JP6467172B2 - Contact combustion type gas sensor - Google Patents
Contact combustion type gas sensor Download PDFInfo
- Publication number
- JP6467172B2 JP6467172B2 JP2014187770A JP2014187770A JP6467172B2 JP 6467172 B2 JP6467172 B2 JP 6467172B2 JP 2014187770 A JP2014187770 A JP 2014187770A JP 2014187770 A JP2014187770 A JP 2014187770A JP 6467172 B2 JP6467172 B2 JP 6467172B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- gas
- gas sensor
- combustion type
- type gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 105
- 238000001514 detection method Methods 0.000 claims description 68
- 239000000758 substrate Substances 0.000 claims description 47
- 239000012528 membrane Substances 0.000 claims description 42
- 239000003054 catalyst Substances 0.000 claims description 17
- 238000007084 catalytic combustion reaction Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 14
- 239000011347 resin Substances 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- 238000009413 insulation Methods 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 6
- 230000017525 heat dissipation Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 279
- 239000004065 semiconductor Substances 0.000 description 38
- 230000035945 sensitivity Effects 0.000 description 25
- 230000001681 protective effect Effects 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 238000005530 etching Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 9
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000059 patterning Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910016312 BiSb Inorganic materials 0.000 description 1
- 238000009623 Bosch process Methods 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- JRACIMOSEUMYIP-UHFFFAOYSA-N bis($l^{2}-silanylidene)iron Chemical compound [Si]=[Fe]=[Si] JRACIMOSEUMYIP-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- -1 tungsten (W) Chemical class 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
この発明は、可燃性ガスを検出する接触燃焼式ガスセンサにおいて、可燃性ガスの検出感度をより高くする技術に関する。 The present invention relates to a technique for increasing the detection sensitivity of combustible gas in a contact combustion type gas sensor for detecting combustible gas.
従来より、水素等の可燃性ガスを検出するガスセンサとして、触媒を用いて可燃性ガスを燃焼させ、燃焼熱による触媒温度の上昇を電気的に検出する接触燃焼式ガスセンサが使用されてきている。このような接触燃焼式ガスセンサにおいても、種々のセンサと同様に、検出感度をより高くすることが常に求められており、様々な方法により高感度化が図られている。例えば、特許文献1では、低濃度の可燃性ガスや感度の低い可燃性ガスに対してガス検出感度を高めるため、可燃性ガスの燃焼に対して触媒として作用する触媒層の近傍に可燃性ガスの燃焼を促すためのヒータを形成することが提案されている。 Conventionally, as a gas sensor for detecting a combustible gas such as hydrogen, a catalytic combustion type gas sensor that combusts a combustible gas using a catalyst and electrically detects an increase in catalyst temperature due to combustion heat has been used. In such a catalytic combustion type gas sensor, as in various sensors, it is always required to increase detection sensitivity, and high sensitivity is achieved by various methods. For example, in Patent Document 1, in order to increase the gas detection sensitivity for low-concentration combustible gas or low-sensitivity combustible gas, the combustible gas is located near the catalyst layer that acts as a catalyst for combustion of combustible gas. It has been proposed to form a heater for promoting the combustion of the gas.
ところで、近年、リークテストに使用されるヘリウム(He)は、供給不足の状態が続き、さらには、近い将来において枯渇することが懸念されている。そこで、Heに替えて水素を用いてリークテストを行うため、検出感度の高いガスセンサが求められている。しかしながら、様々な方法により高感度化が行われているものの、従来の接触燃焼式ガスセンサでは、その検出感度はリークテストに使用するために十分とは言えなかった。また、リークテスト用に限らず、一般的に、検出感度をより高くすることは、可燃性ガスのセンサに対して常に求められている課題である。 By the way, in recent years, helium (He) used for the leak test continues to be in a shortage of supply, and there is a concern that it will be depleted in the near future. Therefore, in order to perform a leak test using hydrogen instead of He, a gas sensor with high detection sensitivity is required. However, although high sensitivity has been achieved by various methods, the detection sensitivity of the conventional catalytic combustion gas sensor is not sufficient for use in the leak test. Further, not only for leak testing, but generally, it is a problem always required for a combustible gas sensor to increase detection sensitivity.
本発明は、上述した従来の課題を解決するためになされたものであり、可燃性ガスを検出する接触燃焼式ガスセンサにおいて、可燃性ガスの検出感度をより高くする技術を提供することを目的とする。 The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a technique for increasing the detection sensitivity of combustible gas in a contact combustion type gas sensor that detects combustible gas. To do.
上記課題の少なくとも一部を達成するために、本発明の接触燃焼式ガスセンサは、前記基板上に形成された第1のヒータと、前記第1のヒータ上に形成され、可燃性ガスの燃焼触媒を担持した担体を含むガス反応膜と、複数の熱電対を直列接続した第1のサーモパイルと、を有するガス検出部と、前記基板上に形成された第2のヒータと、複数の熱電対を直列接続した第2のサーモパイルと、を有する補償部と、を備え、前記ガス反応膜の近傍に形成された前記第1のサーモパイルの温接点は、冷接点よりも前記ガス反応膜に近い位置に配置され、前記第2のヒータの近傍に形成された前記第2のサーモパイルの温接点は、冷接点よりも前記第2のヒータに近い位置に配置され、前記第1のサーモパイルを構成する2つのサーモパイルを接続する第1の接続線と、前記第2のサーモパイルを構成する2つのサーモパイルを接続する第2の接続線とは、それぞれ、前記ガス検出部と前記補償部との境界に沿って形成されていることを特徴とする。 In order to achieve at least a part of the above problems, a catalytic combustion type gas sensor of the present invention includes a first heater formed on the substrate, and a combustion catalyst for combustible gas formed on the first heater. A gas detection film including a carrier carrying a carrier, a first thermopile in which a plurality of thermocouples are connected in series, a second heater formed on the substrate, and a plurality of thermocouples A compensation unit having a second thermopile connected in series , and a hot junction of the first thermopile formed in the vicinity of the gas reaction membrane is closer to the gas reaction membrane than a cold junction The hot junction of the second thermopile, which is arranged and formed in the vicinity of the second heater, is arranged at a position closer to the second heater than the cold junction, and constitutes the first thermopile Connect thermopile A first connecting line that, said a second of the second connection line that connects the two thermopile constitutes the thermopile are formed respectively, along the boundary between the compensation section and the gas detection section It is characterized by that.
この構成によれば、第1のヒータを発熱させることにより、ガス反応膜が有する燃焼触媒の活性を高くすることができるとともに、第2のヒータを発熱させることにより、第2のヒータ近傍の温度を、可燃性ガスが存在しない場合におけるガス反応膜の温度と略同等にすることができる。そのため、ガス反応膜と第2のヒータ近傍との温度差を求め、外的要因によるガス反応膜の温度変化を補償することができる。そして、温接点によりガス反応膜の近傍および第2のヒータの近傍の温度を測定する第1および第2のサーモパイルのそれぞれを2つのサーモパイルで構成し、2つのサーモパイルを接続する接続線をガス検出部と補償部との境界に沿って形成することにより、ガス検出部と補償部とが熱的に分離され、ガス反応膜における触媒燃焼で生じた熱による補償部の温度上昇が抑制される。これにより、外的要因によるガス反応膜の温度変化をより正確に補償し、可燃性ガスの濃度に対応したガス反応膜の温度上昇量をより正確に求めることが可能となるので、可燃性ガスの検出感度をより高くすることができる。また、熱電対を直列接続することにより、その両端の電圧として出力される、ガス反応膜や第2のヒータの温度を表す信号を十分に大きくすることができる。そのため、ガス反応膜および第2のヒータの温度をより正確に測定することが可能となるので、可燃性ガスの検出感度をより高くすることができる。 According to this configuration, the activity of the combustion catalyst of the gas reaction film can be increased by generating heat from the first heater, and the temperature near the second heater can be generated by generating heat from the second heater. Can be made substantially equal to the temperature of the gas reaction membrane in the absence of a combustible gas. Therefore, the temperature difference between the gas reaction film and the vicinity of the second heater can be obtained, and the temperature change of the gas reaction film due to an external factor can be compensated. Each of the first and second thermopiles that measure the temperature in the vicinity of the gas reaction film and in the vicinity of the second heater by means of the hot junction is composed of two thermopiles, and the connection line connecting the two thermopiles is detected by gas. By forming along the boundary between the part and the compensation part, the gas detection part and the compensation part are thermally separated, and the temperature rise of the compensation part due to heat generated by catalytic combustion in the gas reaction film is suppressed. This makes it possible to more accurately compensate for the temperature change of the gas reaction membrane due to external factors, and more accurately determine the temperature rise of the gas reaction membrane corresponding to the concentration of the combustible gas. Detection sensitivity can be further increased. Further, by connecting the thermocouples in series, a signal representing the temperature of the gas reaction membrane and the second heater that is output as the voltage across the two ends can be made sufficiently large. Therefore, the temperature of the gas reaction membrane and the second heater can be measured more accurately, and the detection sensitivity of the combustible gas can be further increased.
前記接触燃焼式ガスセンサは、さらに、前記基板に設けられた断熱部と、前記ガス検出部と前記補償部との境界部の下において、前記断熱部が形成されていない放熱部と、を備えており、前記第1および第2のヒータと、前記ガス反応膜と、前記第1および第2のサーモパイルの温接点とは、前記断熱部上に配置され、前記放熱部は、前記ガス反応膜において発生した熱を前記接触燃焼式ガスセンサの外部に放出するものとしてもよい。 The contact combustion gas sensor further includes a heat insulating portion provided on the substrate, and a heat radiating portion where the heat insulating portion is not formed under a boundary portion between the gas detecting portion and the compensating portion. And the first and second heaters, the gas reaction film, and the hot contacts of the first and second thermopiles are disposed on the heat insulating part, and the heat dissipation part is disposed in the gas reaction film. The generated heat may be released to the outside of the catalytic combustion type gas sensor.
放熱部は、所望の形状に断熱部を形成することにより形成される。そのため、ガス検出部と補償部とを熱的に分離する構造をより容易に形成することが可能となる。また、ガス検出部と補償部とを近接配置できるため、ガスセンサの小型化および小型化による低コスト化を図ることができる。 The heat radiating part is formed by forming the heat insulating part in a desired shape. Therefore, it is possible to more easily form a structure that thermally separates the gas detection unit and the compensation unit. In addition, since the gas detection unit and the compensation unit can be arranged close to each other, the gas sensor can be reduced in size and cost can be reduced by downsizing.
前記第1および第2のヒータと、前記第1および第2のヒータに通電するための配線は、前記ガス検出部と前記補償部とを跨がないように形成されているものとしても良い。 The first and second heaters and the wiring for energizing the first and second heaters may be formed so as not to straddle the gas detection unit and the compensation unit.
一般に、ヒータやヒータに通電するための配線は、熱伝導度が高い。そのため、ヒータやヒータに通電するための配線を、ガス検出部と補償部とを跨がないように形成することにより、ガス検出部と補償部との熱的な分離状態をより良好に維持することができる。 In general, a heater and wiring for energizing the heater have high thermal conductivity. Therefore, by forming the heater and the wiring for energizing the heater so as not to straddle the gas detection unit and the compensation unit, the thermal separation state between the gas detection unit and the compensation unit can be better maintained. be able to.
前記第1および第2のサーモパイルを構成する熱電対は、互いに異なる材料で形成された第1と第2の熱電素子を有しており、前記第1および第2のサーモパイルを構成する熱電対のうち、前記直列接続の末端に位置する前記第1の熱電素子がフロート状態で接続されているものとしても良い。 The thermocouples constituting the first and second thermopiles have first and second thermoelectric elements made of different materials, and the thermocouples constituting the first and second thermopiles Of these, the first thermoelectric element located at the end of the series connection may be connected in a float state.
この構成によれば、可燃性ガス濃度に対応した信号を直接出力することができるので、可燃性ガスの検出回路をより簡単にすることが可能となる。 According to this configuration, since a signal corresponding to the combustible gas concentration can be directly output, the combustible gas detection circuit can be further simplified.
前記補償部は、さらに、前記可燃性ガスの燃焼触媒を担持していない担体を含む参照膜を有しており、前記参照膜は、前記第2のヒータ上の前記第2のサーモパイルの温接点の近傍を含む領域に形成されているものとしても良い。 The compensator further includes a reference film including a carrier that does not carry a combustion catalyst for the combustible gas, and the reference film is a hot contact point of the second thermopile on the second heater. It may be formed in a region including the vicinity of.
参照膜を形成することにより、ガス反応膜と第2のヒータ近傍との熱容量が近くなるので、外的要因によりガス反応膜と第2のヒータ近傍の温度差の発生が抑制される。そのため、より正確に外的要因によるガス反応膜の温度変化を補償することができるので、可燃性ガスの検出感度をより高くすることができる。 By forming the reference film, the heat capacities of the gas reaction film and the vicinity of the second heater become close to each other, so that the occurrence of a temperature difference between the gas reaction film and the vicinity of the second heater is suppressed by an external factor. Therefore, since the temperature change of the gas reaction film due to an external factor can be compensated more accurately, the detection sensitivity of the combustible gas can be further increased.
なお、本発明は、種々の態様で実現することが可能である。例えば、ガスセンサ、そのガスセンサを利用したセンサモジュール、そのセンサモジュールを使用した可燃ガス検出装置および可燃ガス検出システム、それらのガスセンサ、センサモジュールおよび可燃ガス検出装置を用いたリークテスト装置やリークテストシステム等の態様で実現することができる。 Note that the present invention can be realized in various modes. For example, a gas sensor, a sensor module using the gas sensor, a combustible gas detection device and a combustible gas detection system using the sensor module, a leak test device and a leak test system using the gas sensor, sensor module and combustible gas detection device, etc. It is realizable with the aspect of.
A.第1実施形態:
A1.センサモジュール:
図1は、本発明の第1実施形態における接触燃焼式ガスセンサモジュール10(以下、単に「センサモジュール10」とも呼ぶ)の構成を示す説明図である。図1(a)は、センサモジュール10の断面を示している。第1実施形態のセンサモジュール10では、センサチップ100が、ヘッダ11とキャップ12とからなるパッケージ19内に実装されている。キャップ12は、例えば、ステンレス鋼や真鍮等の焼結金属、ステンレス鋼等からなる金網、あるいは、多孔質セラミックスで形成されている。これにより、パッケージ19内外の通気性が確保されるとともに、センサチップ100の汚染が抑制され、また、センサモジュール10自体の防爆化が図られている。センサチップ100は、その基板110がダイボンド材15によりヘッダ11に接着されることにより、ヘッダ11に固定されている。
A. First embodiment:
A1. Sensor module:
FIG. 1 is an explanatory diagram showing a configuration of a catalytic combustion gas sensor module 10 (hereinafter also simply referred to as “
図1(b)は、ヘッダ11に固定されたセンサチップ100を上面から見た様子を示している。なお、図1(b)における一点鎖線は、図1(a)で示した断面の位置を示している。センサチップ100の上面には、導電膜が露出したボンディングパッド191〜194が形成されている。このボンディングパッド191〜194と、封止材13を介してヘッダ11に取り付けられた端子14とをワイヤ16で接続することにより、センサチップ100は外部の回路に接続される。
FIG. 1B shows a state where the
図1(a)および図1(b)に示すように、センサチップ100の上面には、可燃性ガスを触媒燃焼させるためのガス反応膜161と、比較のための参照膜162とが設けられている。可燃性ガスがキャップ12を透過してセンサチップ100に到達すると、ガス反応膜161では、可燃性ガスが触媒燃焼し、可燃性ガスの濃度に応じた量の熱が発生する。そのため、ガス反応膜161は、可燃性ガスの濃度に応じて温度が上昇する。一方、参照膜162は、触媒燃焼による温度上昇が発生しない。詳細については後述するが、センサチップ100は、ガス反応膜161と参照膜162とのそれぞれの温度を表す信号を出力する。これらの出力信号に基づいて、可燃性ガスの触媒燃焼により温度上昇するガス反応膜161と、可燃性ガスによる温度上昇がない参照膜162との温度差を求めることにより、雰囲気中の可燃性ガスの濃度を測定することができる。なお、このように、センサチップ100は、センサモジュール10において、ガスを検出する機能を担っているので、ガスセンサそのものであると謂える。そのため、以下では、センサチップ100を単に「ガスセンサ100」と呼ぶ。
As shown in FIG. 1A and FIG. 1B, a
A2.ガスセンサ:
図2は、ガスセンサ100の構造を示す説明図である。図2(a)は、ガスセンサ100を上面から見た様子を示しており、図2(b)および図2(c)は、それぞれ、図2(a)の切断線A−A’および切断線B−B’におけるガスセンサ100の断面を示している。
A2. Gas sensor:
FIG. 2 is an explanatory diagram showing the structure of the
ガスセンサ100は、2つの空洞部117,118が設けられた基板110と、基板110の上面に形成された絶縁膜120とを有している。絶縁膜120上には、ガスの検出機能を実現するための構造(後述する)を形成する複数の膜(機能膜)が積層されている。具体的には、絶縁膜120上には、半導体膜130と、導電膜140と、保護膜150と、ガス反応膜161もしくは参照膜162とが、この順で積層されている。これらの機能膜のうち、半導体膜130と、導電膜140と、保護膜150とは、半導体デバイスの製造方法として周知の技術を用いて形成することができる。なお、絶縁膜120および絶縁膜120上に積層される機能膜は、ガスセンサの製造工程や構造の変更に伴い、適宜追加あるいは省略される。
The
ガスセンサ100の作製工程では、まず、空洞部117,118を有さないシリコン(Si)基板を準備する。次いで、準備したSi基板上に、酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)およびSiO2をこの順に成膜することにより、絶縁膜120を形成する。なお、絶縁膜120を、SiO2とSi3N4との多層膜とせず、酸窒化ケイ素(SiON)の単層膜とすることも可能である。絶縁膜120を形成した後、ポリシリコンの成膜・パターニングを行うことにより、半導体膜130を形成する。半導体膜130を形成する材料として、ポリシリコンに替えて、鉄シリサイド(FeSi2)、シリコン・ゲルマニウム(SiGe)あるいはビスマス・アンチモン(BiSb)等の種々の半導体を用いても良い。次いで、白金(Pt)の成膜・パターニングを行うことにより、導電膜140を形成する。導電膜140を形成する材料として、Ptに替えて、タングステン(W)、タンタル(Ta)、金(Au)、アルミニウム(Al)あるいはAl合金等、種々の金属や合金を用いても良い。また、導電膜140の少なくとも一方の面に、チタン(Ti)やクロム(Cr)からなる密着層を形成しても良い。導電膜140を形成した後、SiO2の成膜・パターニングを行うことにより、保護膜150を形成する。パターニングにより保護膜150に開口部(コンタクトホール)151〜154を設けることにより、導電膜140が露出したボンディングパッド191〜194が形成される。
In the manufacturing process of the
保護膜150を形成した後、基板110に設けられる空洞部117,118を形成する。空洞部117,118の形成に際しては、まず、基板の機能膜130,140,150が形成されていない面(裏面)を研磨する。研磨により基板を所望の厚さにした後、裏面をエッチングすることにより、空洞部117,118を形成する。空洞部117,118の形成は、ドライエッチングと、ウェットエッチングとのどちらによっても行うことができる。ドライエッチングを行う場合には、C4F8プラズマによるパッシベーションと、SF6プラズマによるエッチングとのステップを短い時間間隔で繰り返すエッチング方法(いわゆるボッシュプロセス)を用いるのが好ましい。また、ウェットエッチングを行う場合には、結晶異方性エッチングを行うのが好ましい。空洞部117,118を形成することにより、外枠部111と、2つの空洞部117,118を隔てる板状部112とを備える基板110が形成される。また、空洞部117,118を形成することにより、絶縁膜120が裏面側において露出したメンブレン121,122が形成される。なお、図2から明らかなように、メンブレン121,122は、空洞部117,118を渡るように形成されている。
After the
空洞部117,118の形成後、保護膜150上に、ガス反応膜161および参照膜162を形成する。ガス反応膜161および参照膜162は、担体であるアルミナ粒子を含むペーストを保護膜上に塗布し、その後焼成することにより形成することができる。ペーストの塗布は、ディスペンサによる塗布技術やスクリーン印刷技術を用いて行うことができる。ガス反応膜161を形成するためのペーストには、燃焼触媒としてのPt微粒子を担持させたアルミナ粒子を用いる。一方、参照膜162を形成するためのペーストには、触媒を担持させないアルミナ粒子を用いる。なお、ガス反応膜161に使用する燃焼触媒として、Pt微粒子に替えて、パラジウム(Pd)微粒子を用いることも可能である。また、参照膜162の比熱をガス反応膜161に近づけるため、参照膜162を形成するためのペーストに酸化銅(CuO)等の金属酸化物を混ぜても良い。さらに、参照膜162に含まれる担体に、特定のガスについて選択的に触媒として作用する燃焼触媒(例えば、Auの超微粒子)を担持するものとしても良い。この場合においても、当該特定のガス以外の可燃性ガスに関しては、参照膜162の担体には燃焼触媒が担持されていないと謂うことができる。
After the formation of the
図3は、ガスセンサ100の機能的な構成を示す説明図である。図3(a)は、図2(a)と同様に、ガスセンサ100を上面から見た様子を示している。但し、図3(a)および図3(b)においては、図示の便宜上、保護膜150のハッチングを省略している。図3(b)は、図3(a)において二点鎖線で囲んだ領域の拡大図である。
FIG. 3 is an explanatory diagram showing a functional configuration of the
ガスセンサ100は、ガスの検出機能を実現するための構造として、4つのサーモパイルTP1〜TP4と、導電膜140(図2)として形成された2つのヒータ141,142および各部を接続する配線144,145,146と、ヒータ141,142の上部にそれぞれ形成されたガス反応膜161および参照膜162とを有している。なお、図3(a)に示すように、ガス反応膜161、参照膜162およびヒータ141,142は、メンブレン121,122上に形成されている。メンブレン121,122は、一般に薄く(約1〜5μm)形成されるので、メンブレン121,122自体の熱容量は小さい。また、メンブレン121,122の下面には、熱を伝達しない空洞部117,118が形成されている。このように、ガス反応膜161を空洞部117,118上に形成された熱容量が小さいメンブレン121の上部に形成することにより、ガス反応膜161における可燃性ガスの触媒燃焼で発生する熱量が少ない場合においても、ガス反応膜161の温度を十分に上昇させることができる。そのため、ガスセンサ100における可燃性ガスの検出感度をより高くすることができる。なお、メンブレン121,122の下面に形成された空洞部117,118は、熱を伝達しないので、断熱部とも言うことができる。
As a structure for realizing a gas detection function, the
図3(a)に示すように、ガスセンサ100は、図3(a)において上下方向(以下、「縦方向」と謂う)に伸びる中心線C1に対して、略対称に形成されている。また、サーモパイルTP1〜TP4は、図3(a)において左右方向(以下、「横方向」と謂う)に伸びる中心線C2に対して、略対称に形成されている。以下では、必要性がない限り、このように対称性を有する部分については、その1つについてのみ説明する。なお、後述するように、ガスセンサ100のうち、中心線C1の左側の部分は、ガス反応膜161の温度を表す信号(すなわち、雰囲気中の可燃性ガスの濃度に応じた信号)を出力するように構成されており、中心線C1の右側の部分は外的要因によるガス反応膜161の温度変化を補償するための信号を出力する。そのため、中心線C1の左側の部分は、ガスを検出するガス検出部とも謂うことができ、中心線C1の右側の部分は外的要因による出力変動を補償する補償部とも謂うことができる。
As shown in FIG. 3A, the
サーモパイルTP1は、図3(b)に示すように、半導体膜130(図2)として形成された半導体熱電素子131と、導電膜140として形成された金属熱電素子143とを有している。サーモパイルTP1では、縦方向に伸びる半導体熱電素子131および金属熱電素子143が横方向に複数配列されている。金属熱電素子143は、ガス反応膜161の下部と、基板110(図2(b))の外枠部111の上部とにおいて、隣接する半導体熱電素子131に接続されている。これにより、半導体熱電素子131および金属熱電素子143は、温接点HJと冷接点CJとを有する熱電対として機能し、冷接点CJを基準としたガス反応膜161の温度を表す電圧を出力する。冷接点CJは、ダイボンド材15(図1)を介してヘッダ11に接着された外枠部111(すなわち、断熱部である空洞部117,118が設けられていない領域)の上部に形成されているので、ヘッダ11と略同温度となる。そのため、ガス反応膜161の温度の測定基準は、ヘッダ11の温度、すなわち、環境温度となる。このように、サーモパイルTP1,TP2の温接点HJは、ガス反応膜161の温度を測定する機能を有し、同様に、サーモパイルTP3,TP4の温接点HJは、参照膜162の温度を測定する機能を有する。そのため、これらのサーモパイルTP1〜TP4の温接点HJは、測温素子とも謂うことができる。なお、図3の例では、温接点HJは、ガス反応膜161および参照膜162の下に形成されているが、一般に、温接点HJは、ガス反応膜161および参照膜162の近傍に形成されていればよい。このようにしても、温接点HJによりガス反応膜161および参照膜162の温度を測定することができる。
As shown in FIG. 3B, the thermopile TP1 includes a semiconductor
サーモパイルTP1を構成する半導体熱電素子131のうち、中心線C1側(内側)の半導体熱電素子131は、導電膜140として形成された接続線144により、中心線C2に対して略対称に形成されたサーモパイルTP2に接続される。一方、中心線C1とは反対側(外側)の金属熱電素子143は、ボンディングパッド193と連続するように形成されている。接続線144は、基板110(図2(b))の外枠部111を跨ぎ、サーモパイルTP2における内側の金属熱電素子143と連続するように形成されている。また、サーモパイルTP2における外側の半導体熱電素子131は、横方向に拡がるグランド配線145に接続されている。これにより、グランド配線145上のボンディングパッド191と、サーモパイルTP1に接続されたボンディングパッド193との間では、ガス反応膜161の下部に配置された温接点HJと、外枠部111の上部に配置された冷接点CJとを有する熱電対が直列接続される。このように、熱電対が直列接続されることにより、2つのボンディングパッド191,193間の電圧、すなわち、ガス反応膜161の温度を表す出力信号を十分に大きくすることができる。また、同様にして、参照膜162の温度を表す出力信号を十分に大きくすることができるので、ガス反応膜161および参照膜162の温度をより正確に測定することができる。
Among the semiconductor
図3(a)に示すように、ヒータ141,142は、ガス反応膜161の下部の、2つのサーモパイルTP1,TP2の間に配置されている。このヒータ141,142は、グランド配線145と、横方向に拡がるヒータ配線146との間の線幅の狭い領域として形成され、ガスセンサ100の外周側から、グランド配線145およびヒータ配線146に接続されている。これらのヒータ141,142は、グランド配線145上のボンディングパッド191と、ヒータ配線146上のボンディングパッド192との間に電圧を印加してヒータ141,142に通電することにより発熱する。ヒータ141,142に通電するためのグランド配線145とヒータ配線146とは、いずれも、外枠部111上に配置されているので、これらの配線は、空洞部117,118およびメンブレン121,122の上において、中心線C1の左側のガス検出部と、中心線C1の右側の補償部とを跨がない。なお、第1実施形態では、導電膜140として形成したヒータ141,142を用いているが、半導体膜としてヒータを形成することも可能である。
As shown in FIG. 3A, the
ヒータ141を発熱させると、ガス反応膜161の温度が上昇する。これにより、ガス反応膜161が有する触媒の活性が高くなり、ガス反応膜161における可燃性ガスの触媒燃焼が促進されるので、ガスセンサ100における可燃性ガスの検出感度が高くなる。また、可燃性ガスとして水素ガス(H2)を検出する場合、ガス反応膜161における触媒燃焼により水(H2O)が生成される。このとき、ガス反応膜161の温度が低いと、生成されたH2Oが凝結してガス反応膜161が濡れ、検出感度が低下する虞がある。第1実施形態では、ヒータ141によりガス反応膜161を加熱することにより、生成されたH2Oによる検出感度の低下を抑制することが可能となる。また、参照膜162は、ガス反応膜161と同様にヒータ142により加熱されるので、雰囲気に可燃性ガスが含まれない場合、ガス反応膜161と参照膜162とは、略同温度となる。そのため、ガス反応膜161と参照膜162とのそれぞれの温度を表す出力信号の差を求めることにより、外的要因によるガス反応膜161の温度変化を補償し、可燃性ガスの濃度に対応したガス反応膜161の温度上昇量をより正確に求めることが可能となる。
When the
第1実施形態のガスセンサ100では、ガス反応膜161と参照膜162とを、それぞれ分離した2つの空洞部117,118上に形成している。そして、2つの空洞部117,118の間の板状部112は、図1(a)に示すように、ダイボンド材15を介して、パッケージ19のヘッダ11に接着されている。そのため、可燃性ガスの燃焼によりガス反応膜161で生じた熱は、その大部分が板状部112とダイボンド材15とを介してヘッダ11に伝達される。これにより、ガス反応膜161で生じた熱は、ガスセンサ100の外部に放出され、参照膜162側にはほとんど伝達されず、ガス検出部と補償部とが熱的に分離される。なお、板状部112は、ガス反応膜161で生じた熱をガスセンサ100の外部に放出する機能を有しているので、放熱部と謂うことができる。このような放熱部は、必ずしも板状である必要はなく、また、外枠部111を渡るように形成されている必要はない。一般的には、ガス反応膜161で生じた熱をガスセンサ100の外部に放出する放熱部は、基板としてガス検出部と補償部との境界部である中心線C1の下に形成されていればよい。
In the
さらに、第1実施形態のガスセンサ100では、2つのヒータ141,142は、それぞれ別個に形成されている。また、ヒータ141,142に通電するための配線は、上述の通り、空洞部117,118およびメンブレン121,122の上において、ガス検出部と補償部とを跨がない。そのため、ヒータ141,142、グランド配線144およびヒータ配線146は、熱伝導度の高い導電膜140として形成されているが、ガス反応膜161で生じた熱を参照膜162にほとんど伝達しない。これにより、ガス検出部と補償部との熱的な分離状態がより良好に維持される。
Furthermore, in the
このように第1実施形態によれば、ガス検出部と補償部とを熱的に分離することにより、ガス反応膜161で生じた熱による参照膜162の温度上昇が抑制される。そのため、外的要因によるガス反応膜161の温度変化をより正確に補償し、可燃性ガスの濃度に対応したガス反応膜161の温度上昇量をより正確に求めることが可能となるので、可燃性ガスの検出感度をより高くすることができる。
As described above, according to the first embodiment, the temperature detection of the
B.第2実施形態:
図4は、第2実施形態におけるガスセンサ100aの構造を示す説明図である。図4(a)は、ガスセンサ100aを上面から見た様子を示しており、図4(b)および図4(c)は、それぞれ、図4(a)の切断線A−A’および切断線D−D’におけるガスセンサ100aの断面を示している。なお、図4(a)においても、図3と同様に、保護膜150aのハッチングを省略している。
B. Second embodiment:
FIG. 4 is an explanatory view showing the structure of the
第2実施形態のガスセンサ100aは、基板110aに単一の空洞部119を形成している点と、絶縁膜120aおよび保護膜150aのそれぞれにスリット穴129,159を形成している点と、スリット穴129,159の形成に合わせて、導電膜140aとして形成される接続線144aの位置を変更している点とで、第1実施形態のガスセンサ100と異なっている。他の点は、第1実施形態のガスセンサ100と同様である。
In the
絶縁膜120aおよび保護膜150aへのスリット穴129,159の形成は、保護膜150aとなるSiO2膜の成膜後、SiO2とSi3N4とを選択的にエッチングすることにより、コンタクトホール151〜154の形成と同時に行うことができる。このような選択的なエッチングは、例えば、CHF3等のプラズマによるエッチングにより行うことが可能である。
The slit holes 129 and 159 are formed in the insulating
図4(a)に示すように、スリット穴129,159は、ガス検出部(切断線D−D’の左側)と補償部(切断線D−D’の右側)との境界に沿って、基板110aの外枠部111を跨ぐように形成されている。これにより、図4(a)および図4(b)に示すように、空間的に分離した2つのメンブレン121a,122aが形成される。そのため、第2実施形態のガスセンサ100aにおいても、ガス検出部と補償部とが熱的に分離され、ガス反応膜161で生じた熱による参照膜162の温度上昇が抑制される。これにより、外的要因によるガス反応膜161の温度変化をより正確に補償し、可燃性ガスの濃度に対応したガス反応膜161の温度上昇量をより正確に求めることが可能となるので、可燃性ガスの検出感度をより高くすることができる。但し、スリット穴は、ガス反応膜161と参照膜162との間に設けられていれば、必ずしも外枠部111を跨ぐ必要はない。
As shown in FIG. 4A, the slit holes 129 and 159 are formed along the boundary between the gas detection unit (left side of the cutting line DD ′) and the compensation unit (right side of the cutting line DD ′). It is formed so as to straddle the
なお、第2実施形態のガスセンサ100aでは、絶縁膜120aおよび保護膜150aにスリット穴129,159を形成しているが、スリット穴129,159を形成しないものとしても良い。この場合、ガス反応膜161と参照膜162とは、単一のメンブレン上に配置される。しかしながら、図4に示すように、第2実施形態のガスセンサ100aにおいても、ガス検出部と補償部との境界に沿って、空洞部119を跨ぐように接続線144aが形成されている。この接続線144aは熱伝導度の高い導電膜140aとして形成されているので、ガス反応膜161で発生し参照膜162方向に伝達される熱の大部分は、接続線144aから外枠部111に伝達され、ガス反応膜161から参照膜162への熱の伝達が抑制される。このように、スリット穴129,159を形成しない場合においても、ガス検出部と補償部とは熱的に分離されるので、ガス反応膜161で生じた熱による参照膜162の温度上昇が抑制される。但し、より確実に熱の伝達を抑制するためには、スリット穴129,159を設けるのが好ましい。
In the
C.第3実施形態:
図5は、第3実施形態におけるガスセンサ100bの構造を示す説明図である。図4(a)は、ガスセンサ100bを上面から見た様子を示しており、図5(b)は、それぞれ、図5(a)の切断線B−B’におけるガスセンサ100bの断面を示している。なお、図5(a)においても、図3と同様に、保護膜150が残存する領域のハッチングを省略している。
C. Third embodiment:
FIG. 5 is an explanatory diagram showing the structure of the
第3実施形態のガスセンサ100bは、第1実施形態のガスセンサ100においてグランド配線145に接続されているサーモパイルTP2,TP4の外側の半導体熱電素子131、すなわち、直列接続された熱電対の端にあたる半導体熱電素子131を、グランド配線145bとは別個の連結線147によりフロート状態で互いに接続している点と、連結線147を形成するために、グランド配線145bの形状を変更している点とで、第1実施形態のガスセンサ100と異なっている。他の点は、第1実施形態のガスセンサ100と同様である。
The
図5(a)および図5(b)に示すように、第3実施形態のガスセンサ100bでは、外枠部111の上部に配置された連結線147によりサーモパイルTP2,TP4の外側の半導体熱電素子131を互いに接続している。このように半導体熱電素子131を互いに接続することにより、ボンディングパッド193からボンディングパッド194に繋がる回路として見たときに、中心線C1の左側のガス検出部におけるサーモパイルTP1,TP2と、中心線C1の右側の補償部におけるサーモパイルTP3,TP4とにおいて、熱電対としての接続順序が逆になっている。具体的に言えば、ガス検出部では、ボンディングパッド193から連結線147に向かって順に、温接点HJにおいて金属熱電素子143から半導体熱電素子131に接続され、冷接点CJにおいて半導体熱電素子131から金属熱電素子143に接続されている。一方、補償部では、連結線147からボンディングパッド194に向かって順に、冷接点CJにおいて金属熱電素子143から半導体熱電素子131に接続され、温接点HJにおいて半導体熱電素子131から金属熱電素子143に接続されている。
As shown in FIGS. 5A and 5B, in the
このように、直列接続された熱電対の端にあたる半導体熱電素子131をフロート状態で互いに接続することにより、2つのボンディングパッド193,194間の電圧は、ガス反応膜161と参照膜162との温度差を表す電圧となる。言い換えれば、2つのボンディングパッド193,194からは、雰囲気中の可燃性ガス濃度に対応した信号が直接出力される。そのため、第3実施形態のガスセンサ100bを用いることにより、センサモジュール10(図1)の外部において差動増幅器により出力信号の差を求めることを省略できるので、可燃性ガスの検出回路をより簡単にすることが可能となる。また、一般的に差動増幅器等の増幅器は、入力電圧が電源電圧を超えると動作しない。そのため、差動増幅器により出力信号の差を求める場合には、出力信号の電圧が差動増幅器の電源電圧を超えないように、サーモパイルTP1〜TP4を構成する熱電対の段数や、熱電素子131,143として使用する材料が制限される。一方、第3実施形態によれば、ガス反応膜161と参照膜162との温度差を表す電圧が出力される。そのため、サーモパイルTP1〜TP4を構成する熱電対の段数を増やし、また、より熱起電力が大きくなるように熱電素子として使用する材料を選択することにより、可燃性ガスの検出感度をより高くすることが可能となる。
As described above, by connecting the semiconductor
また、第3実施形態では、連結線147が外枠部111の上部に配置されているため、連結線147はガス反応膜161から参照膜162への熱の伝達経路とならない。そのため、第3実施形態においても、第1実施形態と同様に、ガス検出部と補償部とが熱的に分離されているので、ガス反応膜161で生じた熱による参照膜162の温度上昇が抑制される。これにより、可燃性ガスによるガス反応膜161の温度上昇分をより正確に求めることが可能となり、可燃性ガスの検出感度をより高くすることができる。但し、第3実施形態においては、ガス検出部と補償部とは、必ずしも熱的に分離する必要はない。この場合においても、直列接続された熱電対の端にあたる半導体熱電素子131を、フロート状態で互いに接続することにより、雰囲気中の可燃性ガス濃度に対応した信号を直接出力することができるので、可燃性ガスの検出回路をより簡単にすることが可能となるとともに、可燃性ガスの検出感度をより高くすることが可能となる。
In the third embodiment, since the connecting
D.第4実施形態:
図6は、第4実施形態におけるガスセンサ100cの構造を示す説明図である。図6(a)は、ガスセンサ100cを上面から見た様子を示しており、図6(b)および図6(c)は、それぞれ、図6(a)の切断線A−A’および切断線B−B’におけるガスセンサ100cの断面を示している。
D. Fourth embodiment:
FIG. 6 is an explanatory diagram showing the structure of the
第4実施形態のガスセンサ100cは、断熱部として、基板110に形成された2つの空洞部117,118に替えて、絶縁膜120上に空洞部171c,172cを形成している点と、空洞部171c、172cを形成することにより、機能膜130c,140c,150c,161c,162cの形状が変化している点と、保護膜150cに4つの貫通穴155c〜158cが形成されている点とで、第1実施形態のガスセンサ100と異なっている。他の点は、第1実施形態のガスセンサ100と同様である。
In the
ガスセンサ100cの製造工程では、絶縁膜120に空洞部171c,172c形成するため、絶縁膜120の成膜後、まず、絶縁膜120上の空洞部171c,172cを形成する領域に、ポリイミド等の樹脂で犠牲膜(図示しない)を形成する。犠牲膜の形成後、半導体膜130、導電膜140c、および貫通穴155c〜158cが設けられた保護膜150cを形成する。次いで、保護膜150cに設けられた貫通穴155c〜158cを通して、アッシングを行うことにより犠牲膜を除去する。このようにして空洞部171c,172cを形成した後、保護膜150c上にガス反応膜161と参照膜162を形成することにより、第4実施形態のガスセンサ100cが得られる。なお、犠牲膜を形成する材料として、ポリイミド等の樹脂に替えて、ポリシリコン等の半導体を用いることができる。半導体からなる犠牲膜は、貫通穴155c〜158cを通してエッチングを行うことにより除去することができる。この場合、半導体膜130のエッチングを阻止するため、絶縁膜120および犠牲膜の上面には、SiO2やSi3N4等からなる阻止膜が形成される。
In the manufacturing process of the
第4実施形態では、絶縁膜120の上面に空洞部171c、172cを形成しているが、基板と絶縁膜との間に空洞部を形成することもできる。この場合、保護膜と絶縁膜とを貫通する貫通穴を設け、当該貫通穴を通して犠牲膜を除去すればよい。また、絶縁膜120の形成を省略し基板の上面に空洞部を形成することもできる。なお、これらの場合においても、犠牲膜をポリシリコン等の半導体で形成する場合には、基板や半導体膜のエッチングを阻止するための阻止膜が形成される。
In the fourth embodiment, the
このように、第4実施形態のガスセンサ100cでは、基板110c上に空洞部171,172を形成することにより、基板をエッチングして空洞部117,118を形成した第1実施形態のガスセンサ100よりも、基板110cの強度をより高くすることができる。一方、ガスセンサの製造工程をより簡略化できる点においては、第1実施形態のように基板をエッチングして空洞部117,118を形成するのが好ましい。
Thus, in the
図6に示すように、ガスセンサ100cにおいても、ガス反応膜161cと参照膜162cとは、分離した2つの空洞部171c,172c上に形成されている。また、2つの空洞部171,172の間の領域、すなわち、断熱部となる空洞部が形成されていない領域においては、導電膜140cと保護膜150cとが絶縁膜120と接触している。そのため、可燃性ガスの燃焼によりガス反応膜161cで生じた熱は、導電膜140cおよび保護膜150cと絶縁膜120との接触部、絶縁膜120、および、基板110cを通してガスセンサ100cの外部に放出され、参照膜162c側にはほとんど伝達されない。このように、第4実施形態においても、ガス検知部と補償部とが熱的に分離されているので、第1実施形態と同様に、ガス反応膜161cで生じた熱による参照膜162cの温度上昇が抑制される。そのため、外的要因によるガス反応膜161cの温度変化をより正確に補償し、可燃性ガスの濃度に対応したガス反応膜161cの温度上昇量をより正確に求めることが可能となるので、可燃性ガスの検出感度をより高くすることができる。なお、このように、空洞部171,172の間の空洞部が形成されていない領域は、ガス反応膜161cで生じた熱をガスセンサ100cの外部に放出する機能を有しているので、放熱部とも謂うことができる。
As shown in FIG. 6, also in the
なお、第4実施形態では、第1実施形態と同様に、2つの空洞部171,172を形成したガスセンサ100cを例示しているが、第2実施形態のように、単一の空洞部を形成し、スリット穴によりガス検知部と補償部とを熱的に分離することも可能である。この場合、犠牲膜の除去はスリット穴を通して行うことができるので、第4実施形態のように、保護膜150cに貫通穴155c〜158cを別途設ける必要はない。
In the fourth embodiment, the
E.変形例:
本発明は上記各実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。
E. Variation:
The present invention is not limited to the above-described embodiments, and can be implemented in various modes without departing from the gist thereof. For example, the following modifications are possible.
E1.変形例1:
上記各実施形態では、2つのヒータ141,142を並列に接続して、2つのヒータ141,142に同時に通電しているが、2つのヒータ141,142に別個に通電するものとしても良い。この場合、例えば、ヒータ配線146を2つに分割し、それぞれに、電圧印加用のボンディングパッドを設ければよい。2つのヒータ141,142に別個に通電すれば、通電電流を調整することができる。そのため、通電電流を調整することにより、雰囲気中に可燃性ガスがない状態において、ガス濃度に対応する出力信号のオフセットを0に調整すれば、より低濃度のガスを検出することが可能となる。
E1. Modification 1:
In each of the above embodiments, the two
E2.変形例2:
上記各実施形態では、ガス検出部と補償部とのそれぞれにおいて、2つのサーモパイルを設けているが、サーモパイルの数は、任意の数とすることができる。例えば、ガス検出部と補償部とのそれぞれにおいて、単一のサーモパイルを設けるものとしても良く、また、さらにサーモパイルを増やすものとしても良い。また、上記各実施形態では、ガス反応膜161と参照膜162との温度を測定するために、熱電対を直列接続したサーモパイルを用いているが、ガス検出部と補償部とのそれぞれにおいて、単一の熱電対を設け、それによりガス反応膜161と参照膜162との温度を測定するものとしても良い。但し、出力信号をより大きくすることができる点で、熱電対を直列接続したサーモパイルを用いるのが好ましい。
E2. Modification 2:
In each of the embodiments described above, two thermopiles are provided in each of the gas detection unit and the compensation unit, but the number of thermopiles can be any number. For example, a single thermopile may be provided in each of the gas detection unit and the compensation unit, or the thermopile may be further increased. In each of the above embodiments, a thermopile in which thermocouples are connected in series is used to measure the temperature of the
E3.変形例3:
上記各実施形態では、半導体膜130として形成された半導体熱電素子131と、導電膜140,140a,140bとして形成された金属熱電素子143とを接続することにより、サーモパイルTP1〜TP4を構成しているが、サーモパイルは、極性の異なる2つの半導体膜として形成された2種の半導体熱電素子を接続するものとしても良く、また、材質の異なる2つの導電膜として形成された2種の金属熱電素子を接続するものとしても良い。但し、出力信号をより大きくするとともに、ガスセンサを製造するための工程数の増加を抑制することができる点で、半導体膜130として形成された半導体熱電素子131と、導電膜140,140a,140bとして成された金属熱電素子143とを接続して、サーモパイルTP1〜TP4を構成するのが好ましい。
E3. Modification 3:
In each of the above embodiments, the thermopiles TP1 to TP4 are configured by connecting the semiconductor
E4.変形例4:
上記各実施形態では、サーモパイルTP1〜TP4の温接点HJによりガス反応膜161と参照膜162との温度を測定しているが、ガス反応膜161と参照膜162との温度は、測温抵抗体やサーミスタ等の他の測温素子を用いて測定することも可能である。但し、ガス反応膜161と参照膜162との温度を表す十分に高い電圧信号が直接出力され、可燃性ガスの検出感度をより高くすることが容易となる点で、サーモパイルTP1〜TP4の温接点HJによりガス反応膜161と参照膜162との温度を測定するのが好ましい。
E4. Modification 4:
In each of the above embodiments, the temperatures of the
E5.変形例5:
上記各実施形態では、単一のセンサチップ100,100a,100b上に、ガス検出部と補償部とを設けているが、ガス検出部と補償部とを別個のチップとしても良い。この場合、パッケージ19(図1)に、ガス検出部を有するチップと、補償部を有するチップとを近接して配置すればよい。このようにしても、ガス検出部と補償部とは熱的に分離されるので、外的要因によるガス反応膜161の温度変化をより正確に補償し、可燃性ガスの濃度に対応したガス反応膜161の温度上昇量をより正確に求めることができ、ガスセンサの検出感度をより高くすることが可能となる。なお、この場合、ヒータと、ガス反応膜もしく参照膜とをメンブレン上に形成しなくても、ガス検出部と補償部とを熱的に分離することができる。但し、可燃性ガスの検出感度をより高くすることができる点で、ヒータと、ガス反応膜もしく参照膜とは、メンブレン上に形成するのが好ましい。
E5. Modification 5:
In each of the above embodiments, the gas detection unit and the compensation unit are provided on the
E6.変形例6:
上記各実施形態では、補償部に燃焼触媒を担持していない担体を含む参照膜162,162cを形成しているが、製造工程を簡略化するために参照膜162,162cの形成を省略することも可能である。この場合、補償部のサーモパイルTP3,TP4の温接点HJ(測温素子)は、温度がガス反応膜161,161cに近くなるヒータ142の温度を測定するように、ヒータ142の近傍に形成されていればよい。なお、このとき、補償部のヒータ142は、補償部の測温素子の近傍を含む領域に形成されているといえる。但し、参照膜162,162cが形成されている領域の熱容量をガス反応膜161,161cが形成されている領域の熱容量に近くし、気流等の影響による可燃性ガスの検出精度の低下を抑制することができる点で、参照膜161,161cを形成するのが好ましい。
E6. Modification 6:
In each of the above embodiments, the
E7.変形例7:
上記各実施形態では、断熱部として、基板110,110a自体に設けられた空洞部117〜119、もしくは、基板110c上に形成された空洞部171,172を用いているが、断熱部は必ずしも空洞である必要はない。断熱部は、例えば、基板自体に設けられた空洞部に、多孔質材や樹脂等の断熱材を埋め込むことにより形成することができる。多孔質材としてSiO2を用いる場合には、周知の低比誘電率(Low-k)絶縁膜やシリカエアロゲルの形成技術により空洞部に多孔質SiO2を埋め込むことができる。多孔質材として樹脂を用いる場合には、当該樹脂のモノマやプレポリマを空洞部に充填し、その後、熱や紫外線によりモノマやプレポリマを重合させればよい。また、断熱部として、基板上に多孔質材や樹脂等の断熱膜を形成するものとしても良い。この場合、第4実施形態において基板110c上に空洞部171,172を形成する工程と同様に、基板もしくは絶縁膜120上に多孔質材や樹脂等の断熱膜を形成し、形成した断熱膜を残存させることにより断熱部を形成することができる。また、基板上に断熱膜を形成するためのポリシリコン膜を形成し、当該ポリシリコン膜を陽極酸化により多孔質化しても良い。さらに、断熱部として、基板自体に多孔質部を形成するものとしても良い。多孔質部は、例えば、基板としてSi基板を用いている場合には、基板自体に空洞部を形成する工程と同様に、基板の下面側もしくは基板の上面側から、空洞部に相当する領域を陽極酸化により多孔質化することで形成することができる。なお、空洞でない断熱部を用いる場合において、断熱部の材料が導電性を有する場合には、断熱部と、半導体膜あるいは導電膜との間には絶縁膜が追加される。このように、空洞でない断熱部を用いることにより、断熱部上に形成された機能膜の破損が抑制される。
E7. Modification 7:
In each of the above-described embodiments, the
10…センサモジュール、11…ヘッダ、12…キャップ、13…封止材、14…端子、15…ダイボンド材、16…ワイヤ、19…パッケージ、100,100a,100b,100c…ガスセンサ、110,110a,110c…基板、111…外枠部、112…板状部、117,118,119,171c,172c…空洞部、120,120a…絶縁膜、121,122,121a,122a…メンブレン、129,159…スリット穴、130,130c…半導体膜、131…半導体熱電素子、140,140a,140b,140c…導電膜、141,142…ヒータ、143…金属熱電素子、144,144a…接続線、145,145b…グランド配線、146…ヒータ配線、147…連結線、150,150a,150c…保護膜、151,151c,152,152c,153,153c,154,154c…コンタクトホール、155c,156c,157c,158c…貫通穴、161,161c…ガス反応膜、162,162c…参照膜、191,191c,192,192c,193,193c,194,194c…ボンディングパッド、CJ…冷接点、HJ…温接点TP1,TP2,TP3,TP4…サーモパイル
DESCRIPTION OF
Claims (6)
基板上に形成された第1のヒータと、前記第1のヒータ上に形成され、前記可燃性ガスの燃焼触媒を担持した担体を含むガス反応膜と、複数の熱電対を直列接続した第1のサーモパイルと、を有するガス検出部と、
前記基板上に形成された第2のヒータと、複数の熱電対を直列接続した第2のサーモパイルと、を有する補償部と、
を備え、
前記ガス反応膜の近傍に形成された前記第1のサーモパイルの温接点は、冷接点よりも前記ガス反応膜に近い位置に配置され、
前記第2のヒータの近傍に形成された前記第2のサーモパイルの温接点は、冷接点よりも前記第2のヒータに近い位置に配置され、
前記第1のサーモパイルを構成する2つのサーモパイルを接続する第1の接続線と、前記第2のサーモパイルを構成する2つのサーモパイルを接続する第2の接続線とは、それぞれ、前記ガス検出部と前記補償部との境界に沿って形成されている、
接触燃焼式ガスセンサ。 A contact combustion type gas sensor for detecting a combustible gas,
A first heater formed on a substrate; a gas reaction film formed on the first heater and including a carrier carrying a combustion catalyst for the combustible gas; and a plurality of thermocouples connected in series. A thermopile , and a gas detector having
A compensator having a second heater formed on the substrate and a second thermopile in which a plurality of thermocouples are connected in series ;
With
The hot junction of the first thermopile formed in the vicinity of the gas reaction membrane is disposed closer to the gas reaction membrane than the cold junction,
The hot junction of the second thermopile formed in the vicinity of the second heater is disposed at a position closer to the second heater than the cold junction,
A first connection line that connects two thermopiles that constitute the first thermopile, and a second connection line that connects two thermopiles that constitute the second thermopile, respectively, Formed along the boundary with the compensation unit,
Contact combustion type gas sensor.
前記基板に設けられた断熱部と、
前記ガス検出部と前記補償部との境界部の下において、前記断熱部が形成されていない放熱部と、
を備えており、
前記第1および第2のヒータと、前記ガス反応膜と、前記第1および第2のサーモパイルの温接点とは、前記断熱部上に配置され、
前記放熱部は、前記ガス反応膜において発生した熱を前記接触燃焼式ガスセンサの外部に放出する、
接触燃焼式ガスセンサ。 The catalytic combustion type gas sensor according to claim 1, further comprising:
A heat insulating portion provided on the substrate;
Under the boundary part between the gas detection part and the compensation part, a heat dissipation part in which the heat insulation part is not formed,
With
The first and second heaters, the gas reaction film, and the hot junctions of the first and second thermopiles are disposed on the heat insulating portion,
The heat radiating part releases heat generated in the gas reaction film to the outside of the catalytic combustion type gas sensor.
Contact combustion type gas sensor.
前記断熱部は、前記基板自体に設けられた第1の空洞部と、前記基板上に形成された第2の空洞部と、前記第1の空洞部に埋め込まれた多孔質材または樹脂と、前記基板上に形成された多孔質膜または樹脂膜と、前記基板自体に形成された多孔質部と、のいずれかである、
接触燃焼式ガスセンサ。 The catalytic combustion type gas sensor according to claim 2,
The heat insulating portion includes a first cavity provided in the substrate itself, a second cavity formed on the substrate, a porous material or resin embedded in the first cavity, Either a porous film or a resin film formed on the substrate, and a porous part formed on the substrate itself,
Contact combustion type gas sensor.
前記第1および第2のヒータと、前記第1および第2のヒータに通電するための配線は、前記ガス検出部と前記補償部とを跨がないように形成されている、
接触燃焼式ガスセンサ。 It is a contact combustion type gas sensor in any one of Claims 1 thru | or 3, Comprising:
The first and second heaters and the wiring for energizing the first and second heaters are formed so as not to straddle the gas detection unit and the compensation unit.
Contact combustion type gas sensor.
前記第1および第2のサーモパイルを構成する熱電対は、互いに異なる材料で形成された第1と第2の熱電素子を有しており、
前記第1および第2のサーモパイルを構成する熱電対のうち、前記直列接続の末端に位置する前記第1の熱電素子がフロート状態で接続されている、
接触燃焼式ガスセンサ。 It is a contact combustion type gas sensor in any one of Claims 1 thru | or 4, Comprising:
The thermocouples constituting the first and second thermopiles have first and second thermoelectric elements formed of different materials,
Of the thermocouples constituting the first and second thermopiles, the first thermoelectric element located at the end of the series connection is connected in a float state,
Contact combustion type gas sensor.
前記補償部は、さらに、前記可燃性ガスの燃焼触媒を担持していない担体を含む参照膜を有しており、
前記参照膜は、前記第2のヒータ上の前記第2のサーモパイルの温接点の近傍を含む領域に形成されている、
接触燃焼式ガスセンサ。 A catalytic combustion type gas sensor according to any one of claims 1 to 5 ,
The compensation unit further includes a reference membrane including a carrier that does not carry a combustion catalyst of the combustible gas,
The reference film is formed in a region including the vicinity of the hot junction of the second thermopile on the second heater.
Contact combustion type gas sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014187770A JP6467172B2 (en) | 2014-09-16 | 2014-09-16 | Contact combustion type gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014187770A JP6467172B2 (en) | 2014-09-16 | 2014-09-16 | Contact combustion type gas sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016061592A JP2016061592A (en) | 2016-04-25 |
JP6467172B2 true JP6467172B2 (en) | 2019-02-06 |
Family
ID=55797492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014187770A Active JP6467172B2 (en) | 2014-09-16 | 2014-09-16 | Contact combustion type gas sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6467172B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021009023A (en) * | 2019-06-28 | 2021-01-28 | ヤマハファインテック株式会社 | Gas concentration detection method, gas concentration detection device, and gas generation system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200096396A1 (en) | 2018-09-26 | 2020-03-26 | Ams Sensors Uk Limited | Gas Sensors |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3485151B2 (en) * | 1997-08-07 | 2004-01-13 | 矢崎総業株式会社 | Contact combustion type gas sensor |
JP2000009671A (en) * | 1998-06-26 | 2000-01-14 | Yazaki Corp | Gas sensor |
JP2000171422A (en) * | 1998-12-04 | 2000-06-23 | Fujikin Inc | Gas detecting sensor |
JP2001099801A (en) * | 1999-09-29 | 2001-04-13 | Yazaki Corp | Contact combustion type gas sensor |
JP4009046B2 (en) * | 2001-04-10 | 2007-11-14 | 浜松ホトニクス株式会社 | Infrared sensor |
GR1004040B (en) * | 2001-07-31 | 2002-10-31 | Method for the fabrication of suspended porous silicon microstructures and application in gas sensors | |
KR20060021982A (en) * | 2004-09-06 | 2006-03-09 | 재단법인 포항산업과학연구원 | Thermopile sensor |
JP4839240B2 (en) * | 2006-02-15 | 2011-12-21 | 日本特殊陶業株式会社 | Contact combustion type gas detector |
JP2008241554A (en) * | 2007-03-28 | 2008-10-09 | Horiba Ltd | Combustible gas sensor |
WO2008123092A1 (en) * | 2007-03-28 | 2008-10-16 | Horiba, Ltd. | Combustible gas sensor |
JP2008298665A (en) * | 2007-06-01 | 2008-12-11 | Mitsubishi Electric Corp | Infrared sensor and infrared detecting apparatus |
JP2009294138A (en) * | 2008-06-06 | 2009-12-17 | Horiba Ltd | Inline flammable gas sensor |
JP2010256172A (en) * | 2009-04-24 | 2010-11-11 | Yazaki Corp | Gas detector and method of correcting temperature of the same |
JP5374297B2 (en) * | 2009-06-25 | 2013-12-25 | パナソニック株式会社 | Infrared gas detector and infrared gas measuring device |
JP4754652B1 (en) * | 2010-09-08 | 2011-08-24 | 立山科学工業株式会社 | Control circuit for catalytic combustion gas sensor |
-
2014
- 2014-09-16 JP JP2014187770A patent/JP6467172B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021009023A (en) * | 2019-06-28 | 2021-01-28 | ヤマハファインテック株式会社 | Gas concentration detection method, gas concentration detection device, and gas generation system |
DE112020003110T5 (en) | 2019-06-28 | 2022-05-05 | Yamaha Fine Technologies Co., Ltd. | gas concentration detection method. Gas concentration detection device and gas generation system |
JP7350290B2 (en) | 2019-06-28 | 2023-09-26 | ヤマハファインテック株式会社 | Gas concentration detection method, gas concentration detection device, and gas generation system |
Also Published As
Publication number | Publication date |
---|---|
JP2016061592A (en) | 2016-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6467173B2 (en) | Contact combustion type gas sensor | |
JP5210491B2 (en) | Thermal flow sensor | |
US7255001B1 (en) | Thermal fluid flow sensor and method of forming same technical field | |
US20080304544A1 (en) | Vacuum Sensor | |
US20100078753A1 (en) | Flow Sensor and Method of Fabrication | |
JP3364115B2 (en) | Thermal flow detection element | |
US7117736B2 (en) | Flow sensor | |
US6987223B2 (en) | Heat sink for silicon thermopile | |
JP2006258520A (en) | Probe for electronic clinical thermometer | |
JP6467172B2 (en) | Contact combustion type gas sensor | |
JP2015064305A (en) | Thermal type sensor and heat measurement module using the same | |
WO2016132934A1 (en) | Contact combustion-type gas sensor | |
JP2005221238A (en) | Temperature difference detection method, temperature sensor, and infrared sensor using the same | |
WO2016132935A1 (en) | Contact combustion-type gas sensor | |
JP2016109527A (en) | Contact combustion type gas sensor | |
JP2022139173A (en) | flow sensor chip | |
JP2014048138A (en) | Multilayer thin film thermopile using photosensitive dry film resist, radiation thermometer using the same and method for manufacturing the multilayer thin film thermopile | |
JP2016151473A (en) | Thermal sensor | |
JP6685789B2 (en) | Gas sensor | |
JP6769720B2 (en) | Gas sensor | |
JP2008089475A (en) | Temperature difference output circuit and temperature difference output method | |
JP5319744B2 (en) | Thermal flow sensor | |
JP6467254B2 (en) | Infrared sensor | |
JP2002156279A (en) | Thermopile type infrared sensor | |
JP2005031078A (en) | Sensor element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180627 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6467172 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |