JP6544082B2 - Light emitting device - Google Patents
Light emitting device Download PDFInfo
- Publication number
- JP6544082B2 JP6544082B2 JP2015131149A JP2015131149A JP6544082B2 JP 6544082 B2 JP6544082 B2 JP 6544082B2 JP 2015131149 A JP2015131149 A JP 2015131149A JP 2015131149 A JP2015131149 A JP 2015131149A JP 6544082 B2 JP6544082 B2 JP 6544082B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- light
- light emitting
- point
- emitting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 108
- 238000000295 emission spectrum Methods 0.000 claims description 30
- 239000011230 binding agent Substances 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 16
- 238000010586 diagram Methods 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052727 yttrium Inorganic materials 0.000 claims description 7
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- 229910017639 MgSi Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 description 21
- 239000011575 calcium Substances 0.000 description 17
- 229910052712 strontium Inorganic materials 0.000 description 13
- 229910052791 calcium Inorganic materials 0.000 description 12
- 229910052788 barium Inorganic materials 0.000 description 11
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 229920002050 silicone resin Polymers 0.000 description 10
- 230000004907 flux Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 239000013074 reference sample Substances 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 239000011342 resin composition Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910052765 Lutetium Inorganic materials 0.000 description 4
- 229910052771 Terbium Inorganic materials 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 102100032047 Alsin Human genes 0.000 description 2
- 101710187109 Alsin Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 235000019700 dicalcium phosphate Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- -1 gallium nitride compound Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000000749 insecticidal effect Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48257—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
Landscapes
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Description
本開示は、発光装置に関する。 The present disclosure relates to a light emitting device.
発光ダイオード(Light emitting diode、以下、「LED」と呼ぶ。)のような発光素子を用いる発光装置として、青色発光の発光素子及び黄色発光等の蛍光体を用いる白色系の発光装置がよく知られている。このような発光装置は、一般照明、車載照明、ディスプレイ、液晶用バックライト等の幅広い分野で使用されている。 As a light emitting device using a light emitting element such as a light emitting diode (hereinafter referred to as "LED"), a white light emitting device using a blue light emitting element and a yellow light emitting phosphor is well known. ing. Such light emitting devices are used in a wide range of fields such as general lighting, vehicle lighting, displays, backlights for liquid crystals, and the like.
一方、特殊照明、特に露光室用の照明、防虫・低誘虫照明には、紫外から青色の発光成分が少ない黄色蛍光灯が一般的に使用されてきた。近年ではLEDを利用した白色系発光の発光装置へ紫外から青色の光をカットするポリカーボネート製の黄色カバー、安価なシリコーン製の黄色フィルムなどを装着した黄色照明が利用されている。また、LEDを用いて濃い黄色系に発光する高輝度の発光装置が知られている(例えば、特許文献1参照)。 On the other hand, yellow fluorescent lamps having a small amount of light components from ultraviolet to blue have generally been used for special lighting, particularly for illumination in an exposure room, and insect and low insecticidal lighting. In recent years, a yellow light with a polycarbonate yellow cover, an inexpensive silicone yellow film, or the like that cuts ultraviolet light to blue light is used for a white light emitting device using LEDs. In addition, a high-intensity light emitting device that emits a deep yellow light by using an LED is known (see, for example, Patent Document 1).
黄色照明の光源として白色系発光の発光装置を用いる場合には、発光装置とは別に黄色カバー、黄色フィルム等の部材を準備する必要があり、また、それらの部材の材料(例えば、樹脂)が劣化する等の課題があった。また特許文献1に記載の発光装置では蛍光体とは別にフィルターとなる部材が必須であった。
本開示の一実施形態は、青色発光が抑制され、発光特性に優れる発光装置を提供することを目的とする。
When using a light emitting device of white light emission as a light source of yellow illumination, it is necessary to prepare a member such as a yellow cover and a yellow film separately from the light emitting device, and materials of those members (for example, resin) There was a problem such as deterioration. Further, in the light emitting device described in Patent Document 1, a member serving as a filter is essential in addition to the phosphor.
An embodiment of the present disclosure aims to provide a light emitting device in which blue light emission is suppressed and the light emission characteristic is excellent.
前記課題を解決するための具体的手段は以下の通りであり、本開示に係る実施形態は以下の態様を包含する。
第一の態様は、430nm以上485nm以下の波長範囲に発光ピーク波長を有する発光素子と、下記式(I)で表される組成を有し、前記発光素子からの光により励起されて500nm以上580nm以下の波長範囲に発光ピーク波長を有する光を発する第一蛍光体と結着剤とを含む蛍光部材と、を備え、前記蛍光部材中の第一蛍光体の含有量が、結着剤に対して80重量%以上であり、CIE1931の色度図において、色度座標(x,y)が、(0.444,0.555)である第一の点、(0.416,0.499)である第二の点、(0.340,0.570)である第三の点及び(0.373,0.624)である第四の点について、第一の点及び第二の点を結ぶ第一の直線と、第二の点及び第三の点を結ぶ第二の直線と、第三の点及び第四の点を結ぶ第三の直線と、第四の点及び第一の点を結ぶ色度図の曲線とで囲まれる範囲の光を発する発光装置である。
(Lu,Y,Gd,Tb)3(Al,Ga)5O12:Ce (I)
The specific means for solving the said subject is as follows, and the embodiment which concerns on this indication includes the following aspects.
The first embodiment has a light emitting element having an emission peak wavelength in a wavelength range of 430 nm to 485 nm, and a composition represented by the following formula (I), and is excited by light from the light emitting element to 500 nm to 580 nm And a fluorescent member containing a first phosphor that emits light having a light emission peak wavelength in the following wavelength range and a binder, wherein the content of the first phosphor in the fluorescent member is relative to the binder Of at least 80% by weight, and in the CIE 1931 chromaticity diagram, the first point where the chromaticity coordinates (x, y) are (0.444, 0.555), (0.416, 0.499) For the second point that is the third point that is (0.340, 0.570) and the fourth point that is (0.373, 0.624), the first point and the second point A first straight line connecting the second point and a second straight line connecting the second point and the third point; A third straight line connecting the point and the fourth point, a light emitting device that emits light in the range enclosed by the curve of the chromaticity diagram connecting the fourth point and the first point.
(Lu, Y, Gd, Tb) 3 (Al, Ga) 5 O 12 : Ce (I)
第二の態様は、430nm以上485nm以下の波長範囲に発光ピーク波長を有する光を発する発光素子と、下記式(I)で表される組成を有し、前記発光素子からの光により励起されて500nm以上580nm以下の波長範囲に発光ピーク波長を有する光を発する第一蛍光体、下記(II)で表される組成を有し、前記発光素子からの光により励起されて500nm以上580nm以下の波長範囲に発光ピーク波長を有する光を発する第二の蛍光体及び結着剤を含む蛍光部材と、を備え、CIE1931の色度図において、色度座標(x,y)が、(0.512,0.487)である第五の点、(0.467,0.448)である第六の点、(0.340,0.570)である第三の点及び(0.373,0.624)である第四の点について、第五の点及び第六の点を結ぶ第四の直線と、第六の点及び第三の点を結ぶ第五の直線と、第三の点及び第四の点を結ぶ第三の直線と、第四の点及び第五の点を結ぶ色度図の曲線とで囲まれる範囲の光を発する発光装置である。
(Lu,Y,Gd,Tb)3(Al,Ga)5O12:Ce (I)
(Ca,Sr,Ba)8MgSi4O16(F,Cl,Br)2:Eu (II)
The second embodiment has a light emitting element that emits light having an emission peak wavelength in a wavelength range of 430 nm to 485 nm, and a composition represented by the following formula (I), and is excited by light from the light emitting element A first phosphor that emits light having a light emission peak wavelength in the wavelength range of 500 nm to 580 nm, a composition represented by (II) below, a wavelength of 500 nm to 580 nm excited by light from the light emitting element And a fluorescent member containing a second phosphor that emits light having a light emission peak wavelength in the range and a binder, and the chromaticity coordinate (x, y) in the chromaticity diagram of CIE 1931 is (0.512, A fifth point which is 0.487), a sixth point which is (0.467, 0.448), a third point which is (0.340, 0.570) and (0.373, 0. 6). 624) to the fourth point And a fourth straight line connecting the fifth point and the sixth point, a fifth straight line connecting the sixth point and the third point, and a third line connecting the third point and the fourth point The light emitting device emits light in a range surrounded by a straight line and a curve of a chromaticity diagram connecting the fourth point and the fifth point.
(Lu, Y, Gd, Tb) 3 (Al, Ga) 5 O 12 : Ce (I)
(Ca, Sr, Ba) 8 MgSi 4 O 16 (F, Cl, Br) 2: Eu (II)
本開示の一実施形態によれば、青色発光が抑制され、発光特性に優れる発光装置を提供することができる。 According to an embodiment of the present disclosure, it is possible to provide a light emitting device in which blue light emission is suppressed and the light emission characteristic is excellent.
以下、本開示に係る発光装置を、実施の形態及び実施例に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための、発光装置を例示するものであって、本発明は、発光装置を以下のものに特定しない。
なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。
本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
Hereinafter, the light emitting device according to the present disclosure will be described based on the embodiment and the examples. However, the embodiments shown below exemplify light emitting devices for embodying the technical concept of the present invention, and the present invention does not specify the light emitting devices as the following.
The relationship between the color name and the chromaticity coordinates, the relationship between the wavelength range of light and the color name of monochromatic light, etc. conform to JIS Z8110.
In the present specification, when there are a plurality of substances corresponding to each component in the composition, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified. means.
発光装置
第一の態様の発光装置は、430nm以上485nm以下の波長範囲に発光ピーク波長を有する発光素子と、下記式(I)で表される組成を有し、前記発光素子からの光により励起されて500nm以上580nm以下の波長範囲に発光ピーク波長を有する光を発する第一蛍光体と結着剤とを含む蛍光部材と、を備え、前記蛍光部材中の第一蛍光体の含有量が、結着剤に対して80重量%以上であり、CIE1931の色度図において、色度座標(x,y)が、(0.444,0.555)である第一の点、(0.416,0.499)である第二の点、(0.340,0.570)である第三の点及び(0.373,0.624)である第四の点について、第一の点及び第二の点を結ぶ第一の直線と、第二の点及び第三の点を結ぶ第二の直線と、第三の点及び第四の点を結ぶ第三の直線と、第四の点及び第一の点を結ぶ色度図の曲線とで囲まれる範囲(以下、「第一の色度座標範囲」ともいう。)の光を発する。
(Lu,Y,Gd,Tb)3(Al,Ga)5O12:Ce (I)
Light Emitting Device The light emitting device of the first aspect has a light emitting element having an emission peak wavelength in a wavelength range of 430 nm to 485 nm and a composition represented by the following formula (I), and is excited by light from the light emitting element And a fluorescent member containing a first phosphor that emits light having a light emission peak wavelength in the wavelength range of 500 nm to 580 nm and a binder, and the content of the first phosphor in the fluorescent member is The first point at which the concentration is 80% by weight or more with respect to the binder and in the chromaticity diagram of CIE 1931 the chromaticity coordinates (x, y) are (0.444, 0.555), (0.416 , 0.499), the third point (0.340, 0.570) and the fourth point (0.373, 0.624), the first point and the second point Connect the first straight line connecting the second point and the second and third points The range enclosed by the second straight line, the third straight line connecting the third point and the fourth point, and the curve of the chromaticity diagram connecting the fourth point and the first point It emits light with a range of
(Lu, Y, Gd, Tb) 3 (Al, Ga) 5 O 12 : Ce (I)
また、第二の態様の発光装置は、430nm以上485nm以下の波長範囲に発光ピーク波長を有する光を発する発光素子と、下記式(I)で表される組成を有し、前記発光素子からの光により励起されて500nm以上580nm以下の波長範囲に発光ピーク波長を有する光を発する第一蛍光体、下記(II)で表される組成を有し、前記発光素子からの光により励起されて500nm以上580nm以下の波長範囲に発光ピーク波長を有する光を発する第二の蛍光体及び結着剤を含む蛍光部材と、を備え、CIE1931の色度図において、色度座標(x,y)が、(0.512,0.487)である第五の点、(0.467,0.448)である第六の点、(0.340,0.570)である第三の点及び(0.373,0.624)である第四の点について、第五の点及び第六の点を結ぶ第四の直線と、第六の点及び第三の点を結ぶ第五の直線と、第三の点及び第四の点を結ぶ第三の直線と、第四の点及び第五の点を結ぶ色度図の曲線とで囲まれる範囲(以下、「第二の色度座標範囲」ともいう。)の光を発する。
(Lu,Y,Gd,Tb)3(Al,Ga)5O12:Ce (I)
(Ca,Sr,Ba)8MgSi4O16(F,Cl,Br)2:Eu (II)
The light emitting device of the second aspect has a light emitting element that emits light having a light emission peak wavelength in the wavelength range of 430 nm to 485 nm and a composition represented by the following formula (I); A first phosphor that emits light having an emission peak wavelength in the wavelength range of 500 nm to 580 nm when excited by light, has a composition represented by (II) below, and is 500 nm when excited by light from the light emitting element And a fluorescent member containing a second phosphor and a binder that emits light having a light emission peak wavelength in the wavelength range of not less than 580 nm, and in the chromaticity diagram of CIE 1931, the chromaticity coordinates (x, y) are The fifth point which is (0.512, 0.487), the sixth point which is (0.467, 0.448), the third point which is (0.340, 0.570) and (0 .373, 0.624) For a fourth point, a fourth straight line connecting the fifth point and the sixth point, a fifth straight line connecting the sixth point and the third point, a third point and a fourth point Emits light in a range (hereinafter, also referred to as a “second chromaticity coordinate range”) enclosed by the third straight line connecting the four points and the curve of the chromaticity diagram connecting the fourth point and the fifth point.
(Lu, Y, Gd, Tb) 3 (Al, Ga) 5 O 12 : Ce (I)
(Ca, Sr, Ba) 8 MgSi 4 O 16 (F, Cl, Br) 2: Eu (II)
本実施形態に係る発光装置はいずれも、特定の発光ピーク波長の発光素子と、式(I)で表される組成を有し、特定範囲に発光ピーク波長を有する第一蛍光体及び結着剤を含む蛍光部材とを備え、第一の色度座標範囲の光を発するように構成されていることで、フィルター等の他の部材を要することなく、青色領域における発光が抑制され、発光特性に優れる発光装置を構成することができる。図9に本実施形態に係る発光装置が発する光の色度座標範囲を示す。図9は色度図を部分的に拡大した図であり、第一の色度座標範囲が第二の色度座標範囲に包含されている。 Each of the light emitting devices according to the present embodiment has a light emitting element having a specific light emission peak wavelength and a composition represented by the formula (I), and a first phosphor having a light emission peak wavelength in a specific range and a binder And a light emission characteristic in the blue region is suppressed without requiring any other member such as a filter by being configured to emit light in the first chromaticity coordinate range. An excellent light emitting device can be configured. FIG. 9 shows the chromaticity coordinate range of light emitted by the light emitting device according to the present embodiment. FIG. 9 is a partially enlarged view of the chromaticity diagram, in which the first chromaticity coordinate range is included in the second chromaticity coordinate range.
本実施形態に係る発光装置においては青色領域の発光が抑制される。この青色領域は例えば、460nm以下の波長範囲である。発光装置の発光スペクトルは、その波長領域における最大発光強度が、500nm以上の波長範囲における最大発光強度に対して、5%未満であることが好ましく、3.0%以下がより好ましく、2.5%以下であることがより好ましく、2.0%以下であることがより好ましく、1.5%以下であることが更に好ましい。 In the light emitting device according to the present embodiment, light emission in the blue region is suppressed. The blue region is, for example, a wavelength range of 460 nm or less. With respect to the emission spectrum of the light emitting device, the maximum emission intensity in the wavelength region is preferably less than 5%, more preferably 3.0% or less, with respect to the maximum emission intensity in the wavelength range of 500 nm or more. % Or less is more preferable, 2.0% or less is more preferable, and 1.5% or less is more preferable.
発光装置の形式は特に制限されず、通常用いられる形式から適宜選択することができる。発光装置の形式としては、ピン貫通型、表面実装型等を挙げることができる。一般にピン貫通型とは、実装基板に設けられたスルーホールに発光装置のリード(ピン)を貫通させて発光装置を固定するものを指す。また表面実装型とは、実装基板の表面において発光装置のリードを固定するものを指す。 The type of the light emitting device is not particularly limited, and can be appropriately selected from commonly used types. As a type of light emitting device, a pin penetration type, a surface mounting type, etc. can be mentioned. In general, the through-pin type refers to one in which a light emitting device is fixed by penetrating a lead (pin) of the light emitting device in a through hole provided in a mounting substrate. The surface mount type refers to one that fixes the leads of the light emitting device on the surface of the mounting substrate.
本実施形態に係る発光装置の一例を図面に基づいて説明する。図1は、本実施形態に係る発光装置の一例を示す概略断面図である。この発光装置は、表面実装型発光装置の一例である。
発光装置100は、可視光の短波長側(例えば、380nm以上485nm以下の範囲)の光を発し、発光ピーク波長が430nm以上485nm以下である窒化ガリウム系化合物半導体の発光素子10と、発光素子10を載置する成形体40と、を有する。成形体40は第1のリード20と第2のリード30とを有しており、熱可塑性樹脂又は熱硬化性樹脂である封止樹脂により一体成形されている。成形体40は底面と側面を持つ凹部を形成しており、凹部の底面に発光素子10が載置されている。発光素子10は一対の正負の電極を有しており、その一対の正負の電極はそれぞれ第1のリード20及び第2のリード30とワイヤ60を介して電気的に接続されている。発光素子10は蛍光部材50により被覆されている。蛍光部材50は発光素子10からの光を波長変換する第一蛍光体71と結着剤とを含有してなる。蛍光部材50を構成する結着剤には、エポキシ樹脂、シリコーン樹脂、エポキシ変性シリコーン樹脂、変性シリコーン樹脂等の熱硬化性樹脂を用いることができる。
An example of a light emitting device according to the present embodiment will be described based on the drawings. FIG. 1 is a schematic cross-sectional view showing an example of a light emitting device according to the present embodiment. This light emitting device is an example of a surface mounted light emitting device.
The light emitting device 100 emits light of a short wavelength side of visible light (for example, in the range of 380 nm to 485 nm), and a light emitting element 10 of gallium nitride compound semiconductor having an emission peak wavelength of 430 nm to 485 nm; And a molded body 40 on which is placed. The molded body 40 has a first lead 20 and a second lead 30, and is integrally molded of a sealing resin which is a thermoplastic resin or a thermosetting resin. The molded body 40 forms a recess having a bottom surface and a side surface, and the light emitting element 10 is mounted on the bottom surface of the recess. The light emitting element 10 has a pair of positive and negative electrodes, and the pair of positive and negative electrodes are electrically connected to the first lead 20 and the second lead 30 through the wire 60, respectively. The light emitting element 10 is covered by a fluorescent member 50. The fluorescent member 50 contains a first fluorescent substance 71 for converting the wavelength of light from the light emitting element 10 and a binder. As a binder constituting the fluorescent member 50, thermosetting resin such as epoxy resin, silicone resin, epoxy modified silicone resin, modified silicone resin, etc. can be used.
蛍光部材50は、発光装置100の凹部内に載置された発光素子10を覆うように透光性の樹脂で充填されて形成される。製造の容易性を考慮すると、蛍光部材に含まれる結着剤は透光性樹脂が好ましい。透光性樹脂は、シリコーン樹脂組成物を使用することが好ましいが、エポキシ樹脂組成物、アクリル樹脂組成物等の絶縁樹脂組成物を用いることもできる。蛍光部材50は透光性樹脂に代えてガラスを含んでいてもよい。
蛍光部材50には第一蛍光体71が含有されているが、さらに適宜、その他の材料を添加することもできる。例えば、光拡散材を含むことで、発光素子からの指向性を緩和させ、視野角を増大させることができる。
The fluorescent member 50 is formed by being filled with a translucent resin so as to cover the light emitting element 10 placed in the recess of the light emitting device 100. In consideration of the easiness of production, the binder contained in the fluorescent member is preferably a translucent resin. It is preferable to use a silicone resin composition as the translucent resin, but an insulating resin composition such as an epoxy resin composition or an acrylic resin composition can also be used. The fluorescent member 50 may contain glass instead of the translucent resin.
Although the first phosphor 71 is contained in the fluorescent member 50, other materials may be added as appropriate. For example, by including a light diffusing material, directivity from the light emitting element can be relaxed and a viewing angle can be increased.
蛍光部材50は、発光素子10や第一蛍光体71を外部環境から保護するための部材としてだけではなく、波長変換部材としても機能する。図1では、第一蛍光体71は蛍光部材50中で部分的に偏在している。このように発光素子10に接近して第一蛍光体71を配置することにより、発光素子10からの光を効率よく波長変換することができ、発光効率の優れた発光装置とできる。なお、第一蛍光体71を含む蛍光部材50と、発光素子10との配置は、それらを接近して配置させる形態に限定されることなく、第一蛍光体71への熱の影響を考慮して、蛍光部材50中で発光素子10と、第一蛍光体71との間隔を空けて配置することもできる。また、第一蛍光体71を蛍光部材50の全体にほぼ均一の割合で混合することによって、色ムラがより抑制された光を得るようにすることもできる。 The fluorescent member 50 functions not only as a member for protecting the light emitting element 10 and the first fluorescent substance 71 from the external environment, but also as a wavelength conversion member. In FIG. 1, the first phosphor 71 is partially localized in the fluorescent member 50. By arranging the first phosphor 71 close to the light emitting element 10 as described above, the light from the light emitting element 10 can be efficiently wavelength-converted, and a light emitting device with excellent luminous efficiency can be obtained. The arrangement of the fluorescent member 50 including the first fluorescent substance 71 and the light emitting element 10 is not limited to the form in which the fluorescent substance 50 and the light emitting element 10 are arranged close to each other, considering the influence of heat on the first fluorescent substance 71 Alternatively, in the fluorescent member 50, the light emitting element 10 and the first fluorescent body 71 can be spaced apart. In addition, by mixing the first fluorescent substance 71 in the whole of the fluorescent member 50 at a substantially uniform ratio, it is possible to obtain light in which color unevenness is further suppressed.
図2は、本実施形態に係る発光装置の別の一例を示す概略断面図である。図2に示す発光装置では、蛍光部材50が、蛍光体として第一蛍光体71及び第二蛍光体72を含んでいること以外は、図1に示す発光装置と同様の構成を有している。図2では、第一蛍光体71及び第二蛍光体72が混合された状態で蛍光部材50に含まれている。
図3は、本実施形態に係る発光装置の別の一例を示す概略断面図である。図3では、第一蛍光体71及び第二蛍光体72が積層されて配置されている。更に図3に示すように、発光素子10により近い側から第一蛍光体71、第二蛍光体72の順番に配置することもできる。これにより、第一蛍光体71に吸収されることがなかった青色領域の余分な光を第二蛍光体72が吸収するので、第一蛍光体71及び第二蛍光体72が混合された状態よりも、より青色領域の光を発光装置の外に漏らさないようにすることができる。
FIG. 2 is a schematic cross-sectional view showing another example of the light emitting device according to the present embodiment. The light emitting device shown in FIG. 2 has the same configuration as the light emitting device shown in FIG. 1 except that the fluorescent member 50 includes the first fluorescent substance 71 and the second fluorescent substance 72 as fluorescent substances. . In FIG. 2, the first phosphor 71 and the second phosphor 72 are included in the fluorescent member 50 in a mixed state.
FIG. 3 is a schematic cross-sectional view showing another example of the light emitting device according to the present embodiment. In FIG. 3, the first phosphor 71 and the second phosphor 72 are stacked and arranged. Furthermore, as shown in FIG. 3, the first fluorescent substance 71 and the second fluorescent substance 72 can be arranged in order from the side closer to the light emitting element 10. As a result, since the second phosphor 72 absorbs extra light in the blue region that has not been absorbed by the first phosphor 71, from the state where the first phosphor 71 and the second phosphor 72 are mixed Also, light in the more blue region can be prevented from leaking out of the light emitting device.
発光素子
発光素子の発光ピーク波長は、430nm以上485nm以下の波長範囲にある。この波長範囲に発光ピーク波長を有する発光素子を励起光源として用いることにより、発光素子からの光と蛍光体からの蛍光との混色光を発する発光装置を構成することが可能となる。発光素子の発光ピーク波長は、440nm以上470nm以下が好ましく、445nm以上460nm以下がより好ましい。
Light emitting element The light emission peak wavelength of the light emitting element is in a wavelength range of 430 nm or more and 485 nm or less. By using a light emitting element having a light emission peak wavelength in this wavelength range as an excitation light source, it is possible to configure a light emitting device that emits mixed color light of light from the light emitting element and fluorescence from a fluorescent substance. The emission peak wavelength of the light emitting element is preferably 440 nm or more and 470 nm or less, and more preferably 445 nm or more and 460 nm or less.
発光素子の発光スペクトルの半値幅は特に制限されない。半値幅は例えば、30nm以下とすることができる。
発光素子には半導体発光素子を用いることが好ましい。光源として半導体発光素子を用いることによって、高効率で入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。
発光素子としては、例えば、窒化物系半導体(InXAlYGa1−X−YN、ここでX及びYは、0≦X、0≦Y、X+Y≦1を満たす)を用いた青色、緑色等に発光する半導体発光素子を用いることができる。
The half width of the emission spectrum of the light emitting element is not particularly limited. The half width can be, for example, 30 nm or less.
It is preferable to use a semiconductor light emitting element as the light emitting element. By using a semiconductor light emitting element as a light source, it is possible to obtain a stable light emitting device with high efficiency, high output linearity with respect to input, and resistance to mechanical shock.
As a light emitting element, for example, a blue using a nitride-based semiconductor (In x Al y Ga 1-x-Y N, where X and Y satisfy 0 ≦ X, 0 ≦ Y, and X + Y ≦ 1), A semiconductor light emitting element that emits green light can be used.
第一蛍光体
発光装置を構成する蛍光部材は、上記式(I)で表される組成を有し、発光素子からの光により励起されて500nm以上580nm以下の波長範囲に発光ピーク波長を有する第一蛍光体の少なくとも1種を含む。第一蛍光体は下記式(Ia)及び(Ib)の少なくともいずれか一方で表される組成を有することが好ましい。
(Y,Gd)3Al5O12:Ce (Ia)
Y3(Al,Ga)5O12:Ce (Ib)
The fluorescent member constituting the first fluorescent substance light emitting device has a composition represented by the above-mentioned formula (I), and is excited by light from the light emitting element to have an emission peak wavelength in a wavelength range of 500 nm to 580 nm. It contains at least one kind of one phosphor. The first phosphor preferably has a composition represented by at least one of the following formulas (Ia) and (Ib).
(Y, Gd) 3 Al 5 O 12 : Ce (Ia)
Y 3 (Al, Ga) 5 O 12 : Ce (Ib)
第一蛍光体の発光ピーク波長は、520nm以上580nm以下が好ましく、530nm以上570nm以下がより好ましい。第一蛍光体の発光スペクトルの半値幅は、例えば140nm以下であり、130nm以下が好ましい。また半値幅は、例えば90nm以上であり、100nm以上が好ましい。 The emission peak wavelength of the first phosphor is preferably 520 nm or more and 580 nm or less, and more preferably 530 nm or more and 570 nm or less. The half width of the emission spectrum of the first phosphor is, for example, 140 nm or less, preferably 130 nm or less. The half width is, for example, 90 nm or more, and preferably 100 nm or more.
第一蛍光体の反射率は、基準試料の反射率を100%とする場合に、430nm以上470nm以下の波長範囲の最小値が30%以下であることが好ましく、20%以下がより好ましい。
蛍光体の反射率は、日立ハイテクノロジーズ製の分光蛍光光度計F−4500を用い、基準試料としてリン酸水素カルシウム(CaHPO4)を用いて測定される。測定した光の強度を以下の数式で計算することにより各波長における反射率を求めた。
反射率(%)=(試料による反射光の強度÷基準試料による反射光の強度)×100
As for the reflectance of the first phosphor, when the reflectance of the reference sample is 100%, the minimum value in the wavelength range of 430 nm to 470 nm is preferably 30% or less, and more preferably 20% or less.
The reflectance of the phosphor is measured using a spectrofluorimeter F-4500 manufactured by Hitachi High-Technologies Corporation and calcium hydrogen phosphate (CaHPO 4 ) as a reference sample. The reflectance at each wavelength was determined by calculating the measured light intensity with the following formula.
Reflectance (%) = (Intensity of reflected light by sample / Intensity of reflected light by reference sample) × 100
第一蛍光体の平均粒径は特に制限されず、例えば5μm以上10μm以下であり、5μm以上8μm以下が好ましく、5μm以上8μm未満が好ましく、5μm以上6μm以下がより好ましい。
本明細書において蛍光体の平均粒径は、フィッシャー・サブ・シーブ・サイザーズ・ナンバー(Fisher Sub Sieve Sizer's No.)と呼ばれる数値であり、空気透過法を用いて測定される。
蛍光部材は第一蛍光体を1種単独でも、2種以上を組合せて含んでいてもよい。
The average particle size of the first phosphor is not particularly limited, and is, for example, 5 μm to 10 μm, preferably 5 μm to 8 μm, preferably 5 μm to less than 8 μm, and more preferably 5 μm to 6 μm.
In the present specification, the average particle size of the phosphor is a numerical value called Fisher Sub Sieve Sizer's No., and is measured using an air permeation method.
The fluorescent member may contain the first fluorescent substance singly or in combination of two or more.
蛍光部材に含まれる第一蛍光体の含有量は、例えば、結着剤に対して80重量%以上であり、130重量%以上が好ましく、170重量%以上がより好ましい。また第一蛍光体の含有量は、例えば、結着剤に対して230重量%以下であり、210重量%以下が好ましい。 The content of the first phosphor contained in the fluorescent member is, for example, 80% by weight or more, preferably 130% by weight or more, and more preferably 170% by weight or more based on the binder. The content of the first phosphor is, for example, 230% by weight or less, preferably 210% by weight or less, based on the binder.
第二蛍光体
発光装置を構成する蛍光部材は、第一蛍光体に加えて、上記式(II)で表される組成を有し、発光素子からの光により励起されて500nm以上580nm以下の波長範囲に発光ピーク波長を有する第二蛍光体の少なくとも1種を含んでいてもよい。
第二蛍光体はCa、Sr及びBaからなる群から選択される少なくとも1種を含むが、少なくともCaを含むことが好ましく、Ca、Sr及びBaの総量に対してCa含有率が90モル%以上であることがより好ましい。また第二蛍光体はF、Cl及びBrからなる群から選択される少なくとも1種を含むが、少なくともClを含むことが好ましく、F、Cl及びBrの総量に対してCl含有率が90モル%以上であることがより好ましい。
更に第二蛍光体は下記式(IIa)で表される組成を有することが好ましい。
Ca8MgSi4O16Cl2:Eu (IIa)
Second phosphor The phosphor member constituting the light emitting device has a composition represented by the above formula (II) in addition to the first phosphor, and is excited by light from the light emitting element to have a wavelength of 500 nm to 580 nm You may include at least 1 sort (s) of 2nd fluorescent substance which has an emission peak wavelength in a range.
The second phosphor contains at least one selected from the group consisting of Ca, Sr and Ba, but preferably contains at least Ca, and the Ca content is at least 90 mol% with respect to the total amount of Ca, Sr and Ba It is more preferable that The second phosphor contains at least one selected from the group consisting of F, Cl and Br, but preferably contains at least Cl, and the Cl content is 90 mol% with respect to the total amount of F, Cl and Br It is more preferable that it is more than.
Furthermore, the second phosphor preferably has a composition represented by the following formula (IIa).
Ca 8 MgSi 4 O 16 Cl 2 : Eu (IIa)
第二蛍光体の発光ピーク波長は、510nm以上530nm以下が好ましく、515nm以上525nm以下がより好ましい。
第二蛍光体の発光スペクトルの半値幅は、例えば75nm以下であり、65nm以下が好ましい。また半値幅は、例えば45nm以上であり、55nm以上が好ましい。
第二蛍光体の反射率は、400nm以上470nm以下の波長範囲の最大値が30%以下であることが好ましく、20%以下がより好ましい。
510 nm or more and 530 nm or less are preferable, and 515 nm or more and 525 nm or less of the emission peak wavelength of 2nd fluorescent substance are more preferable.
The half width of the emission spectrum of the second phosphor is, for example, 75 nm or less, and preferably 65 nm or less. The half width is, for example, 45 nm or more, and preferably 55 nm or more.
As for the reflectance of the second phosphor, the maximum value in the wavelength range of 400 nm to 470 nm is preferably 30% or less, and more preferably 20% or less.
第二蛍光体の平均粒径は特に制限されず、例えば5μm以上20μm以下であり、8μm以上15μm以下が好ましく、9μm以上13μm以下がより好ましい。
蛍光部材は第二蛍光体を1種単独でも、2種以上を組合せて含んでいてもよい。
The average particle diameter of the second phosphor is not particularly limited, and is, for example, 5 μm to 20 μm, preferably 8 μm to 15 μm, and more preferably 9 μm to 13 μm.
The fluorescent member may contain the second phosphor singly or in combination of two or more.
蛍光部材に含まれる第二蛍光体の含有量は、例えば、第一蛍光体に対して45重量%以下であり、40重量%以下が好ましく、30重量%以下がより好ましい。また第二蛍光体の含有量は、例えば、第一蛍光体に対して10重量%以上であり、20重量%以上が好ましい。 The content of the second phosphor contained in the fluorescent member is, for example, 45% by weight or less, preferably 40% by weight or less, and more preferably 30% by weight or less based on the first phosphor. The content of the second phosphor is, for example, 10% by weight or more, and preferably 20% by weight or more based on the first phosphor.
蛍光部材における第一蛍光体及び第二蛍光体の総含有量は、例えば、結着剤に対して80重量%以上であり、130重量%以上が好ましく、150重量%以上がより好ましい。また総含有量は、例えば、結着剤に対して230重量%以下であり、210重量%以下が好ましい。蛍光体の量が多くなり過ぎると蛍光体を含む結着剤の粘度が高くなるため、発光装置の製造工程において、蛍光体を含む結着剤を所定の位置に配置する作業性が悪くなるためである。 The total content of the first phosphor and the second phosphor in the fluorescent member is, for example, 80% by weight or more, preferably 130% by weight or more, and more preferably 150% by weight or more based on the binder. Further, the total content is, for example, 230% by weight or less, preferably 210% by weight or less, with respect to the binder. If the amount of phosphors is too large, the viscosity of the binder containing the phosphors will increase, and in the process of manufacturing the light emitting device, the workability of arranging the binder containing the phosphors in a predetermined position will be worse. It is.
その他の蛍光体
蛍光部材は、第一蛍光体、第二蛍光体以外の蛍光体を含むことを排除するものではなく、第一蛍光体及び第二蛍光体以外の蛍光体を本開示の目的を損なわない程度に含んでいてもよい。その他の蛍光体としては、Ca3Sc2Si3O12:Ce、CaSc2O4:Ce、(La,Y)3Si6N11:Ce、(Ca,Sr,Ba)3Si6O9N4:Eu、(Ca,Sr,Ba)3Si6O12N2:Eu、(Ba,Sr,Ca)Si2O2N2:Eu、(Sr,Ca)AlSiN3:Eu、(Ca,Sr,Ba)2Si5N8:Eu、(Ca,Sr,Ba)S:Eu、(Ba,Sr,Ca)Ga2S4:Eu、K2(Si,Ti,Ge)F6:Mn、(Ca,Sr,Ba,Mg)10(PO4)6(F,Cl,Br,I,OH)2:Eu、3.5MgO・0.5MgF2・GeO2:Mn、Sr4Al14O25:Eu、(Si,Al)6(O,N)8:Eu等を挙げることができる。蛍光部材がその他の蛍光体を含む場合、その含有量は目的等に応じて適宜選択することができる。その他の蛍光体の含有量は、例えば、蛍光体の総量中に30重量%以下であり、1重量%以下としてもよい。
蛍光部材が第一蛍光体71及び第二蛍光体72に加え、その他の蛍光体を含み、それぞれの蛍光体が配置される場合、蛍光体同士の間での光の吸収の影響をより効果的に抑えるため、例えば、発光素子の側から順に、(Sr,Ca)AlSiN3:Eu、第一の蛍光体または第二の蛍光体を配置することができる。
Other Phosphors The fluorescent member does not exclude the inclusion of a phosphor other than the first phosphor and the second phosphor, and the phosphors other than the first phosphor and the second phosphor are for the purpose of the present disclosure. You may contain to the extent which does not impair. Other phosphors include Ca 3 Sc 2 Si 3 O 12 : Ce, CaSc 2 O 4 : Ce, (La, Y) 3 Si 6 N 11 : Ce, (Ca, Sr, Ba) 3 Si 6 O 9 N 4 : Eu, (Ca, Sr, Ba) 3 Si 6 O 12 N 2 : Eu, (Ba, Sr, Ca) Si 2 O 2 N 2 : Eu, (Sr, Ca) AlSiN 3 : Eu, (Ca , Sr, Ba) 2 Si 5 N 8 : Eu, (Ca, Sr, Ba) S: Eu, (Ba, Sr, Ca) Ga 2 S 4 : Eu, K 2 (Si, Ti, Ge) F 6 : Mn, (Ca, Sr, Ba, Mg) 10 (PO 4 ) 6 (F, Cl, Br, I, OH) 2 : Eu, 3.5MgO · 0.5MgF 2 · GeO 2 : Mn, Sr 4 Al 14 O 25: citing Eu or the like: Eu, (Si, Al) 6 (O, N) 8 It is possible. When the fluorescent member contains other phosphors, the content thereof can be appropriately selected according to the purpose and the like. The content of the other phosphors is, for example, 30% by weight or less in the total amount of phosphors, and may be 1% by weight or less.
When the fluorescent member includes the other phosphors in addition to the first phosphor 71 and the second phosphor 72, and the respective phosphors are disposed, the influence of the light absorption between the phosphors is made more effective. For example, (Sr, Ca) AlSiN 3 : Eu, the first phosphor or the second phosphor can be disposed in order from the side of the light emitting element.
結着剤
蛍光部材は、結着剤の少なくとも1種を含む。蛍光部材を構成する結着剤としては、熱可塑性樹脂及び熱硬化性樹脂が挙げられる。熱硬化性樹脂として、具体的には、エポキシ樹脂、シリコーン樹脂、エポキシ変性シリコーン樹脂等の変性シリコーン樹脂などを挙げることができる。
Binder The fluorescent member contains at least one binder. As a binder which comprises a fluorescence member, a thermoplastic resin and a thermosetting resin are mentioned. Specific examples of the thermosetting resin include epoxy resins, silicone resins, and modified silicone resins such as epoxy-modified silicone resins.
蛍光部材は、蛍光体及び結着剤に加えてその他の成分を必要に応じて含んでいてもよい。その他の成分としては、シリカ、チタン酸バリウム、酸化チタン、酸化アルミニウム等のフィラー、光安定化剤、着色剤等を挙げることができる。蛍光部材がその他の成分を含む場合、その含有量は特に制限されず、目的等に応じて適宜選択することができる。例えば、その他の成分として、フィラーを含む場合、その含有量は結着剤100重量部に対して、0.01〜20重量部とすることができる。 The fluorescent member may optionally contain other components in addition to the fluorescent substance and the binder. Examples of the other components include fillers such as silica, barium titanate, titanium oxide and aluminum oxide, light stabilizers, colorants and the like. When the fluorescent member contains other components, the content thereof is not particularly limited, and can be appropriately selected according to the purpose and the like. For example, when the filler is contained as another component, the content thereof can be 0.01 to 20 parts by weight with respect to 100 parts by weight of the binder.
以下、本開示に係る実施例を具体的に説明するが、本開示はこれらの実施例に限定されるものではない。 Examples according to the present disclosure will be specifically described below, but the present disclosure is not limited to these examples.
以下に示す蛍光体をそれぞれ準備した。
第一蛍光体として、下記式(Ia)で表される組成を有し、発光ピーク波長が570nmであって、平均粒径がそれぞれ10μm、8μm、7μm、6μm又は5μmである蛍光体1a、1b、1c、1d及び1eと、下記式(Ib)で表される組成を有し、発光ピーク波長が533nmであり、平均粒径が9μmである蛍光体2とを準備した。
(Y0.81Gd0.19)3Al5O12:Ce (Ia)
Y3(Al0.8Ga0.2)5O12:Ce (Ib)
また第二蛍光体として、下記式(IIa)で表される組成を有し、発光ピーク波長が520nmであり、平均粒径が11μmである蛍光体3を準備した。
Ca8MgSi4O16Cl2:Eu (IIa)
準備した蛍光体1a、2、3について、励起波長450nmにおける発光スペクトルを図4Aに示す。図4Aでは、それぞれの蛍光体について波長に対する相対発光強度を示す規格化された発光スペクトルが示されている。また、それらの蛍光体の反射スペクトルを図4Bに示す。図4Bでは、波長に対する反射率を示す反射スペクトルが示されている。
The following phosphors were prepared respectively.
Phosphors 1a and 1b having a composition represented by the following formula (Ia) as a first phosphor, and having an emission peak wavelength of 570 nm and an average particle diameter of 10 μm, 8 μm, 7 μm, 6 μm or 5 μm , 1c, 1d and 1e, and phosphor 2 having a composition represented by the following formula (Ib), an emission peak wavelength of 533 nm, and an average particle diameter of 9 μm.
(Y 0.81 Gd 0.19 ) 3 Al 5 O 12 : Ce (Ia)
Y 3 (Al 0.8 Ga 0.2 ) 5 O 12 : Ce (Ib)
Moreover, as a second phosphor, a phosphor 3 having a composition represented by the following formula (IIa), an emission peak wavelength of 520 nm, and an average particle diameter of 11 μm was prepared.
Ca 8 MgSi 4 O 16 Cl 2 : Eu (IIa)
The emission spectrum of the prepared phosphors 1a, 2 and 3 at an excitation wavelength of 450 nm is shown in FIG. 4A. In FIG. 4A, normalized emission spectra are shown showing the relative emission intensity versus wavelength for each phosphor. Also, the reflection spectra of those phosphors are shown in FIG. 4B. In FIG. 4B, a reflection spectrum is shown which shows the reflectance with respect to wavelength.
評価方法
(1)平均粒径
蛍光体の平均粒径は、F.S.S.S.No.(Fisher Sub Sieve Sizer's No.)と呼ばれる値であり、空気透過法で得られる。具体的には、気温25℃、湿度70%の環境下において、1cm3分の試料を計り取り、専用の管状容器にパッキングした後、一定圧力の乾燥空気を流し、差圧から比表面積を読み取り、平均粒径に換算した値である。平均粒径は、Fisher Scientific社製 Fisher Sub−Sieve Sizer Model95を用いて測定した。
Evaluation Method (1) Average Particle Size The average particle size of the phosphor is F.I. S. S. S. No. It is a value called (Fisher Sub Sieve Sizer's No.) and obtained by an air permeation method. Specifically, after taking a sample of 1 cm 3 min at an ambient temperature of 25 ° C and humidity of 70%, packing it into a special tubular container, flowing dry air at a constant pressure, reading the specific surface area from the differential pressure And the average particle diameter. The average particle size was measured using Fisher Scientific's Fisher Sub-Sieve Sizer Model 95.
(2)青色ピーク強度
発光装置の発光スペクトルから、500nm以上の波長範囲における最大発光強度に対する460nm以下の波長範囲における最大発光強度の比率(%)として、青色ピーク強度を算出した。
(3)相対光束
発光装置の全光束を、積分式全光束測定装置を用いて測定し、実施例1の発光装置の全光束を100%とした場合の相対光束(%)として示す。
(2) Blue peak intensity From the emission spectrum of the light emitting device, the blue peak intensity was calculated as the ratio (%) of the maximum emission intensity in the wavelength range of 460 nm or less to the maximum emission intensity in the wavelength range of 500 nm or more.
(3) Relative luminous flux The total luminous flux of the light emitting device is measured using an integral type total luminous flux measuring device, and is shown as a relative luminous flux (%) when the total luminous flux of the light emitting device of Example 1 is 100%.
(4)反射率
蛍光体の反射率の測定には、日立ハイテクノロジーズ製の分光蛍光光度計F−4500を用いた。以下に反射率の測定方法を具体的に説明する。光源としてキセノンランプを使用し、光源からの光を第一のモノクロメーターに導入した。導入された光のうち目的とする波長のみを第一のモノクロメーターで選択して反射率を求める試料に照射した。試料で反射された光を第二のモノクロメーターに導入し、第一のモノクロメーターで選択した波長と同一の波長を第二のモノクロメーターでも選択した。第二のモノクロメーターで選択された光を光電子倍増管に導入して光の強度を測定した。引き続いて第一のモノクロメーターおよび第二のモノクロメーターで選択する波長を同期して変化させ、所望の波長範囲での光の強度を測定した。反射率の基準試料としてはリン酸水素カルシウム(CaHPO4)とし、前述の試料と同様の手順で基準試料から反射される光の強度を測定した。測定した光の強度を以下の数式で計算することにより各波長における反射率を求めた。
反射率(%)=(試料による反射光の強度÷基準試料による反射光の強度)×100
(4) Reflectance For the measurement of the reflectance of the phosphor, a spectrofluorimeter F-4500 manufactured by Hitachi High-Technologies Corporation was used. The method of measuring the reflectance will be specifically described below. A xenon lamp was used as the light source and light from the light source was introduced into the first monochromator. Of the introduced light, only the target wavelength was selected by the first monochromator, and the sample for which the reflectance was to be determined was irradiated. The light reflected by the sample was introduced into the second monochromator, and the same wavelength as the wavelength selected by the first monochromator was also selected with the second monochromator. The light selected by the second monochromator was introduced into a photomultiplier to measure the light intensity. Subsequently, the wavelengths selected by the first monochromator and the second monochromator were synchronously changed, and the light intensity in the desired wavelength range was measured. Calcium hydrogen phosphate (CaHPO 4 ) was used as a reference sample of reflectance, and the intensity of light reflected from the reference sample was measured in the same procedure as the above-described sample. The reflectance at each wavelength was determined by calculating the measured light intensity with the following formula.
Reflectance (%) = (Intensity of reflected light by sample / Intensity of reflected light by reference sample) × 100
(実施例1)
発光装置の作製
発光ピーク波長が455nmの青色発光LEDに、第一蛍光体である蛍光体1aを組合せて、表面実装型の発光装置を作製した。
蛍光体1aの含有量が結着剤であるシリコーン樹脂に対して180重量%になるように蛍光体1aとシリコーン樹脂を配合し、混合分散した後、更に脱泡することにより蛍光体含有樹脂組成物を得た。次にこの蛍光体含有樹脂組成物を発光素子の上に注入、充填し、さらに加熱することで樹脂組成物を硬化させた。このような工程により発光装置を作製した。
得られた発光装置について、発光色の色度座標(x,y)、青色ピーク強度及び相対光束を測定した。その結果を以下の表1に示す。また、得られた実施例1の発光装置の発光スペクトルを図5A、5Bに示す。なお、図5Bは、図5Aにおける400nm以上500nm以下の範囲を部分的に拡大した図である。図5A及び5Bでは、波長に対する相対発光強度を示す規格化された発光スペクトルが示されていている。
Example 1
Production of Light-Emitting Device A surface-mounted light-emitting device was produced by combining the first light-emitting phosphor 1a with a blue light-emitting LED having an emission peak wavelength of 455 nm.
The phosphor-containing resin composition is prepared by blending the phosphor 1a and the silicone resin so that the content of the phosphor 1a is 180% by weight with respect to the silicone resin as the binder, mixing and dispersing, and further defoaming. I got a thing. Next, this phosphor-containing resin composition was injected onto the light emitting element, filled, and heated to cure the resin composition. A light emitting device was manufactured by such a process.
The chromaticity coordinates (x, y) of the light emission color, the blue peak intensity and the relative luminous flux were measured for the obtained light emitting device. The results are shown in Table 1 below. The emission spectrum of the obtained light emitting device of Example 1 is shown in FIGS. 5A and 5B. 5B is a partially enlarged view of the range of 400 nm to 500 nm in FIG. 5A. In FIGS. 5A and 5B, normalized emission spectra are shown that show relative emission intensities versus wavelength.
(実施例2〜4、比較例1)
蛍光体の種類及び含有量を以下の表1に示すように変更したこと以外は実施例1と同様にして発光装置を作製し、同様に評価した。その結果を以下の表1に示す。また得られた実施例2の発光装置の発光スペクトルを図5A及び5Bに実施例1と併せて示す。また得られた実施例3、4の発光装置の発光スペクトルを図6A及び6Bに示す。なお、図6Bは、図6Aにおける400nm以上500nm以下の範囲を部分的に拡大した図である。図6A及び6Bでは、波長に対する相対発光強度を示す規格化された発光スペクトルが示されていている。
(Examples 2 to 4, Comparative Example 1)
A light emitting device was produced and evaluated in the same manner as in Example 1 except that the type and content of the phosphor were changed as shown in Table 1 below. The results are shown in Table 1 below. The emission spectrum of the obtained light emitting device of Example 2 is shown together with Example 1 in FIGS. 5A and 5B. The emission spectra of the obtained light emitting devices of Examples 3 and 4 are shown in FIGS. 6A and 6B. 6B is a partially enlarged view of the range of 400 nm to 500 nm in FIG. 6A. In FIGS. 6A and 6B, normalized emission spectra are shown which show relative emission intensities with respect to wavelength.
表1から、第一蛍光体の含有量が結着剤に対して80重量%未満であると青色ピーク強度が5%以上と大きくなることが分かる。また、第一蛍光体の含有量が増えると青色ピーク強度がより小さくなることが分かる。
蛍光体1aを使用した発光装置よりも、蛍光体2を使用した発光装置の方が、光束が高い。これは例えば、図4Aに示されるように蛍光体1aよりも蛍光体2のほうが視感度曲線との重なりが多いためと考えられる。
It is understood from Table 1 that the blue peak intensity increases to 5% or more when the content of the first phosphor is less than 80% by weight with respect to the binder. In addition, it can be seen that the blue peak intensity decreases as the content of the first phosphor increases.
The light emitting device using the phosphor 2 has a higher luminous flux than the light emitting device using the phosphor 1 a. This is considered to be because, for example, as shown in FIG. 4A, the phosphor 2 overlaps with the visibility curve more than the phosphor 1a.
(実施例5〜8)
第一蛍光体として、平均粒径が以下の表2に示すように異なる蛍光体1b〜1eを用いたこと以外は実施例1と同様にして発光装置を作製し、同様に評価した。その結果を以下の表2に示す。また、実施例5〜8の発光装置の発光スペクトルの部分拡大図を実施例1のそれと併せて図7に示す。図7は、波長に対する相対発光強度を示す発光スペクトルが示されていている。
(Examples 5 to 8)
A light emitting device was produced and evaluated in the same manner as in Example 1 except that as the first phosphor, different phosphors 1b to 1e were used as shown in Table 2 below as average particle diameter. The results are shown in Table 2 below. Further, a partially enlarged view of the emission spectrum of the light emitting device of Examples 5 to 8 is shown in FIG. 7 together with that of Example 1. FIG. 7 shows an emission spectrum showing relative emission intensity with respect to wavelength.
表2に示すように、蛍光体の含有量が同じであっても、小さい平均粒径の蛍光体を使用することで青色ピーク強度が小さくなることが分かる。言い換えると、青色ピーク強度が同じくする場合、使用する蛍光体の平均粒径を小さくするほど蛍光体含有量はできるだけ少なくすることができる。 As shown in Table 2, it can be seen that the blue peak intensity is reduced by using a phosphor having a small average particle diameter even if the content of the phosphor is the same. In other words, when the blue peak intensities are the same, the phosphor content can be reduced as much as possible by decreasing the average particle diameter of the phosphor to be used.
(実施例9〜12)
蛍光体の種類及び含有量を以下の表3に示すように変更したこと以外は実施例1と同様にして発光装置を作製し、同様に評価した。その結果を以下の表3に示す。
(Examples 9 to 12)
A light emitting device was produced and evaluated in the same manner as in Example 1 except that the type and content of the phosphor were changed as shown in Table 3 below. The results are shown in Table 3 below.
表3より、蛍光体の平均粒径が小さいほど、蛍光体の含有量が少なくても青色ピーク強度の値が5%未満となることが分かる。これは例えば、以下のように説明することができる。蛍光体の平均粒径が小さいと蛍光体が蛍光部材中で密集し易くなる、すなわち、蛍光体と蛍光体との間の隙間が小さくなる。発光素子から発せられる460nm以下の青色光が蛍光体と蛍光体との間の隙間を通り抜けることなく蛍光体に効率よく吸収されるようになり、発光装置の外部に放出され難くなるためと推測される。 It is understood from Table 3 that as the average particle diameter of the phosphor is smaller, the value of blue peak intensity is less than 5% even if the content of the phosphor is small. This can be described, for example, as follows. When the average particle size of the phosphors is small, the phosphors tend to be densely packed in the fluorescent member, that is, the gap between the phosphors is reduced. It is speculated that blue light of 460 nm or less emitted from the light emitting element is efficiently absorbed by the phosphor without passing through the gap between the phosphor and the phosphor, and it becomes difficult to be emitted outside the light emitting device Ru.
(実施例13〜15)
第一蛍光体である蛍光体1aと第二蛍光体である蛍光体3とを、蛍光体の総含有量がシリコーン樹脂に対して180重量%になるように、表4に示す配合比で用いたこと以外は実施例1と同様にして発光装置を作製し、同様に評価した。その結果を以下の表4に示す。また実施例13〜15の発光装置の発光スペクトルを実施例1のそれと併せて図8A、8Bに示す。なお、図8Bは、図8Aにおける400nm以上500nm以下の範囲を部分的に拡大した図である。図8A及び8Bでは、波長に対する相対発光強度を示す規格化された発光スペクトルが示されていている。
(Examples 13 to 15)
Using the phosphor 1a that is the first phosphor and the phosphor 3 that is the second phosphor in the compounding ratio shown in Table 4 so that the total content of the phosphor is 180% by weight with respect to the silicone resin A light emitting device was produced in the same manner as in Example 1 except for the above, and was evaluated in the same manner. The results are shown in Table 4 below. The emission spectra of the light emitting devices of Examples 13 to 15 are shown in FIGS. 8A and 8B together with that of Example 1. FIG. 8B is a partially enlarged view of the range of 400 nm to 500 nm in FIG. 8A. In FIGS. 8A and 8B, normalized emission spectra showing relative emission intensities with respect to wavelength are shown.
第二蛍光体である蛍光体3の配合割合を増やすと、青色ピーク強度の値が低下する傾向が見られた。これは例えば、図4Bに示されるように、第二蛍光体の反射率が、第一蛍光体に比べて短波長領域(例えば400nm以上450nm以下付近)において低く、この短波長領域内の波長の光を吸収しやすいためと推測される。このことは例えば、図8Bに示す発光ピークにおいて、実施例13から15へと第二蛍光体である蛍光体3の配合比が増えていくに従って、発光のピーク波長がより波長の長い側へシフトしており、より短波長領域の光が吸収されていることから確認できる。
また、第二蛍光体の配合比を増やすと光束が向上する。これは、発光スペクトルが視感度曲線のピーク(555nm付近)に近づくため、結果として光束が向上したと推測される。
When the blending ratio of the second phosphor, phosphor 3, was increased, the blue peak intensity tended to decrease. For example, as shown in FIG. 4B, the reflectance of the second phosphor is lower in a short wavelength region (for example, 400 nm or more and around 450 nm or less) than that of the first phosphor, and It is presumed that it is easy to absorb light. This means that, for example, at the emission peak shown in FIG. 8B, the peak wavelength of emission shifts to a longer wavelength side as the compounding ratio of the second phosphor, phosphor 3, increases from Example 13 to Example 15 It can be confirmed from the fact that light in the shorter wavelength region is absorbed.
In addition, the luminous flux is improved by increasing the blending ratio of the second phosphor. It is presumed that the luminous flux is improved as a result of the emission spectrum approaching the peak of the visibility curve (around 555 nm).
本開示に係る発光装置は、特に照明器具の用途に有用である。 The light-emitting device according to the present disclosure is particularly useful for lighting applications.
10:発光素子、50:蛍光部材、71:第一蛍光体、72:第二蛍光体、100:発光装置 10: light emitting element, 50: fluorescent member, 71: first phosphor, 72: second phosphor, 100: light emitting device
Claims (4)
下記式(Ia)又は(Ib)で表される組成を有し、平均粒径が10μm以下であり、前記発光素子からの光により励起されて500nm以上580nm以下の波長範囲に発光ピーク波長を有する光を発する第一蛍光体、下記(IIa)で表される組成を有し、前記発光素子からの光により励起されて500nm以上580nm以下の波長範囲に発光ピーク波長を有する光を発する第二蛍光体及び結着剤を含む蛍光部材と、を備え、
前記蛍光部材中の第一蛍光体及び第二蛍光体の総含有量が、前記結着剤に対して80重量%以上であり、
CIE1931の色度図において、色度座標(x,y)が、(0.512,0.487)である第五の点、(0.467,0.448)である第六の点、(0.340,0.570)である第三の点及び(0.373,0.624)である第四の点について、第五の点及び第六の点を結ぶ第四の直線と、第六の点及び第三の点を結ぶ第五の直線と、第三の点及び第四の点を結ぶ第三の直線と、第四の点及び第五の点を結ぶ色度図の曲線とで囲まれる範囲の光を発する発光装置。
(Y,Gd) 3 Al 5 O 12 :Ce (Ia)
Y 3 (Al,Ga) 5 O 12 :Ce (Ib)
Ca 8 MgSi 4 O 16 Cl 2 :Eu (IIa) A light emitting element having an emission peak wavelength in a wavelength range of 430 nm to 485 nm;
It has a composition represented by the following formula (Ia) or (Ib) , has an average particle diameter of 10 μm or less, and has an emission peak wavelength in a wavelength range of 500 nm to 580 nm when excited by light from the light emitting element A first phosphor emitting light, having a composition represented by (IIa) below, and a second fluorescence emitting light having an emission peak wavelength in a wavelength range of 500 nm to 580 nm excited by light from the light emitting element And a fluorescent member containing a body and a binding agent,
The total content of the first phosphor and the second phosphor in the fluorescent member is 80% by weight or more with respect to the binder,
In the CIE 1931 chromaticity diagram, the fifth point where the chromaticity coordinates (x, y) are (0.512, 0.487), the sixth point where (0.467, 0.448), For a third point which is 0.340, 0.570) and a fourth point which is (0.373, 0.624), a fourth straight line connecting the fifth point and the sixth point; The fifth straight line connecting the sixth point and the third point, the third straight line connecting the third point and the fourth point, and the curve of the chromaticity diagram connecting the fourth point and the fifth point A light emitting device that emits light in the range enclosed by.
(Y, Gd) 3 Al 5 O 12 : Ce (Ia)
Y 3 (Al, Ga) 5 O 12 : Ce (Ib)
Ca 8 MgSi 4 O 16 Cl 2 : Eu (IIa)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015131149A JP6544082B2 (en) | 2015-06-30 | 2015-06-30 | Light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015131149A JP6544082B2 (en) | 2015-06-30 | 2015-06-30 | Light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017017132A JP2017017132A (en) | 2017-01-19 |
JP6544082B2 true JP6544082B2 (en) | 2019-07-17 |
Family
ID=57831003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015131149A Active JP6544082B2 (en) | 2015-06-30 | 2015-06-30 | Light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6544082B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10401682B2 (en) * | 2017-01-25 | 2019-09-03 | Innolux Corporation | Display device capable of generating color of light close to or identical to blue primary color of DCI-P3 color gamut |
JP7304680B2 (en) * | 2017-09-26 | 2023-07-07 | デクセリアルズ株式会社 | Light source, white light source device, and display device |
JP6940764B2 (en) | 2017-09-28 | 2021-09-29 | 日亜化学工業株式会社 | Light emitting device |
CN112042613A (en) * | 2020-09-11 | 2020-12-08 | 杭州汉徽光电科技有限公司 | Method for pest control by blue light and converted light thereof |
CN112042615A (en) * | 2020-09-11 | 2020-12-08 | 杭州汉徽光电科技有限公司 | Pest prevention and control solid-state photoelectric device, prevention and control device and application |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW383508B (en) * | 1996-07-29 | 2000-03-01 | Nichia Kagaku Kogyo Kk | Light emitting device and display |
US7723740B2 (en) * | 2003-09-18 | 2010-05-25 | Nichia Corporation | Light emitting device |
JP2009054989A (en) * | 2007-07-31 | 2009-03-12 | Sharp Corp | Light-emitting apparatus, illuminating apparatus, and clean room having the illuminating apparatus |
TWI476961B (en) * | 2010-10-12 | 2015-03-11 | 友達光電股份有限公司 | Led apparatus |
-
2015
- 2015-06-30 JP JP2015131149A patent/JP6544082B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017017132A (en) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5864851B2 (en) | Light emitting device | |
JP6148395B2 (en) | High color rendering white light emitting device | |
KR102262785B1 (en) | Light emitting device | |
JP5410342B2 (en) | Light emitting device | |
WO2017164214A1 (en) | Light source apparatus and light-emitting apparatus | |
JP6275829B2 (en) | Light emitting device | |
JP6544082B2 (en) | Light emitting device | |
JP6156440B2 (en) | Red light emitting phosphor and light emitting device using the same | |
TW200849669A (en) | White light-emitting lamp and illuminating device using the same | |
WO2016159141A1 (en) | Light-emitting device | |
JP2008270781A (en) | Light-emitting device | |
JP6773018B2 (en) | Light emitting device | |
JP2019016632A (en) | Light-emitting device | |
JP5370047B2 (en) | Color rendering improvement method for white light emitting device and white light emitting device | |
JP6524860B2 (en) | Light emitting device | |
TW201442295A (en) | Light-emitting device | |
JP2023036729A (en) | Light-emitting device | |
JP6460040B2 (en) | Light emitting device | |
JP6428245B2 (en) | Light emitting device | |
JP6405738B2 (en) | Light emitting device | |
JP2018182028A (en) | Light emitting device | |
KR101706600B1 (en) | White Light Emitting Device with High Color Rendering Index | |
KR101652258B1 (en) | White Light Emitting Device with High Color Rendering Index | |
KR101855391B1 (en) | White Light Emitting Device with High Color Rendering Index | |
JP6772621B2 (en) | Light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20161019 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20161019 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180914 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20181218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190214 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20190226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190521 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6544082 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |