JP6553469B2 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP6553469B2
JP6553469B2 JP2015190610A JP2015190610A JP6553469B2 JP 6553469 B2 JP6553469 B2 JP 6553469B2 JP 2015190610 A JP2015190610 A JP 2015190610A JP 2015190610 A JP2015190610 A JP 2015190610A JP 6553469 B2 JP6553469 B2 JP 6553469B2
Authority
JP
Japan
Prior art keywords
vehicle
deceleration
power transmission
engine
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015190610A
Other languages
Japanese (ja)
Other versions
JP2017065327A (en
Inventor
直之 田代
直之 田代
堀 俊雄
堀  俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2015190610A priority Critical patent/JP6553469B2/en
Priority to CN201680054876.1A priority patent/CN108025750B/en
Priority to US15/758,629 priority patent/US10710589B2/en
Priority to EP16850900.8A priority patent/EP3357779B1/en
Priority to PCT/JP2016/073028 priority patent/WO2017056723A1/en
Publication of JP2017065327A publication Critical patent/JP2017065327A/en
Application granted granted Critical
Publication of JP6553469B2 publication Critical patent/JP6553469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18136Engine braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D35/00Vehicle bodies characterised by streamlining
    • B62D35/007Rear spoilers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • B62D37/02Stabilising vehicle bodies without controlling suspension arrangements by aerodynamic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/18081With torque flow from driveshaft to engine, i.e. engine being driven by vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

本発明は、車両制御装置に関する。   The present invention relates to a vehicle control device.

本技術分野の背景技術として、特許文献1がある。この公報では、下限車速と上限車速を設定し、車速が上限車速以上になると、エンジンを停止し、さらに、エンジンと車輪との間の動力伝達機構を開放し、惰行により車両を走行させ、車速が下限車速以下になると、エンジンを始動し、動力伝達機構を係合状態にして加速させる車両制御装置が開示されている。さらに、信号などを検知し、車両を停止させる必要があるか否かを判定し、車両を停止させる必要があると判断されたときに、車両停止位置までエンジン停止を継続して車両を惰行により減速させる車両制御装置が開示されている。   As background art of this technical field, there is patent documents 1. In this publication, the lower limit vehicle speed and the upper limit vehicle speed are set, the engine is stopped when the vehicle speed exceeds the upper limit vehicle speed, the power transmission mechanism between the engine and the wheels is opened, and the vehicle is traveled by coasting. Discloses a vehicle control device that starts the engine when the vehicle speed becomes equal to or lower than the lower limit vehicle speed, and accelerates the power transmission mechanism in the engaged state. Furthermore, a signal or the like is detected to determine whether it is necessary to stop the vehicle, and when it is determined that it is necessary to stop the vehicle, the engine stop is continued to the vehicle stop position to coast the vehicle. A vehicle control system for decelerating is disclosed.

ここで、動力伝達機構を係合状態にし、エンジンへの燃料供給を停止させて、車両を走行(エンジンブレーキ)させた場合、エンジンブレーキの減速度は、走行抵抗に、エンジンの損失(機械損失や吸気損失など)を加算したものとなる。一方、エンジンを停止し、かつ動力伝達機構を開放した状態で車両を走行(セーリングストップ)させた場合は、セーリングストップの減速度は、走行抵抗のみとなるため、エンジンブレーキの減速度よりも小さくなる。   Here, when the power transmission mechanism is engaged, fuel supply to the engine is stopped, and the vehicle is driven (engine braking), the deceleration of the engine brake is the loss of the engine (motor loss). And intake loss etc.). On the other hand, when the vehicle is run (sailing stop) with the engine stopped and the power transmission mechanism opened, the deceleration of the sailing stop is smaller than the deceleration of the engine brake because it is only the running resistance. Become.

ゆえに、特許文献1では、車両を停止させる必要があると判断し、停止までの距離が所定値以上の場合には、セーリングストップを実施し、停止までの距離が所定値未満になると、エンジンブレーキあるいはブレーキにて減速させることで、エンジン停止時間を長くすることができ燃費を向上させる車両制御装置が開示されている。   Therefore, in Patent Document 1, it is determined that the vehicle needs to be stopped, and when the distance to the stop is equal to or more than the predetermined value, the sailing stop is performed, and the engine brake is performed if the distance to the stop is less than the predetermined value. Alternatively, a vehicle control device is disclosed that can increase engine stop time and improve fuel efficiency by decelerating with a brake.

特開2012−47148号公報JP 2012-47148 A

上記特許文献1では、車両を停止させる必要があると判断されたときに、セーリングストップとエンジンブレーキを切り替えている。しかしながら、セーリングストップ走行時の減速度とエンジンブレーキ走行時の減速度には差があり、いずれかに切り替えるだけでは、緩やかな減速が必要なとき(先行車に追従して走行する場合など)に、操作性が悪化する。具体的な説明を図1に示す。   In Patent Document 1 above, when it is determined that the vehicle needs to be stopped, the sailing stop and the engine brake are switched. However, there is a difference between the deceleration during sailing stop travel and the deceleration during engine brake travel, and it is necessary to make a gentle deceleration by switching to any one (such as when following a preceding vehicle) , Operability deteriorates. A specific description is shown in FIG.

図1は横軸に減速時間および縦軸にエネルギロスを、各点は代表的な減速パターンに対して、要求される減速度を示したものである。グラフ右下の減速パターン時には要求される減速度が小さく、グラフ左上の減速パターン時には要求される減速度が大きい。各線はそれぞれ、エンジンブレーキで走行した場合と、セーリングストップで走行したときの減速度合を示しており、領域Iではエンジンブレーキ状態で変速比をロー側にシフト、あるいはブレーキをかけることで所望の減速度を得ている。一方、領域IIにおいて、減速度がセーリングストップよりも大きく、エンジンブレーキよりも小さい減速パターンにおいては、現状調整すべき手段がなく、要求される減速度との差が生じる。これでは、ドライバが状況に応じて想定する減速度と実際の車両の減速度とが乖離してしまい、ドライバが違和感を感じてしまいかねないという問題がある。   FIG. 1 shows deceleration time on the horizontal axis and energy loss on the vertical axis, and each point shows the required deceleration for a typical deceleration pattern. The deceleration required for the deceleration pattern at the lower right of the graph is small, and the deceleration required for the deceleration pattern at the upper left of the graph is large. Each line shows the degree of deceleration when traveling by engine brake and traveling by sailing stop, and in region I, the gear ratio is shifted to the low side in the engine braking state, or the desired reduction is achieved by applying the brake. I'm getting the speed. On the other hand, in the region II, in the deceleration pattern in which the deceleration is larger than the sailing stop and smaller than the engine brake, there is no means to be adjusted at present, and a difference occurs between the required deceleration and the required deceleration. In this case, there is a problem that the degree of deceleration assumed by the driver according to the situation deviates from the degree of deceleration of the actual vehicle, and the driver may feel discomfort.

本発明は、動力伝達状態やエンジンの駆動状態の異なる複数の走行状態を走行中に変更可能な車両を走行させる際に、車両を適切に制御することで、ドライバの違和感を低減することを目的とする。   An object of the present invention is to reduce a driver's sense of incongruity by appropriately controlling a vehicle when traveling a vehicle capable of changing a plurality of traveling states different in power transmission state and engine driving state while traveling. I assume.

本発明は、エンジンと車軸との間の動力伝達状態を制御する動力伝達機構と、制動手段とを有する車両を制御する車両制御装置であって、前記動力伝達機構によって動力を伝達させ、前記エンジンの燃料供給を停止して前記車両を走行させる動力伝達エンジン停止走行状態と、前記動力伝達機構による動力を遮断し、前記エンジンの燃料供給を停止し、前記動力伝達エンジン停止走行状態よりも制動力が小さくなるように前記制動手段を制御して前記車両を走行させる動力遮断制動走行状態と、を車両走行状態として有することを特徴とする。   The present invention is a vehicle control apparatus for controlling a vehicle having a power transmission mechanism for controlling a power transmission state between an engine and an axle, and a braking means, wherein power is transmitted by the power transmission mechanism, and the engine Power transmission engine stop traveling state for stopping the fuel supply of the vehicle, and motive power by the power transmission mechanism is shut off, fuel supply for the engine is stopped, and the braking force is more than the power transmission engine stop traveling state The vehicle running state includes a power cut-off braking running state in which the vehicle is caused to run by controlling the braking means so as to decrease the vehicle running state.

本発明によれば、動力伝達状態やエンジンの駆動状態の異なる複数の走行状態を走行中に変更可能な車両を走行させる際に、車両を適切に制御することで、ドライバの違和感を低減することができる。   According to the present invention, when running a vehicle capable of changing a plurality of traveling states different in power transmission state and engine driving state while traveling, it is possible to reduce the discomfort of the driver by appropriately controlling the vehicle. Can.

エンジンブレーキでの走行と、セーリングストップでの走行についての、減速時間とエネルギロスとの関係を示す図Diagram showing the relationship between deceleration time and energy loss for traveling on engine brakes and traveling on sailing stops 実施例1における車両制御装置を備えた車両の構成を示す図The figure which shows the structure of the vehicle provided with the vehicle control apparatus in Example 1. 実施例1における制御のフローチャートFlow chart of control in the first embodiment 実施例1におけるエンジン損失トルクの演算を示すブロック図Block diagram showing calculation of engine loss torque in the first embodiment 実施例1における要求減速度演算を示すブロック図Block diagram showing the required deceleration calculation in the first embodiment 実施例1における要求減速度演算の補正方法を示す図FIG. 7 is a diagram showing a correction method of required deceleration calculation in the first embodiment. 実施例1における走行状態を示す図The figure which shows the driving | running | working state in Example 1. 実施例1における第3の走行状態のフローチャートThe flowchart of the 3rd driving state in Example 1. 実施例1における変速機損失トルク下限値の演算を示すブロック図Block diagram showing calculation of transmission loss torque lower limit value in the first embodiment 実施例1における第3の走行状態の制御形態を示す図FIG. 6 is a diagram showing a control mode of a third traveling state in the first embodiment. 実施例1における第3の走行状態のブレーキとの協調時のフローチャートFlow chart at the time of coordination with the brake in the third running state in the first embodiment 実施例1におけるタイムチャートTime chart in the first embodiment 実施例2における車両制御装置を備えた車両の構成を示す図The figure which shows the structure of the vehicle provided with the vehicle control apparatus in Example 2. 実施例2における第3の走行状態のフローチャートThe flowchart of the 3rd driving state in Example 2. 実施例2における第3の走行状態の制御形態を示す図The figure which shows the control form of the 3rd driving | running | working state in Example 2 実施例2における第3の走行状態の別の制御形態を示す図The figure which shows another control form of the 3rd driving state in Example 2. 実施例2におけるタイムチャートTime chart in Example 2 実施例3における車両制御装置の構成を示す図The figure which shows the structure of the vehicle control apparatus in Example 3. 実施例3における要求減速度演算を示すブロック図Block diagram showing the required deceleration calculation in the third embodiment 実施例3におけるドライバの反応強度を示す図The figure which shows the reaction intensity | strength of the driver in Example 3

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

図2は本実施例における車両制御装置を備えた車両の構成を示す図である。図2に示すように、車両100には、エンジン101が搭載されており、エンジン101によって発生させた駆動力は動力伝達機構102を経て、ディファレンシャル機構103を介して連結された車輪104に伝達されることで車両100を走行させる。また、車両100を減速させるために、車輪104にはブレーキ機構115が備えられ、ブレーキ機構115内のブレーキパッドの押し当て量によって制動力が変化し、車両100の速度を調整する。   FIG. 2 is a view showing a configuration of a vehicle provided with a vehicle control device in the present embodiment. As shown in FIG. 2, an engine 101 is mounted on a vehicle 100, and a driving force generated by the engine 101 is transmitted to a wheel 104 connected via a differential mechanism 103 via a power transmission mechanism 102. This causes the vehicle 100 to travel. Further, in order to decelerate the vehicle 100, the wheel 104 is provided with a brake mechanism 115, and the braking force changes according to the pressing amount of the brake pad in the brake mechanism 115, and the speed of the vehicle 100 is adjusted.

動力伝達機構102は、トルクコンバータ116と、オイルポンプ117と、変速機構118と、エンジン101からの動力を車輪104に伝達および遮断可能なクラッチ機構119とから構成される。また、オイルポンプ117はオイルポンプ駆動用チェーン120を介して駆動される。   The power transmission mechanism 102 includes a torque converter 116, an oil pump 117, a speed change mechanism 118, and a clutch mechanism 119 that can transmit and block power from the engine 101 to the wheels 104. In addition, the oil pump 117 is driven via an oil pump drive chain 120.

ここで、変速機構118は有段変速機に限定されず、ベルトあるいはチェーンとプーリを組み合わせた無段変速機でもよい。クラッチ機構119は変速機構118とディファレンシャル機構103の間に限定されず、オイルポンプ駆動用チェーン120と変速機構118との間に設けてもよい。   Here, the transmission mechanism 118 is not limited to a stepped transmission, and may be a continuously variable transmission in which a belt or a chain and a pulley are combined. The clutch mechanism 119 is not limited to between the transmission mechanism 118 and the differential mechanism 103, and may be provided between the oil pump drive chain 120 and the transmission mechanism 118.

エンジン101には始動装置としてスタータモータ105が組みつけられており、バッテリ108から電力を供給することでスタータモータ105を駆動し、スタータモータ105の回転に連動して、エンジン101も回転する。ここで、エンジン始動装置としてはスタータモータ105に限定されず、スタータモータと発電機の機能を有したモータでもよい。また、エンジン101にはエンジンの回転数を検出する手段121が取り付けられており、スタータモータ105を駆動させ、エンジン回転数が所定値以上になったときに燃料供給を開始し、点火させることでエンジンを始動する。   A starter motor 105 is attached to the engine 101 as a starting device, and the starter motor 105 is driven by supplying electric power from the battery 108, and the engine 101 also rotates in conjunction with the rotation of the starter motor 105. Here, the engine starter is not limited to the starter motor 105, and may be a motor having functions of a starter motor and a generator. Further, the engine 101 is provided with a means 121 for detecting the engine speed. The starter motor 105 is driven, and when the engine speed reaches a predetermined value or more, fuel supply is started and ignited. Start the engine.

エンジン101には発電機106が駆動ベルト107を介して連結される。発電機106は、クランク軸の回転に従動して回転することで電力を発生させることができる。発電機106は界磁電流を制御することにより、発電電圧を可変にする機構を有しており、発電出力を停止することも可能である。   A generator 106 is connected to the engine 101 via a drive belt 107. The generator 106 can generate electric power by rotating following the rotation of the crankshaft. The generator 106 has a mechanism for making the generated voltage variable by controlling the field current, and it is also possible to stop the generated output.

発電機106で発電された電力はバッテリ108と車載電装品109に供給される。車載電装品109には、エンジン101を動作させるためのアクチュエータ、例えば、燃料供給装置、点火装置、それらを制御するコントローラ111も含み、ヘッドライト、ブレーキランプ、方向指示器などの灯火装置、ブロアファン、ヒータなどの空調機器などによって構成される。   The electric power generated by the generator 106 is supplied to the battery 108 and the on-vehicle electrical component 109. The in-vehicle electrical component 109 includes an actuator for operating the engine 101, for example, a fuel supply device, an ignition device, and a controller 111 for controlling them, a lighting device such as a headlight, a brake lamp, and a direction indicator, and a blower fan. And air conditioning equipment such as a heater.

コントローラ111には、アクセルペダルの踏み込み量を検出するアクセルペダル踏み込み量検出手段112、ブレーキペダルの踏み込み量を検出するブレーキペダル踏み込み量検出手段113、車両の速度を検出する車速検出手段114によって検出した情報を入力する。   The controller 111 is detected by an accelerator pedal depression amount detecting means 112 for detecting an accelerator pedal depression amount, a brake pedal depression amount detecting means 113 for detecting a brake pedal depression amount, and a vehicle speed detecting means 114 for detecting a vehicle speed. Enter information.

ブレーキ機構115は、運転手のブレーキペダル踏み込み量に応じてブレーキパッドの押し当て量が変化し、制動力を制御する機構だけでなく、コントローラ111からの指令値によって押し当て量を変化させることが可能な電動アクチュータ機構が備わったものでもよい。   The brake mechanism 115 changes the pressing amount of the brake pad according to the command value from the controller 111 as well as the mechanism for controlling the braking force, with the pressing amount of the brake pad changing according to the brake pedal depression amount of the driver. It may be equipped with a possible motorized actuator mechanism.

また、本実施例に係る車両制御装置は、車両走行状態として、動力伝達エンジン停止走行状態(具体的には、後述する第2の走行状態)と、動力遮断制動走行状態(具体的には、後述する第3の走行状態)と、惰性走行状態(具体的には、後述する第1の走行状態)とを有する。動力伝達エンジン停止走行状態は、動力伝達機構によって動力を伝達させ、エンジンの燃料供給を停止して車両を走行させるモードである。動力遮断制動走行状態は、動力伝達機構による動力を遮断し、エンジンの燃料供給を停止し、動力伝達エンジン停止走行状態よりも制動力が小さくなるように制動手段を制御して車両を走行させるモードである。惰性走行状態は、動力伝達機構による動力を遮断し、エンジンの燃料供給を停止し、制動手段による制動を行わずに車両を惰性で走行させるモードである。   In the vehicle control device according to the present embodiment, the power transmission engine stop traveling state (specifically, a second traveling state described later) and the power cutoff braking traveling state (specifically, as the vehicle traveling state). It has a 3rd driving | running | working state mentioned later and a coasting driving | running | working state (specifically, the 1st driving | running | working state mentioned later). The power transmission engine stop traveling state is a mode in which power is transmitted by the power transmission mechanism and fuel is stopped from the engine to drive the vehicle. In the power cut-off braking running state, the power by the power transmission mechanism is cut off, the fuel supply of the engine is stopped, and the vehicle is run by controlling the braking means so that the braking force becomes smaller than the power transmission engine stop running state. It is. The coasting mode is a mode in which the power transmission mechanism shuts off the power, the engine fuel supply is stopped, and the vehicle travels with inertia without braking by the braking means.

実施例1における制御方法について、図3〜7を用いて詳細を説明する。まず、図3に実施例における制御のフローチャートを示す。   The control method in the first embodiment will be described in detail with reference to FIGS. First, FIG. 3 shows a flowchart of control in the embodiment.

アクセルオフ判定S201では、アクセル踏み込み量検出手段113により、アクセル踏み込み量がゼロであることを検出したときにアクセルオフと判定し、S202に進み、アクセル踏み込み量がゼロでないときには、本制御の処理が終了する。   In accelerator off determination S201, when the accelerator depression amount detecting means 113 detects that the accelerator depression amount is zero, it is determined that the accelerator is off, and the process proceeds to S202. When the accelerator depression amount is not zero, processing of this control is performed. finish.

クラッチ開放時減速度推定S202では、クラッチ開放時の車両減速度αsを式(1)により推定する。

Figure 0006553469
ここで、Mは車両重量、Cdは空気抵抗係数、Sは車両の前面投影面積、Vは車両速度、μは転がり抵抗係数、gは重力加速速度、θは路面勾配を表している。 In the clutch release deceleration estimation S202, the vehicle deceleration α s when the clutch is released is estimated by the equation (1).
Figure 0006553469
Here, M represents the weight of the vehicle, Cd represents the air resistance coefficient, S represents the front projection area of the vehicle, V represents the vehicle speed, μ represents the rolling resistance coefficient, g represents the gravity acceleration speed, and θ represents the road surface gradient.

クラッチ係合時減速度推定S203では、クラッチ締結時の車両減速度αeを式(2)により推定する。

Figure 0006553469
ここで、Feはエンジン101への燃料供給を停止した状態で、トルクコンバータ116およびクラッチ機構119が係合した状態におけるエンジン損失トルクを表している。 In the clutch engagement during deceleration estimation S203, it estimates the vehicle deceleration alpha e during clutch engagement by equation (2).
Figure 0006553469
Here, F e is in a state of stopping the fuel supply to the engine 101, which represents the engine torque loss in a state in which the torque converter 116 and the clutch mechanism 119 is engaged.

エンジン損失トルクFeはエンジン回転数によって変化する。また、車速によって変速機構118のギア比が変わるため、エンジン回転数も変化する。ゆえに、図4に示すように、まず、変速比演算301で、アクセル踏み込み量がゼロのときの変速線を基に変速比を算出し、車速と変速比を基にエンジン回転数を出力する。次に、エンジン損失トルク演算302で、エンジン回転数を基にエンジン損失トルクFeを演算する。ここで、アクセル踏み込み量がゼロのときの変速線を使用することで、エンジン回転数を最も低くすることができ、その結果、エンジン損失トルクを最小にすることができる。 Engine torque loss F e is changed by the engine rotational speed. Further, since the gear ratio of the transmission mechanism 118 changes according to the vehicle speed, the engine rotational speed also changes. Therefore, as shown in FIG. 4, first, the transmission ratio is calculated based on the transmission line when the accelerator depression amount is zero in the transmission ratio calculation 301, and the engine speed is output based on the vehicle speed and the transmission ratio. Then, the engine torque loss calculation 302 calculates the engine torque loss F e based on engine speed. Here, by using the shift line when the accelerator depression amount is zero, the engine speed can be minimized, and as a result, the engine torque loss can be minimized.

要求減速度推定S204では、運転手が必要とする減速度を推定する。具体的には、図5の要求減速度演算(ドライバ操作)401に示すように、ブレーキペダルの踏み込み量検手段113により、ブレーキ踏み込み量がゼロ以上で所定値bon以下のとき(領域I)は、惰性により走行意図があると判断し、ドライバ操作によってドライバから要求される減速度である要求減速度αdを、クラッチ開放時の車両減速度αsとする。ここで、bonは、ブレーキ制動力が発生しない領域(ブレーキの遊び)とする。 In the required deceleration estimation S204, the deceleration required by the driver is estimated. Specifically, as shown in the request deceleration calculating (slotted) 401 in FIG. 5, the amount of depression detection unit 113 of the brake pedal, when the amount of brake depression is less than a predetermined value b on the above zero (region I) It is determined that there is a travel intention by inertia, and a required deceleration α d which is a deceleration requested from the driver by the driver operation is set as a vehicle deceleration α s at the time of clutch release. Here, b on is an area in which no brake braking force is generated (brake play).

踏み込み量が所定値bonよりも大きい場合(領域II)は、ブレーキの踏み込み量が大きいほど、大きな制動力が発生するように設定する。 When the depression amount is larger than the predetermined value b on (region II), the larger the braking depression amount is set, the larger the braking force is generated.

ここで、要求減速度推定S204は図5に限定されず、図6に示すように設定してもよい。図6の点線はエンジンブレーキ時およびセーリングストップ時に発生する減速度である。ブレーキ踏み込み量が所定値bonよりも大きい場合(領域II)では、エンジンブレーキ時には、エンジン損失分のトルクが車輪に伝達するため、同じブレーキ踏み込み量に対して、セーリングストップ時よりもエンジンブレーキ時の方が大きい減速度を要求することになり、ブレーキフィーリングに違和感が生じる。ゆえに、図6に示すように、セーリングストップ時において、ブレーキ踏み込み量が所定値bonより小さい場合(領域I)は、ドライバ操作によってドライバから要求される減速度である要求減速度αdを、クラッチ開放時の車両減速度αsとし、ブレーキ踏み込み量が所定値bonよりも大きい場合(領域II)はドライバ操作によってドライバから要求される減速度である要求減速度αdをエンジンブレーキ時の減速度に設定する。これにより、同じブレーキ踏み込み量に対して、同じ制動力を発生することができ、操作性の悪化を抑制することが期待できる。 Here, the required deceleration estimation S204 is not limited to FIG. 5, but may be set as shown in FIG. The dotted line in FIG. 6 represents the deceleration that occurs during engine braking and when sailing is stopped. In case the brake depression amount is larger than the predetermined value b on (region II), when the engine brake, the torque of the engine loss is transmitted to the wheels, for the same brake depression amount, during engine braking than during sailing stop This requires a larger deceleration, which makes the brake feeling uncomfortable. Thus, as shown in FIG. 6, at the time of sailing stop, when the amount of brake pedal depression is smaller than the predetermined value b on (region I) is a request deceleration alpha d is a deceleration required by the driver by the driver operation, If the vehicle deceleration α s at the time of clutch release is assumed and the brake depression amount is larger than the predetermined value b on (Region II), the required deceleration α d required by the driver by the driver operation is the required deceleration α d at the engine brake Set to deceleration. Thereby, the same braking force can be generated with respect to the same brake depression amount, and it can be expected that the deterioration of operability is suppressed.

S205では、要求減速度αdとクラッチ開放時の車両減速度αsを比較し、要求減速度αdがαs以上のときには、S206に進み、αdがαsより小さいときには、S207に進む。 In S205, by comparing the vehicle deceleration alpha s when requested deceleration alpha d and the clutch open, when required deceleration alpha d is more than alpha s, the process proceeds to S206, when the alpha d is less than alpha s, the process proceeds to S207 .

S206の第1の走行状態は、図7(a)に示すように、クラッチ機構119を開放状態にして、エンジン101への燃料供給を停止した状態で走行を実施する。ここで、クラッチ機構119を開放していれば、トルクコンバータ116は締結状態のままにしてもよい。   In the first traveling state in S206, as shown in FIG. 7A, traveling is performed with the clutch mechanism 119 opened and fuel supply to the engine 101 stopped. Here, if the clutch mechanism 119 is released, the torque converter 116 may be kept in the engaged state.

S207では、要求減速度αdとクラッチ係合時の車両減速度αeを比較し、要求減速度αdがαe以下のときには、S208に進み、要求減速度αdがαe大きいときには、S209に進む。 In S207, by comparing the vehicle deceleration alpha e when requested deceleration alpha d and the clutch engagement when required deceleration alpha d is less than alpha e, the process proceeds to S208, when the request deceleration alpha d is alpha e large, Go to S209.

S208の第2の走行状態は、図7(b)に示すように、トルクコンバータ116とクラッチ機構119を共に締結状態にして、エンジン101への燃料供給を停止した状態(いわゆる、エンジンブレーキ状態)で走行を実施する。   In the second traveling state of S208, as shown in FIG. 7B, the state where the torque converter 116 and the clutch mechanism 119 are both engaged and the fuel supply to the engine 101 is stopped (so-called engine braking state) Carry on at

S209の第3の走行状態は、図7(c)に示すように、クラッチ機構119を締結状態とし、トルクコンバータ116を開放状態として、変速機損失によって減速する。この場合、エンジン101への燃料供給は停止していてもよい。   In the third traveling state of S209, as shown in FIG. 7C, the clutch mechanism 119 is engaged, the torque converter 116 is opened, and the transmission is decelerated due to the transmission loss. In this case, the fuel supply to the engine 101 may be stopped.

なお、図7(a)に示すように、動力伝達機構を構成するトルクコンバータ116及びクラッチ機構119の両方が締結される状態を「伝達」状態とし、図7(b)に示すように、両方が解放される状態を「遮断」とし、図7(c)に示すように、トルクコンバータ116は解放されるがクラッチ機構119が締結される状態をいわば「半伝達」状態とした場合、この車両制御装置は、以下のようにも表現することができる。即ち、この車両制御装置は、エンジンと車軸との間の動力伝達状態を伝達、半伝達、遮断の何れかに制御する動力伝達機構と、減速度を得るための制動手段と、を有する車両を制御するものであって、前記エンジンへの燃料供給を停止した燃料停止走行状態を実現し、前記燃料停止走行状態を実現するとともに、前記動力伝達機構を前記遮断状態に制御し、且つ、前記動力伝達機構を伝達に制御した走行状態における前記車両の減速度よりも小さな減速度を得るように、前記制動手段を制御する。   As shown in FIG. 7 (a), the state where both the torque converter 116 and the clutch mechanism 119 constituting the power transmission mechanism are engaged is referred to as a “transmission” state, and as shown in FIG. 7C, the torque converter 116 is released but the clutch mechanism 119 is engaged, as in the case of a “half transmission” state. The control unit can also be expressed as follows. That is, this vehicle control device is a vehicle having a power transmission mechanism for controlling a power transmission state between an engine and an axle to any one of transmission, half transmission, and cutoff, and a braking means for obtaining deceleration. A fuel stop running state in which fuel supply to the engine is stopped, the fuel stop running state is realized, the power transmission mechanism is controlled to the cut-off state, and the power The braking means is controlled to obtain a deceleration smaller than the deceleration of the vehicle in a traveling state in which the transmission mechanism is controlled to be transmitted.

S209の具体的な処理について、図8を用いて説明する。まず、S501で目標損失トルクFtを、要求減速度αdとクラッチ開放時の車両減速度αsを基に式(3)によって算出する。

Figure 0006553469
The specific process of S209 will be described with reference to FIG. First, the target torque loss F t at S501, based on the request deceleration alpha d and the vehicle deceleration alpha s during clutch opening is calculated by the equation (3).
Figure 0006553469

次に、S502で変速機損失下限値Fm_minを車速と変速比を基に算出する。具体的な処理を図9に示す。まず、変速機入力回転数演算601に車速を入力し、アクセル踏み込み量がゼロのときの変速線を基に変速機入力回転数を演算する。ここで、アクセル踏み込み量がゼロのときの変速線を用いることで、第2の走行状態から第1の走行状態に切り替えるときに車輪104に伝わるトルクが小さくなり、切り替え時のショックが小さくなる。 Next, in S502, the transmission loss lower limit value F m — min is calculated based on the vehicle speed and the gear ratio. The specific process is shown in FIG. First, the vehicle speed is input to the transmission input rotation speed calculation 601, and the transmission input rotation speed is calculated based on the shift line when the accelerator depression amount is zero. Here, by using the shift line when the accelerator depression amount is zero, the torque transmitted to the wheel 104 is reduced when switching from the second traveling state to the first traveling state, and the shock at the time of switching is reduced.

次に、変速機トルク損失602に変速機オイルポンプの下限圧力Pmin と変速機入力回転数を入力し、変速機トルク損失下限値Fm_minを演算する。ここで、変速機オイルポンプの下限圧力Pminは、クラッチ機構119などを係合状態にするために最低限必要な圧力などを基に算出する。 Next, the lower limit pressure Pmin of the transmission oil pump and the transmission input rotational speed are input to the transmission torque loss 602, and the transmission torque loss lower limit value Fm_min is calculated. Here, the lower limit pressure P min of the transmission oil pump is calculated on the basis of the minimum pressure required to bring the clutch mechanism 119 and the like into an engaged state.

S503では、変速機損失下限値Fm_minと目標損失トルクFtを比較し、変速機損失下限値Fm_minよりも目標損失トルクFtが小さい場合はS504に進み、クラッチ機構119を開放状態として処理を終了する。変速機損失下限値Fm_minよりも目標損失トルクFtが大きい場合はS505に進み、クラッチ機構119を締結状態として、変速比を制御することで変速機損失を調整する。 In S503, compares the transmission loss lower limit F m_min and the target torque loss F t, when the transmission loss lower limit F target torque loss F t than m_min smaller proceeds to S504, the processing of the clutch mechanism 119 as an open state Finish. Proceeds when the transmission loss lower limit F m_min target torque loss F t than is large S505, the engaged state of the clutch mechanism 119 to adjust the transmission losses by controlling the transmission ratio.

本実施例による第3の走行状態における制御形態は図7(c)に限定されず、図10(a)に示すように、クラッチ機構119を開放状態とした上で、ブレーキ機構115のみによって減速するものであっても良い。また、図10(b)に示すように、ブレーキ機構115と動力伝達機構の協調制御であってもよい。   The control mode in the third traveling state according to the present embodiment is not limited to FIG. 7C, and as shown in FIG. 10A, after the clutch mechanism 119 is in the open state, deceleration by only the brake mechanism 115 is performed. It may be Further, as shown in FIG. 10 (b), coordinated control of the brake mechanism 115 and the power transmission mechanism may be employed.

ブレーキ機構と動力伝達機構によるS209の具体的な処理について、図11を用いて説明する。S503で変速機損失下限値Fm_minよりも目標損失トルクFtが小さい場合は、クラッチを開放状態として、S1101のブレーキによる減速度調整処理に進む。これにより、クラッチ機構119の係合により、変速機損失Fm_minが目標損失トルクFtよりも大きくなってしまい要求減速度よりも小さい減速度になることを防ぐことが可能となる。 The specific process of S209 by the brake mechanism and the power transmission mechanism will be described with reference to FIG. If the transmission loss lower limit F target torque loss F t than m_min is small in S503, the open state of the clutch, the process proceeds to the deceleration adjusting process according S1101 brake. Thus, by the engagement of the clutch mechanism 119, it is possible to prevent the transmission loss F m_min becomes smaller deceleration than would request deceleration is greater than the target torque loss F t.

一方、変速機損失下限値Fm_minよりも目標損失トルクFtが大きい場合は、S1102の動力伝達機構とブレーキ協調減速度調整処理に進む。 On the other hand, when the transmission loss lower limit F target torque loss F t than m_min is large, the flow proceeds to the power transmission mechanism and the cooperative brake deceleration adjusting process of S1102.

動力伝達機構とブレーキ協調減速度調整処理S1102では、動力伝達機構の損失を優先して発生させる。すなわち、図12に示すようにクラッチ機構119を係合し、変速機入力回転数を上昇させておくことを意味する。これにより、第1の走行状態に切り替わる際に、素早くトルクコンバータを係合状態にすることが可能となる。また、変速機損失では目標損失トルク差を賄えない場合に、ブレーキ損失量を調整することで、要求減速度を達成することが可能となり、運転性が向上する。   In the power transmission mechanism and the brake coordination deceleration adjustment processing S1102, loss of the power transmission mechanism is generated with priority. That is, as shown in FIG. 12, this means that the clutch mechanism 119 is engaged to increase the transmission input rotational speed. Thereby, when switching to the first traveling state, it is possible to quickly put the torque converter into the engaged state. Further, when the transmission loss cannot cover the target loss torque difference, the required deceleration can be achieved by adjusting the brake loss amount, and the drivability is improved.

従来の車両制御装置では、エンジン損失によって制動を行うエンジンブレーキは制動力が比較的大きいために、必要以上に制動してしまい、速度を維持または上昇させるために再度エンジンを駆動させざるを得ない場合などがあった。
この点、本実施例の車両制御装置によれば、動力伝達状態やエンジンの駆動状態の異なる複数の走行状態を走行中に変更可能な車両を走行させる際に、車両を適切に制御することで、ドライバの違和感を低減することができる。即ち、本実施例の車両制御装置によれば、セーリングストップ走行時の減速度よりも大きく、エンジンブレーキ走行時の減速度よりも小さい減速度を発生させることが可能となる。従って、ドライバが手動運転を行う際のドライバの操作性の向上にも繋がる。なお、上記車両制御装置を例に説明したような動力遮断制動走行状態を利用することは、ドライバの違和感を低減する上で、手動運転だけでなく、自動運転においても有効である。
In a conventional vehicle control system, an engine brake that brakes due to an engine loss has a relatively large braking force and thus brakes more than necessary, and the engine must be driven again to maintain or increase the speed. There was a case.
In this respect, according to the vehicle control device of the present embodiment, when traveling a vehicle capable of changing a plurality of traveling states different in the power transmission state and the driving state of the engine while traveling, the vehicle is appropriately controlled. , The driver's uncomfortable feeling can be reduced. That is, according to the vehicle control device of the present embodiment, it is possible to generate a deceleration larger than the deceleration during sailing stop traveling and smaller than the deceleration during engine brake traveling. Therefore, the operability of the driver when the driver performs manual operation is also improved. In addition, it is effective not only in manual driving but also in automatic driving to reduce the driver's discomfort by using the power cutoff braking traveling state as described in the example of the vehicle control device.

本実施例では、車両の走行抵抗の内、空気抵抗を調整可能な手段を有した車両について説明する。ここで、空気抵抗を調整可能な手段としては、図13に示すように、車両前方に取り付けられた前方空気抵抗調整機構801や、車両後方に取り付けられた後方空気抵抗調整機構802などがある。前方空気抵抗調整機構801の一例としては、シャッターの開閉により、空気の流れを制御するものであり、シャッターが開いているときの方が閉じているときよりも、空気抵抗が大きくなる。また、後方空気抵抗調整機構802の一例としては、スポイラの収納状態と非収納状態の切り替えや非収納状態時のスポイラの角度調整により、空気の流れを制御するものであり、スポイラが出現した状態でかつ角度が大きいほど、空気抵抗が大きくなる。   In the present embodiment, of the traveling resistance of the vehicle, a vehicle having means capable of adjusting the air resistance will be described. Here, as means for adjusting the air resistance, as shown in FIG. 13, there are a front air resistance adjusting mechanism 801 attached to the front of the vehicle, a rear air resistance adjusting mechanism 802 attached to the rear of the vehicle, and the like. One example of the front air resistance adjustment mechanism 801 is to control the flow of air by opening and closing the shutter, and the air resistance becomes larger when the shutter is open than when the shutter is closed. In addition, as an example of the rear air resistance adjusting mechanism 802, the air flow is controlled by switching the storage state and non-storage state of the spoiler or adjusting the angle of the spoiler in the non-storage state, and the spoiler appears. And, the larger the angle, the greater the air resistance.

本実施例における制御方法について図14を用いて説明する。具体的には図15に示すように、
まず、S501で目標損失トルクFtを、要求減速度αdとクラッチ開放時の車両減速度αsを基に式(3)によって算出する。
The control method in a present Example is demonstrated using FIG. Specifically, as shown in FIG.
First, the target torque loss F t at S501, based on the request deceleration alpha d and the vehicle deceleration alpha s during clutch opening is calculated by the equation (3).

次に、S502で変速機損失下限値Fm_minを車速と変速比を基に算出する。次に、変速機トルク損失602に変速機オイルポンプの下限圧力Pmin と変速機入力回転数を入力し、変速機トルク損失下限値Fm_minを演算する。ここで、変速機オイルポンプの下限圧力Pminは、クラッチ機構119などを係合状態にするために最低限必要な圧力などを基に算出する。 Next, in S502, the transmission loss lower limit value F m — min is calculated based on the vehicle speed and the gear ratio. Next, the lower limit pressure Pmin of the transmission oil pump and the transmission input rotational speed are input to the transmission torque loss 602, and the transmission torque loss lower limit value Fm_min is calculated. Here, the lower limit pressure P min of the transmission oil pump is calculated on the basis of the minimum pressure required to bring the clutch mechanism 119 and the like into an engaged state.

S503では、変速機損失下限値Fm_minと目標損失トルクFtを比較し、変速機損失下限値Fm_minよりも目標損失トルクFtが小さい場合は、S901に進み、変速機損失下限値Fm_minよりも目標損失トルクFtが大きい場合は、S505の動力伝達機構とブレーキ協調減速度調整処理に進む。 In S503, it compares the transmission loss lower limit F m_min and the target torque loss F t, when the transmission loss lower limit F target torque loss F t than m_min is small, the process proceeds to S901, the transmission loss lower limit F m_min If the target loss torque Ft is larger than the above, the process proceeds to the power transmission mechanism and brake cooperative deceleration adjustment processing in S505.

動力伝達機構とブレーキ協調減速度調整処理S505では、動力伝達機構の損失を優先して発生させる。すなわち、図7に示すようにクラッチ機構119を係合し、変速機入力回転数を上昇させておくことを意味する。   In the power transmission mechanism and the brake coordinated deceleration adjustment processing S505, the loss of the power transmission mechanism is generated with priority. That is, as shown in FIG. 7, this means that the clutch mechanism 119 is engaged to increase the transmission input rotational speed.

S901では空気抵抗損失の上限値fa_maxを算出する。具体的には、空気抵抗損失faは式(4)によって算出され、Cd値を変化させることで空気抵抗損失を調整する。

Figure 0006553469
In S901, the upper limit value f a_max of the air resistance loss is calculated. Specifically, air resistance losses f a is calculated by equation (4), to adjust the air resistance loss by changing the C d value.
Figure 0006553469

ゆえに、第2の走行状態におけるCd値をCd2とすると、第3の走行状態における目標Cd値をCdtとすると、空気抵抗損失増量分fa_sは式(5)で計算することができる。

Figure 0006553469
ここで、Cdtは空気抵抗を調整可能な手段の制御状態によって制限されるため、式(6)に示すように、空気抵抗を調整可能な手段が、その状態において変化しうるCd値の最大値Cd_maxと、目標Cd値Cdtの内、小さい方を選択した結果を空気抵抗損失の上限値fa_maxとして出力する。
Figure 0006553469
Therefore, when the C d value in the second driving state and C d2, if the target C d value in the third driving state of the C dt, air resistance loss increment f a_s is be calculated by the formula (5) it can.
Figure 0006553469
Since C dt is limited by the control state of the adjustable means air resistance, as shown in equation (6), adjustable means of air resistance, the C d that may vary in their state The result of selecting the smaller one of the maximum value C d_max and the target C d value C dt is output as the upper limit value f a_max of the air resistance loss.
Figure 0006553469

S902では、図17に示すように、空気抵抗損失fa_maxで実現できなかった損失トルク分をブレーキ損失量によって賄うことで、目標損失トルクFtを実現する。これにより、ブレーキ損失量の負担分を軽減することが可能となり、ブレーキパッドの過熱や摩耗などを防ぐことが可能となる。 In S902, as shown in FIG. 17, the target loss torque F t is realized by compensating for the loss torque that could not be realized by the air resistance loss f a — max by the amount of brake loss. As a result, it is possible to reduce the share of the brake loss amount, and it is possible to prevent overheating and wear of the brake pads.

本実施例による第3の走行状態における制御形態は図15に限定されず、図16(a)に示すようにクラッチ機構119を開放状態とした上で、空気抵抗を調整可能な手段のみによって減速するものであっても良い。また、図16(b)に示すように、空気抵抗を調整可能な手段と動力伝達機構の協調制御によって減速するものでもよい。さらに、図16(c)に示すように、ブレーキ機構115と空気抵抗を調整可能な手段の協調制御によって減速するものでもよい。   The control mode in the third traveling state according to the present embodiment is not limited to FIG. 15. After the clutch mechanism 119 is opened as shown in FIG. 16 (a), deceleration is performed only by means capable of adjusting the air resistance. It may be Moreover, as shown in FIG.16 (b), you may decelerate by the cooperative control of the means which can adjust an air resistance, and a power transmission mechanism. Furthermore, as shown in FIG. 16 (c), the brake mechanism 115 and the air resistance may be decelerated by cooperative control of adjustable means.

図18は本実施例における車両制御装置の構成を示す図である。   FIG. 18 is a diagram showing a configuration of a vehicle control device in the present embodiment.

本実施例ではさらに、前方状況認識手段1101を備え、前方状況認識手段1101は、ナビゲーションシステム、カメラ、レーダ、車々間通信または路車間通信モジュールなど、少なくとも1つを備えている。   In the present embodiment, a front situation recognition unit 1101 is further provided, and the front situation recognition unit 1101 is provided with at least one of a navigation system, a camera, a radar, an inter-vehicle communication or a road-vehicle communication module.

本実施例における前方状況認識手段を用いた要求減速度推定S204について説明する。具体的には、先行車未検知と判断されたときには、要求減速度(システム判断)を0として出力し、先行車検知と判断されたときは、図19に示すように、相対速度Vrと車間時間THWを基に、要求減速度算出(システム判断)1201を算出し、出力する。ここで、相対速度Vrと、車間時間THWを式(7)(8)により算出する。

Figure 0006553469
Figure 0006553469
ここで、Vfは先行車の速度、Veは自車の速度、Dは自車と先行車の車間距離を表し、車間時間が小さく、相対速度が大きいほど、要求減速度は小さくなるように設定する。また、要求減速度は、相対速度Vrと車間時間THWを基に、式(9)を用いて算出してもよい。
Figure 0006553469
The required deceleration estimation S204 using the forward situation recognition means in this embodiment will be described. More specifically, when it is determined that the preceding vehicle not detected outputs required deceleration (system determined) as 0, when it is determined that the preceding vehicle detection, as shown in FIG. 19, the relative velocity V r Based on the inter-vehicle time THW, a required deceleration calculation (system judgment) 1201 is calculated and output. Here, the relative speed V r and the inter-vehicle time THW are calculated by the equations (7) and (8).
Figure 0006553469
Figure 0006553469
Here, V f represents the speed of the preceding vehicle, V e represents the speed of the vehicle, D represents the distance between the vehicle and the preceding vehicle, and the required deceleration decreases as the distance between the vehicle decreases and the relative speed increases. Set to The request deceleration, based on the relative velocity V r and the time headway THW, may be calculated using Equation (9).
Figure 0006553469

ここで、Cはドライバ依存の定数を表している。Cは固定値に限定されず、走行シーンなどに応じて切り替えるようにしてもよい。具体的には、図20に示すように、自車の走行状態を、自車速を基に「加速」、「定速」、「減速」と分類し、現在の走行状態と前方状況認識手段によって予測される走行状態を基に、Cを変化させる。Cは前方状況の変化に伴うドライバの反応の強さを表すものである。ゆえに、現在の走行状態と予測される走行状態に変化がない場合C1、加速に転じる場合C2、定速に転じる場合C3、減速に転じる場合C4とすると、それぞれの大小関係は、C4>C2>C3>C1に設定する。また、予測される走行状態は、先行車情報(先行車の減速度、ブレーキランプ、ウィンカー)や道路情報(信号の色、交差点、カーブ、上り勾配、下り勾配など)を基に判定する。これにより、前方状況の変化に伴うドライバの要求減速度の推定精度が向上する。   Here, C represents a driver dependent constant. C is not limited to a fixed value, and may be switched according to a traveling scene or the like. Specifically, as shown in FIG. 20, the traveling state of the own vehicle is classified into “acceleration”, “constant speed”, and “deceleration” based on the own vehicle speed, and the current traveling state and the forward situation recognition means Change C based on the predicted driving condition. C represents the strength of the driver's response to the change in the front situation. Therefore, if there is no change in the current driving state and the predicted driving state, C1 when turning to acceleration, C3 when turning to constant speed, C4 when turning to constant speed, the magnitude relationship of C4> C2> Set C3> C1. The predicted traveling state is determined based on the preceding vehicle information (deceleration of the preceding vehicle, brake lamp, blinker) and road information (signal color, intersection, curve, uphill, downhill, etc.). As a result, the estimation accuracy of the driver's request deceleration accompanying the change in the front situation is improved.

前方要求減速度αdは、要求減速度(ドライバ操作)401と要求減速度(システム判断)901の内、減速度が小さい方を要求減速度として採用する。これにより、安全性を担保しつつ、適切な減速度を実現することが可能となる。また、システムが適切な減速度を実現することで、ドライバ操作頻度を減らすことが可能となり、快適性が向上する。 Of the forward required deceleration αd, one of the required deceleration (driver operation) 401 and the required deceleration (system determination) 901, whichever is smaller in deceleration, is adopted as the required deceleration. As a result, it is possible to realize an appropriate deceleration while ensuring safety. In addition, when the system realizes an appropriate deceleration, it is possible to reduce the frequency of driver operations and improve comfort.

100 車両
101 エンジン
102 動力伝達機構
103 最終減速機
104 差動減速機
105 スタータモータ
106 発電機
107 駆動ベルト
108 バッテリ
109 車載電装機器
111 コントローラ
112 アクセル踏み込み量検出手段
113 ブレーキ踏み込み量検出手段
114 車速検出手段
115 ブレーキ機構
116 トルクコンバータ
117 オイルポンプ
118 変速機構
119 クラッチ機構
120 オイルポンプ駆動用チェーン
121 エンジン回転数検出手段
1101 前方状況認識手段
Reference Signs List 100 vehicle 101 engine 102 power transmission mechanism 103 final reduction gear 104 differential reduction gear 105 starter motor 106 generator 107 drive belt 108 battery 109 vehicle electrical equipment 111 controller 112 accelerator depression amount detection means 113 brake depression amount detection means 114 vehicle speed detection means 115 Brake mechanism 116 Torque converter 117 Oil pump 118 Transmission mechanism 119 Clutch mechanism 120 Oil pump drive chain 121 Engine rotation speed detection means 1101 Front situation recognition means

Claims (8)

エンジンと車軸との間の動力伝達状態を制御する動力伝達機構と、制動手段とを有する車両を制御する車両制御装置であって、
前記動力伝達機構によって動力を伝達させ、前記エンジンの燃料供給を停止して前記車両を走行させる動力伝達エンジン停止走行状態と、
前記動力伝達機構による動力を遮断し、前記エンジンの燃料供給を停止し、前記動力伝達エンジン停止走行状態よりも制動力が小さくなるように前記制動手段を制御して前記車両を走行させる動力遮断制動走行状態と、を車両走行状態として有し、
前方状況を検知する前方状況認識手段を有する車両を制御する車両制御装置であって、 前記前方状況認識手段によって予測される走行状態に基づいて、前記複数の車両走行状態の中から車両走行状態を選択することを特徴とする車両制御装置。
A vehicle control device for controlling a vehicle having a power transmission mechanism for controlling a power transmission state between an engine and an axle, and a braking means,
A power transmission engine stop running state in which power is transmitted by the power transmission mechanism, fuel supply of the engine is stopped and the vehicle is driven;
Power cut-off braking is performed to cut off the power by the power transmission mechanism, to stop the fuel supply of the engine, and to control the braking means so that the braking force becomes smaller than the power transmission engine stop traveling state. And a traveling state as the vehicle traveling state
A vehicle control apparatus for controlling a vehicle having a forward condition recognition means for detecting the forward situation, on the basis of the forward situation running state recognizing means thus is predicted, the vehicle driving state from the plurality of vehicle running state The vehicle control apparatus characterized by selecting.
エンジンと車軸との間の動力伝達状態を制御する動力伝達機構と、制動手段とを有する車両を制御する車両制御装置であって、  A vehicle control device for controlling a vehicle having a power transmission mechanism for controlling a power transmission state between an engine and an axle, and a braking means,
前記動力伝達機構によって動力を伝達させ、前記エンジンの燃料供給を停止して前記車両を走行させる動力伝達エンジン停止走行状態と、  A power transmission engine stop traveling state in which power is transmitted by the power transmission mechanism and the fuel supply of the engine is stopped to cause the vehicle to travel;
前記動力伝達機構による動力を遮断し、前記エンジンの燃料供給を停止し、前記動力伝達エンジン停止走行状態よりも制動力が小さくなるように前記制動手段を制御して前記車両を走行させる動力遮断制動走行状態と、を車両走行状態として有し、  Power cut-off braking is performed to cut off the power by the power transmission mechanism, to stop the fuel supply of the engine, and to control the braking means so that the braking force becomes smaller than the power transmission engine stop traveling state. And having a running state as a vehicle running state,
要求される減速度を推定する要求減速度推定手段を備え、前記要求減速度推定手段によって推定された減速度に基づいて、前記各走行状態の中から選択した走行状態で走行させ、  The vehicle is provided with a required deceleration estimating means for estimating a required deceleration, and is made to travel in a traveling state selected from the respective traveling states based on the deceleration estimated by the required deceleration estimating means,
アクセルペダルの操作量を検出する手段と、ブレーキペダルの操作量を検出する手段を備え、前記要求減速度推定手段は、アクセルペダル操作量が零で、ブレーキペダル操作量が零から制動力発生する操作量閾値までは、要求減速度を所定の値に設定し、ブレーキペダル操作量が制動力発生する操作量閾値よりも大きくなったときは、ブレーキペダル操作量に応じて、要求減速度を小さくするように推定することを特徴とする車両制御装置。The required deceleration estimation means generates a braking force from zero when the accelerator pedal operation amount is zero and the brake pedal operation amount is zero. The required deceleration is set to a predetermined value up to the operation amount threshold, and when the brake pedal operation amount becomes larger than the operation amount threshold at which the braking force is generated, the request deceleration is decreased according to the brake pedal operation amount. A vehicle control apparatus characterized by estimating as follows.
エンジンと車軸との間の動力伝達状態を制御する動力伝達機構と、制動手段とを有する車両を制御する車両制御装置であって、  A vehicle control device for controlling a vehicle having a power transmission mechanism for controlling a power transmission state between an engine and an axle, and a braking means,
前記動力伝達機構によって動力を伝達させ、前記エンジンの燃料供給を停止して前記車両を走行させる動力伝達エンジン停止走行状態と、  A power transmission engine stop traveling state in which power is transmitted by the power transmission mechanism and the fuel supply of the engine is stopped to cause the vehicle to travel;
前記動力伝達機構による動力を遮断し、前記エンジンの燃料供給を停止し、前記動力伝達エンジン停止走行状態よりも制動力が小さくなるように前記制動手段を制御して前記車両を走行させる動力遮断制動走行状態と、を車両走行状態として有し、  Power cut-off braking is performed to cut off the power by the power transmission mechanism, to stop the fuel supply of the engine, and to control the braking means so that the braking force becomes smaller than the power transmission engine stop traveling state. And a traveling state as a vehicle traveling state,
要求される減速度を推定する要求減速度推定手段を備え、前記要求減速度推定手段によって推定された減速度に基づいて、前記各走行状態の中から選択した走行状態で走行させ、  The vehicle is provided with a required deceleration estimating means for estimating a required deceleration, and is made to travel in a traveling state selected from the respective traveling states based on the deceleration estimated by the required deceleration estimating means,
自車の前方状況を認識する前方状況認識手段と、アクセルペダルの操作量を検出する手段と、ブレーキペダルの操作量を検出する手段を備え、前記要求減速度推定手段は、前方状況認識を基に算出したシステム要求減速度と、アクセルペダル操作量とブレーキペダル操作量を基に算出したドライバ要求減速度とを比較し、小さい方を要求減速度として出力することを特徴とする車両制御装置。  The system includes a front situation recognition unit that recognizes a front situation of the vehicle, a unit that detects an operation amount of an accelerator pedal, and a unit that detects an operation amount of a brake pedal, and the required deceleration estimation unit is based on the front situation recognition. A vehicle control apparatus characterized by comparing the calculated system request deceleration with the driver request deceleration calculated based on the accelerator pedal operation amount and the brake pedal operation amount, and outputting the smaller one as the required deceleration.
エンジンと車軸との間の動力伝達状態を制御する動力伝達機構と、制動手段とを有する車両を制御する車両制御装置であって、  A vehicle control device for controlling a vehicle having a power transmission mechanism for controlling a power transmission state between an engine and an axle, and a braking means,
前記動力伝達機構によって動力を伝達させ、前記エンジンの燃料供給を停止して前記車両を走行させる動力伝達エンジン停止走行状態と、  A power transmission engine stop running state in which power is transmitted by the power transmission mechanism, fuel supply of the engine is stopped and the vehicle is driven;
前記動力伝達機構による動力を遮断し、前記エンジンの燃料供給を停止し、前記動力伝達エンジン停止走行状態よりも制動力が小さくなるように前記制動手段を制御して前記車両を走行させる動力遮断制動走行状態と、を車両走行状態として有し、  Power cut-off braking is performed to cut off the power by the power transmission mechanism, to stop the fuel supply of the engine, and to control the braking means so that the braking force becomes smaller than the power transmission engine stop traveling state. And having a running state as a vehicle running state,
前記制動手段は、変速機損失を調整可能な変速機構、ブレーキペダル操作量によらずブレーキ力を制御可能なブレーキ機構、あるいは、空気抵抗を調整可能な手段の少なくとも1つ以上を制御して、車両の減速度を調整し、  The braking means controls at least one or more of a transmission mechanism capable of adjusting a transmission loss, a brake mechanism capable of controlling a braking force regardless of a brake pedal operation amount, or a means capable of adjusting an air resistance. Adjust the vehicle deceleration,
要求される減速度を推定する要求減速度推定手段を備え、  A demand deceleration estimation means for estimating the required deceleration;
前記制動手段は、前記要求減速度推定手段によって推定された要求減速度と車速情報を基に、前記変速機構による損失量とブレーキ機構による損失量の割合を変更することを特徴とする車両制御装置。  A vehicle control apparatus characterized in that the braking means changes the ratio of the amount of loss by the transmission mechanism and the amount of loss by the braking mechanism based on the required deceleration and the vehicle speed information estimated by the required deceleration estimation means. .
エンジンと車軸との間の動力伝達状態を制御する動力伝達機構と、制動手段とを有する車両を制御する車両制御装置であって、  A vehicle control device for controlling a vehicle having a power transmission mechanism for controlling a power transmission state between an engine and an axle, and a braking means,
前記動力伝達機構によって動力を伝達させ、前記エンジンの燃料供給を停止して前記車両を走行させる動力伝達エンジン停止走行状態と、  A power transmission engine stop traveling state in which power is transmitted by the power transmission mechanism and the fuel supply of the engine is stopped to cause the vehicle to travel;
前記動力伝達機構による動力を遮断し、前記エンジンの燃料供給を停止し、前記動力伝達エンジン停止走行状態よりも制動力が小さくなるように前記制動手段を制御して前記車両を走行させる動力遮断制動走行状態と、を車両走行状態として有し、  Power cut-off braking is performed to cut off the power by the power transmission mechanism, to stop the fuel supply of the engine, and to control the braking means so that the braking force becomes smaller than the power transmission engine stop traveling state. And having a running state as a vehicle running state,
前記制動手段は、変速機損失を調整可能な変速機構、ブレーキペダル操作量によらずブレーキ力を制御可能なブレーキ機構、あるいは、空気抵抗を調整可能な手段の少なくとも1つ以上を制御して、車両の減速度を調整し、  The braking means controls at least one or more of a transmission mechanism capable of adjusting a transmission loss, a brake mechanism capable of controlling a braking force regardless of a brake pedal operation amount, or a means capable of adjusting an air resistance. Adjust the vehicle deceleration,
当該車両制御装置は要求される減速度を推定する要求減速度推定手段を備え、前記要求減速度推定手段によって推定された減速度を基に要求損失トルクを算出する要求損失トルク手段を有し、前記変速機構による損失トルクの最小値が、要求損失トルクよりも大きいときはブレーキ機構によって要求損失トルクを出力することを特徴とする車両制御装置。The vehicle control device comprises demand deceleration estimation means for estimating a required deceleration, and has demand loss torque means for computing a demand loss torque based on the deceleration estimated by the demand deceleration estimation means, A vehicle control apparatus characterized in that the required loss torque is outputted by the brake mechanism when the minimum value of the loss torque by the transmission mechanism is larger than the required loss torque.
エンジンと車軸との間の動力伝達状態を制御する動力伝達機構と、制動手段とを有する車両を制御する車両制御装置であって、  A vehicle control device for controlling a vehicle having a power transmission mechanism for controlling a power transmission state between an engine and an axle, and a braking means,
前記動力伝達機構によって動力を伝達させ、前記エンジンの燃料供給を停止して前記車両を走行させる動力伝達エンジン停止走行状態と、  A power transmission engine stop running state in which power is transmitted by the power transmission mechanism, fuel supply of the engine is stopped and the vehicle is driven;
前記動力伝達機構による動力を遮断し、前記エンジンの燃料供給を停止し、前記動力伝達エンジン停止走行状態よりも制動力が小さくなるように前記制動手段を制御して前記車両を走行させる動力遮断制動走行状態と、を車両走行状態として有し、  Power cut-off braking is performed to cut off the power by the power transmission mechanism, to stop the fuel supply of the engine, and to control the braking means so that the braking force becomes smaller than the power transmission engine stop traveling state. And having a running state as a vehicle running state,
要求される減速度を推定する要求減速度推定手段を備え、A demand deceleration estimation means for estimating the required deceleration;
前記制動手段は、前記要求減速度推定手段によって推定された要求減速度と車速情報を基に、前記空気抵抗調整可能な手段による損失量とブレーキ機構による損失量の割合を変更することを特徴とする車両制御装置。  The braking means changes the ratio of the amount of loss by the means capable of adjusting the air resistance and the amount of loss by the braking mechanism based on the required deceleration and the vehicle speed information estimated by the required deceleration estimation means. Vehicle control device.
請求項に記載の車両制御装置において、
前記前方状況認識を基に算出したシステム要求減速度は、先行車の減速度と自車の減速度に応じて補正することを特徴とする車両制御装置。
In the vehicle control device according to claim 3 ,
A vehicle control apparatus characterized in that the system request deceleration calculated based on the front situation recognition is corrected according to the deceleration of the preceding vehicle and the deceleration of the own vehicle.
請求項に記載の車両制御装置において、
前記前方状況認識を基に算出したシステム要求減速度は、先行車の減速度が零の補正量よりも、先行車の減速度が零より大きい場合の補正量を大きくし、さらに、先行車の減速度が零より大きい場合の補正量よりも、先行車の減速度が零より小さい場合の補正量を大きくすることを特徴とする車両制御装置。
In the vehicle control device according to claim 3 ,
The system requirement deceleration calculated based on the preceding situation recognition makes the correction amount when the deceleration of the preceding vehicle is larger than zero larger than the correction amount of the preceding vehicle's deceleration, and further, A vehicle control apparatus characterized in that the correction amount when the deceleration of a preceding vehicle is smaller than zero is larger than the correction amount when the deceleration is larger than zero.
JP2015190610A 2015-09-29 2015-09-29 Vehicle control device Active JP6553469B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015190610A JP6553469B2 (en) 2015-09-29 2015-09-29 Vehicle control device
CN201680054876.1A CN108025750B (en) 2015-09-29 2016-08-05 Vehicle control device
US15/758,629 US10710589B2 (en) 2015-09-29 2016-08-05 Vehicle control device
EP16850900.8A EP3357779B1 (en) 2015-09-29 2016-08-05 Vehicle control device
PCT/JP2016/073028 WO2017056723A1 (en) 2015-09-29 2016-08-05 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190610A JP6553469B2 (en) 2015-09-29 2015-09-29 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2017065327A JP2017065327A (en) 2017-04-06
JP6553469B2 true JP6553469B2 (en) 2019-07-31

Family

ID=58427401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190610A Active JP6553469B2 (en) 2015-09-29 2015-09-29 Vehicle control device

Country Status (5)

Country Link
US (1) US10710589B2 (en)
EP (1) EP3357779B1 (en)
JP (1) JP6553469B2 (en)
CN (1) CN108025750B (en)
WO (1) WO2017056723A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361590B2 (en) * 2015-06-16 2018-07-25 トヨタ自動車株式会社 Vehicle control device
DE102017211931B4 (en) * 2017-07-12 2022-12-29 Volkswagen Aktiengesellschaft Method for adjusting at least one operating parameter of a motor vehicle, system for adjusting at least one operating parameter of a motor vehicle and motor vehicle
JP6481745B1 (en) * 2017-11-24 2019-03-13 マツダ株式会社 Vehicle control device
JP6997413B2 (en) 2018-03-28 2022-01-17 マツダ株式会社 Vehicle control device
JP7464355B2 (en) 2018-08-07 2024-04-09 トヨタ自動車株式会社 Braking force control device, control device, manager, method, program, actuator system, and vehicle
JP6719522B2 (en) * 2018-09-18 2020-07-08 株式会社Subaru Vehicle control device
JP7035995B2 (en) * 2018-12-25 2022-03-15 トヨタ自動車株式会社 Driving support device
JP7207004B2 (en) * 2019-02-25 2023-01-18 トヨタ自動車株式会社 electric vehicle controller
US11407302B2 (en) * 2020-02-26 2022-08-09 Borgwarner Inc. Torque transfer assembly and vehicle including the same
JP7569189B2 (en) 2020-09-25 2024-10-17 株式会社Subaru Vehicle control device
US11491983B1 (en) * 2021-06-04 2022-11-08 Hyundai Motor Company Vehicle coasting optimization
WO2024203713A1 (en) * 2023-03-27 2024-10-03 株式会社アイシン Parking assist system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501790B2 (en) * 2005-06-15 2010-07-14 トヨタ自動車株式会社 Vehicle deceleration control device
DE102007004412A1 (en) * 2007-01-30 2008-07-31 Zf Friedrichshafen Ag Device for motor vehicle, has combustion engine, which stands in active connection with gearbox by automated clutch, where motor braking allows low transmission as transmissions for driving operations
JP2009051407A (en) * 2007-08-28 2009-03-12 Denso Corp Vehicle controller and program
JP2009234566A (en) * 2008-03-03 2009-10-15 Nissan Motor Co Ltd Clutch controller and clutch control method of hybrid vehicle
DE102008029453B4 (en) 2008-06-21 2021-01-28 Bayerische Motoren Werke Aktiengesellschaft Method for setting a so-called "sailing mode" in a motor vehicle
JP2012047148A (en) 2010-08-30 2012-03-08 Toyota Motor Corp Control device of vehicle
JP5531915B2 (en) * 2010-11-02 2014-06-25 トヨタ自動車株式会社 Vehicle control device
DE102011102332B3 (en) 2011-05-25 2012-10-25 Audi Ag Method for operating a longitudinal driver assistance system in a motor vehicle and motor vehicle
DE102011050739A1 (en) * 2011-05-31 2012-12-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for operating motor vehicle, involves selecting distance-regulating operating mode or speed- and distance regulated operating mode, where immediately preceding motor vehicle is provided with respective changes
DE102012206135A1 (en) * 2012-04-16 2013-10-17 Ford Global Technologies, Llc A method of switching from a sailing or free rolling operation of a motor vehicle to a fuel cut operation
CN104520602B (en) * 2012-08-08 2017-09-12 丰田自动车株式会社 The travel controlling system of vehicle
JP5741551B2 (en) 2012-10-24 2015-07-01 トヨタ自動車株式会社 Vehicle travel control device
WO2014068720A1 (en) * 2012-10-31 2014-05-08 トヨタ自動車株式会社 Vehicle travel control device
EP2915712B1 (en) 2012-10-31 2022-05-11 Toyota Jidosha Kabushiki Kaisha Vehicle travel controller
GB2519161A (en) * 2013-10-14 2015-04-15 Gm Global Tech Operations Inc Method of controlling aerodynamic devices in an automotive system during sailing driving
JP6065878B2 (en) * 2014-06-09 2017-01-25 トヨタ自動車株式会社 Vehicle control apparatus and vehicle control method

Also Published As

Publication number Publication date
US20180304892A1 (en) 2018-10-25
JP2017065327A (en) 2017-04-06
US10710589B2 (en) 2020-07-14
EP3357779A4 (en) 2019-06-05
EP3357779A1 (en) 2018-08-08
CN108025750A (en) 2018-05-11
EP3357779B1 (en) 2020-12-16
CN108025750B (en) 2021-05-28
WO2017056723A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6553469B2 (en) Vehicle control device
US10576964B2 (en) Vehicle and control method for vehicle
KR101986472B1 (en) A driving force control method and a driving force control apparatus
US11052895B2 (en) Vehicle control unit
JP5561231B2 (en) Vehicle control system
WO2015033707A1 (en) Vehicle control device
US20130131948A1 (en) Coasting control device
JP2012047148A (en) Control device of vehicle
JP2005164010A (en) Deceleration control device of vehicle
US9073540B2 (en) Deceleration control system for a vehicle
JP2012214181A (en) Vehicle control system
JP2011183963A (en) Vehicle control system
WO2019116553A1 (en) Regenerative braking control method and regenerative braking control device
KR102621532B1 (en) Regenerative braking system and method using paddle shift
JP2009179247A (en) Motion controller for vehicle
JP6079036B2 (en) VEHICLE DRIVE CONTROL DEVICE AND VEHICLE DRIVE CONTROL METHOD
JP2010241245A (en) Driving power controller for vehicle
JP2022137732A (en) Travel controller for vehicle
US20190168756A1 (en) Method for operating a motor vehicle, and corresponding motor vehicle
JP2017087799A (en) Vehicle control apparatus
JP5958649B2 (en) Control device for hybrid vehicle
WO2018008536A1 (en) Vehicle control device
JP2005127424A (en) Driving force control device for vehicle
KR20180004443A (en) Adaptive cruise control apparatus and adaptive cruise control method for improving fuel efficiency
JP2017115935A (en) Vehicular shift control device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190704

R150 Certificate of patent or registration of utility model

Ref document number: 6553469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250