to 50% of the total pore volume is the volume-based median pore size (D 50 ). As sought. Further, the total pore volume having a pore diameter of 10 to 200 nm was determined from the volume-based pore distribution, and indicated as a ratio per apparent volume of the partition walls.

さらに容積基準の細孔分布のデータから、隔壁の細孔径と累積細孔表面積との関係(表面積基準の細孔分布のデータ)を求め、その曲線から、全細孔表面積の50%に相当する細孔表面積での細孔径を表面積基準のメジアン細孔径(d50)として求めた。気孔率は、全細孔容積の測定値から、コーディエライトの真比重を2.52 g/cm3として計算によって求めた。Furthermore, from the volume-based pore distribution data, the relationship between the pore diameter of the partition walls and the cumulative pore surface area (surface area-based pore distribution data) is obtained, and the curve corresponds to 50% of the total pore surface area. The pore diameter at the pore surface area was determined as the median pore diameter (d 50 ) based on the surface area. The porosity was calculated from the measured value of the total pore volume by setting the true specific gravity of cordierite to 2.52 g / cm 3 .

Figure 0006579281
Figure 0006579281

Figure 0006579281
注1:隔壁の見かけ体積当たりに占める10〜200 nmの細孔径を有する全細孔容積の割合
Figure 0006579281
Note 1: Percentage of total pore volume having a pore diameter of 10 to 200 nm per apparent volume of partition walls

(3)吸着性能の評価
実施例1〜3及び比較例1〜3の吸着部材の溶存有機物に対する吸着性能を、以下のようにして評価した。多糖類の1種であるマンナンを6 mg/Lの濃度で人工海水中に溶解して被処理液を準備し、図7に示すような吸着モジュールに組み込んだ25mm径、35mm長の吸着部材に、前記被処理液を、120 L/hrの体積流量(SV)で供給した。吸着モジュールの入口及び出口での被処理液中のマンナンの量(炭素重量)をTOC(全有機炭素)測定器(島津製作所製TOC-L)により測定して、吸着部材に吸着したマンナンの量(炭素重量)を算出し、90分間の累計吸着量を吸着性能として評価した。上述の吸着性能の評価条件で評価した吸着量が1.0 mg以上であれば、実用上許容できるコストやサイズでの水処理設備の設計が可能である。結果を表3に示す。
(3) Evaluation of adsorption performance The adsorption performance of the adsorbing members of Examples 1 to 3 and Comparative Examples 1 to 3 with respect to dissolved organic substances was evaluated as follows. Mannan, one of the polysaccharides, is dissolved in artificial seawater at a concentration of 6 mg / L to prepare a liquid to be treated, and the 25 mm diameter and 35 mm long adsorbing member incorporated in the adsorption module as shown in Fig. 7 The liquid to be treated was supplied at a volume flow rate (SV) of 120 L / hr. The amount of mannan adsorbed on the adsorbing member by measuring the amount (carbon weight) of mannan in the liquid to be treated at the inlet and outlet of the adsorption module with a TOC (total organic carbon) measuring instrument (TOC-L manufactured by Shimadzu Corporation) (Carbon weight) was calculated, and the cumulative adsorption amount for 90 minutes was evaluated as the adsorption performance. If the adsorption amount evaluated under the above-described adsorption performance evaluation conditions is 1.0 mg or more, it is possible to design a water treatment facility with practically acceptable cost and size. The results are shown in Table 3.

Figure 0006579281
注1:被処理液を90分間処理したときの吸着部材当たりの累積吸着量
Figure 0006579281
Note 1: Cumulative amount of adsorption per adsorption member when the liquid to be treated is treated for 90 minutes

表2及び表3から、10〜200 nmの細孔径を有する全細孔容積が、隔壁の見かけ体積当たり0.1%以上である実施例1〜3の吸着部材は、いずれも吸着量が1.0 mg以上であり、溶存有機物に対する吸着性能が優れていることがわかる。また10〜200 nmの細孔径を有する全細孔容積が、隔壁の見かけ体積当たり1.0 %以上の実施例2及び3は、吸着量が1.5 mg以上であり、さらに吸着性能が優れていることがわかる。   From Table 2 and Table 3, the adsorbing members of Examples 1 to 3 in which the total pore volume having a pore diameter of 10 to 200 nm is 0.1% or more per apparent volume of the partition wall, the adsorbing amount is 1.0 mg or more. It can be seen that the adsorption performance for dissolved organic matter is excellent. In addition, in Examples 2 and 3, in which the total pore volume having a pore diameter of 10 to 200 nm is 1.0% or more per apparent volume of the partition wall, the adsorption amount is 1.5 mg or more, and the adsorption performance is excellent. Recognize.

(4)本発明の吸着部材を用いた水処理
カオリン、タルク、シリカ、水酸化アルミニウム及びアルミナの粉末を調整して、化学組成が50質量%のSiO2、36質量%のAl2O3及び14質量%のMgOとなるコーディエライト化原料粉末を得た。このコーディエライト化原料粉末に、成形助剤としてメチルセルロース及びヒドロキシプロピルメチルセルロース、造孔材として熱膨張性マイクロカプセルを添加し、規定量の水を注入して、十分な混練を行い、ハニカム構造に押出成形可能な坏土を調整した。
(4) Water treatment using the adsorbing member of the present invention A powder of kaolin, talc, silica, aluminum hydroxide and alumina is prepared to have a chemical composition of 50% by mass of SiO 2 , 36% by mass of Al 2 O 3 and A cordierite-forming raw material powder having 14% by mass of MgO was obtained. To this cordierite-forming raw material powder, methylcellulose and hydroxypropylmethylcellulose are added as molding aids, and thermally expandable microcapsules are added as a pore-forming material, a prescribed amount of water is injected, and sufficient mixing is performed to obtain a honeycomb structure. An extrudable clay was prepared.

得られた坏土を成形用金型を用いて押出してハニカム構造の成形体を作製し、乾燥後、周縁部を除去加工し、1400℃で24時間焼成した。焼成後のセラミックハニカム体の流路端部に、流路の被処理水流入側端部又は処理水流出側端部が交互に目封止されるように、コーディエライト化原料からなる目封止材スラリーを充填した後、目封止材スラリーの乾燥及び焼成を行った。目封止部を形成後のセラミックハニカム構造体の外周に、コーディエライト粒子とコロイダルシリカを含有するコーティング剤をコーティング、乾燥及び焼成して外周壁を形成して、外径267 mm、全長185 mm、隔壁厚さ0.8 mm及びセルピッチ1.9 mmの多孔質セラミックハニカム構造体を得た。   The obtained kneaded material was extruded using a molding die to produce a honeycomb structure molded body. After drying, the peripheral portion was removed and fired at 1400 ° C. for 24 hours. A plug made of a cordierite forming raw material is alternately plugged at the end of the flow path of the ceramic honeycomb body after firing so that the end of the water to be treated inflow side or the end of the treated water outflow side is plugged. After filling the stop material slurry, the plugging material slurry was dried and fired. The outer periphery of the ceramic honeycomb structure after forming the plugged portions is coated with a coating agent containing cordierite particles and colloidal silica, dried and fired to form an outer peripheral wall. A porous ceramic honeycomb structure having a thickness of mm, a partition wall thickness of 0.8 mm, and a cell pitch of 1.9 mm was obtained.

得られた多孔質セラミックハニカム構造体の隔壁の基材表面及び連通孔内面に、実施例3と同様にして、金属酸化物の粒子(アルミナ微粒子)をコーティングし、本発明の吸着部材を得た。コーティングされたアルミナの粒子からなる層は、厚さが0.5〜1.5μmの範囲であった。コーティングされたアルミナは、電子線回折によりαアルミナであることを確認した。   The base material surface of the partition wall and the inner surface of the communication hole of the obtained porous ceramic honeycomb structure were coated with metal oxide particles (alumina fine particles) in the same manner as in Example 3 to obtain the adsorbing member of the present invention. . The layer of coated alumina particles had a thickness in the range of 0.5 to 1.5 μm. The coated alumina was confirmed to be α-alumina by electron beam diffraction.

水処理系統A(本発明例)
作製した吸着部材による逆浸透膜のファウリング抑制効果を検証するため、実海水とこれに下水を添加可能な実証設備を設置した。下水を添加した海水を原水として、安価な砂ろ過(SF)に得られた吸着部材を組み合わせて(砂ろ過(SF)+吸着部材)で前処理を行い、その処理水が逆浸透膜モジュールへと送られるようにした系統Aを作製した。
Water treatment system A (example of the present invention)
In order to verify the fouling suppression effect of the reverse osmosis membrane by the produced adsorbing member, we installed actual seawater and a demonstration facility that can add sewage to it. Seawater added with sewage is used as raw water, and pretreatment is performed by combining the adsorbing material obtained by cheap sand filtration (SF) (sand filtration (SF) + adsorbing material), and the treated water is transferred to the reverse osmosis membrane module. A line A was prepared.

水処理系統B(比較例)
下水を添加した海水を原水として、既存の限外ろ過膜(UF)で前処理を行い、その処理水が逆浸透膜モジュールへと送られるようにした系統Bを作製した。
Water treatment system B (comparative example)
Seawater added with sewage was used as raw water for pretreatment with an existing ultrafiltration membrane (UF), and system B was prepared so that the treated water was sent to the reverse osmosis membrane module.

水処理系統A'(比較例)
系統Aで用いた前処理(砂ろ過(SF)+吸着部材)の代わりに、砂ろ過(SF)のみの前処理に変更した系統A'を作製した。
Water treatment system A '(comparative example)
Instead of the pretreatment (sand filtration (SF) + adsorbing member) used in the system A, a system A ′ changed to a pretreatment only with sand filtration (SF) was prepared.

これらの水処理系統A、B及びA'を用いて、下水を添加した海水から1.7 m3/日の淡水を生産する運転を2週間行った。ただし、系統Aについては、1日1回10分間、吸着部材にのみNaOH水溶液(0.1質量%)を20 L流し、アルカリ洗浄を実施した。Using these water treatment systems A, B and A ′, an operation for producing 1.7 m 3 / day of fresh water from seawater to which sewage was added was performed for 2 weeks. However, for system A, 20 L of an aqueous NaOH solution (0.1% by mass) was flowed only on the adsorbing member once a day for 10 minutes, and alkali cleaning was performed.

2週間後の逆浸透膜の圧力上昇を測定することによって、各系統の逆浸透膜におけるファウリング抑制効果を比較評価した。その結果、本発明の吸着部材を用いず限外ろ過膜(UF)のみによる前処理を行った系統Bでは約15%圧力が上昇し、また本発明の吸着部材を用いず砂ろ過(SF)のみで前処理を行った系統A'では約30%圧力が上昇した。一方、本発明の吸着部材による前処理を行った系統Aは圧力上昇が見られなかった。従って、本発明の吸着部材による前処理は逆浸透膜のファウリング抑制効果が大きいことが確認できた。   By measuring the pressure increase of the reverse osmosis membrane after 2 weeks, the fouling suppression effect in the reverse osmosis membrane of each system was comparatively evaluated. As a result, about 15% of the pressure rises in the system B in which the pretreatment using only the ultrafiltration membrane (UF) is performed without using the adsorbing member of the present invention, and sand filtration (SF) without using the adsorbing member of the present invention. Only about 30% of the pressure was increased in the system A ′ which was pre-treated alone. On the other hand, no increase in pressure was observed in the system A subjected to the pretreatment with the adsorbing member of the present invention. Therefore, it was confirmed that the pretreatment with the adsorbing member of the present invention has a large effect of suppressing fouling of the reverse osmosis membrane.

Claims (15)

多孔質の隔壁に仕切られた軸方向に延びる複数の流路を備え、前記複数の流路に被処理水を通過させて前記被処理水内の異物を吸着除去する多孔質セラミックハニカム構造体からなる吸着部材であって、
前記流路は、被処理水流入側又は処理水流出側が交互に目封止されており、
前記隔壁は、
前記流路間を接続する連通孔を有し、
多孔質セラミックからなる基材と、
前記基材の表面及び連通孔内面の少なくとも一部に固定された金属酸化物の粒子とで構成されており、
前記金属酸化物の粒子が平均粒径0.1〜1μmのアルミナ粒子であり、
水銀圧入法で測定した10〜200 nmの細孔径を有する全細孔容積が、前記隔壁の見かけ体積当たり0.1%以上であり、
水銀圧入法で測定した容積基準のメジアン細孔径(ただし、容積基準のメジアン細孔径は、前記隔壁の細孔径と累積細孔容積との関係を示す曲線において、全細孔容積の50%に相当する細孔容積での細孔径である。)が、表面積基準のメジアン細孔径(ただし、表面積基準のメジアン細孔径は、前記隔壁の細孔径と累積細孔表面積との関係を示す曲線において、全細孔表面積の50%に相当する細孔表面積での細孔径である。)の50〜1000倍
であることを特徴とする吸着部材。
A porous ceramic honeycomb structure having a plurality of axially extending flow paths partitioned by porous partition walls, and allowing the treated water to pass through the plurality of flow paths to adsorb and remove foreign substances in the treated water An adsorbing member comprising:
The flow path is alternately plugged on the treated water inflow side or the treated water outflow side,
The partition is
Having communication holes connecting the flow paths;
A substrate made of porous ceramic;
It is composed of metal oxide particles fixed to at least a part of the surface of the base material and the inner surface of the communication hole,
The metal oxide particles are alumina particles having an average particle size of 0.1 to 1 μm,
The total pore volume having a pore diameter of 10 to 200 nm measured by a mercury intrusion method is 0.1% or more per apparent volume of the partition wall ,
Volume-based median pore diameter measured by the mercury intrusion method (however, the volume-based median pore diameter corresponds to 50% of the total pore volume in the curve showing the relationship between the pore diameter of the partition wall and the cumulative pore volume) Is the median pore diameter based on the surface area (however, the median pore diameter based on the surface area is a curve indicating the relationship between the pore diameter of the partition wall and the cumulative pore surface area). An adsorbing member having a pore diameter at a pore surface area corresponding to 50% of the pore surface area .
請求項1に記載の吸着部材において、
前記10〜200 nmの細孔径を有する全細孔容積が、前記隔壁の見かけ体積当たり1.0%以上であることを特徴とする吸着部材。
In the adsorption member according to claim 1,
The adsorbing member, wherein a total pore volume having a pore diameter of 10 to 200 nm is 1.0% or more per apparent volume of the partition wall.
請求項1又は2に記載の吸着部材において、
前記10〜200 nmの細孔径を有する全細孔容積が、前記隔壁の見かけ体積当たり8%以下であることを特徴とする吸着部材。
In the adsorption member according to claim 1 or 2,
The adsorbing member, wherein a total pore volume having a pore diameter of 10 to 200 nm is 8% or less per apparent volume of the partition wall.
請求項1〜3のいずれかに記載の吸着部材において、
前記隔壁の厚さをd、前記流路の幅をwとしたとき、
dが0.1〜2 mmであり、
式:0.20≦d/w≦1.25
を満たすことを特徴とする吸着部材。
In the adsorption member according to any one of claims 1 to 3 ,
When the thickness of the partition wall is d and the width of the flow path is w,
d is 0.1-2 mm,
Formula: 0.20 ≦ d / w ≦ 1.25
The adsorption member characterized by satisfying.
請求項1〜4のいずれかに記載の吸着部材において、
前記隔壁は、
気孔率が25〜70%、及び
水銀圧入法で測定した前記容積基準のメジアン細孔径が1〜50μmであり、前記隔壁の厚さdの0.005〜0.15倍であることを特徴とする吸着部材。
In the adsorption member according to any one of claims 1 to 4 ,
The partition is
Porosity of 25% to 70%, and median pore diameter of the volume reference was measured by mercury porosimetry is 1 to 50 [mu] m, the adsorption member, which is a 0.005 to 0.15 times the thickness d of the partition wall.
請求項1〜5のいずれかに記載の吸着部材において、
前記金属酸化物の粒子が、前記被処理水に接触したときに表面が正に帯電する材料からなることを特徴とする吸着部材。
In the adsorption member according to any one of claims 1 to 5 ,
An adsorption member, wherein the metal oxide particles are made of a material whose surface is positively charged when it comes into contact with the water to be treated.
請求項6に記載の吸着部材において、
前記金属酸化物の粒子が、pH8〜10の等電点を有する材料からなることを特徴とする吸着部材。
In the adsorption member according to claim 6 ,
An adsorption member, wherein the metal oxide particles are made of a material having an isoelectric point of pH 8-10.
請求項1〜7のいずれかに記載の吸着部材において、
前記隔壁が、
多孔質のコーディエライトからなる基材と、
前記基材の表面及び連通孔内面の少なくとも一部に被覆されたアルミナの粒子と
からなることを特徴とする吸着部材。
In the adsorption member according to any one of claims 1 to 7 ,
The partition is
A substrate made of porous cordierite;
An adsorption member comprising alumina particles coated on at least a part of the surface of the base material and the inner surface of the communication hole.
請求項1〜8のいずれかに記載の吸着部材において、
前記アルミナがαアルミナ又はγアルミナであることを特徴とする吸着部材。
In the adsorption member according to any one of claims 1 to 8 ,
The adsorption member, wherein the alumina is α alumina or γ alumina.
請求項9に記載の吸着部材において、
前記アルミナがαアルミナであることを特徴とする吸着部材。
In the adsorption member according to claim 9 ,
The adsorption member, wherein the alumina is α-alumina.
多孔質の隔壁に仕切られた軸方向に延びる複数の流路を備え、前記複数の流路に被処理水を通過させて前記被処理水内の異物を吸着除去する吸着部材を製造する方法であって、
セラミック原料を含む坏土を所定の成形体に押出成形し、前記成形体を乾燥及び焼成し、多孔質の隔壁に仕切られた軸方向に延びる複数の流路を備えたセラミックハニカム構造体を形成する工程と、
前記セラミックハニカム構造体の流路端部に、交互に目封止部を形成する工程と、
前記セラミックハニカム構造体の前記隔壁に平均粒径0.1〜1μmのアルミナ粉末
をコーティングし、乾燥及び焼成する工程とを有し、
前記アルミナ粉末をコーティングし、乾燥及び焼成する工程により、前記隔壁を、前記流路間を接続する連通孔を有し、水銀圧入法で測定した10〜200 nmの細孔径を有する全細孔容積が前記隔壁の見かけ体積当たり0.1%以上にすることを特徴とする吸着部材の製造方法。
A method of manufacturing an adsorbing member that includes a plurality of axially extending flow paths partitioned by a porous partition wall, and that allows the treated water to pass through the plurality of flow paths to adsorb and remove foreign substances in the treated water. There,
The clay containing the ceramic raw material is extruded into a predetermined molded body, and the molded body is dried and fired to form a ceramic honeycomb structure having a plurality of axially extending channels partitioned by porous partition walls. And a process of
Alternately forming plugged portions at the channel end of the ceramic honeycomb structure; and
Coating the partition walls of the ceramic honeycomb structure with alumina powder having an average particle size of 0.1 to 1 μm , and drying and firing.
By coating the alumina powder , drying and firing, the partition wall has a communication hole connecting the flow paths, and a total pore volume having a pore diameter of 10 to 200 nm measured by mercury porosimetry. Is made 0.1% or more per apparent volume of the partition wall.
請求項11に記載の吸着部材の製造方法において、
前記セラミック原料がコーディエライト化原料であることを特徴とする吸着部材の製造方法。
In the manufacturing method of the adsorption member according to claim 11 ,
The method for producing an adsorbing member, wherein the ceramic raw material is a cordierite forming raw material.
請求項11又は12に記載の吸着部材の製造方法において、
前記アルミナ粉末のコーティングに無機バインダとしてアルミナゾルを用いることを特徴とする吸着部材の製造方法。
In the method for producing an adsorption member according to claim 11 or 12 ,
A method of manufacturing an adsorbing member, wherein alumina sol is used as an inorganic binder for coating the alumina powder .
請求項11〜13のいずれかに記載の吸着部材の製造方法において、
前記アルミナ粉末の焼成の温度が900℃以下であることを特徴とする吸着部材の製造方法。
In the manufacturing method of the adsorption member according to any one of claims 11 to 13 ,
The method for producing an adsorbing member, wherein the firing temperature of the alumina powder is 900 ° C. or lower.
請求項14に記載の吸着部材の製造方法において、  In the manufacturing method of the adsorption member according to claim 14,
前記アルミナ粉末の焼成の温度が500℃であることを特徴とする吸着部材の製造方法。A method for producing an adsorbing member, wherein the firing temperature of the alumina powder is 500 ° C.
JP2018562146A 2017-08-04 2018-08-03 Adsorbing member and manufacturing method thereof Active JP6579281B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017151460 2017-08-04
JP2017151459 2017-08-04
JP2017151459 2017-08-04
JP2017151460 2017-08-04
PCT/JP2018/029284 WO2019027047A1 (en) 2017-08-04 2018-08-03 Adsorption member and production method therefor

Publications (2)

Publication Number Publication Date
JPWO2019027047A1 JPWO2019027047A1 (en) 2019-08-08
JP6579281B2 true JP6579281B2 (en) 2019-09-25

Family

ID=65232897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018562146A Active JP6579281B2 (en) 2017-08-04 2018-08-03 Adsorbing member and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6579281B2 (en)
WO (1) WO2019027047A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7392853B2 (en) * 2020-06-09 2023-12-06 株式会社プロテリアル Adsorption member and its manufacturing method
US20210387126A1 (en) * 2020-06-15 2021-12-16 Metalmark Innovations, Inc. Porous materials for treating contaminants

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55114324A (en) * 1979-02-27 1980-09-03 Noritake Co Ltd Filter unit
JPS58109118A (en) * 1981-12-18 1983-06-29 Seibu Giken:Kk Element for adsorption of gas and its production
JPH0686971A (en) * 1992-05-27 1994-03-29 Nikki Universal Co Ltd Bleaching powder removing agent and usage thereof
JP2001149923A (en) * 1999-11-25 2001-06-05 Ngk Insulators Ltd Purifier
JP2003193820A (en) * 2001-09-13 2003-07-09 Hitachi Metals Ltd Ceramic honeycomb filter
JP4519376B2 (en) * 2001-09-13 2010-08-04 日本碍子株式会社 Method for producing porous filter
JP2003201596A (en) * 2002-01-10 2003-07-18 Nitto Denko Corp Method of depositing metallic layer and metallic foil stacked matter
JP2003230822A (en) * 2002-02-08 2003-08-19 Ngk Insulators Ltd Porous filter and water purifier, and filter inspection device and method
JP2012091151A (en) * 2010-10-29 2012-05-17 Hitachi Ltd Adsorption structure, adsorption module, and method for producing the same
JP6164366B2 (en) * 2014-06-27 2017-07-19 日立金属株式会社 Adsorption member
JP2016198742A (en) * 2015-04-13 2016-12-01 日立金属株式会社 Liquid treatment system, solution processing device and solution treatment method

Also Published As

Publication number Publication date
JPWO2019027047A1 (en) 2019-08-08
WO2019027047A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
EP2066426B1 (en) Method for preparing a porous inorganic coating on a porous support using certain pore formers
JP5937569B2 (en) Separation membrane structure made of honeycomb-shaped ceramic
JP6060074B2 (en) Cleaning method of ceramic filter
WO2012056666A1 (en) Adsorption structure, adsorption module, and method for producing same
JP2010227757A (en) Composite separation membrane
JP6043279B2 (en) Separation membrane structure made of honeycomb-shaped ceramic
JP6579281B2 (en) Adsorbing member and manufacturing method thereof
WO2012056668A1 (en) Reverse osmosis membrane structure for water treatment and reverse osmosis membrane module
JP2007254222A (en) Porous ceramic film, ceramic filter and its manufacturing method
US20210107838A1 (en) Inorganic membrane filtration articles and methods thereof
JP4800646B2 (en) Ceramic filter and manufacturing method thereof
ES2970053T3 (en) Ceramic filter element
JP2004275906A (en) Ceramic filter
KR102076733B1 (en) MANUFACTURING METHOD OF CERAMIC MEMBRANE SURFACE MODIFIED WITH SiO2 AND TiO2
JP7392853B2 (en) Adsorption member and its manufacturing method
JP2008062119A (en) Filter medium, its manufacturing method, filtration treatment device, and filtration treatment method
JP4519376B2 (en) Method for producing porous filter
Yun et al. Manufacture of Layered-type MF Ceramic Membrane for Advanced Wastewater Treatment and its Fouling Control using Modularized Mechanical Scraper
JP2007253090A (en) Ceramic filter
JP2005177693A (en) Filter and its production method
WO2007004261A1 (en) Filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181126

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181126

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190812

R150 Certificate of patent or registration of utility model

Ref document number: 6579281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350