JP6569841B1 - Hot-pressed steel sheet member and manufacturing method thereof - Google Patents
Hot-pressed steel sheet member and manufacturing method thereof Download PDFInfo
- Publication number
- JP6569841B1 JP6569841B1 JP2019512936A JP2019512936A JP6569841B1 JP 6569841 B1 JP6569841 B1 JP 6569841B1 JP 2019512936 A JP2019512936 A JP 2019512936A JP 2019512936 A JP2019512936 A JP 2019512936A JP 6569841 B1 JP6569841 B1 JP 6569841B1
- Authority
- JP
- Japan
- Prior art keywords
- less
- hot
- content
- steel sheet
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 115
- 239000010959 steel Substances 0.000 title claims abstract description 115
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 26
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 18
- 239000013078 crystal Substances 0.000 claims abstract description 14
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 238000007747 plating Methods 0.000 claims description 84
- 238000010438 heat treatment Methods 0.000 claims description 46
- 238000007731 hot pressing Methods 0.000 claims description 37
- 238000001816 cooling Methods 0.000 claims description 31
- 239000010960 cold rolled steel Substances 0.000 claims description 21
- 239000006104 solid solution Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 19
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 230000009466 transformation Effects 0.000 claims description 8
- 238000005452 bending Methods 0.000 abstract description 51
- 229910052748 manganese Inorganic materials 0.000 abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 3
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 229910052717 sulfur Inorganic materials 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 34
- 238000000034 method Methods 0.000 description 33
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 21
- 230000002708 enhancing effect Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000000605 extraction Methods 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 229910001567 cementite Inorganic materials 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 230000003111 delayed effect Effects 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 238000005275 alloying Methods 0.000 description 5
- 238000009616 inductively coupled plasma Methods 0.000 description 5
- 229910000765 intermetallic Inorganic materials 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- 229910007567 Zn-Ni Inorganic materials 0.000 description 4
- 229910007614 Zn—Ni Inorganic materials 0.000 description 4
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 229910018125 Al-Si Inorganic materials 0.000 description 3
- 229910018520 Al—Si Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
- C22C38/105—Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
1780MPa以上の引張強さと、優れた曲げ圧潰性とを兼ね備える熱間プレス鋼板部材を提供する。熱間プレス鋼板部材であって、質量%で、C:0.30%以上0.50%未満、Si:0.01%以上2.0%以下、Mn:0.5%以上3.5%以下、Nb:0.001%以上0.10%以下、P:0.05%以下、S:0.01%以下、Al:0.01%以上1.00%以下、およびN:0.01%以下を含有し、残部がFeおよび不可避的不純物からなり、かつNb含有量(質量%)に対するC含有量(質量%)の比C/Nbが22〜100である成分組成を有し、旧オーステナイト粒の平均結晶粒径が8μm以下であり、マルテンサイトの体積率が90%以上であり、かつ、固溶C量が全C量の25%以下であるミクロ組織を有し、引張強さが1780MPa以上である、熱間プレス鋼板部材。A hot-pressed steel sheet member having both a tensile strength of 1780 MPa or more and excellent bending crushability is provided. It is a hot-pressed steel plate member, and in mass%, C: 0.30% or more and less than 0.50%, Si: 0.01% or more and 2.0% or less, Mn: 0.5% or more and 3.5% Hereinafter, Nb: 0.001% or more and 0.10% or less, P: 0.05% or less, S: 0.01% or less, Al: 0.01% or more and 1.00% or less, and N: 0.01 %, The balance is Fe and inevitable impurities, and the ratio C / Nb of the C content (mass%) to the Nb content (mass%) is 22 to 100. Austenite grains have an average crystal grain size of 8 μm or less, a martensite volume ratio of 90% or more, and a microstructure in which the amount of solute C is 25% or less of the total C amount, and tensile strength Is a hot-pressed steel sheet member having 1780 MPa or more.
Description
本発明は、熱間プレス鋼板部材(hot-pressed steel sheet member)に関し、特に、1780MPa以上の引張強さと、優れた曲げ圧潰性とを兼ね備える熱間プレス鋼板部材に関する。また、本発明は、前記熱間プレス鋼板部材の製造方法に関する。 The present invention relates to a hot-pressed steel sheet member, and more particularly to a hot-pressed steel sheet member having both a tensile strength of 1780 MPa or more and excellent bending crushability. Moreover, this invention relates to the manufacturing method of the said hot press steel plate member.
近年、環境問題の高まりからCO2排出規制が厳格化しており、自動車分野においては燃費向上に向けた車体の軽量化が課題となっている。そこで、高強度鋼板を用いることによる自動車部品の薄肉化が進められており、具体的には、引張強さ(TS)が1780MPa以上である鋼板の適用が検討されている。In recent years, CO 2 emission regulations have become stricter due to increasing environmental problems, and in the automobile field, it has become a challenge to reduce the weight of the vehicle body in order to improve fuel efficiency. Therefore, the use of high-strength steel sheets has been promoted to reduce the thickness of automobile parts. Specifically, the application of steel sheets having a tensile strength (TS) of 1780 MPa or more is being studied.
しかし、自動車の構造用部材や補強用部材に使用される高強度鋼板には、成形性に優れ、成形後の寸法精度が高いことも求められる。引張強さが1780MPa以上である鋼板は延性が低いため、冷間プレス成形時に割れが発生しやすいという問題がある。また、引張強さが1780MPa以上である鋼板は降伏強度が高いため、冷間プレス成形後のスプリング・バックが大きい。したがって、引張強さが1780MPa以上である鋼板を冷間プレスする方法では、成形後に高い寸法精度が得られない。 However, high-strength steel sheets used for automobile structural members and reinforcing members are also required to have excellent formability and high dimensional accuracy after forming. Since the steel sheet having a tensile strength of 1780 MPa or more has low ductility, there is a problem that cracks are likely to occur during cold press forming. Further, since the steel sheet having a tensile strength of 1780 MPa or more has high yield strength, the spring back after cold press forming is large. Therefore, in the method of cold pressing a steel plate having a tensile strength of 1780 MPa or more, high dimensional accuracy cannot be obtained after forming.
そこで、近年、高い強度と高い寸法精度を同時に達成するための手法として、熱間プレス(ホットスタンプ、ダイクエンチ、プレスクエンチ等とも呼称される)でのプレス成形が着目されている。熱間プレスとは、鋼板をオーステナイト単相の温度域まで加熱した後に、高温のままで成形し、同時に金型との接触により急冷(焼入れ)する成型方法である。加熱されて軟質化した状態で成型が行われ、次いで、焼入れによって高強度化されるため、熱間プレスによれば、高い強度と高い寸法精度を兼ね備えた部材を得ることができる。このような特徴から、熱間プレスは、自動車用部材のように強度と精度が供給される部材の製造に利用されている。 Therefore, in recent years, as a method for achieving high strength and high dimensional accuracy at the same time, attention has been paid to press molding by hot pressing (also called hot stamping, die quenching, press quenching, etc.). Hot pressing is a forming method in which a steel sheet is heated to an austenite single-phase temperature range, then formed at a high temperature and rapidly cooled (quenched) by contact with a mold. Since molding is performed in a heated and softened state, and then the strength is increased by quenching, a member having high strength and high dimensional accuracy can be obtained by hot pressing. Because of these characteristics, the hot press is used for manufacturing a member that is supplied with strength and accuracy, such as a member for an automobile.
例えば、特許文献1では、自動車用部材として使用される熱間プレス部材の製造方法が提案されている。特許文献1に記載された方法では、熱間プレス後に焼入れ処理と熱処理を行うことにより、熱間プレス部材の靭性を向上させている。 For example, Patent Document 1 proposes a method for manufacturing a hot press member used as an automobile member. In the method described in Patent Document 1, the toughness of the hot pressed member is improved by performing a quenching process and a heat treatment after the hot pressing.
ところで、自動車用部材、特に骨格用部材においては、強度に優れることに加えて曲げ圧潰性に優れることが求められる。ここで、曲げ圧潰性とは、部材に対して曲げ変形を加えた際に割れを生じること無く塑性変形して潰れる特性をいう。自動車の衝突安全性を確保するためには、自動車用部材が曲げ圧潰性に優れることが求められる。 By the way, in the member for motor vehicles, especially the member for frame | skeleton, it is calculated | required that it is excellent in bending crushability in addition to being excellent in intensity | strength. Here, the bending crushability refers to the property of being plastically deformed and crushed without causing cracks when bending deformation is applied to the member. In order to ensure the collision safety of the automobile, the automobile member is required to have excellent bending crushability.
しかし、上述したように熱間プレス時の急冷によってプレス後の部材の引張強さを1780MPa以上とした場合、焼入れままのマルテンサイトが要因となり、曲げ変形が加えられた際 に塑性変形せずに割れが発生しやすいという問題があることが分かった。 However, as described above, when the tensile strength of the member after pressing is set to 1780 MPa or more by rapid cooling at the time of hot pressing, the martensite as quenched is a factor, and plastic deformation does not occur when bending deformation is applied. It has been found that there is a problem that cracking is likely to occur.
また、特許文献1に記載されている方法によれば、熱処理を行うことによって靭性に一定の向上が見られる。しかし、特許文献1に記載されている熱間プレス部材においても、プレス後の部材の引張強さを1780MPa以上とした場合には、十分な曲げ圧潰性が得られないことが分かった。 Moreover, according to the method described in Patent Document 1, a certain improvement in toughness is observed by performing heat treatment. However, even in the hot press member described in Patent Document 1, it has been found that sufficient bending crushability cannot be obtained when the tensile strength of the member after pressing is 1780 MPa or more.
自動車用骨格部品に求められる軽量化と衝突安全性確保のためには、熱間プレス後の部材が1780MPa以上という高い引張強さと、優れた曲げ圧潰性とを兼ね備えていることが必要である。しかし、TS:1780MPa以上の熱間プレス鋼板部材の曲げ圧潰性を改善することは困難であり、これらの特性を兼備する熱間プレス鋼板部材を得る方法は開発されていないのが実状である。 In order to reduce the weight required for automobile frame parts and to ensure collision safety, it is necessary that the member after hot pressing has a high tensile strength of 1780 MPa or more and an excellent bending crushability. However, it is difficult to improve the bending crushability of a hot-pressed steel sheet member having a TS of 1780 MPa or more, and the actual situation is that a method for obtaining a hot-pressed steel sheet member having these characteristics has not been developed.
本発明は、上記実状に鑑みてなされたものであり、1780MPa以上の引張強さと、優れた曲げ圧潰性とを兼ね備える熱間プレス鋼板部材を提供することを目的とする。 This invention is made | formed in view of the said actual condition, and it aims at providing the hot press steel plate member which combines the tensile strength of 1780 Mpa or more, and the outstanding bending crushability.
本発明者等は、上記課題を解決するために検討を行った結果、以下の知見を得た。 As a result of studies to solve the above problems, the present inventors have obtained the following knowledge.
(1)熱間プレス部材の曲げ圧潰性を向上させるためには、熱間プレス部材の固溶C量を制御することが重要である。1780MPa以上の引張強度を確保するために鋼板の成分を調整した場合、焼入れままマルテンサイトにおける固溶C量が多くなる。そのため、部材の硬度は高くなるが、脆くなる。そこで、固溶Cを、熱処理を行うことによって析出させることで、硬度をある程度確保しつつ、曲げ圧潰性を向上させることができる。固溶C量の調整は、熱間プレスにより鋼板組織をマルテンサイトとした後に、所定の条件で熱処理することにより行うことができる。 (1) In order to improve the bending crushability of the hot press member, it is important to control the amount of C dissolved in the hot press member. When the components of the steel sheet are adjusted to ensure a tensile strength of 1780 MPa or more, the amount of solute C in martensite increases as it is quenched. Therefore, although the hardness of a member becomes high, it becomes weak. Therefore, by precipitating the solid solution C by performing heat treatment, it is possible to improve the bending crushability while ensuring a certain degree of hardness. Adjustment of the amount of solute C can be performed by heat-treating under predetermined conditions after the steel sheet structure is made martensite by hot pressing.
(2)熱間プレス部材の曲げ圧潰性を向上させるためには、上記固溶C量の制御に加え、さらにNb含有量に対するC含有量の比C/Nbを所定の範囲に制御することが重要である。NbはNbCとして析出し、このNbCはオーステナイト粒を微細化する効果を有しているため、曲げ圧潰性の向上に有効である。したがって、NbCを生成するという観点からは、十分な量のNbを添加することが望ましいと考えられる。しかし、NbCの生成によって、強度向上に必要なCが消費されるため、Nb量と比べてC量が少なすぎると、必要な強度が得られなくなる。反対に、Nb量と比べてC量が多すぎると、固溶C量の増加やNbC量の減少により、曲げ圧潰性が低下する。そのため、強度と曲げ圧潰性とを両立させるためには、単にC量とNb量を個別に制御するだけでは不十分であり、Nb含有量に対するC含有量の比C/Nbを所定の範囲に制御する必要がある。 (2) In order to improve the bending crushability of the hot press member, in addition to the control of the solid solution C amount, the ratio C / Nb of the C content to the Nb content may be controlled within a predetermined range. is important. Nb precipitates as NbC, and this NbC has an effect of refining austenite grains, and is therefore effective in improving the bending crushability. Therefore, it is considered desirable to add a sufficient amount of Nb from the viewpoint of generating NbC. However, generation of NbC consumes C necessary for strength improvement. Therefore, if the amount of C is too small compared to the amount of Nb, the required strength cannot be obtained. On the other hand, if the amount of C is too much compared to the amount of Nb, the bending crushability is lowered due to an increase in the amount of dissolved C or a decrease in the amount of NbC. Therefore, in order to achieve both strength and bending crushability, it is not sufficient to simply control the C content and the Nb content individually, and the ratio C / Nb of the C content to the Nb content is within a predetermined range. Need to control.
本発明は上記知見に基づいて完成されたものであり、その要旨構成は次のとおりである。 The present invention has been completed based on the above findings, and the gist of the present invention is as follows.
1.熱間プレス鋼板部材であって、
質量%で、
C :0.30%以上0.50%未満、
Si:0.01%以上2.0%以下、
Mn:0.5%以上3.5%以下、
Nb:0.001%以上0.10%以下、
P :0.05%以下、
S :0.01%以下、
Al:0.01%以上1.00%以下、および
N :0.01%以下を含有し、
残部がFeおよび不可避的不純物からなり、かつ
Nb含有量(質量%)に対するC含有量(質量%)の比C/Nbが22〜100である成分組成を有し、
旧オーステナイト粒の平均結晶粒径が8μm以下であり、マルテンサイトの体積率が90%以上であり、かつ、固溶C量が全C量の25%以下であるミクロ組織を有し、
引張強さが1780MPa以上である、熱間プレス鋼板部材。1. A hot pressed steel plate member,
% By mass
C: 0.30% or more and less than 0.50%,
Si: 0.01% or more and 2.0% or less,
Mn: 0.5% or more and 3.5% or less,
Nb: 0.001% or more and 0.10% or less,
P: 0.05% or less,
S: 0.01% or less,
Al: 0.01% or more and 1.00% or less, and N: 0.01% or less,
The balance is composed of Fe and unavoidable impurities, and the ratio C / Nb of C content (mass%) to Nb content (mass%) is 22-100,
Having a microstructure in which the average crystal grain size of the prior austenite grains is 8 μm or less, the volume fraction of martensite is 90% or more, and the solid solution C content is 25% or less of the total C content;
A hot-pressed steel sheet member having a tensile strength of 1780 MPa or more.
2.前記成分組成が、質量%で、さらに
Mo:0.35%以下、
Cr:0.35%以下、
Ti:0.15%以下、
B :0.0050%以下、
Ca:0.005%以下、
V :0.05%以下、
Cu:0.50%以下、
Ni:0.50%以下、および
Sn:0.50%以下からなる群より選択される1または2以上を含有する、上記1に記載の熱間プレス鋼板部材。2. The component composition is mass%, and Mo: 0.35% or less,
Cr: 0.35% or less,
Ti: 0.15% or less,
B: 0.0050% or less,
Ca: 0.005% or less,
V: 0.05% or less,
Cu: 0.50% or less,
The hot-pressed steel sheet member according to 1 above, containing 1 or 2 or more selected from the group consisting of Ni: 0.50% or less, and Sn: 0.50% or less.
3.表面に、Al系めっき層またはZn系めっき層をさらに有する、上記1または2に記載の熱間プレス鋼板部材。 3. 3. The hot-pressed steel sheet member according to 1 or 2 above, further comprising an Al-based plating layer or a Zn-based plating layer on the surface.
4.質量%で、
C :0.30%以上0.50%未満、
Si:0.01%以上2.0%以下、
Mn:0.5%以上3.5%以下、
Nb:0.001%以上0.10%以下、
P :0.05%以下、
S :0.01%以下、
Al:0.01%以上1.00%以下、および
N :0.01%以下を含有し、
残部がFeおよび不可避的不純物からなり、かつ
Nb含有量(質量%)に対するC含有量(質量%)の比C/Nbが22〜100である成分組成を有する冷延鋼板を、Ac3変態点以上1000℃以下の加熱温度に加熱し、
前記加熱された冷延鋼板を熱間プレスして熱間プレス鋼板とし、
前記熱間プレス鋼板をMf点以下まで冷却し、
前記冷却された熱間プレス鋼板を、加熱温度:50〜300℃、保持時間:5〜3600秒の条件で熱処理する、
熱間プレス鋼板部材の製造方法。4). % By mass
C: 0.30% or more and less than 0.50%,
Si: 0.01% or more and 2.0% or less,
Mn: 0.5% or more and 3.5% or less,
Nb: 0.001% or more and 0.10% or less,
P: 0.05% or less,
S: 0.01% or less,
Al: 0.01% or more and 1.00% or less, and N: 0.01% or less,
A cold-rolled steel sheet having a component composition in which the balance is Fe and inevitable impurities, and the ratio C / Nb of the C content (mass%) to the Nb content (mass%) is 22 to 100 is greater than or equal to the Ac3 transformation point. Heated to a heating temperature of 1000 ° C. or less,
Hot-pressing the heated cold-rolled steel sheet to form a hot-pressed steel sheet,
Cooling the hot pressed steel sheet to the Mf point or less,
The cooled hot-pressed steel sheet is heat-treated under the conditions of heating temperature: 50 to 300 ° C. and holding time: 5 to 3600 seconds.
Manufacturing method of hot pressed steel sheet member.
5.前記成分組成が、質量%で、さらに
Mo:0.35%以下、
Cr:0.35%以下、
Ti:0.15%以下、
B :0.0050%以下、
Ca:0.005%以下、
V :0.05%以下、
Cu:0.50%以下、
Ni:0.50%以下、および
Sn:0.50%以下からなる群より選択される1または2以上を含有する、上記4に記載の熱間プレス鋼板部材の製造方法。5. The component composition is mass%, and Mo: 0.35% or less,
Cr: 0.35% or less,
Ti: 0.15% or less,
B: 0.0050% or less,
Ca: 0.005% or less,
V: 0.05% or less,
Cu: 0.50% or less,
The manufacturing method of the hot press steel plate member of said 4 containing 1 or 2 or more selected from the group which consists of Ni: 0.50% or less and Sn: 0.50% or less.
本発明によれば、1780MPa以上の引張強さと、優れた曲げ圧潰性とを兼ね備える熱間プレス鋼板部材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the hot press steel plate member which has the tensile strength of 1780 Mpa or more and the outstanding bending crushability can be provided.
以下、本発明を実施する方法を具体的に説明する。 Hereinafter, a method for carrying out the present invention will be specifically described.
[成分組成]
本発明の熱間プレス鋼板部材は、その鋼板部分が上記成分組成を有する。以下、その限定理由を説明する。なお、以下の説明において、成分組成に関する「%」は、「質量%」を意味する。[Ingredient composition]
As for the hot-pressed steel plate member of the present invention, the steel plate portion has the above component composition. Hereinafter, the reason for limitation will be described. In the following description, “%” regarding the component composition means “% by mass”.
C:0.30%以上0.50%未満
Cは鋼板の高強度化に有効な元素であり、熱間プレス後にマルテンサイトを強化して鋼の強度を高めるのに重要な元素である。しかし、C含有量が0.30%未満では熱間プレス後のマルテンサイトの硬度が不十分となり、所期の引張強さが得られない。そのため、C含有量は0.30%以上とする。一方、C含有量が0.50%以上であると、冷却後の熱処理で固溶C量を十分低下させることが困難となり、耐曲げ圧潰性が低下する。そのため、C含有量は0.50%未満、好ましくは0.45%未満、より好ましくは0.40%未満とする。C: 0.30% or more and less than 0.50% C is an element effective for increasing the strength of a steel sheet, and is an important element for strengthening martensite after hot pressing to increase the strength of the steel. However, if the C content is less than 0.30%, the hardness of martensite after hot pressing becomes insufficient, and the desired tensile strength cannot be obtained. Therefore, the C content is 0.30% or more. On the other hand, when the C content is 0.50% or more, it becomes difficult to sufficiently reduce the solid solution C amount by heat treatment after cooling, and the bending crush resistance is lowered. Therefore, the C content is less than 0.50%, preferably less than 0.45%, more preferably less than 0.40%.
Si:0.01%以上2.0%以下
Siはフェライトを固溶強化する作用を有し、高強度化に有効な元素である。しかし、Siの過剰な添加は化成処理性を低下させるため、Si含有量は2.0%以下、好ましくは1.3%以下とする。一方、極低Si化はコスト増加を招くため、Si含有量は0.01%以上とする。Si: 0.01% or more and 2.0% or less Si has an effect of strengthening the solid solution of ferrite and is an element effective for increasing the strength. However, excessive addition of Si reduces chemical conversion treatment properties, so the Si content is 2.0% or less, preferably 1.3% or less. On the other hand, since extremely low Si causes an increase in cost, the Si content is set to 0.01% or more.
Mn:0.5%以上3.5%以下
Mnは焼入れ性を高める効果を有する元素であり、熱間プレス後の冷却におけるマルテンサイト形成、すなわち高強度化に寄与する。前記効果を得るため、Mn含有量を0.5%以上、好ましくは1.0%以上とする。一方、3.5%を超えるMnを含有する場合、Mnバンドが過剰に生成するため、熱処理によって固溶C量を十分低下させることができず、その結果、曲げ圧潰性が低下する。そのため、Mn含有量は3.5%以下、好ましくは2.5%以下とする。Mn: 0.5% or more and 3.5% or less Mn is an element having an effect of improving hardenability, and contributes to martensite formation in cooling after hot pressing, that is, high strength. In order to acquire the said effect, Mn content shall be 0.5% or more, Preferably it is 1.0% or more. On the other hand, when Mn exceeding 3.5% is contained, Mn bands are generated excessively, so that the amount of dissolved C cannot be sufficiently reduced by heat treatment, and as a result, bending crushability is lowered. Therefore, the Mn content is 3.5% or less, preferably 2.5% or less.
Nb:0.001%以上0.10%以下
Nbは微細な炭窒化物を形成することで、強度上昇に寄与する元素である。また、Nbは熱間プレス時のオーステナイト粒径を微細化することから、曲げ圧潰性の向上に寄与する元素である。前記効果を得るために、Nb含有量を0.001%以上、好ましくは0.003%以上とする。一方、多量にNbを添加しても上記効果は飽和し、かえってコスト増を招く。そのため、Nb含有量は0.10%以下、好ましくは0.07%以下、より好ましくは0.03%以下、さらに好ましくは0.02%以下とする。Nb: 0.001% or more and 0.10% or less Nb is an element that contributes to an increase in strength by forming fine carbonitrides. Further, Nb is an element that contributes to the improvement of the bending crushability because it refines the austenite grain size during hot pressing. In order to acquire the said effect, Nb content shall be 0.001% or more, Preferably it is 0.003% or more. On the other hand, even if Nb is added in a large amount, the above effect is saturated, and the cost is increased. Therefore, the Nb content is 0.10% or less, preferably 0.07% or less, more preferably 0.03% or less, and further preferably 0.02% or less.
P:0.05%以下
Pは固溶強化により高強度化に寄与する元素である。しかし、過剰に添加された場合、粒界への偏析が著しくなって粒界を脆化させるため、耐曲げ圧潰性が低下する。そのため、P含有量は0.05%以下、好ましくは0.04%以下とする。一方、P含有量の下限は特に限定されないが、極低P化は製鋼コストの上昇を招くため、P含有量は0.0005%以上とすることが好ましい。P: 0.05% or less P is an element that contributes to high strength by solid solution strengthening. However, when excessively added, segregation to the grain boundary becomes remarkable and the grain boundary becomes brittle, so that the bending crush resistance is lowered. Therefore, the P content is 0.05% or less, preferably 0.04% or less. On the other hand, the lower limit of the P content is not particularly limited, but since extremely low P causes an increase in steelmaking cost, the P content is preferably set to 0.0005% or more.
S:0.01%以下
S含有量が高すぎると、MnSなどの硫化物系介在物が多く生成し、前記介在物が起点となって割れが発生するため曲げ圧潰性が低下する。そのため、S含有量は0.01%以下、好ましくは0.005%以下とする。一方、Si含有量の下限は特に限定されないが、極低S化は製鋼コストの上昇を招くため、S含有量は0.0002%以上とすることが好ましい。S: 0.01% or less If the S content is too high, a large amount of sulfide inclusions such as MnS are generated, and cracks are generated starting from the inclusions, so that the bending crushability is lowered. Therefore, the S content is 0.01% or less, preferably 0.005% or less. On the other hand, the lower limit of the Si content is not particularly limited, but since extremely low S causes an increase in steelmaking cost, the S content is preferably 0.0002% or more.
Al:0.01%以上1.00%以下
Alは脱酸に必要な元素である。その効果を得るために、Al含有量を0.01%以上とする。一方、Al含有量が1.00%を超えると効果が飽和するため、Al含有量は1.00%以下、好ましくは0.50%以下とする。Al: 0.01% or more and 1.00% or less Al is an element necessary for deoxidation. In order to obtain the effect, the Al content is set to 0.01% or more. On the other hand, since the effect is saturated when the Al content exceeds 1.00%, the Al content is set to 1.00% or less, preferably 0.50% or less.
N:0.01%以下
Nは、粗大な窒化物を形成し、曲げ圧潰性を低下させる。N含有量が0.01%超であると、曲げ圧潰性への影響が顕著となることから、N含有量は0.01%以下、好ましくは0.008%以下とする。N: 0.01% or less N forms coarse nitrides and reduces bending crushability. If the N content is more than 0.01%, the influence on the bending crushability becomes significant. Therefore, the N content is 0.01% or less, preferably 0.008% or less.
本発明の一実施形態における鋼板は、上記各成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することができる。 The steel plate in one embodiment of the present invention may contain the above components, and the balance may be composed of Fe and inevitable impurities.
本発明の他の実施形態においては、上記成分組成は、さらに以下の元素の1または2以上を任意に含有することができる。 In another embodiment of the present invention, the component composition may further optionally contain one or more of the following elements.
Mo:0.35%以下
Moは焼入れ性を高める効果を有する元素であり、熱間プレス後の冷却におけるマルテンサイト形成、すなわち高強度化に寄与する。しかし、過剰にMoを添加しても効果は飽和し、かえってコスト増を招く。また、過剰のMo添加は化成処理性を低下させる。そのため、Moを添加する場合、Mo含有量を0.35%以下とする。一方、Mo含有量の下限は特に限定されないが、Moの添加効果を高めるという観点からは、Mo含有量を0.005%以上とすることが好ましく、0.01%以上とすることがより好ましい。Mo: 0.35% or less Mo is an element having an effect of improving hardenability, and contributes to martensite formation in cooling after hot pressing, that is, high strength. However, even if Mo is added excessively, the effect is saturated and the cost is increased. Moreover, excessive Mo addition reduces chemical conversion property. Therefore, when adding Mo, Mo content is made into 0.35% or less. On the other hand, the lower limit of the Mo content is not particularly limited, but from the viewpoint of enhancing the effect of addition of Mo, the Mo content is preferably 0.005% or more, and more preferably 0.01% or more. .
Cr:0.35%以下
Crも、Moと同様に焼入れ性を高める効果を有する元素であり、熱間プレス後の冷却におけるマルテンサイト形成、すなわち高強度化に寄与する。しかし、過剰にCrを添加しても効果は飽和し、かえってコスト増を招く。また、Crは表面酸化物を形成し、めっき性を低下させる。そのため、Crを添加する場合、Cr含有量を0.35%以下とする。一方、Cr含有量の下限は特に限定されないが、Crの添加効果を高めるという観点からは、Cr含有量を0.005%以上とすることが好ましく、0.01%以上とすることがより好ましい。Cr: 0.35% or less Cr is also an element having an effect of improving hardenability like Mo, and contributes to martensite formation in cooling after hot pressing, that is, high strength. However, even if Cr is added excessively, the effect is saturated and the cost is increased. Moreover, Cr forms a surface oxide and lowers the plating property. Therefore, when adding Cr, Cr content shall be 0.35% or less. On the other hand, the lower limit of the Cr content is not particularly limited, but from the viewpoint of enhancing the effect of adding Cr, the Cr content is preferably 0.005% or more, more preferably 0.01% or more. .
Ti:0.10%以下
Tiは微細な炭窒化物を形成することで、強度上昇に寄与する元素である。また、Tiは熱間プレス時のオーステナイト粒径を微細化することにより、曲げ圧潰性の向上に寄与する元素である。しかし、多量にTiを添加すると、熱間プレス後の伸びが著しく低下する。そのため、Tiを添加する場合、Ti含有量を0.10%以下、好ましくは0.08%以下とする。一方、Ti含有量の下限は特に限定されないが、Tiの添加効果を高めるという観点からは、Ti含有量を0.005%以上とすることが好ましい。Ti: 0.10% or less Ti is an element that contributes to an increase in strength by forming fine carbonitrides. Ti is an element that contributes to the improvement of bending crushability by refining the austenite grain size during hot pressing. However, when Ti is added in a large amount, the elongation after hot pressing is significantly reduced. Therefore, when Ti is added, the Ti content is 0.10% or less, preferably 0.08% or less. On the other hand, the lower limit of the Ti content is not particularly limited, but from the viewpoint of enhancing the effect of adding Ti, the Ti content is preferably set to 0.005% or more.
B:0.0050%以下
Bは焼入れ性を高める効果を有する元素であり、熱間プレス後の冷却におけるマルテンサイト形成、すなわち高強度化に寄与する。また、Bが粒界に偏析することで粒界強度を向上させるため、曲げ圧潰性の向上に有効である。しかし、Bを過剰に添加すると、Cと粗大な析出物を生成し、曲げ圧潰性を低下させる。そのため、Bを添加する場合、B含有量を0.0050%以下、好ましくは0.0035%以下とする。一方、B含有量の下限は特に限定されないが、Bの添加効果を高めるという観点からは、B含有量を0.0002%以上とすることが好ましい。B: 0.0050% or less B is an element having an effect of improving hardenability, and contributes to martensite formation in cooling after hot pressing, that is, high strength. In addition, since B segregates at the grain boundaries and improves the grain boundary strength, it is effective in improving the bending crushability. However, when B is added excessively, C and coarse precipitates are generated, and the bending crushability is lowered. Therefore, when B is added, the B content is set to 0.0050% or less, preferably 0.0035% or less. On the other hand, the lower limit of the B content is not particularly limited, but from the viewpoint of enhancing the effect of adding B, the B content is preferably set to 0.0002% or more.
Ca:0.005%以下
Caは硫化物および酸化物の形状を制御し、粗大なMnSの生成を抑制する作用を有する元素であり、曲げ圧潰性を向上させる。しかし、過度の添加は加工性を劣化させるため、Caを添加する場合、Ca含有量を0.005%以下とする。一方、Ca含有量の下限は特に限定されないが、Caの添加効果を高めるという観点からは、Ca含有量を0.0005%以上とすることが好ましい。Ca: 0.005% or less Ca is an element that controls the shape of sulfides and oxides and suppresses the formation of coarse MnS, and improves bending crushability. However, excessive addition deteriorates workability. Therefore, when Ca is added, the Ca content is set to 0.005% or less. On the other hand, the lower limit of the Ca content is not particularly limited, but from the viewpoint of enhancing the Ca addition effect, the Ca content is preferably 0.0005% or more.
V:0.05%以下
Vは微細な炭窒化物を形成することで、強度上昇に寄与する元素である。しかし、過度の添加は曲げ圧潰性を劣化させるため、Vを添加する場合、V含有量を0.05%以下とする。一方、V含有量の下限は特に限定されないが、Vの添加効果を高めるという観点からは、V含有量を0.01%以上とすることが好ましい。V: 0.05% or less V is an element that contributes to an increase in strength by forming fine carbonitrides. However, excessive addition deteriorates the bending crushability. Therefore, when V is added, the V content is set to 0.05% or less. On the other hand, the lower limit of the V content is not particularly limited, but from the viewpoint of enhancing the effect of adding V, the V content is preferably set to 0.01% or more.
Cu:0.50%以下
Cuは、固溶強化により高強度化に寄与する元素である。また、Cuは耐食性を向上させることにより、耐遅れ破壊特性の向上にも寄与する。しかし、過剰に添加しても効果が飽和し、かえってCuに起因する表面欠陥が発生しやすくなる。そのため、Cuを添加する場合、Cu含有量は0.50%以下とする。一方、Cu含有量の下限は特に限定されないが、Cuの添加効果を高めるという観点からは、Cu含有量を0.05%以上とすることが好ましい。Cu: 0.50% or less Cu is an element contributing to high strength by solid solution strengthening. Cu also contributes to the improvement of the delayed fracture resistance by improving the corrosion resistance. However, even if added excessively, the effect is saturated, and surface defects caused by Cu tend to occur. Therefore, when adding Cu, the Cu content is 0.50% or less. On the other hand, the lower limit of the Cu content is not particularly limited, but from the viewpoint of enhancing the effect of adding Cu, the Cu content is preferably 0.05% or more.
Ni:0.50%以下
Niも、Cuと同様、耐食性を向上させることで耐遅れ破壊特性の向上に寄与する元素である。また、Niは、Cuと同時に添加することでCu起因の表面欠陥を抑制する効果を有している。したがって、Niの添加は、Cu添加時に特に有効である。しかし、多量のNiを添加すると、曲げ圧潰性が低下して引張せん断応力が低下する。そのため、Niを添加する場合、Ni含有量は0.50%以下とする。一方、Ni含有量の下限は特に限定されないが、Niの添加効果を高めるという観点からは、Ni含有量を0.05%以上とすることが好ましい。Ni: 0.50% or less Ni, like Cu, is an element that contributes to the improvement of delayed fracture resistance by improving the corrosion resistance. Further, Ni has an effect of suppressing surface defects caused by Cu by being added simultaneously with Cu. Therefore, the addition of Ni is particularly effective when Cu is added. However, when a large amount of Ni is added, the bending crushability is lowered and the tensile shear stress is lowered. Therefore, when Ni is added, the Ni content is 0.50% or less. On the other hand, the lower limit of the Ni content is not particularly limited, but from the viewpoint of enhancing the effect of adding Ni, the Ni content is preferably 0.05% or more.
Sn:0.50%以下
Snも、Cuと同様、耐食性を向上させることで耐遅れ破壊特性の向上に寄与する元素である。しかし、多量のSnを添加すると曲げ圧潰性が低下する。そのため、Snを添加する場合、Sn含有量は0.50%以下とする。一方、Sn含有量の下限は特に限定されないが、Snの添加効果を高めるという観点からは、Sn含有量を0.05%以上とすることが好ましい。Sn: 0.50% or less Sn, like Cu, is an element that contributes to the improvement of delayed fracture resistance by improving the corrosion resistance. However, when a large amount of Sn is added, the bending crushability is lowered. Therefore, when adding Sn, Sn content shall be 0.50% or less. On the other hand, the lower limit of the Sn content is not particularly limited, but from the viewpoint of enhancing the effect of adding Sn, the Sn content is preferably 0.05% or more.
Zn:0.10%以下
Znは、熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイトの形成、すなわち高強度化に寄与する元素である。しかし、多量のZn添加は、曲げ圧潰性を低下させるため、Znを添加する場合、Zn含有量を0.10%以下とする。一方、Zn含有量の下限は特に限定されないが、Znの添加効果を高めるという観点からは、Zn含有量を0.005%以上とすることが好ましい。Zn: 0.10% or less Zn is an element that contributes to the formation of martensite after hot pressing, that is, to increase the strength, in order to enhance the hardenability during hot pressing. However, when a large amount of Zn is added, the bending crushability is lowered. Therefore, when Zn is added, the Zn content is set to 0.10% or less. On the other hand, the lower limit of the Zn content is not particularly limited, but from the viewpoint of enhancing the effect of adding Zn, the Zn content is preferably 0.005% or more.
Co:0.10%以下
Coも、CuやNiと同様、水素過電圧を向上させて耐食性を向上させる効果を有する元素であり、したがってCo添加により耐遅れ破壊特性を改善できる。しかし、多量のCo添加は曲げ圧潰性を低下させるため、Coを添加する場合、Co含有量を0.10%以下とする。一方、Co含有量の下限は特に限定されないが、Coの添加効果を高めるという観点からは、Co含有量を0.005%以上とすることが好ましい。Co: 0.10% or less Co, like Cu and Ni, is an element that has the effect of improving the hydrogen overvoltage and improving the corrosion resistance. Therefore, the addition of Co can improve the delayed fracture resistance. However, since a large amount of Co decreases the bending crushability, when Co is added, the Co content is 0.10% or less. On the other hand, the lower limit of the Co content is not particularly limited, but from the viewpoint of enhancing the Co addition effect, the Co content is preferably 0.005% or more.
Zr:0.10%以下
Zrも、CuやNiと同様、耐食性を向上させることで耐遅れ破壊特性の向上に寄与する元素である。しかし、多量のZr添加は曲げ圧潰性を低下させる。そのため、Zrを添加する場合、Zr含有量を0.10%以下とする。一方、Zr含有量の下限は特に限定されないが、Zrの添加効果を高めるという観点からは、Zr含有量を0.005%以上とすることが好ましい。Zr: 0.10% or less Zr, like Cu and Ni, is an element that contributes to improving delayed fracture resistance by improving corrosion resistance. However, a large amount of Zr addition reduces the bending crushability. Therefore, when Zr is added, the Zr content is set to 0.10% or less. On the other hand, the lower limit of the Zr content is not particularly limited, but from the viewpoint of enhancing the effect of adding Zr, the Zr content is preferably set to 0.005% or more.
Ta:0.10%以下
Taは、Tiと同様に、炭化物や窒化物を生成して高強度化に寄与する元素である。しかし、Taを過剰に添加してもその添加効果が飽和する上、合金コストも増加する。そのため、Taを添加する場合、Ta添加量は0.10%以下とする。一方、Ta含有量の下限は特に限定されないが、Taの添加効果を高めるという観点からは、Ta含有量を0.005%以上とすることが好ましい。Ta: 0.10% or less Ta, like Ti, is an element that generates carbides and nitrides and contributes to high strength. However, even if Ta is added excessively, the effect of addition is saturated and the alloy cost also increases. Therefore, when Ta is added, the amount of Ta added is 0.10% or less. On the other hand, the lower limit of the Ta content is not particularly limited, but from the viewpoint of enhancing the effect of adding Ta, the Ta content is preferably set to 0.005% or more.
W:0.10%以下
Wも、CuやNiと同様、耐食性を向上させることで耐遅れ破壊特性の向上に寄与する元素である。しかし、多量のW添加は、曲げ圧潰性を低下させる。そのため、Wを添加する場合、W含有量を0.10%以下とする。一方、W含有量の下限は特に限定されないが、Wの添加効果を高めるという観点からは、W含有量を0.005%以上とすることが好ましい。W: 0.10% or less W, like Cu and Ni, is an element that contributes to the improvement of delayed fracture resistance by improving the corrosion resistance. However, the addition of a large amount of W decreases the bending crushability. Therefore, when adding W, W content shall be 0.10% or less. On the other hand, the lower limit of the W content is not particularly limited, but from the viewpoint of enhancing the effect of adding W, the W content is preferably set to 0.005% or more.
また、本発明の他の実施形態における熱間プレス鋼板部材は、
C :0.30%以上0.50%未満、
Si:0.01%以上2.0%以下、
Mn:0.5%以上3.5%以下、
Nb:0.001%以上0.10%以下、
P :0.05%以下、
S :0.01%以下、
Al:0.01%以上1.00%以下、
N :0.01%以下、ならびに、
任意に、
Mo:0.35%以下、
Cr:0.35%以下、
Ti:0.15%以下、
B :0.0050%以下、
Ca:0.005%以下、
V :0.05%以下、
Cu:0.50%以下、
Ni:0.50%以下、
Sn:0.50%以下、
Zn:0.10%以下、
Co:0.10%以下、
Zr:0.10%以下、
Ta:0.10%以下、および
W:0.10%以下からなる群より選択される1または2以上、を含有し、
残部がFeおよび不可避的不純物からなる成分組成を有することができる。Moreover, the hot-pressed steel sheet member in another embodiment of the present invention is
C: 0.30% or more and less than 0.50%,
Si: 0.01% or more and 2.0% or less,
Mn: 0.5% or more and 3.5% or less,
Nb: 0.001% or more and 0.10% or less,
P: 0.05% or less,
S: 0.01% or less,
Al: 0.01% or more and 1.00% or less,
N: 0.01% or less, and
Optionally
Mo: 0.35% or less,
Cr: 0.35% or less,
Ti: 0.15% or less,
B: 0.0050% or less,
Ca: 0.005% or less,
V: 0.05% or less,
Cu: 0.50% or less,
Ni: 0.50% or less,
Sn: 0.50% or less,
Zn: 0.10% or less,
Co: 0.10% or less,
Zr: 0.10% or less,
Ta: 0.10% or less, and W: 1 or 2 or more selected from the group consisting of 0.10% or less,
The balance can have a component composition consisting of Fe and inevitable impurities.
C/Nb:22〜100
本発明においては、鋼板におけるNb含有量(質量%)に対するC含有量(質量%)の比C/Nbが22〜100であることが重要である。C/Nbが100を超えると、Nb系炭化物の生成量が減少し、固溶C量は増加する。Nb系炭化物はピン止め効果によりオーステナイト粒の成長を抑制する効果を有しているため、Nb系炭化物の減少は熱間プレス後の結晶粒の粗大化を招き、その結果、曲げ圧潰性が低下する。また、固溶C量が増加すると、靭性が低下する結果、やはり曲げ圧潰性が低下する。そのため、C/Nbを100以下、好ましくは80以下、より好ましくは70以下とする。一方、C/Nbが22未満では、亀裂発生の起点となるNb系炭化物が多量に生成するため、曲げ圧潰性が低下する。また、Cは鋼の強度を高める作用を有する元素であるが、C/Nbが22未満では、Nb系炭化物の生成によって消費されるCの割合が増加し、その結果、引張強度が低下する。そのため、C/Nbは22以上、好ましくは25以上、より好ましくは30以上とする。C / Nb: 22-100
In this invention, it is important that ratio C / Nb of C content (mass%) with respect to Nb content (mass%) in a steel plate is 22-100. If C / Nb exceeds 100, the amount of Nb-based carbide produced decreases and the amount of solute C increases. Since Nb carbide has the effect of suppressing the growth of austenite grains due to the pinning effect, the decrease in Nb carbide causes coarsening of the crystal grains after hot pressing, resulting in lower bending crushability. To do. Moreover, when the amount of solute C increases, the toughness decreases, and as a result, the bending crushability also decreases. Therefore, C / Nb is set to 100 or less, preferably 80 or less, more preferably 70 or less. On the other hand, when C / Nb is less than 22, a large amount of Nb-based carbide that is the starting point of crack generation is generated, so that the bending crushability is lowered. C is an element having an effect of increasing the strength of steel. However, if C / Nb is less than 22, the proportion of C consumed by the formation of Nb-based carbides increases, and as a result, the tensile strength decreases. Therefore, C / Nb is 22 or more, preferably 25 or more, more preferably 30 or more.
[ミクロ組織]
さらに、本発明の熱間プレス鋼板部材は、その鋼板部分が、以下の条件を満たすミクロ組織を有することが重要である。[Microstructure]
Furthermore, it is important that the hot-pressed steel sheet member of the present invention has a microstructure that satisfies the following conditions.
旧オーステナイト粒の平均結晶粒径:8μm以下
旧オーステナイト粒の平均結晶粒径が8μmを超えると、曲げ圧潰時の靭性が低下するため、曲げ圧潰性が低下する。そのため、旧オーステナイト粒の平均結晶粒径を8μm以下、好ましくは7μm以下とする。一方、下限についてはとくに限定されないが、2μm以上とすることが好ましく、3μm以上とすることがより好ましく、5μm以上とすることがさらに好ましい。Average crystal grain size of prior austenite grains: 8 μm or less When the average crystal grain size of prior austenite grains exceeds 8 μm, the toughness at the time of bending crushing is lowered, so that the bending crushability is lowered. Therefore, the average crystal grain size of the prior austenite grains is 8 μm or less, preferably 7 μm or less. On the other hand, the lower limit is not particularly limited, but is preferably 2 μm or more, more preferably 3 μm or more, and further preferably 5 μm or more.
マルテンサイトの体積率:90%以上
マルテンサイトの体積率が90%未満では、1780MPa以上の引張強度を得ることが困難である。そのため、マルテンサイトの体積率を90%以上、好ましくは95%以上とする。一方、マルテンサイトの体積率の上限はとくに限定されず、100%であってよい。なお、マルテンサイト以外の組織についてはとくに限定されず、任意の組織を含むことができる。例えば、マルテンサイト以外の残部が、フェライト、ベイナイト、パーライトからなる群より選択される1または2以上であってもよい。Martensite volume ratio: 90% or more If the martensite volume ratio is less than 90%, it is difficult to obtain a tensile strength of 1780 MPa or more. Therefore, the volume ratio of martensite is 90% or more, preferably 95% or more. On the other hand, the upper limit of the volume ratio of martensite is not particularly limited, and may be 100%. In addition, about structures | tissues other than a martensite, it is not specifically limited, Arbitrary structures | tissues can be included. For example, the balance other than martensite may be one or more selected from the group consisting of ferrite, bainite, and pearlite.
固溶C量:全C量の25%以下
固溶C量が全C量の25%を超えると、曲げ圧潰時の靭性が低下する。そのため、固溶C量は全C量の25%以下、好ましくは20%以下、より好ましくは15%以下とする。一方、固溶C量の下限については特に限定されないが、全C量の5%以上とすることが好ましく、6%以上とすることが好ましい。Solid solution C amount: 25% or less of the total C amount When the solid solution C amount exceeds 25% of the total C amount, the toughness during bending crushing is lowered. Therefore, the solid solution C amount is 25% or less, preferably 20% or less, more preferably 15% or less of the total C amount. On the other hand, the lower limit of the solute C amount is not particularly limited, but is preferably 5% or more of the total C amount, and preferably 6% or more.
[引張強さ]
TS:1780MPa以上
本発明の熱間プレス鋼板部材は、1780MPa以上の引張強さ(TS)を有する。TSは、1800MPa以上とすることが好ましく、1850MPa以上とすることがより好ましく、1900MPa以上とすることがさらに好ましい。一方、TSの上限は特に限定されないが、通常は、2500MPa以下であってよく、2450MPa以下であってもよい。[Tensile strength]
TS: 1780 MPa or more The hot-pressed steel sheet member of the present invention has a tensile strength (TS) of 1780 MPa or more. TS is preferably 1800 MPa or more, more preferably 1850 MPa or more, and further preferably 1900 MPa or more. On the other hand, the upper limit of TS is not particularly limited, but may be usually 2500 MPa or less and 2450 MPa or less.
[降伏比]
熱間プレス鋼板部材の降伏比(YR)が高いと、該熱間プレス鋼板部材を自動車用部材として使用した場合に、衝突安全性能をさらに向上させることができる。そのため、降伏比は65%以上とすることが好ましく、70%以上とすることがより好ましい。なお、ここで降伏比(YR)とは、引張強さTSに対する降伏強さYSの比として定義される値であり、具体的には、YR=YS/TS×100(%)として算出することができる。[Yield ratio]
When the yield ratio (YR) of a hot-pressed steel sheet member is high, collision safety performance can be further improved when the hot-pressed steel sheet member is used as an automobile member. Therefore, the yield ratio is preferably 65% or more, and more preferably 70% or more. Here, the yield ratio (YR) is a value defined as the ratio of the yield strength YS to the tensile strength TS, and specifically, calculated as YR = YS / TS × 100 (%). Can do.
[めっき層]
本発明の熱間プレス鋼板部材は、めっき層を有さないものであってもよい。その場合、熱間プレス鋼板部材は、上述した成分組成、ミクロ組織、および引張強さを有する鋼材からなる。しかし、熱間プレスの際の酸化防止や、熱間プレス鋼板部材の耐食性向上のために、熱間プレス鋼板部材は、さらにその鋼板の表面にめっき層を有していることが好ましい。熱間プレス鋼板部材が表面にめっき層を有する場合、めっき層を除いた鋼板部分(母材鋼板)が、上述した成分組成およびミクロ組織を有する。[Plating layer]
The hot-pressed steel sheet member of the present invention may have no plating layer. In that case, the hot-pressed steel plate member is made of a steel material having the above-described component composition, microstructure, and tensile strength. However, in order to prevent oxidation during hot pressing and improve the corrosion resistance of the hot-pressed steel plate member, the hot-pressed steel plate member preferably further has a plating layer on the surface of the steel plate. When the hot-pressed steel plate member has a plating layer on the surface, the steel plate portion (base metal plate) excluding the plating layer has the above-described component composition and microstructure.
前記めっき層としては、Al系めっき層またはZn系めっき層が好適である。これらのめっき層を鋼板の表面に付与することにより、熱間プレスによる鋼板表面の酸化を防止し、さらに、熱間プレス鋼板部材の耐食性を向上させることができる。 As the plating layer, an Al-based plating layer or a Zn-based plating layer is suitable. By applying these plating layers to the surface of the steel sheet, oxidation of the steel sheet surface by hot pressing can be prevented, and further, the corrosion resistance of the hot pressed steel sheet member can be improved.
ここでZn系めっき層とは、Znを50質量%以上含有するめっき層を指すものとする。前記Zn系めっき層としては、Znめっき層およびZn系合金めっき層のいずれも用いることができる。前記Zn系合金めっき層としては、例えば、主成分であるZnに加え、Si、Mg、Ni、Fe、Co、Mn、Sn、Pb、Be、B、P、S、Ti、V、W、Mo、Sb、Cd、Nb、Cr、およびSrからなる群より選択される1または2以上を含有する合金からなるめっき層を用いることができる。好適に用いることができるZn系めっき層の一例としては、Zn−Ni合金めっき層が挙げられる。 Here, the Zn-based plating layer refers to a plating layer containing 50% by mass or more of Zn. As the Zn-based plating layer, both a Zn plating layer and a Zn-based alloy plating layer can be used. Examples of the Zn-based alloy plating layer include Si, Mg, Ni, Fe, Co, Mn, Sn, Pb, Be, B, P, S, Ti, V, W, and Mo in addition to Zn as a main component. A plating layer made of an alloy containing one or more selected from the group consisting of Sb, Cd, Nb, Cr, and Sr can be used. An example of a Zn-based plating layer that can be suitably used is a Zn-Ni alloy plating layer.
また、ここで、Al系めっき層とは、Alを50質量%以上含有するめっき層を指すものとする。前記Al系めっき層としては、Alめっき層およびAl系合金めっき層のいずれも用いることができる。前記Al系合金めっき層としては、例えば、主成分であるAlに加え、Si、Mg、Ni、Fe、Co、Mn、Sn、Pb、Be、B、P、S、Ti、V、W、Mo、Sb、Cd、Nb、Cr、およびSrからなる群より選択される1または2以上を含有する合金からなるめっき層を用いることができる。好適に用いることができるAl系めっき層の一例としては、Al−Siめっき層が挙げられる。 Here, the Al-based plating layer refers to a plating layer containing 50% by mass or more of Al. As the Al plating layer, both an Al plating layer and an Al alloy plating layer can be used. Examples of the Al-based alloy plating layer include Si, Mg, Ni, Fe, Co, Mn, Sn, Pb, Be, B, P, S, Ti, V, W, and Mo in addition to Al as a main component. A plating layer made of an alloy containing one or more selected from the group consisting of Sb, Cd, Nb, Cr, and Sr can be used. An example of an Al-based plating layer that can be suitably used is an Al-Si plating layer.
前記めっき層の形成方法は特に限定されず、任意の方法で形成することができる。例えば、溶融めっき法で形成されるめっき層である溶融めっき層、電気めっき法で形成されるめっき層である電気めっき層、蒸着めっき法で形成されるめっき層である蒸着めっき層等が、いずれも適用可能である。また、前記めっき層は、めっき工程後に合金化処理を施して形成されるめっき層である合金化めっき層であってもよい。 The formation method of the said plating layer is not specifically limited, It can form by arbitrary methods. For example, a hot-dip plating layer that is a plating layer formed by hot-dip plating, an electroplating layer that is a plating layer formed by an electroplating method, a vapor-deposited plating layer that is a plating layer formed by a vapor-deposition plating method, etc. Is also applicable. The plating layer may be an alloying plating layer that is a plating layer formed by performing an alloying treatment after the plating step.
好適に用いることができる前記Al系めっき層の例としては、溶融めっき法により形成された溶融Al−Siめっき層が挙げられる。また、好適に用いることができる前記Zn系めっき層の例としては、溶融めっき法により形成された溶融Znめっき層、溶融Znめっき層を合金化した合金化溶融Znめっき層、電気めっき法により形成された電気Znめっき層、電気Zn−Ni合金めっき層などが挙げられる。特に、熱間プレス部材の耐食性のさらなる向上と、熱間プレス成形時の溶融Znに起因する液体金属脆性割れ防止の観点からは、前記Zn系めっき層としてZn−Ni合金めっき層を用いることが好ましい。 Examples of the Al-based plating layer that can be suitably used include a molten Al-Si plating layer formed by a hot-dip plating method. Examples of the Zn-based plating layer that can be suitably used include a hot-dip Zn plating layer formed by a hot-dip plating method, an alloyed hot-dip Zn plating layer obtained by alloying the hot-dip Zn plating layer, and an electroplating method. Examples thereof include an electric Zn plating layer and an electric Zn—Ni alloy plating layer. In particular, from the viewpoint of further improving the corrosion resistance of the hot press member and preventing liquid metal brittle cracking caused by molten Zn during hot press forming, a Zn-Ni alloy plating layer may be used as the Zn-based plating layer. preferable.
なお、めっき層が付与された鋼板に熱間プレスを施すと、めっき層に含まれる元素の一部または全部が下地鋼板中に拡散して、固溶相や金属間化合物を生成する場合がある。また、同様に、下地鋼板成分であるFeがめっき層中に拡散して固溶相や金属間化合物を生成する場合がある。さらに、めっき層の表面に、酸化物皮膜が形成される場合がある。 In addition, when hot pressing is performed on a steel sheet provided with a plating layer, some or all of the elements contained in the plating layer may diffuse into the base steel sheet, producing a solid solution phase or an intermetallic compound. . Similarly, Fe, which is a base steel plate component, may diffuse into the plating layer to generate a solid solution phase or an intermetallic compound. Furthermore, an oxide film may be formed on the surface of the plating layer.
一例を挙げると、Al−Siめっき層を加熱すると、めっき層は、Siを含有するFe−Al金属間化合物を主体とするめっき層へと変化する。また、溶融Znめっき層、合金化溶融Znめっき層、電気Znめっき層等を加熱すると、FeにZnが固溶したFeZn固溶相、ZnFe金属間化合物、表層のZnO層等が形成される。さらに、電気Zn−Ni合金めっき層を加熱した場合には、Feにめっき層成分が固溶したNiを含有する固溶層、ZnNiを主体とする金属間化合物、表層のZnO層等が形成される。 For example, when an Al—Si plating layer is heated, the plating layer changes to a plating layer mainly composed of an Fe—Al intermetallic compound containing Si. Moreover, when a hot-dip Zn plating layer, an alloyed hot-dip Zn plating layer, an electric Zn plating layer, or the like is heated, an FeZn solid solution phase in which Zn is solid-solved in Fe, a ZnFe intermetallic compound, a surface ZnO layer, or the like is formed. Furthermore, when the electric Zn—Ni alloy plating layer is heated, a solid solution layer containing Ni in which a plating layer component is dissolved in Fe, an intermetallic compound mainly composed of ZnNi, a surface ZnO layer, and the like are formed. The
なお、本発明においては、上述のとおり、Al系めっき層が付与された熱間プレス用冷延鋼板を加熱することにより形成されるAlを含有するめっき層をAl系めっき層と呼び、Zn系めっき層が付与された熱間プレス用冷延鋼板を加熱することにより形成されるZnを含有するめっき層をZn系めっき層と呼ぶこととする。 In the present invention, as described above, a plating layer containing Al formed by heating a cold-rolled steel sheet for hot pressing provided with an Al-based plating layer is called an Al-based plating layer. The plating layer containing Zn formed by heating the cold-rolled steel sheet for hot pressing provided with the plating layer is referred to as a Zn-based plating layer.
前記めっき層の付着量は特に限定されず、任意の量とすることができる。しかし、片面当たりの付着量が5g/m2未満では耐食性の確保が困難になる場合があるため、片面当たりの付着量を5g/m2以上とすることが好ましい。一方、片面当たりの付着量が150g/m2を超えると耐めっき剥離性が劣化する場合があるため、片面当たりの付着量を150g/m2以下とすることが好ましい。The adhesion amount of the plating layer is not particularly limited, and can be an arbitrary amount. However, if the adhesion amount per side is less than 5 g / m 2 , it may be difficult to ensure the corrosion resistance. Therefore, the adhesion amount per side is preferably 5 g / m 2 or more. On the other hand, if the adhesion amount per one side exceeds 150 g / m 2 , the plating peel resistance may be deteriorated. Therefore, the adhesion amount per one side is preferably 150 g / m 2 or less.
[製造方法]
次に、本発明の熱間プレス鋼板部材の製造方法について説明する。本発明の熱間プレス鋼板部材の製造方法は特に限定されないが、一実施形態においては、下記(1)〜(4)の工程により製造することができる。以下、各工程について説明する。
(1)冷延鋼板の加熱
(2)熱間プレス
(3)冷却(焼入れ)
(4)熱処理[Production method]
Next, the manufacturing method of the hot press steel plate member of this invention is demonstrated. Although the manufacturing method of the hot press steel plate member of this invention is not specifically limited, In one Embodiment, it can manufacture by the process of following (1)-(4). Hereinafter, each step will be described.
(1) Heating of cold-rolled steel sheet (2) Hot pressing (3) Cooling (quenching)
(4) Heat treatment
[冷延鋼板]
素材となる冷延鋼板としては、上述した成分組成を有するものを用いる。すなわち、最終的に得られる熱間プレス鋼板部材の鋼板部分の成分組成は、基本的に、素材として使用した冷延鋼板の成分組成と同一となる。[Cold rolled steel sheet]
As a cold-rolled steel sheet used as a raw material, what has the component composition mentioned above is used. That is, the component composition of the steel plate portion of the hot-pressed steel plate member finally obtained is basically the same as the component composition of the cold-rolled steel plate used as the material.
前記冷延鋼板の製造方法は特に限定されず、常法に従って製造することができる。例えば、前記成分組成を有する鋼素材(鋼スラブ)を熱間圧延し、次いで、冷間圧延することによって製造することができる。また、冷延鋼板に対してさらに調質圧延を実施しても良い。調質圧延を行う場合、好適な伸び率は0.05〜2.0%である。 The manufacturing method of the said cold-rolled steel plate is not specifically limited, It can manufacture according to a conventional method. For example, it can manufacture by hot-rolling the steel raw material (steel slab) which has the said component composition, and then cold-rolling. Further, temper rolling may be further performed on the cold-rolled steel sheet. When performing temper rolling, a suitable elongation is 0.05 to 2.0%.
例えば、前記成分組成を有する鋼素材(スラブ)を、仕上げ圧延終了温度が860〜950℃の条件で熱間圧延して熱延鋼板とする。次いで、前記熱延鋼板を、650℃以下の巻取温度で巻取る。その際、熱間圧延終了後は、前記巻取り温度まで、冷却速度:5℃/s以上で冷却する。その後、巻き取った熱延鋼板を巻き戻して酸洗し、さらに冷間圧延する。冷間圧延終了後、2℃/s以上の平均昇温速度で650〜950℃の温度域まで加熱し、該温度域で5秒以上均熱する熱処理を施す。次いで、平均冷却速度を2℃/s以上で600℃以下の冷却停止温度まで冷却する冷却を施して冷延鋼板とする。 For example, a steel material (slab) having the above component composition is hot-rolled into a hot-rolled steel sheet at a finish rolling end temperature of 860 to 950 ° C. Next, the hot-rolled steel sheet is wound at a winding temperature of 650 ° C. or lower. In that case, after completion | finish of hot rolling, it cools by the cooling rate: 5 degree-C / s or more to the said winding temperature. Then, the wound hot-rolled steel sheet is rewound, pickled, and cold-rolled. After the cold rolling is completed, heat treatment is performed by heating to a temperature range of 650 to 950 ° C. at an average temperature increase rate of 2 ° C./s or more, and soaking in the temperature range for 5 seconds or more. Next, cooling is performed to cool the steel sheet to a cooling stop temperature of 2 ° C./s or more and 600 ° C. or less to obtain a cold rolled steel sheet.
なお、前記製造条件は一例であって、これに限定されるものではない。これは、本発明の製造方法においては、熱間プレス前の加熱と熱間プレス後の冷却によって鋼板のミクロ組織を制御できるためである。 In addition, the said manufacturing conditions are an example, Comprising: It is not limited to this. This is because in the production method of the present invention, the microstructure of the steel sheet can be controlled by heating before hot pressing and cooling after hot pressing.
[めっき処理]
上記冷延鋼板は、そのまま(めっき処理を施さずに)次の加熱処理に供することもできるが、加熱に先立って任意にめっき処理を施すこともできる。めっき処理を行う方法は、特に限定されるものではなく、溶融めっき法、電気めっき法、蒸着めっき法等、任意の方法を用いることができる。また、めっき処理後に合金化処理を施してもよい。[Plating treatment]
The cold-rolled steel sheet can be subjected to the next heat treatment as it is (without being subjected to a plating treatment), but can be optionally subjected to a plating treatment prior to heating. The method for performing the plating treatment is not particularly limited, and any method such as a hot dipping method, an electroplating method, and a vapor deposition plating method can be used. Further, an alloying treatment may be performed after the plating treatment.
[加熱]
次に、上記冷延鋼板を、Ac3変態点以上1000℃以下の加熱温度に加熱する。前記加熱温度がAc3点未満であると、加熱された鋼板におけるオーステナイト率が低下するため、熱間プレス後にマルテンサイトの体積率が90%未満となり、所期の引張強度を確保することができない。また、前記加熱温度が1000℃より高いと、結晶粒径が過度に粗大となるため、曲げ圧潰性が低下する。なお、ここで前記Ac3変態点は、下記(1)式によって求めることができる。
Ac3変態点(℃)=881−206C+53Si−15Mn−20Ni−1Cr−27Cu+41Mo…(1)
ただし、(1)式中の元素記号は各元素の含有量(質量%)を表す。含有されていない元素の含有量は0として計算する。[heating]
Next, the cold-rolled steel sheet is heated to a heating temperature not lower than the Ac3 transformation point and not higher than 1000 ° C. When the heating temperature is less than Ac3 point, the austenite ratio in the heated steel sheet is lowered, so the volume ratio of martensite is less than 90% after hot pressing, and the desired tensile strength cannot be ensured. On the other hand, if the heating temperature is higher than 1000 ° C., the crystal grain size becomes excessively large, so that the bending crushability decreases. Here, the Ac3 transformation point can be obtained by the following equation (1).
Ac3 transformation point (° C.) = 881-206C + 53Si-15Mn-20Ni-1Cr-27Cu + 41Mo (1)
However, the element symbol in the formula (1) represents the content (% by mass) of each element. The content of elements not contained is calculated as 0.
前記加熱は、特に限定されることなく任意の方法で行うことができるが、一般的には、加熱炉を用いて加熱すればよい。前記加熱炉としては、例えば、電気炉、ガス炉、通電加熱炉、遠赤外線加熱炉などを使用することができる。 Although the said heating can be performed by arbitrary methods, without being specifically limited, Generally, what is necessary is just to heat using a heating furnace. As the heating furnace, for example, an electric furnace, a gas furnace, an electric heating furnace, a far infrared heating furnace, or the like can be used.
前記加熱温度まで加熱した後、すぐに熱間プレスを行うこともできるが、前記加熱温度に0〜600秒間保持することが好ましい。保持時間が600秒を超えると結晶粒径が過度に粗大となるため、曲げ圧潰性が低下する。そのため、保持を行う場合、保持時間を600秒以下とする。 Although it is possible to perform hot pressing immediately after heating to the heating temperature, it is preferable to hold the heating temperature for 0 to 600 seconds. When the holding time exceeds 600 seconds, the crystal grain size becomes excessively coarse, so that the bending crushability is lowered. Therefore, when holding, the holding time is 600 seconds or less.
[熱間プレス]
次に、加熱された前記冷延鋼板をプレス機に搬送して、熱間プレスを施す。熱間プレスの方法は特に限定されず、任意の方法で行うことができる。プレス時の温度は特に限定されないが、550〜800℃の範囲で熱間プレスを行うことが好ましい。[Hot press]
Next, the heated cold-rolled steel sheet is conveyed to a press machine and subjected to hot pressing. The method of hot pressing is not particularly limited, and can be performed by any method. The temperature at the time of pressing is not particularly limited, but it is preferable to perform hot pressing in the range of 550 to 800 ° C.
[冷却]
熱間プレスされた鋼板を、Mf点以下まで冷却する。上述した加熱によってAc3変態点以上に加熱された鋼板を、この冷却によってMf点以下まで冷却することにより、オーステナイトの体積率を90%以上とすることができる。なお、マルテンサイト変態が終了する温度であるMf点は、連続冷却変態曲線(CCT曲線)に基づいて求めることができる。[cooling]
The hot-pressed steel sheet is cooled to the Mf point or less. By cooling the steel sheet heated above the Ac3 transformation point by the heating described above to the Mf point or less by this cooling, the volume ratio of austenite can be made 90% or more. The Mf point, which is the temperature at which the martensitic transformation ends, can be obtained based on a continuous cooling transformation curve (CCT curve).
前記冷却を行う方法は特に限定されず、任意の方法で行うことができる。通常は、一般的な熱間プレスで行われているように、金型との接触により冷却を行えばよい。なお、前記冷却は、熱間プレスと同時に開始することができる。 The method for performing the cooling is not particularly limited, and can be performed by any method. Usually, cooling may be performed by contact with a mold, as is done in general hot pressing. The cooling can be started simultaneously with hot pressing.
前記冷却の速度は特に限定されないが、組織制御の観点からは、冷却開始から150℃までの平均冷却速度を10℃/s以上とすることが好ましい。例えば、金型との接触により、平均冷却速度を10℃/s以上で150℃以下の温度まで冷却し、150℃以下まで冷却された後は金型を解放する。その後は、任意に室温まで放冷することもできる。 Although the cooling rate is not particularly limited, it is preferable that the average cooling rate from the start of cooling to 150 ° C. is 10 ° C./s or more from the viewpoint of structure control. For example, by contact with the mold, the average cooling rate is cooled to a temperature of 10 ° C./s or higher and 150 ° C. or lower, and after cooling to 150 ° C. or lower, the mold is released. Thereafter, it can be arbitrarily cooled to room temperature.
[熱処理]
次に、前記冷却された熱間プレス鋼板を、加熱温度:50〜300℃、保持時間:5〜3600秒の条件で熱処理する。前記熱処理により、鋼板の固溶C量を全C量の25%以下とすることができる。加熱温度が50℃未満であると、固溶C量が多くなり、曲げ圧潰性が低下する。一方、加熱温度が300℃を超えると、析出炭化物が粗大化して引張強さが低下する。また、保持時間が5秒未満では固溶C量が多くなり、曲げ圧潰性が低下する。一方、保持時間が3600秒を超えると析出炭化物が粗大化して引張強さが低下する。[Heat treatment]
Next, the cooled hot-pressed steel sheet is heat-treated under the conditions of heating temperature: 50 to 300 ° C. and holding time: 5 to 3600 seconds. By the heat treatment, the solid solution C amount of the steel sheet can be 25% or less of the total C amount. When the heating temperature is less than 50 ° C., the amount of solute C increases, and the bending crushability decreases. On the other hand, when the heating temperature exceeds 300 ° C., the precipitated carbide is coarsened and the tensile strength is lowered. In addition, when the holding time is less than 5 seconds, the amount of dissolved C increases, and the bending crushability decreases. On the other hand, if the holding time exceeds 3600 seconds, the precipitated carbide is coarsened and the tensile strength is lowered.
次に、本発明の実施例について説明する。なお、本発明は、以下に述べる実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲において適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。 Next, examples of the present invention will be described. It should be noted that the present invention is not limited by the examples described below, and can be implemented with appropriate modifications within a range that can be adapted to the spirit of the present invention. Included in the technical scope.
まず、熱間プレス鋼板部材を製造するための素材として用いる冷延鋼板を以下の手順で製造した。 First, the cold-rolled steel plate used as a raw material for manufacturing a hot press steel plate member was manufactured in the following procedures.
表1に示す成分組成の鋼を溶製し、鋳造して鋼スラブを製造した。前記鋼スラブに対して、熱間圧延加熱温度:1250℃、仕上げ圧延終了温度(FDT):900℃の条件で熱間圧延を行い、熱延鋼板とした。得られた熱延鋼板を、600℃の巻取り温度で巻取った。 Steel with the composition shown in Table 1 was melted and cast to produce a steel slab. The steel slab was hot rolled under conditions of hot rolling heating temperature: 1250 ° C. and finish rolling finishing temperature (FDT): 900 ° C. to obtain a hot rolled steel sheet. The obtained hot rolled steel sheet was wound at a winding temperature of 600 ° C.
得られた熱延鋼板を巻き戻して酸洗した後、冷間圧延を施し、板厚:1.4mmの冷延鋼板とした。得られた冷延鋼板に対し、連続焼鈍ライン(CAL)もしくは連続溶融めっきライン(CGL)において、焼鈍処理を施し、最終的な素材としての冷延鋼板(CR)もしくは溶融亜鉛めっき鋼板(GI)を得た。 The obtained hot-rolled steel sheet was rewound and pickled, and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.4 mm. The obtained cold-rolled steel sheet is subjected to an annealing treatment in a continuous annealing line (CAL) or continuous hot-dip plating line (CGL), and the final material is cold-rolled steel sheet (CR) or hot-dip galvanized steel sheet (GI). Got.
なお一部の鋼板については、溶融亜鉛めっき処理を施した後、合金化処理を行い、合金化溶融亜鉛めっき鋼板(GA)とした。また、他の一部の鋼板は、溶融アルミめっき処理を施して溶融アルミめっき鋼板(GAS)とした。また、他の一部の鋼板は、CALにて焼鈍した後に電気亜鉛めっきライン(EGL)においてめっきを施し、電気亜鉛めっき鋼板(EG)または電気亜鉛ニッケルメッキ鋼板(EZN)とした。 In addition, about some steel plates, after performing the hot dip galvanization process, the alloying process was performed and it was set as the galvannealed steel plate (GA). In addition, some of the other steel plates were subjected to hot dip aluminum plating treatment to obtain hot dip aluminum plated steel plates (GAS). In addition, some of the other steel plates were annealed by CAL and then plated in an electrogalvanizing line (EGL) to obtain an electrogalvanized steel plate (EG) or an electrogalvanized nickel plated steel plate (EZN).
次に、得られた冷延鋼板を、表2に示す加熱温度まで加熱し、前記加熱温度に60秒間保持した。前記加熱は、赤外線加熱炉または雰囲気加熱炉を使用し、大気中で行った。加熱時の昇温速度は、5℃/sとした。 Next, the obtained cold-rolled steel sheet was heated to the heating temperature shown in Table 2, and held at the heating temperature for 60 seconds. The heating was performed in the air using an infrared heating furnace or an atmosphere heating furnace. The heating rate during heating was 5 ° C./s.
次に、加熱された鋼板をプレス機に搬送し、熱間プレスを行ってハット形の熱間プレス鋼板部材を作製した。熱間プレス時の鋼板温度は700℃とした。熱間プレスに使用した金型は、パンチ幅:120mm、パンチ肩R:6mm、ダイ肩R:6mmで、成形深さは40mmとした。 Next, the heated steel plate was conveyed to a press machine and hot pressed to produce a hat-shaped hot pressed steel plate member. The steel plate temperature during hot pressing was 700 ° C. The mold used for the hot press had a punch width: 120 mm, a punch shoulder R: 6 mm, a die shoulder R: 6 mm, and a molding depth of 40 mm.
冷却は、鋼板のパンチ・ダイ間での挟み込みによる接触冷却と、挟み込みから開放した後のダイ上での空冷とを組み合わせて行った。プレス開始温度から150℃までの平均冷却速度は、100℃/sとした。前記平均冷却速度は、パンチを下死点にて保持する時間を1〜60秒の範囲で変えることにより調整した。 The cooling was performed by combining contact cooling by sandwiching a steel plate between punches and dies and air cooling on the die after releasing from the sandwiching. The average cooling rate from the press start temperature to 150 ° C. was 100 ° C./s. The average cooling rate was adjusted by changing the time for holding the punch at the bottom dead center in the range of 1 to 60 seconds.
室温まで空冷した後、表2に示した加熱温度および保持時間で、熱処理を施した。具体的には、大気炉中で、前記加熱温度まで加熱し、前記保持時間保持した後、空冷した。 After air cooling to room temperature, heat treatment was performed at the heating temperature and holding time shown in Table 2. Specifically, it was heated to the heating temperature in an atmospheric furnace, held for the holding time, and then air-cooled.
次に得られた熱間プレス鋼板部材のそれぞれについて、鋼板部分のミクロ組織、引張特性、および曲げ圧潰性を、以下の方法で評価した。 Next, for each of the obtained hot-pressed steel plate members, the microstructure, tensile properties, and bending crushability of the steel plate portion were evaluated by the following methods.
(ミクロ組織)
・マルテンサイトの体積率
熱間プレス鋼板部材の鋼板部分におけるマルテンサイトの体積率を、以下の方法で評価した。まず、鋼板の圧延方向に平行な板厚断面を研磨後、3 vol%ナイタールで腐食し、SEM(走査型電子顕微鏡)を用いて2000倍、5000倍の倍率で観察し、ポイントカウント法(ASTM E562−83(1988)に準拠)により、マルテンサイトの面積率を測定し、その面積率を体積率とした。(Micro structure)
-Volume ratio of martensite The volume ratio of martensite in the steel plate portion of the hot-pressed steel plate member was evaluated by the following method. First, a plate thickness cross section parallel to the rolling direction of the steel plate is polished, then corroded with 3 vol% nital, and observed with a SEM (scanning electron microscope) at a magnification of 2000 times and 5000 times, and the point counting method (ASTM E562-83 (1988)), the area ratio of martensite was measured, and the area ratio was defined as the volume ratio.
・旧オーステナイト粒の平均結晶粒径
上記マルテンサイトの体積率の測定におけるSEM観察で得た組織写真を画像解析することにより、旧オーステナイト粒の平均結晶粒径を求めた。具体的には、前記組織写真中の旧オーステナイト結晶粒を識別して円相当直径を算出し、その平均値を旧オーステナイト粒の平均結晶粒径とした。前記画像解析には、Media Cybernetics社のImage−Proを用いた。-Average crystal grain size of prior austenite grains The average crystal grain size of prior austenite grains was determined by image analysis of a structural photograph obtained by SEM observation in the measurement of the martensite volume fraction. Specifically, the prior austenite crystal grains in the structure photograph were identified, the equivalent circle diameter was calculated, and the average value was taken as the average crystal grain size of the prior austenite grains. For the image analysis, Image-Pro of Media Cybernetics was used.
・固溶C量
固溶C量は、鋼中の全C量(Ctotal)から、炭化物として析出しているC量(Cp)を引くことによって求めた。- amount of solute C solid solution C amount was determined by subtracting the total C content in steel from (C total), the amount of C that is precipitated as carbide (C p).
・Ctotal
鋼中の全C量(Ctotal)としては、表1に示した鋼板のC含有量(質量%)を用いた。・ C total
As the total C amount (C total ) in the steel, the C content (mass%) of the steel sheet shown in Table 1 was used.
・Cp
前記炭化物としては、まずセメンタイト(M3C)が挙げられる。また、Nb、Ti、およびVが含まれている場合には、それらの炭化物(NbC、TiC、VC)が析出する。したがって、炭化物として析出しているC量(Cp)は、セメンタイトとして析出しているC量(Cp1)と、NbC、TiC、VCとして析出しているC量(Cp2)の和として求めることができる。・ C p
Examples of the carbide include cementite (M 3 C). Further, when Nb, Ti, and V are contained, their carbides (NbC, TiC, VC) are precipitated. Therefore, the amount of C precipitated as carbide (C p ) is obtained as the sum of the amount of C precipitated as cementite (C p1 ) and the amount of C precipitated as NbC, TiC, and VC (C p2 ). be able to.
・Cp1
セメンタイトとして析出しているC量は、TEM−EDX(透過型電子顕微鏡−エネルギー分散型X線分光法)による分析と、電解抽出により得られた抽出残渣のICP発光分析とを併用して求めた。まず、得られた熱間プレス鋼板部材のそれぞれから測定用TEM観察用試料を作成し、EDX分析を用いてセメンタイトを構成する金属元素の濃度を測定した。ここで、セメンタイトを構成する金属元素は、Fe、Cr、およびMnである。前記濃度は、10カ所の測定の平均値とした。得られた濃度から、Fe、Mn、およびCrの原子比、FFe、FCr、およびFMnを求めた。ここで、FFe+FCr+FMn=1である。・ C p1
The amount of C precipitated as cementite was determined by using both TEM-EDX (transmission electron microscope-energy dispersive X-ray spectroscopy) analysis and ICP emission analysis of the extraction residue obtained by electrolytic extraction. . First, a measurement TEM observation sample was prepared from each of the obtained hot-pressed steel sheet members, and the concentration of the metal element constituting cementite was measured using EDX analysis. Here, the metal elements constituting cementite are Fe, Cr, and Mn. The said density | concentration was made into the average value of 10 places of measurements. From the obtained concentration, the atomic ratio of Fe, Mn, and Cr, F Fe , F Cr , and F Mn were determined. Here, F Fe + F Cr + F Mn = 1.
次に、電解抽出法により、熱間プレス鋼板部材のそれぞれから抽出残渣を得た。電解液としては、10%アセチルアセトン系電解液を用いた。得られた抽出残渣をICP(高周波誘導結合プラズマ)発光分光分析法によって分析し、セメンタイトとして鋼中に析出しているFe量:CFe(質量%)を求めた。Next, extraction residues were obtained from each of the hot-pressed steel plate members by electrolytic extraction. As the electrolytic solution, a 10% acetylacetone-based electrolytic solution was used. The obtained extraction residue was analyzed by ICP (High Frequency Inductively Coupled Plasma) emission spectrometry, and the amount of Fe deposited in the steel as cementite: C Fe (mass%) was determined.
以上の測定で得られた値を用いて、下記の式により、セメンタイトとして析出しているC量(Cp1)を算出した。
Cp1(質量%)=12/(M×3)×CFe×1/(FFe)
ここで、M=(56×FFe+52×FCr+54×FMn)Using the value obtained by the above measurement, the amount of C precipitated as cementite (C p1 ) was calculated by the following formula.
C p1 (mass%) = 12 / (M × 3) × C Fe × 1 / (F Fe )
Here, M = (56 × F Fe + 52 × F Cr + 54 × F Mn )
・Cp2
NbC、TiC、VCとして析出しているC量(Cp2)は、以下の方法で求めた。まず、電解抽出法により、熱間プレス鋼板部材のそれぞれから抽出残渣を得た。電解液としては、10%アセチルアセトン系電解液を用いた。得られた抽出残渣をICP(高周波誘導結合プラズマ)発光分光分析法によって分析し、Nb、Ti、およびV量を測定した。測定されたNb、Ti、およびV量は、NbC、TiC、VCとして析出している各金属元素の量である。そこで、前記測定値から、NbC、TiC、VCとして析出しているC量(Cp2)を算出した。・ C p2
The amount of C deposited as NbC, TiC, and VC (C p2 ) was determined by the following method. First, an extraction residue was obtained from each hot-pressed steel sheet member by electrolytic extraction. As the electrolytic solution, a 10% acetylacetone-based electrolytic solution was used. The obtained extraction residue was analyzed by ICP (High Frequency Inductively Coupled Plasma) emission spectroscopy, and Nb, Ti, and V amounts were measured. The measured amounts of Nb, Ti, and V are amounts of each metal element precipitated as NbC, TiC, and VC. Therefore, the amount of C (C p2 ) precipitated as NbC, TiC, and VC was calculated from the measured values.
以上のようにして得たCp1およびCp2から、下記の式により固溶C量を算出した。
[固溶C量(質量%)]=Ctotal−(Cp1+Cp2)From the C p1 and C p2 obtained as described above, the solid solution C amount was calculated by the following formula.
[Solubility C amount (% by mass)] = C total − (C p1 + C p2 )
(引張特性)
得られた熱間プレス鋼板部材のハット底部の位置から、JIS 5号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行い、降伏強さ(YS)および引張強さ(TS)を測定した。(Tensile properties)
From the position of the hat bottom of the obtained hot-pressed steel sheet member, a JIS No. 5 tensile test piece was sampled and subjected to a tensile test according to JIS Z 2241. Yield strength (YS) and tensile strength (TS) Was measured.
(曲げ圧潰性)
得られる熱間プレス鋼板部材に対して、3点曲げ変形を実施し、ストロークと荷重を測定した。前記3点曲げ変形においては、スパン280mm、パンチ100Rの金型を用い、試験速度は0.1m/sとした。曲げ圧潰性の評価は、最大荷重を超えても割れることなく下死点まで到達した場合〇、割れが生じた場合×とした。(Bending crushability)
Three-point bending deformation was performed on the obtained hot-pressed steel sheet member, and the stroke and load were measured. In the three-point bending deformation, a die having a span of 280 mm and a punch 100R was used, and the test speed was set to 0.1 m / s. Bending crushability was evaluated as 0 when reaching the bottom dead center without cracking even when exceeding the maximum load, and x when cracking occurred.
測定した鋼板組織、引張特性、曲げ圧潰性を表3に示す。なお、固溶C量は、全C量(Ctotal)に対する割合(%)として示した。この結果から分かるように、本発明の条件を満たす熱間プレス鋼板部材は、1780MPa以上の引張強さと、優れた曲げ圧潰性とを兼ね備えていた。Table 3 shows the measured steel structure, tensile properties, and bending crushability. In addition, solid solution C amount was shown as a ratio (%) with respect to the total C amount ( Ctotal ). As can be seen from this result, the hot-pressed steel sheet member satisfying the conditions of the present invention had a tensile strength of 1780 MPa or more and an excellent bending crushability.
Claims (5)
質量%で、
C :0.30%以上0.50%未満、
Si:0.01%以上1.3%以下、
Mn:0.5%以上3.5%以下、
Nb:0.005%以上0.019%以下、
P :0.05%以下、
S :0.01%以下、
Al:0.01%以上1.00%以下、および
N :0.01%以下を含有し、
残部がFeおよび不可避的不純物からなり、かつ
Nb含有量(質量%)に対するC含有量(質量%)の比C/Nbが22〜100である成分組成を有し、
旧オーステナイト粒の平均結晶粒径が8μm以下であり、マルテンサイトの体積率が90%以上であり、かつ、固溶C量が全C量の25%以下であるミクロ組織を有し、
引張強さが1780MPa以上である、熱間プレス鋼板部材。 A hot pressed steel plate member,
% By mass
C: 0.30% or more and less than 0.50%,
Si: 0.01% or more and 1.3% or less,
Mn: 0.5% or more and 3.5% or less,
Nb: 0.005% or more and 0.019% or less ,
P: 0.05% or less,
S: 0.01% or less,
Al: 0.01% or more and 1.00% or less, and N: 0.01% or less,
The balance is composed of Fe and unavoidable impurities, and the ratio C / Nb of C content (mass%) to Nb content (mass%) is 22-100,
Having a microstructure in which the average crystal grain size of the prior austenite grains is 8 μm or less, the volume fraction of martensite is 90% or more, and the solid solution C content is 25% or less of the total C content;
A hot-pressed steel sheet member having a tensile strength of 1780 MPa or more.
Mo:0.35%以下、
Cr:0.35%以下、
Ti:0.15%以下、
B :0.0050%以下、
Ca:0.005%以下、
V :0.05%以下、
Cu:0.50%以下、
Ni:0.50%以下、
Sn:0.50%以下、
Zn:0.10%以下、
Co:0.10%以下、
Zr:0.10%以下、
Ta:0.10%以下、および
W:0.10%以下からなる群より選択される1または2以上を含有する、請求項1に記載の熱間プレス鋼板部材。 The component composition is mass%, and Mo: 0.35% or less,
Cr: 0.35% or less,
Ti: 0.15% or less,
B: 0.0050% or less,
Ca: 0.005% or less,
V: 0.05% or less,
Cu: 0.50% or less,
Ni: 0.50% or less,
Sn: 0.50% or less,
Zn: 0.10% or less,
Co: 0.10% or less,
Zr: 0.10% or less,
The hot-pressed steel sheet member according to claim 1, containing 1 or 2 or more selected from the group consisting of Ta: 0.10% or less and W: 0.10% or less.
C :0.30%以上0.50%未満、
Si:0.01%以上1.3%以下、
Mn:0.5%以上3.5%以下、
Nb:0.005%以上0.019%以下、
P :0.05%以下、
S :0.01%以下、
Al:0.01%以上1.00%以下、および
N :0.01%以下を含有し、
残部がFeおよび不可避的不純物からなり、かつ
Nb含有量(質量%)に対するC含有量(質量%)の比C/Nbが22〜100である成分組成を有する冷延鋼板を、Ac3変態点以上1000℃以下の加熱温度に加熱し、
前記加熱された冷延鋼板を熱間プレスして熱間プレス鋼板とし、
前記熱間プレス鋼板をMf点以下まで冷却し、
前記冷却された熱間プレス鋼板を、加熱温度:50〜300℃、保持時間:5〜3600秒の条件で熱処理する、
旧オーステナイト粒の平均結晶粒径が8μm以下であり、マルテンサイトの体積率が90%以上であり、かつ、固溶C量が全C量の25%以下であるミクロ組織を有し、引張強さが1780MPa以上である熱間プレス鋼板部材の製造方法。 % By mass
C: 0.30% or more and less than 0.50%,
Si: 0.01% or more and 1.3% or less,
Mn: 0.5% or more and 3.5% or less,
Nb: 0.005% or more and 0.019% or less ,
P: 0.05% or less,
S: 0.01% or less,
Al: 0.01% or more and 1.00% or less, and N: 0.01% or less,
A cold-rolled steel sheet having a component composition in which the balance is Fe and inevitable impurities, and the ratio C / Nb of the C content (mass%) to the Nb content (mass%) is 22 to 100 is greater than or equal to the Ac3 transformation point. Heated to a heating temperature of 1000 ° C. or less,
Hot-pressing the heated cold-rolled steel sheet to form a hot-pressed steel sheet,
Cooling the hot pressed steel sheet to the Mf point or less,
The cooled hot-pressed steel sheet is heat-treated under the conditions of heating temperature: 50 to 300 ° C. and holding time: 5 to 3600 seconds.
It has a microstructure in which the average crystal grain size of the prior austenite grains is 8 μm or less, the volume fraction of martensite is 90% or more, and the solid solution C content is 25% or less of the total C content, and the tensile strength The manufacturing method of the hot press steel plate member whose length is 1780 MPa or more .
Mo:0.35%以下、
Cr:0.35%以下、
Ti:0.15%以下、
B :0.0050%以下、
Ca:0.005%以下、
V :0.05%以下、
Cu:0.50%以下、
Ni:0.50%以下、
Sn:0.50%以下、
Zn:0.10%以下、
Co:0.10%以下、
Zr:0.10%以下、
Ta:0.10%以下、および
W:0.10%以下からなる群より選択される1または2以上を含有する、請求項4に記載の熱間プレス鋼板部材の製造方法。
The component composition is mass%, and Mo: 0.35% or less,
Cr: 0.35% or less,
Ti: 0.15% or less,
B: 0.0050% or less,
Ca: 0.005% or less,
V: 0.05% or less,
Cu: 0.50% or less,
Ni: 0.50% or less,
Sn: 0.50% or less,
Zn: 0.10% or less,
Co: 0.10% or less,
Zr: 0.10% or less,
The manufacturing method of the hot press steel plate member of Claim 4 containing 1 or 2 or more selected from the group which consists of Ta: 0.10% or less and W: 0.10% or less.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017218301 | 2017-11-13 | ||
JP2017218301 | 2017-11-13 | ||
PCT/JP2018/041343 WO2019093376A1 (en) | 2017-11-13 | 2018-11-07 | Hot-pressed steel sheet member and method for producing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6569841B1 true JP6569841B1 (en) | 2019-09-04 |
JPWO2019093376A1 JPWO2019093376A1 (en) | 2019-11-14 |
Family
ID=66438821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019512936A Active JP6569841B1 (en) | 2017-11-13 | 2018-11-07 | Hot-pressed steel sheet member and manufacturing method thereof |
Country Status (7)
Country | Link |
---|---|
US (1) | US20200332382A1 (en) |
EP (1) | EP3680359B1 (en) |
JP (1) | JP6569841B1 (en) |
KR (1) | KR20200066350A (en) |
CN (1) | CN111344425B (en) |
MX (1) | MX2020004926A (en) |
WO (1) | WO2019093376A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2020004927A (en) * | 2017-11-13 | 2020-08-27 | Jfe Steel Corp | Hot press steel sheet member and manufacturing method therefor. |
WO2020170667A1 (en) | 2019-02-21 | 2020-08-27 | Jfeスチール株式会社 | Hot-pressed member, cold-rolled steel sheet for hot press use, and methods respectively manufacturing these products |
JP7436823B2 (en) | 2020-03-26 | 2024-02-22 | 日本製鉄株式会社 | Steel plate for hot stamped parts and its manufacturing method |
JP7477750B2 (en) | 2020-03-26 | 2024-05-02 | 日本製鉄株式会社 | Hot stamped parts and manufacturing method thereof |
JP7436822B2 (en) | 2020-03-26 | 2024-02-22 | 日本製鉄株式会社 | Steel plate for hot stamped parts and its manufacturing method |
JP7028378B1 (en) * | 2020-08-28 | 2022-03-02 | Jfeスチール株式会社 | Hot pressing member and its manufacturing method |
CN112126860B (en) * | 2020-09-25 | 2022-03-04 | 重庆科技学院 | Cold-formed ultrahigh-strength low-alloy martensitic steel |
CN115058650B (en) * | 2022-06-21 | 2023-10-17 | 清华大学 | High-plasticity hot forming steel and rapid heating preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007211276A (en) * | 2006-02-08 | 2007-08-23 | Sumitomo Metal Ind Ltd | Plated steel sheet for hot-press use, its manufacturing method, and method for manufacturing hot press formed member |
JP2010150612A (en) * | 2008-12-25 | 2010-07-08 | Nippon Steel Corp | High strength hot-stamped product having excellent toughness and hydrogen embrittlement resistance, and method for producing the same |
JP2010174283A (en) * | 2009-01-28 | 2010-08-12 | Jfe Steel Corp | Hot press member having excellent ductility, steel sheet for the hot press member and method for producing the hot press member |
JP2014015638A (en) * | 2012-07-06 | 2014-01-30 | Nippon Steel & Sumitomo Metal | Hot press steel sheet member, method for producing the same and steel sheet for hot press |
JP2014118613A (en) * | 2012-12-18 | 2014-06-30 | Nippon Steel & Sumitomo Metal | Hot stamp molded body excellent in strength and hydrogen embrittlement resistance and its manufacturing method |
JP2016003389A (en) * | 2014-06-20 | 2016-01-12 | 株式会社神戸製鋼所 | Steel plate for hot pressing, hot pressing molding using steel plate and production method of hot pressing molding |
WO2017111456A1 (en) * | 2015-12-21 | 2017-06-29 | 주식회사 포스코 | Vehicle part having high strength and excellent durability, and manufacturing method therefor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4766186B2 (en) | 2009-08-21 | 2011-09-07 | Jfeスチール株式会社 | Hot pressed member, steel plate for hot pressed member, method for manufacturing hot pressed member |
JP5024407B2 (en) | 2010-03-24 | 2012-09-12 | Jfeスチール株式会社 | Manufacturing method of ultra-high strength member |
JP5729213B2 (en) | 2011-08-18 | 2015-06-03 | 新日鐵住金株式会社 | Manufacturing method of hot press member |
JP5742697B2 (en) | 2011-12-12 | 2015-07-01 | 新日鐵住金株式会社 | Hot stamping molded body excellent in balance between strength and toughness, manufacturing method thereof, and manufacturing method of steel sheet for hot stamping molded body |
WO2016016676A1 (en) | 2014-07-30 | 2016-02-04 | ArcelorMittal Investigación y Desarrollo, S.L. | Process for manufacturing steel sheets, for press hardening, and parts obtained by means of this process |
KR101931041B1 (en) * | 2014-10-24 | 2018-12-19 | 제이에프이 스틸 가부시키가이샤 | High-strength hot-pressed part and method for manufacturing the same |
JP6222198B2 (en) | 2015-10-19 | 2017-11-01 | Jfeスチール株式会社 | Hot-pressed member and manufacturing method thereof |
CN106399837B (en) | 2016-07-08 | 2018-03-13 | 东北大学 | Hot press-formed steel, hot press-formed technique and hot press-formed component |
-
2018
- 2018-11-07 US US16/754,135 patent/US20200332382A1/en not_active Abandoned
- 2018-11-07 KR KR1020207013700A patent/KR20200066350A/en not_active IP Right Cessation
- 2018-11-07 EP EP18876175.3A patent/EP3680359B1/en active Active
- 2018-11-07 CN CN201880072876.3A patent/CN111344425B/en active Active
- 2018-11-07 JP JP2019512936A patent/JP6569841B1/en active Active
- 2018-11-07 WO PCT/JP2018/041343 patent/WO2019093376A1/en unknown
- 2018-11-07 MX MX2020004926A patent/MX2020004926A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007211276A (en) * | 2006-02-08 | 2007-08-23 | Sumitomo Metal Ind Ltd | Plated steel sheet for hot-press use, its manufacturing method, and method for manufacturing hot press formed member |
JP2010150612A (en) * | 2008-12-25 | 2010-07-08 | Nippon Steel Corp | High strength hot-stamped product having excellent toughness and hydrogen embrittlement resistance, and method for producing the same |
JP2010174283A (en) * | 2009-01-28 | 2010-08-12 | Jfe Steel Corp | Hot press member having excellent ductility, steel sheet for the hot press member and method for producing the hot press member |
JP2014015638A (en) * | 2012-07-06 | 2014-01-30 | Nippon Steel & Sumitomo Metal | Hot press steel sheet member, method for producing the same and steel sheet for hot press |
JP2014118613A (en) * | 2012-12-18 | 2014-06-30 | Nippon Steel & Sumitomo Metal | Hot stamp molded body excellent in strength and hydrogen embrittlement resistance and its manufacturing method |
JP2016003389A (en) * | 2014-06-20 | 2016-01-12 | 株式会社神戸製鋼所 | Steel plate for hot pressing, hot pressing molding using steel plate and production method of hot pressing molding |
WO2017111456A1 (en) * | 2015-12-21 | 2017-06-29 | 주식회사 포스코 | Vehicle part having high strength and excellent durability, and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019093376A1 (en) | 2019-11-14 |
CN111344425A (en) | 2020-06-26 |
EP3680359A1 (en) | 2020-07-15 |
WO2019093376A1 (en) | 2019-05-16 |
US20200332382A1 (en) | 2020-10-22 |
EP3680359A4 (en) | 2020-07-15 |
KR20200066350A (en) | 2020-06-09 |
EP3680359B1 (en) | 2022-01-05 |
CN111344425B (en) | 2021-09-21 |
MX2020004926A (en) | 2020-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6573050B1 (en) | Hot-pressed steel sheet member and manufacturing method thereof | |
JP6569841B1 (en) | Hot-pressed steel sheet member and manufacturing method thereof | |
KR102296359B1 (en) | Hot-pressed member and manufacturing method thereof, cold-rolled steel sheet for hot pressing, and manufacturing method thereof | |
KR102356747B1 (en) | Hot-pressed member and manufacturing method thereof, cold-rolled steel sheet for hot pressing, and manufacturing method thereof | |
EP3647448B1 (en) | Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same | |
KR102356746B1 (en) | Hot-pressed member and manufacturing method thereof, cold-rolled steel sheet for hot pressing, and manufacturing method thereof | |
CN110475892B (en) | High-strength cold-rolled steel sheet and method for producing same | |
JP7095818B2 (en) | Covered steel members, coated steel sheets and their manufacturing methods | |
JP7028378B1 (en) | Hot pressing member and its manufacturing method | |
CN110199044B (en) | Steel sheet for hot stamping | |
KR102540431B1 (en) | High-strength steel sheet and its manufacturing method | |
KR20210116594A (en) | A hot-pressed member and its manufacturing method, and the manufacturing method of the steel plate for a hot-pressed member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190306 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190306 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190306 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190423 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190709 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190722 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6569841 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |