JP6442247B2 - valve - Google Patents

valve Download PDF

Info

Publication number
JP6442247B2
JP6442247B2 JP2014237838A JP2014237838A JP6442247B2 JP 6442247 B2 JP6442247 B2 JP 6442247B2 JP 2014237838 A JP2014237838 A JP 2014237838A JP 2014237838 A JP2014237838 A JP 2014237838A JP 6442247 B2 JP6442247 B2 JP 6442247B2
Authority
JP
Japan
Prior art keywords
valve
pressure
valve body
chamber
extension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014237838A
Other languages
Japanese (ja)
Other versions
JP2016098946A (en
Inventor
泰弘 稲垣
泰弘 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2014237838A priority Critical patent/JP6442247B2/en
Publication of JP2016098946A publication Critical patent/JP2016098946A/en
Application granted granted Critical
Publication of JP6442247B2 publication Critical patent/JP6442247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Description

本発明は、バルブに関する。   The present invention relates to a valve.

車両のサスペンションに利用される緩衝器の中には、減衰力を可変にできるバルブを備えるものがある。例えば、特許文献1に開示される減衰力可変式のバルブは、ロッドに保持されてシリンダ内に移動可能に挿入されるピストンバルブとして利用されている。このピストンバルブは、シリンダ内に形成される伸側室と圧側室とを区画するピストンと、このピストンに積層されるバルブディスク(特許文献1のディスク18)と、このバルブディスクに形成されて伸側室と圧側室とを連通する通路(同メイン通路C)と、バルブディスクに積層されて通路を開閉する弁体(同スプール8)と、この弁体をバルブディスク側に附勢する背圧室と、印加する電流に応じて背圧室の圧力を制御する電磁圧力制御弁とを備えている。そして、上記電流量を調節して電磁圧力制御弁の開弁圧を制御することで、弁体の開弁圧を調整し、緩衝器の発生する減衰力を可変にできる。   Some shock absorbers used for vehicle suspensions include a valve that can vary the damping force. For example, a damping force variable valve disclosed in Patent Document 1 is used as a piston valve that is held by a rod and is movably inserted into a cylinder. This piston valve includes a piston that partitions an extension side chamber and a pressure side chamber formed in a cylinder, a valve disc (disc 18 of Patent Document 1) stacked on the piston, and an extension side chamber formed on the valve disc. A passage (the main passage C) communicating with the pressure side chamber, a valve body (spool 8) stacked on the valve disc to open and close the passage, and a back pressure chamber for biasing the valve body toward the valve disc side, And an electromagnetic pressure control valve for controlling the pressure of the back pressure chamber in accordance with the applied current. Then, by adjusting the current amount to control the valve opening pressure of the electromagnetic pressure control valve, the valve opening pressure of the valve body can be adjusted, and the damping force generated by the buffer can be made variable.

特開2005−308178号公報JP 2005-308178 A

特開2005−308178号公報に開示のバルブディスクにおいて、弁体が離着座する弁座には、オリフィスを形成するための打刻が設けられており、シリンダ内を移動するピストン速度が低く、弁体が開弁しない低速領域で、緩衝器が打刻によるオリフィスの抵抗に起因する低速減衰力を発揮できるようになっている。従来、弁体の開弁圧を最小にしたソフトモードでの低速減衰力を低くしたい場合には、打刻を拡大したり、打刻の数を増やしたりしてオリフィスの面積を増やしていた。しかしながら、この場合、低速領域ではオリフィス特性が優先されるので背圧室の圧力を変えても低速減衰力が変わらず、減衰力可変幅を狭めるという問題がある。   In the valve disc disclosed in Japanese Patent Application Laid-Open No. 2005-308178, the valve seat on which the valve body is separated and attached is provided with a notch for forming an orifice, and the piston speed for moving in the cylinder is low. In the low speed region where the body does not open, the shock absorber can exert a low speed damping force due to the orifice resistance caused by the stamping. Conventionally, in order to reduce the low-speed damping force in the soft mode in which the valve opening pressure of the valve body is minimized, the area of the orifice is increased by increasing the number of stamps or increasing the number of stamps. However, in this case, since the orifice characteristic is prioritized in the low speed region, there is a problem that the low speed damping force does not change even if the pressure in the back pressure chamber is changed, and the damping force variable range is narrowed.

そこで、本発明は、上記不具合を改善するために創案されたものであり、その目的とするところは、低速減衰力を可変にするとともに、減衰力可変幅を大きくできるバルブを提供することである。   Accordingly, the present invention has been developed to improve the above-described problems, and an object of the present invention is to provide a valve that can vary the low-speed damping force and increase the damping force variable width. .

上記課題を解決するための手段は、一方室と他方室とを区画するバルブディスクと、上記バルブディスクに形成されて上記一方室と上記他方室とを連通する通路と、上記バルブディスクに積層されて上記通路を開閉する環板状の第一弁体と、上記第一弁体の反バルブディスク側に積層されて外径が上記第一弁体の外径よりも小さい環状の中間間座と、上記中間間座の反バルブディスク側に積層されて外径が上記中間間座の外径よりも大きい環板状の第二弁体と、上記第一弁体と上記第二弁体との間で上記中間間座の外周に形成される弁体間隙間と、上記第一弁体に形成されて上記通路と上記弁体間隙間とを連通する孔と、上記第二弁体を上記第一弁体側に附勢して上記弁体間隙間の開口量を変更する変更手段とを備え、上記変更手段は、内部圧力で上記第二弁体を上記第一弁体側に附勢する背圧室と、上記背圧室の上記内部圧力を制御する電磁圧力制御弁とを有することを特徴とする。他の手段としては、一方室と他方室とを区画するバルブディスクと、上記バルブディスクに形成されて上記一方室と上記他方室とを連通する通路と、上記バルブディスクに積層されて上記通路を開閉する環板状の第一弁体と、上記第一弁体の反バルブディスク側に積層されて外径が上記第一弁体の外径よりも小さい環状の中間間座と、上記中間間座の反バルブディスク側に積層されて外径が上記中間間座の外径よりも大きい環板状の第二弁体と、上記第一弁体と上記第二弁体との間で上記中間間座の外周に形成される弁体間隙間と、上記第一弁体に形成されて上記通路と上記弁体間隙間とを連通する孔と、上記第二弁体を上記第一弁体側に附勢して上記弁体間隙間の開口量を変更する変更手段とを備え、上記変更手段は、上記第二弁体の反第一弁体側で上記中間間座よりも外周に当接するスプールと、内部圧力で上記スプールを上記第一弁体側に附勢する背圧室と、上記背圧室の上記内部圧力を制御する電磁圧力制御弁とを有することを特徴とするIt means for solving the above problems, whereas a valve disk for partitioning the chamber and the other chamber, a passage above is formed in the valve disc communicates the hand chamber and the other chamber above is stacked on the valve disc a ring-shaped first valve body for opening and closing the passage Te, the first valve element anti the valve is stacked on the disk side between the outer diameter of the smaller ring than the outer diameter of the first valve body intermediate seat and , the outer diameter is laminated on the counter valve disc side of the intermediate spacer and the second valve body large ring plate than the outer diameter of the intermediate spacer, between the first valve body and the second valve body A gap between the valve bodies formed on the outer periphery of the intermediate spacer, a hole formed in the first valve body to communicate the passage and the gap between the valve bodies, and the second valve body and biasing the Ichiben side and a changing means for changing the amount of opening of the gap between the valve body, said changing means, internal A back pressure chamber for biasing the second valve body to the first valve body side with a force, and having an electromagnetic pressure control valve for controlling the internal pressure of the back pressure chamber. Other means include: a valve disc that partitions one chamber from the other chamber; a passage formed in the valve disc that communicates the one chamber with the other chamber; and a layer that is stacked on the valve disc to define the passage. An annular plate-shaped first valve body that opens and closes, an annular intermediate spacer that is laminated on the side opposite to the valve disc of the first valve body and has an outer diameter smaller than the outer diameter of the first valve body, and the intermediate space An annular plate-like second valve body laminated on the side opposite to the valve disc of the seat and having an outer diameter larger than the outer diameter of the intermediate spacer, and the intermediate between the first valve body and the second valve body A gap between the valve bodies formed on the outer periphery of the spacer, a hole formed in the first valve body to communicate the passage and the gap between the valve bodies, and the second valve body on the first valve body side Changing means for energizing and changing an opening amount between the valve element gaps, the changing means being a second counter element of the second valve element. A spool that contacts the outer periphery of the intermediate spacer on the valve body side, a back pressure chamber that urges the spool toward the first valve body side with internal pressure, and an electromagnetic pressure control that controls the internal pressure of the back pressure chamber And a valve .

本発明のバルブによれば、低速減衰力を可変にするとともに、減衰力可変幅を大きくすることが可能となる。   According to the valve of the present invention, it is possible to make the low-speed damping force variable and increase the damping force variable range.

本発明の一実施の形態に係るバルブを備える緩衝器を部分的に示した縦断面図である。It is the longitudinal cross-sectional view which showed partially the buffer provided with the valve | bulb which concerns on one embodiment of this invention. 本発明の一実施の形態に係るバルブの主要部を拡大して示した縦断面図である。It is the longitudinal cross-sectional view which expanded and showed the principal part of the valve | bulb which concerns on one embodiment of this invention. 図1の一部を拡大して示した図である。It is the figure which expanded and showed a part of FIG. 本発明の一実施の形態に係るバルブの第一弁体を示した平面図である。It is the top view which showed the 1st valve body of the valve | bulb which concerns on one embodiment of this invention. 図1の他の一部を拡大して示した図である。It is the figure which expanded and showed other one part of FIG. 本発明の他の実施の形態に係るバルブを備える緩衝器を原理的に示した図である。It is the figure which showed in principle the shock absorber provided with the valve | bulb which concerns on other embodiment of this invention. 本発明の他の実施の形態に係るバルブの主要部を拡大して示した縦断面図である。It is the longitudinal cross-sectional view which expanded and showed the principal part of the valve | bulb which concerns on other embodiment of this invention.

以下に本発明の一実施の形態に係るバルブについて、図面を参照しながら説明する。いくつかの図面を通して付された同じ符号は、同じ部品か対応する部品を示す。   A valve according to an embodiment of the present invention will be described below with reference to the drawings. The same reference numerals given throughout the several drawings indicate the same or corresponding parts.

図1に示すように、本実施の形態に係るバルブは、緩衝器DのピストンバルブV1として利用されており、伸側室(一方室)R1と圧側室(他方室)R2とを区画するバルブディスク1と、このバルブディスク1に形成されて上記伸側室R1と上記圧側室R2とを連通する圧側通路(通路)1bとを備えるとともに、図2に示すように、上記バルブディスク1に積層されて上記圧側通路1bを開閉する環板状の圧側第一弁体(第一弁体)2と、この圧側第一弁体2の反バルブディスク側に積層されて外径が上記圧側第一弁体2の外径よりも小さい環状の中間間座20と、この中間間座20の反バルブディスク側に積層されて外径が上記中間間座20の外径よりも大きい環板状の圧側第二弁体(第二弁体)21と、上記圧側第一弁体2と上記圧側第二弁体21との間で上記中間間座20の外周に形成される弁体間隙間aと、上記圧側第一弁体2に形成されて上記圧側通路1bと上記弁体間隙間aとを連通する孔2aと、上記圧側第二弁体21を上記圧側第一弁体2側に附勢して上記弁体間隙間aの開口量を変更する変更手段Aとを備えている。   As shown in FIG. 1, the valve according to the present embodiment is used as a piston valve V1 of a shock absorber D, and is a valve disk that partitions an expansion side chamber (one chamber) R1 and a pressure side chamber (other chamber) R2. 1 and a pressure side passage (passage) 1b formed in the valve disc 1 and communicating the extension side chamber R1 and the pressure side chamber R2, and is laminated on the valve disc 1 as shown in FIG. An annular plate-like pressure-side first valve body (first valve body) 2 that opens and closes the pressure-side passage 1b, and the pressure-side first valve body that is laminated on the side opposite to the valve disk of the pressure-side first valve body 2 An annular intermediate spacer 20 smaller than the outer diameter of 2 and an annular plate-shaped pressure side second laminated on the opposite valve disc side of the intermediate spacer 20 and having an outer diameter larger than the outer diameter of the intermediate spacer 20. Valve body (second valve body) 21, pressure side first valve body 2, and pressure A clearance a between the valve bodies formed on the outer periphery of the intermediate spacer 20 with the second valve body 21, and a pressure side passage 1b and a clearance between the valve bodies a formed in the pressure side first valve body 2. And a changing means A for biasing the pressure side second valve body 21 toward the pressure side first valve body 2 to change the opening amount of the inter-valve gap a.

緩衝器Dは、本実施の形態において、車両のサスペンションに利用されており、図1に示すように、シリンダDcと、このシリンダDcに出入りするロッドDrと、このロッドDrに保持されてシリンダDc内を軸方向に移動可能なピストンバルブV1と、シリンダDcの反ロッド側の内周面に摺接しシリンダDc内を軸方向に移動可能なフリーピストン(図示せず)と、シリンダDcの図1中上端に固定されてロッドDrを軸支する環状のロッドガイド(図示せず)と、このロッドガイドに取り付けられてロッドDrの外周を密閉するシール(図示せず)と、シリンダDcの図1中下端開口を塞ぐボトムキャップ(図示せず)とを備えている。   In the present embodiment, the shock absorber D is used for a vehicle suspension. As shown in FIG. 1, the shock absorber D is a cylinder Dc, a rod Dr that enters and exits the cylinder Dc, and a cylinder Dc that is held by the rod Dr. A piston valve V1 that can move in the axial direction, a free piston (not shown) that slides in contact with the inner peripheral surface of the cylinder Dc on the opposite rod side, and that can move in the axial direction in the cylinder Dc, and FIG. An annular rod guide (not shown) that is fixed to the middle upper end and pivotally supports the rod Dr, a seal (not shown) that is attached to the rod guide and seals the outer periphery of the rod Dr, and FIG. And a bottom cap (not shown) for closing the middle and lower end openings.

シリンダDcから突出するロッドDrの突端部と、図示しないボトムキャップには、緩衝器Dを車体と車輪との間に介装するための取付部材(図示せず)が固定されているので、路面凹凸による衝撃が車輪に入力されると、ロッドDrがシリンダDcに出入りして緩衝器Dが伸縮する。   A mounting member (not shown) for interposing the shock absorber D between the vehicle body and the wheel is fixed to the protruding end of the rod Dr protruding from the cylinder Dc and the bottom cap (not shown). When the impact due to the unevenness is input to the wheel, the rod Dr enters and exits the cylinder Dc, and the shock absorber D expands and contracts.

シリンダDc内には、ピストンバルブV1で区画され作動油が充填されるロッドDr側の伸側室R1と、ピストンバルブV1側の圧側室R2が形成されるとともに、図示しないフリーピストンで上記圧側室R2と区画され気体が封入される気室(図示せず)が形成されている。そして、緩衝器Dが伸縮すると、フリーピストンがシリンダDc内を軸方向に移動して気室を膨縮させ、ロッド出没体積分のシリンダ内容積変化を気室で補償できる。   In the cylinder Dc, an extension side chamber R1 on the side of the rod Dr that is partitioned by the piston valve V1 and filled with hydraulic oil and a pressure side chamber R2 on the side of the piston valve V1 are formed, and the pressure side chamber R2 is formed by a free piston (not shown). And an air chamber (not shown) in which gas is enclosed is formed. When the shock absorber D expands and contracts, the free piston moves in the axial direction in the cylinder Dc to expand and contract the air chamber, and the change in the cylinder volume corresponding to the rod protruding and retracting volume can be compensated in the air chamber.

つまり、本実施の形態における緩衝器Dは、片ロッド単筒型に設定されており、ロッド出没体積分のシリンダ内容積変化や、温度変化による作動油の体積変化を気室で補償できる。なお、緩衝器Dの構成は上記の限りではなく、シリンダDcの外周に起立する外筒を備える複筒型に設定されていても、ピストンバルブV1の両側にロッドDrが起立する両ロッド型に設定されていてもよい。また、本実施の形態における緩衝器Dは、減衰力を発生させるための流体として作動油を利用する油圧緩衝器であるが、流体として、作動油以外の他の液体や、気体を利用するとしてもよい。   In other words, the shock absorber D in the present embodiment is set to a single rod single cylinder type, and can compensate the change in volume in the cylinder corresponding to the volume of the rod and the change in the volume of hydraulic oil due to the temperature change in the air chamber. The configuration of the shock absorber D is not limited to the above, and even if it is set to a double cylinder type having an outer cylinder standing on the outer periphery of the cylinder Dc, it is a double rod type in which the rod Dr stands on both sides of the piston valve V1. It may be set. In addition, the shock absorber D in the present embodiment is a hydraulic shock absorber that uses hydraulic oil as a fluid for generating a damping force. However, it is assumed that a liquid other than hydraulic oil or gas is used as the fluid. Also good.

ロッドDrは、本実施の形態において、外周にピストンバルブV1のバルブディスク1が取り付けられるピストン保持部材3と、一端がピストン保持部材3に連結されてピストン保持部材3とともに電磁圧力制御弁4を収容する中空な収容部Lを形成する電磁弁収容筒30と、一端が電磁弁収容筒30に連結されるとともに他端がシリンダDcの上端から外方へ突出するロッド部材31とで形成されている。   In this embodiment, the rod Dr has a piston holding member 3 to which the valve disk 1 of the piston valve V1 is attached on the outer periphery, and one end connected to the piston holding member 3 and accommodates the electromagnetic pressure control valve 4 together with the piston holding member 3. And a rod member 31 having one end connected to the solenoid valve housing tube 30 and the other end projecting outward from the upper end of the cylinder Dc. .

ピストン保持部材3は、バルブディスク1を外周に保持する保持軸3aと、この保持軸3aの図1中上端外周に設けた環状のフランジ3bと、このフランジ3bの図1中上端外周に設けた大径筒状のソケット3cとを備えている。また、ピストン保持部材3には、保持軸3aの先端から開口して軸方向に延びソケット3c内に通じる縦孔3dと、フランジ3bの図1中下端に上記保持軸3aを囲むようにして設けた環状溝3eと、環状溝3eをソケット3c内に連通するポート3fと、環状溝3eを縦孔3d内に連通させる横孔3gと、保持軸3aの外周から開口して縦孔3dに通じる伸側抵抗要素としての伸側パイロットオリフィスPeと圧側抵抗要素としての圧側パイロットオリフィスPpと、フランジ3bの上端に形成されて縦孔3dに通じる溝3hが形成されている。   The piston holding member 3 is provided on a holding shaft 3a for holding the valve disc 1 on the outer periphery, an annular flange 3b provided on the outer periphery of the upper end in FIG. 1 of the holding shaft 3a, and an outer periphery of the upper end of the flange 3b in FIG. And a large-diameter cylindrical socket 3c. Further, the piston holding member 3 is provided with a vertical hole 3d that opens from the tip of the holding shaft 3a and extends in the axial direction and communicates with the socket 3c, and an annular ring that is provided at the lower end of the flange 3b in FIG. 1 so as to surround the holding shaft 3a. A groove 3e, a port 3f that communicates the annular groove 3e with the socket 3c, a horizontal hole 3g that communicates the annular groove 3e with the longitudinal hole 3d, and an extended side that opens from the outer periphery of the holding shaft 3a and communicates with the longitudinal hole 3d An extension side pilot orifice Pe as a resistance element, a pressure side pilot orifice Pp as a pressure side resistance element, and a groove 3h formed at the upper end of the flange 3b and leading to the vertical hole 3d are formed.

保持軸3aの縦孔3d内には、筒状のセパレータ32が挿入されており、このセパレータ32の外周に形成された環状溝32aで縦孔3d内に伸側パイロットオリフィスPeと圧側パイロットオリフィスPpとを連通させる連通路33が形成されている。また、このセパレータ32の図1中下端には、当該下端の開口を囲む環状弁座32bが設けられている。縦孔3dは、セパレータ32内を介して圧側室R2をソケット3c内へ連通させるが、伸側パイロットオリフィスPeと圧側パイロットオリフィスPpがセパレータ32によって縦孔3d内を介しては圧側室R2およびソケット3c内に通じないようになっている。さらに、横孔3gも連通路33に通じており、この横孔3gもセパレータ32によって縦孔3d内を介しては圧側室R2およびソケット3c内に通じないようになっている。   A cylindrical separator 32 is inserted into the vertical hole 3d of the holding shaft 3a, and an extension side pilot orifice Pe and a pressure side pilot orifice Pp are inserted into the vertical hole 3d by an annular groove 32a formed on the outer periphery of the separator 32. Is formed. Further, an annular valve seat 32b surrounding the opening of the lower end is provided at the lower end of the separator 32 in FIG. The vertical hole 3d allows the pressure side chamber R2 to communicate with the socket 3c through the separator 32, but the expansion side pilot orifice Pe and the pressure side pilot orifice Pp are connected to the pressure side chamber R2 and the socket through the vertical hole 3d by the separator 32. It does not lead to 3c. Further, the lateral hole 3g also communicates with the communication passage 33, and the lateral hole 3g is also prevented from communicating with the pressure side chamber R2 and the socket 3c through the interior of the longitudinal hole 3d by the separator 32.

なお、上記した伸側抵抗要素および圧側抵抗要素は、通過する作動油の流れに対して抵抗を与えればよいので、オリフィスだけではなく、チョーク通路といった他の絞りとされてもよいし、リーフバルブやポペットバルブなどの抵抗を与える弁とされてもよい。   The above-mentioned extension side resistance element and pressure side resistance element only have to give resistance to the flow of hydraulic fluid passing therethrough, so that not only the orifice but also another restriction such as a choke passage may be used, or a leaf valve Or a valve that provides resistance, such as a poppet valve.

ソケット3cには、図1中上端外周に環状の凹部3iが形成されるとともに、凹部3iからソケット3c内に通じる貫通孔3jが形成されている。凹部3iには、環状板34aが装着されており、この環状板34aが図1中上方からばね部材34bによって附勢されて、貫通孔3jを閉塞している。   In the socket 3c, an annular recess 3i is formed on the outer periphery of the upper end in FIG. 1, and a through hole 3j communicating from the recess 3i into the socket 3c is formed. An annular plate 34a is attached to the recess 3i, and the annular plate 34a is urged by a spring member 34b from above in FIG. 1 to close the through hole 3j.

電磁弁収容筒30は、有頂筒状の収容筒部30aと、収容筒部30aよりも外径が小径であって当該収容筒部30aの頂部から図1中上方へ伸びる筒状の連結部30bと、収容筒部30aの側方から開口して内部へ通じる透孔30cとを備えて構成されている。そして、電磁弁収容筒30の収容筒部30aの内周にピストン保持部材3のソケット3cを螺着することで、電磁弁収容筒30にピストン保持部材3が一体化されるとともに、これら電磁弁収容筒30とピストン保持部材3とで収容筒部30a内に電磁圧力制御弁4が収容される収容部Lが形成され、収容部L内に詳しくは後述する調整通路Pcの一部が設けられる。また、収容部Lは、上記したポート3f、環状溝3eおよび横孔3gによって連通路33に連通されており、これらポート3f、環状溝3eおよび横孔3gで調整通路Pcの一部を形成している。なお、収容部Lが連通路33に連通されていればよいので、ポート3f、環状溝3eおよび横孔3gを採用するのではなく、収容部Lと直接的に連通路33に連通する通路を設けるようにしてもよいが、ポート3f、環状溝3eおよび横孔3gを採用することで収容部Lと連通路33を連通する通路の加工が容易となる利点がある。   The solenoid valve housing cylinder 30 has a top tubular housing cylinder portion 30a and a tubular connecting portion having an outer diameter smaller than that of the housing cylinder portion 30a and extending upward from the top of the housing tube portion 30a in FIG. 30 b and a through hole 30 c that opens from the side of the housing cylinder 30 a and communicates with the inside. The piston holding member 3 is integrated with the solenoid valve housing cylinder 30 by screwing the socket 3c of the piston holding member 3 to the inner periphery of the housing cylinder portion 30a of the solenoid valve housing cylinder 30. The housing tube 30 and the piston holding member 3 form a housing portion L in which the electromagnetic pressure control valve 4 is housed in the housing tube portion 30a, and a part of an adjustment passage Pc described later in detail is provided in the housing portion L. . The accommodating portion L is connected to the communication path 33 by the port 3f, the annular groove 3e, and the lateral hole 3g, and the port 3f, the annular groove 3e, and the lateral hole 3g form a part of the adjustment passage Pc. ing. In addition, since the accommodating part L should just be connected to the communicating path 33, it does not employ | adopt the port 3f, the annular groove 3e, and the horizontal hole 3g, but the path | route which communicates with the accommodating part L directly to the communicating path 33 is used. Although it may be provided, the use of the port 3f, the annular groove 3e, and the lateral hole 3g has an advantage that the processing of the passage communicating the accommodating portion L and the communication passage 33 is facilitated.

上記したように電磁弁収容筒30にピストン保持部材3が一体化されると、透孔30cが凹部3iに対向して、貫通孔3jと協働して、収容部Lを伸側室R1に連通するようになっており、環状板34aとばね部材34bとで、収容部L内から伸側室R1へ向かう作動油の流れのみを許容する逆止弁34が形成されている。そして、透孔30c、凹部3i、貫通孔3jおよび当該逆止弁34によって、調整通路Pcの下流を伸側室R1へ連通するとともに調整通路Pcから伸側室R1へ向かう作動油の流れのみを許容する圧側排出通路Epが形成される。   As described above, when the piston holding member 3 is integrated with the solenoid valve housing cylinder 30, the through hole 30c faces the recess 3i and cooperates with the through hole 3j to communicate the housing portion L with the expansion side chamber R1. A check valve 34 is formed by the annular plate 34a and the spring member 34b. The check valve 34 allows only the flow of hydraulic oil from the accommodating portion L toward the extending side chamber R1. The through hole 30c, the recess 3i, the through hole 3j, and the check valve 34 allow the downstream of the adjustment passage Pc to communicate with the extension side chamber R1 and allow only the flow of hydraulic oil from the adjustment passage Pc toward the extension side chamber R1. A pressure side discharge passage Ep is formed.

また、ピストン保持部材3における縦孔3d内には、セパレータ32の図1中下端に設けた環状弁座32bに離着座する逆止弁35が設けられており、逆止弁35は、圧側室R2側から収容部Lへ向かう作動油の流れを阻止するとともに、収容部Lから圧側室R2へ向かう作動油の流れのみを許容するようになっている。そして、縦孔3d内におけるセパレータ32の内側に、調整通路Pcの下流を圧側室R2へ連通するとともに調整通路Pcから圧側室R2へ向かう作動油の流れのみを許容する伸側排出通路Eeが形成される。   Further, a check valve 35 that is attached to and detached from an annular valve seat 32b provided at the lower end in FIG. 1 of the separator 32 is provided in the vertical hole 3d of the piston holding member 3, and the check valve 35 includes a pressure side chamber. While preventing the flow of the hydraulic oil which goes to the accommodating part L from the R2 side, only the flow of the hydraulic oil which goes to the compression side chamber R2 from the accommodating part L is permitted. An extension side discharge passage Ee that communicates the downstream side of the adjustment passage Pc to the pressure side chamber R2 and allows only the flow of hydraulic oil from the adjustment passage Pc to the pressure side chamber R2 is formed inside the separator 32 in the vertical hole 3d. Is done.

ロッド部材31は、筒状であって、図1中下端の内周は拡径されていて、電磁弁収容筒30の連結部30bの挿入が許容されて、当該連結部30bを螺着することができるようになっている。このように、ロッド部材31、電磁弁収容筒30およびピストン保持部材3を一体化することで、ロッドDrが形成される。   The rod member 31 has a cylindrical shape, and the inner periphery at the lower end in FIG. 1 has an enlarged diameter. The insertion of the connecting portion 30b of the solenoid valve housing cylinder 30 is allowed, and the connecting portion 30b is screwed. Can be done. In this way, the rod Dr is formed by integrating the rod member 31, the electromagnetic valve housing cylinder 30, and the piston holding member 3.

なお、ロッド部材31内および電磁弁収容筒30における連結部30b内には、後述するソレノイドSolへ電力供給するハーネスHが挿通されており、ハーネスHの上端は図示しないがロッド部材31の上端から外方へ伸びており、電源に接続される。   A harness H for supplying power to a solenoid Sol described later is inserted into the rod member 31 and the connecting portion 30b of the solenoid valve housing cylinder 30, and the upper end of the harness H is not shown, but from the upper end of the rod member 31. It extends outward and is connected to a power source.

ロッドDrに保持されるピストンバルブV1は、図3に示すように、ピストン保持部材3の保持軸3a外周に保持されるバルブディスク1と、このバルブディスク1の図3中上側に組み付けられる圧側第一弁体2、圧側第二弁体21、圧側スプール23及び圧側背圧室Cpを形成する圧側チャンバ24と、バルブディスク1の図3中下側に組み付けられる伸側弁体5、伸側スプール51及び伸側背圧室Ceを形成する伸側チャンバ52と、図1に示す収容部Lに収容されて圧側背圧室Cp及び伸側背圧室Ceの圧力を制御する電磁圧力制御弁4と、この電磁圧力制御弁4を迂回するフェール弁6とを備えている。   As shown in FIG. 3, the piston valve V <b> 1 held by the rod Dr includes a valve disc 1 held on the outer periphery of the holding shaft 3 a of the piston holding member 3, and a pressure side first assembled to the upper side of the valve disc 1 in FIG. 3. One valve body 2, a pressure side second valve body 21, a pressure side spool 23, a pressure side chamber 24 forming a pressure side back pressure chamber Cp, an extension side valve body 5 assembled on the lower side of the valve disk 1 in FIG. 51 and an extension side chamber 52 that forms the extension side back pressure chamber Ce, and an electromagnetic pressure control valve 4 that is housed in the housing portion L shown in FIG. 1 and controls the pressures of the pressure side back pressure chamber Cp and the extension side back pressure chamber Ce. And a fail valve 6 that bypasses the electromagnetic pressure control valve 4.

図3に示すように、バルブディスク1は、本実施の形態において、上下に分割されたディスク10,11を重ね合わせることで形成されたピストンであり、下側のディスク11の外周に設けたピストンリング(符示せず)をシリンダDcの内周面に摺接させることにより、シリンダDc内を軸方向に円滑に摺動できるようになっている。バルブディスク1には、伸側室R1と圧側室R2とを連通する伸側通路1aと圧側通路1bとが形成されている。このように、バルブディスク1を上下に分割されたディスク10,11で形成することで、複雑な形状の伸側通路1aおよび圧側通路1bを孔開け加工によらずして形成することができるので、安価かつ容易にバルブディスク1を製造することができる。また、上方側のディスク10の上端には、圧側通路1bの外周を囲む環状の弁座1dが設けられ、下方側のディスク11の下端には、伸側通路1aの外周を囲む環状の弁座1cが形成されている。   As shown in FIG. 3, the valve disk 1 is a piston formed by superimposing the vertically divided disks 10 and 11 in this embodiment, and is provided on the outer periphery of the lower disk 11. By sliding a ring (not shown) in contact with the inner peripheral surface of the cylinder Dc, the cylinder Dc can be smoothly slid in the axial direction. The valve disk 1 is formed with an extension side passage 1a and a pressure side passage 1b that connect the extension side chamber R1 and the pressure side chamber R2. In this way, by forming the valve disc 1 with the discs 10 and 11 divided into upper and lower parts, it is possible to form the elongated side passage 1a and the compression side passage 1b having complicated shapes without drilling. The valve disc 1 can be manufactured inexpensively and easily. An annular valve seat 1d surrounding the outer periphery of the pressure side passage 1b is provided at the upper end of the upper disk 10, and an annular valve seat surrounding the outer periphery of the extension side passage 1a is provided at the lower end of the lower disk 11. 1c is formed.

伸側弁体5は、環板状に形成されてピストン保持部材3の保持軸3aの挿通を許容するための中心孔を有しており、バルブディスク1の図3中下端に積層されている。この伸側弁体5の内周は、バルブディスク1と伸側チャンバ52とで挟持されてピストン保持部材3の保持軸3aに固定されている。また、伸側弁体5と伸側チャンバ52との間には、間座50が介装されており、当該間座50は、環状に形成されて保持軸3aの挿通を許容するための中心孔を有するとともに、その外径が、伸側弁体5の外径よりも小さく設定されている。   The extension side valve element 5 is formed in an annular plate shape and has a center hole for allowing the holding shaft 3a of the piston holding member 3 to be inserted, and is laminated on the lower end of the valve disc 1 in FIG. . The inner circumference of the extension side valve element 5 is sandwiched between the valve disc 1 and the extension side chamber 52 and is fixed to the holding shaft 3 a of the piston holding member 3. A spacer 50 is interposed between the extension side valve element 5 and the extension side chamber 52. The spacer 50 is formed in an annular shape and is a center for allowing insertion of the holding shaft 3a. While having a hole, the outer diameter is set smaller than the outer diameter of the expansion side valve body 5.

そして、伸側弁体5は、外周を弁座1cに着座させて伸側通路1aを閉塞するとともに、間座50で支持される部位よりも外周側の撓みが許容され、当該撓みによって伸側通路1aを開くことができる。   The extension-side valve element 5 is seated on the valve seat 1c to close the extension-side passage 1a, and is allowed to bend on the outer peripheral side with respect to the portion supported by the spacer 50. The passage 1a can be opened.

伸側チャンバ52は、ピストン保持部材3における保持軸3aの外周に嵌合される筒状の装着部52aと、装着部52aの図3中下端外周に設けたフランジ部52bと、フランジ部52bの外周からバルブディスク1側へ向けて伸びる摺接筒52cとを備えて構成されている。   The extension side chamber 52 includes a cylindrical mounting portion 52a fitted to the outer periphery of the holding shaft 3a of the piston holding member 3, a flange portion 52b provided on the outer periphery of the lower end in FIG. 3 of the mounting portion 52a, and a flange portion 52b. And a sliding contact cylinder 52c extending from the outer periphery toward the valve disc 1 side.

この摺接筒52c内には、伸側スプール51が収容されている。伸側スプール51は、外周を摺接筒52cの内周に摺接させており、当該摺接筒52c内で軸方向へ移動することができるようになっている。伸側スプール51は、環状のスプール本体51aと、スプール本体51aの図3中上端内周から立ち上がる環状突起51bとを備えており、環状突起51bが伸側弁体5の背面となる図3中下面に当接することができるようになっている。   An extension side spool 51 is accommodated in the sliding contact cylinder 52c. The extension-side spool 51 is in sliding contact with the inner periphery of the sliding contact cylinder 52c, and can move in the axial direction within the sliding contact cylinder 52c. The extension side spool 51 includes an annular spool body 51a and an annular protrusion 51b that rises from the inner periphery of the upper end of the spool body 51a in FIG. 3, and the annular protrusion 51b is the back surface of the extension side valve body 5 in FIG. It can come into contact with the lower surface.

そして、このように、伸側チャンバ52に伸側スプール51を組み付け、当該伸側チャンバ52を保持軸3aに組み付けると、伸側弁体5の背面側である図3中下方側に伸側背圧室Ceが形成される。なお、スプール本体51aの内径は、装着部52aの外径より大きくしているが、装着部52aの外周に摺接する径に設定されて、伸側背圧室Ceを伸側スプール51で封じるようにすることも可能である。   Then, when the extension side spool 51 is assembled to the extension side chamber 52 and the extension side chamber 52 is assembled to the holding shaft 3a in this way, the extension side spine is located on the lower side in FIG. A pressure chamber Ce is formed. Although the inner diameter of the spool body 51a is larger than the outer diameter of the mounting portion 52a, the inner diameter of the spool body 51a is set to a diameter that is in sliding contact with the outer periphery of the mounting portion 52a so It is also possible to make it.

また、伸側チャンバ52の装着部52aには、その内周に環状溝52dが設けられるとともに、装着部52aの外周から当該環状溝52dに通じる切欠52eが設けられており、伸側チャンバ52を保持軸3aに組み付けると、環状溝52dは保持軸3aに設けた圧側パイロットオリフィスPpに対向して、伸側背圧室Ceが圧側パイロットオリフィスPpに通じるようになっている。   In addition, the mounting portion 52a of the extension side chamber 52 is provided with an annular groove 52d on the inner periphery thereof, and a notch 52e leading from the outer periphery of the attachment portion 52a to the annular groove 52d. When assembled to the holding shaft 3a, the annular groove 52d is opposed to the pressure side pilot orifice Pp provided in the holding shaft 3a, so that the expansion side back pressure chamber Ce communicates with the pressure side pilot orifice Pp.

さらに、伸側チャンバ52には、フランジ部52bの外周から開口する圧側圧力導入通路Ipが設けられていて、圧側室R2を伸側背圧室Ce内へ通じさせている。伸側チャンバ52のフランジ部52bの図3中上端には、環状板54が積層され、この環状板54と伸側スプール51におけるスプール本体51aとの間に介装されたばね部材53によって当該環状板54がフランジ部52bへ押しつけられて圧側圧力導入通路Ipを閉塞するようになっている。なお、圧側圧力導入通路Ipは、通過する作動油の流れに対して抵抗を生じさせないように配慮されている。   Furthermore, the expansion side chamber 52 is provided with a pressure side pressure introduction passage Ip that opens from the outer periphery of the flange portion 52b, and communicates the compression side chamber R2 into the expansion side back pressure chamber Ce. An annular plate 54 is laminated on the upper end of the flange portion 52 b of the extension side chamber 52 in FIG. 3, and the annular plate is provided by a spring member 53 interposed between the annular plate 54 and the spool body 51 a of the extension side spool 51. 54 is pressed against the flange portion 52b to close the pressure side pressure introduction passage Ip. Note that the pressure-side pressure introduction passage Ip is considered so as not to cause resistance to the flow of the working oil that passes therethrough.

環状板54は、ばね部材53とともに圧側逆止弁Tpを構成し、緩衝器Dの圧縮作動時において、圧側室R2が圧縮されて圧力が高まると当該圧力によって押圧されてフランジ部52bから離座して圧側圧力導入通路Ipを開放し、伸側背圧室Ce内の圧力が圧側室R2より高くなる緩衝器Dの伸長作動時にはフランジ部52bに押しつけられて圧側圧力導入通路Ipを閉塞し、圧側室R2からの作動油の流れのみを許容する。つまり、この圧側逆止弁Tpによって、圧側圧力導入通路Ipが圧側室R2から伸側背圧室Ceへ向かう作動油の流れのみを許容する一方通行の通路に設定される。   The annular plate 54, together with the spring member 53, constitutes a pressure-side check valve Tp. When the shock absorber D is compressed, the pressure-side chamber R2 is compressed and the pressure is increased, and the pressure is increased by the pressure to separate from the flange portion 52b. Then, the pressure-side pressure introduction passage Ip is opened, and when the shock absorber D is operated so that the pressure in the extension-side back pressure chamber Ce becomes higher than the pressure-side chamber R2, the pressure-side pressure introduction passage Ip is closed by being pressed against the flange portion 52b. Only the flow of hydraulic oil from the pressure side chamber R2 is allowed. That is, the pressure-side check valve Tp sets the pressure-side pressure introduction passage Ip as a one-way passage that allows only the flow of hydraulic oil from the pressure-side chamber R2 toward the expansion-side back pressure chamber Ce.

ばね部材53は、環状板54をフランジ部52bに押し付ける役割を担って、環状板54と圧側逆止弁Tpを形成するとともに、伸側スプール51を伸側弁体5へ向けて附勢する役割をも担っている。伸側スプール51をばね部材53で附勢することで、伸側弁体5が撓んで伸側スプール51がバルブディスク1から離間する図3中下方へ押し下げられた状態となってから、伸側弁体5の撓みが解消しても、ばね部材53によって附勢されているので、伸側スプール51は伸側弁体5に追従して速やかに元の位置(図1,3に示す位置)へ戻ることができる。伸側スプール51の附勢を別途のばね部材で附勢することも可能であるが、圧側逆止弁Tpとばね部材53を共用することができ部品点数を削減できるとともに構造が簡単となる利点がある。なお、伸側スプール51におけるスプール本体51aの外径は、環状突起51bの内径よりも大径に形成されていて、環状突起51bが伸側弁体5に当接するようになっており、伸側スプール51は伸側背圧室Ceの圧力によって伸側弁体5へ向けて附勢される。   The spring member 53 plays a role of pressing the annular plate 54 against the flange portion 52 b, forms the annular plate 54 and the pressure side check valve Tp, and also functions to bias the extension side spool 51 toward the extension side valve body 5. Is also responsible. By energizing the extension side spool 51 with the spring member 53, the extension side valve body 5 is bent and the extension side spool 51 is pushed downward in FIG. Even if the deflection of the valve body 5 is eliminated, it is urged by the spring member 53, so that the expansion side spool 51 follows the expansion side valve body 5 and quickly returns to its original position (position shown in FIGS. 1 and 3). You can go back to Although it is possible to urge the extension side spool 51 with a separate spring member, the compression side check valve Tp and the spring member 53 can be shared, and the number of parts can be reduced and the structure can be simplified. There is. The outer diameter of the spool body 51a in the extension side spool 51 is formed larger than the inner diameter of the annular protrusion 51b, and the annular protrusion 51b comes into contact with the extension side valve body 5, and the extension side The spool 51 is urged toward the expansion valve body 5 by the pressure in the expansion side back pressure chamber Ce.

バルブディスク1の上方に積層される圧側第一弁体2と圧側第二弁体21は、伸側弁体5と同様に、環板状に形成されてピストン保持部材3の保持軸3aの挿通を許容するための中心孔を有しており、バルブディスク1の図3中上端に重ねて積層されている。これら圧側第一弁体2及び圧側第二弁体21の内周は、バルブディスク1と圧側チャンバ24とで挟持されてピストン保持部材3の保持軸3aに固定されている。圧側第一弁体2と圧側第二弁体21との間には、中間間座20が介装されるとともに、圧側第二弁体21と圧側チャンバ24との間には、間座22が介装されている。中間間座20および間座22は、ともに、環状に形成されて保持軸3aの挿通を許容するための中心孔を有し、それぞれの外径が圧側第一弁体2及び圧側第二弁体21の外径よりも小さく設定されており、図2に示すように、圧側第一弁体2と圧側第二弁体21の間で中間間座20の外周に弁体間隙間aと称する隙間を形成している。   The pressure side first valve body 2 and the pressure side second valve body 21 stacked above the valve disk 1 are formed in an annular plate shape, like the extension side valve body 5, and are inserted into the holding shaft 3 a of the piston holding member 3. 3 and is laminated so as to overlap the upper end of the valve disk 1 in FIG. The inner circumferences of the pressure side first valve body 2 and the pressure side second valve body 21 are sandwiched between the valve disk 1 and the pressure side chamber 24 and are fixed to the holding shaft 3 a of the piston holding member 3. An intermediate spacer 20 is interposed between the pressure side first valve body 2 and the pressure side second valve body 21, and a spacer 22 is interposed between the pressure side second valve body 21 and the pressure side chamber 24. It is intervened. The intermediate spacer 20 and the spacer 22 are both formed in an annular shape and have a center hole for allowing the holding shaft 3a to pass therethrough. The outer diameters of the intermediate spacer 20 and the spacer 22 are the pressure side first valve body 2 and the pressure side second valve body. 2 is set to be smaller than the outer diameter of 21, and as shown in FIG. 2, a gap between the pressure side first valve body 2 and the pressure side second valve body 21 is referred to as an inter-valve gap a on the outer periphery of the intermediate spacer 20. Is forming.

圧側第一弁体2は、外周を弁座1dに着座させて圧側通路1bを閉塞するとともに、中間間座20で支持される部位より外周側の図2,3中上方への撓みが許容され、当該撓みによって圧側通路1bを開くようになっている。また、図4に示すように、圧側第一弁体2には、外周にオリフィスを形成するための切欠2bが形成されるとともに、この切欠2bよりも内周側に、圧側第一弁体2の肉厚を貫通し、圧側通路1bと弁体間隙間aとを連通する孔2aが形成されている。上記孔2aや切欠2bの数や形状は、適宜変更可能であり、切欠2bに替えて弁座1dにオリフィスを形成するための打刻や溝を形成するとしても、オリフィスに替えてチョークを形成するとしてもよい。   The pressure side first valve body 2 is seated on the valve seat 1d to close the pressure side passage 1b, and is allowed to bend upward in FIG. The pressure side passage 1b is opened by the bending. As shown in FIG. 4, the pressure side first valve body 2 is formed with a notch 2b for forming an orifice on the outer periphery, and the pressure side first valve body 2 is located on the inner peripheral side of the notch 2b. A hole 2a is formed through which the pressure side passage 1b communicates with the inter-valve gap a. The number and shape of the holes 2a and notches 2b can be changed as appropriate. Even if a notch or groove is formed in the valve seat 1d instead of the notch 2b, a choke is formed instead of the orifice. You may do that.

他方、圧側第二弁体21は、間座22で支持される部位よりも外周側の図2,3中上方への撓みが許容されるとともに、中間間座20で支持される部位よりも外周側の図2,3中下方への撓みが許容されている。   On the other hand, the pressure-side second valve body 21 is allowed to bend in the upper side in FIGS. Side deflection in FIGS. 2 and 3 is allowed.

図2,3に示すような、圧側第一弁体2と圧側第二弁体21が撓んでいない状態において、弁体間隙間aは伸側室R1に開口してオリフィスを形成し、その開口面積は中間間座20の軸方向長さ(厚み)に圧側第二弁体21の外径を直径とする円の円周の長さを乗じた値となる。圧側第一弁体2や圧側第二弁体21が撓んでこれらが接近すると、弁体間隙間aの開口面積が小さくなって開口量が小さくなる。また、圧側第一弁体2と圧側第二弁体21が当接すると、開口面積が略零となり、弁体間隙間aと伸側室R1との連通が遮断される。   2 and 3, in the state where the pressure side first valve body 2 and the pressure side second valve body 21 are not bent, the inter-valve gap a opens to the expansion side chamber R1 to form an orifice, and its opening area Is a value obtained by multiplying the axial length (thickness) of the intermediate spacer 20 by the circumference of a circle having the outer diameter of the compression-side second valve body 21 as a diameter. When the pressure side first valve body 2 and the pressure side second valve body 21 are bent and approach each other, the opening area of the inter-valve gap a is reduced and the opening amount is reduced. Further, when the pressure side first valve body 2 and the pressure side second valve body 21 come into contact with each other, the opening area becomes substantially zero, and the communication between the inter-valve gap a and the extension side chamber R1 is blocked.

圧側チャンバ24は、図3に示すように、ピストン保持部材3における保持軸3aの外周に嵌合される筒状の装着部24aと、装着部24aの図3中上端外周に設けたフランジ部24bと、フランジ部24bの外周からバルブディスク1側へ向けて延びる摺接筒24cとを備えて構成されている。   As shown in FIG. 3, the compression side chamber 24 includes a cylindrical mounting portion 24a fitted to the outer periphery of the holding shaft 3a of the piston holding member 3, and a flange portion 24b provided on the outer periphery of the mounting portion 24a at the upper end in FIG. And a slidable contact cylinder 24c extending from the outer periphery of the flange portion 24b toward the valve disc 1 side.

この摺接筒24c内には、圧側スプール23が収容されている。圧側スプール23は、外周を摺接筒24cの内周に摺接させており、当該摺接筒24c内で軸方向へ移動することができるようになっている。圧側スプール23は、環状のスプール本体23aと、スプール本体23aの図3中下端から立ち上がる環状突起23bとを備えており、環状突起23bが圧側第二弁体21の背面となる図3中上面に当接することができるようになっている。   A pressure side spool 23 is accommodated in the sliding contact cylinder 24c. The pressure side spool 23 has an outer periphery in sliding contact with an inner periphery of the sliding contact cylinder 24c, and can move in the axial direction within the sliding contact cylinder 24c. The pressure-side spool 23 includes an annular spool body 23a and an annular protrusion 23b that rises from the lower end of the spool body 23a in FIG. 3, and the annular protrusion 23b is on the upper surface in FIG. It can come into contact.

そして、このように、圧側チャンバ24に圧側スプール23を組み付け、当該圧側チャンバ24を保持軸3aに組み付けると、圧側第二弁体21の背面側である図3中上方側に圧側背圧室Cpが形成される。なお、スプール本体23aの内径は、装着部24aの外径より大きくしているが、装着部24aの外周に摺接する径に設定されて、圧側背圧室Cpを圧側スプール23で封じるようにすることも可能である。   When the pressure side spool 23 is assembled to the pressure side chamber 24 and the pressure side chamber 24 is assembled to the holding shaft 3a as described above, the pressure side back pressure chamber Cp is located on the upper side in FIG. Is formed. The inner diameter of the spool body 23a is larger than the outer diameter of the mounting portion 24a, but is set to a diameter that is in sliding contact with the outer periphery of the mounting portion 24a so that the compression-side back pressure chamber Cp is sealed by the compression-side spool 23. It is also possible.

また、圧側チャンバ24の装着部24aには、その内周に環状溝24dが設けられるとともに、装着部24aの外周から当該環状溝24dに通じる切欠24eが設けられており、圧側チャンバ24を保持軸3aに組み付けると、環状溝24dは保持軸3aに設けた伸側パイロットオリフィスPeに対向して、圧側背圧室Cpが伸側パイロットオリフィスPeに通じるようになっている。このように、圧側背圧室Cpは、伸側パイロットオリフィスPeに通じることで、保持軸3aの縦孔3d内に形成した連通路33および圧側パイロットオリフィスPpを通じて伸側背圧室Ceにも連通される。   The mounting portion 24a of the pressure side chamber 24 is provided with an annular groove 24d on the inner periphery thereof, and a notch 24e leading from the outer periphery of the mounting portion 24a to the annular groove 24d. When assembled to 3a, the annular groove 24d faces the expansion side pilot orifice Pe provided in the holding shaft 3a, and the compression side back pressure chamber Cp communicates with the expansion side pilot orifice Pe. Thus, the compression side back pressure chamber Cp communicates with the expansion side back pressure chamber Ce through the communication passage 33 formed in the vertical hole 3d of the holding shaft 3a and the compression side pilot orifice Pp by communicating with the expansion side pilot orifice Pe. Is done.

さらに、圧側チャンバ24には、フランジ部24bの外周から開口する伸側圧力導入通路Ieが設けられており、伸側室R1を圧側背圧室Cp内へ通じさせている。圧側チャンバ24のフランジ部24bの図3中下端には、環状板26が積層され、この環状板26と圧側スプール23におけるスプール本体23aとの間に介装されたばね部材25によって当該環状板26がフランジ部24bへ押しつけられて伸側圧力導入通路Ieを閉塞するようになっている。なお、伸側圧力導入通路Ieは、通過する作動油の流れに対して抵抗を生じさせないように配慮されている。   Furthermore, the compression side chamber 24 is provided with an expansion side pressure introduction passage Ie that opens from the outer periphery of the flange portion 24b, and communicates the expansion side chamber R1 into the compression side back pressure chamber Cp. An annular plate 26 is laminated at the lower end in FIG. 3 of the flange portion 24 b of the compression side chamber 24, and the annular plate 26 is formed by a spring member 25 interposed between the annular plate 26 and the spool body 23 a of the compression side spool 23. The extension side pressure introduction passage Ie is closed by being pressed against the flange portion 24b. Note that the extension side pressure introduction passage Ie is designed so as not to cause resistance to the flow of the working oil passing therethrough.

環状板26は、ばね部材25とともに伸側逆止弁Teを構成し、緩衝器Dの伸長作動時において、伸側室R1が圧縮されて圧力が高まると当該圧力によって押圧されてフランジ部24bから離座して伸側圧力導入通路Ieを開放し、圧側背圧室Cp内の圧力が伸側室R1より高くなる緩衝器Dの圧縮作動時にはフランジ部24bに押しつけられて伸側圧力導入通路Ieを閉塞し、伸側室R1からの作動油の流れのみを許容する。つまり、この伸側逆止弁Teによって、伸側圧力導入通路Ieが伸側室R1から圧側背圧室Cpへ向かう作動油の流れのみを許容する一方通行の通路に設定される。   The annular plate 26, together with the spring member 25, constitutes the extension side check valve Te. When the buffer D is extended, when the extension side chamber R1 is compressed and the pressure is increased, the annular plate 26 is pressed by the pressure and separated from the flange portion 24b. The extension side pressure introduction passage Ie is opened, and the compression side back pressure chamber Cp is pressed against the flange portion 24b during the compression operation of the shock absorber D in which the pressure in the extension side chamber R1 is higher than the extension side chamber R1, thereby closing the extension side pressure introduction passage Ie. Only the flow of hydraulic oil from the extension side chamber R1 is allowed. That is, the expansion side check valve Te sets the expansion side pressure introduction passage Ie as a one-way passage that allows only the flow of hydraulic oil from the expansion side chamber R1 to the compression side back pressure chamber Cp.

ここで、上述したように、連通路33は、ピストン保持部材3に設けた環状溝3e、ポート3fおよび横孔3gを通じて収容部L内に連通されている。よって、伸側背圧室Ceおよび圧側背圧室Cpは、伸側パイロットオリフィスPe、圧側パイロットオリフィスPpおよび連通路33を介して互いが連通されるだけでなく、伸側圧力導入通路Ieを介して伸側室R1に連通され、圧側圧力導入通路Ipを介して圧側室R2に連通され、さらには、環状溝3e、ポート3fおよび横孔3gによって収容部Lへも連通されている。   Here, as described above, the communication passage 33 communicates with the inside of the housing portion L through the annular groove 3e, the port 3f, and the lateral hole 3g provided in the piston holding member 3. Therefore, the extension side back pressure chamber Ce and the pressure side back pressure chamber Cp are not only communicated with each other via the extension side pilot orifice Pe, the pressure side pilot orifice Pp and the communication passage 33, but also via the extension side pressure introduction passage Ie. The expansion side chamber R1 communicates with the compression side chamber R2 via the pressure side pressure introduction passage Ip, and further communicates with the accommodating portion L through the annular groove 3e, the port 3f and the lateral hole 3g.

戻って、ばね部材25は、環状板26をフランジ部24bに押し付ける役割を担って、環状板26と伸側逆止弁Teを形成するとともに、圧側スプール23を圧側第二弁体21へ向けて附勢する役割をも担っている。圧側スプール23をばね部材25で附勢することで、圧側第二弁体21が撓んで圧側スプール23がバルブディスク1から離間する図3中上方へ押し上げられた状態となってから、圧側第二弁体21の撓みが解消しても、ばね部材25によって附勢されているので、圧側スプール23は圧側第二弁体21に追従して速やかに元の位置(図1〜3に示す位置)へ戻ることができる。圧側スプール23の附勢を別途のばね部材で附勢することも可能であるが、伸側逆止弁Teとばね部材25を共用することができ部品点数を削減できるとともに構造が簡単となる利点がある。なお、圧側スプール23におけるスプール本体23aの外径は、環状突起23bの内径よりも大径に設定されていて、環状突起23bが圧側第二弁体21に当接するようになっており、圧側スプール23は圧側背圧室Cpの圧力によって圧側第二弁体21へ向けて附勢される。また、環状突起23bの内径は、中間間座20の外径よりも大きく設定されており、圧側スプール23は、圧側第二弁体21の中間間座20よりも外周を第一弁体2側、すなわち、バルブディスク1側に附勢するようになっている。   Returning, the spring member 25 plays a role of pressing the annular plate 26 against the flange portion 24 b, forms the annular plate 26 and the extension-side check valve Te, and directs the pressure-side spool 23 toward the pressure-side second valve body 21. It also has a role to support. When the pressure side spool 23 is biased by the spring member 25, the pressure side second valve body 21 is bent and the pressure side spool 23 is pushed upward in FIG. Even if the bending of the valve body 21 is eliminated, the pressure side spool 23 follows the pressure side second valve body 21 quickly because it is biased by the spring member 25 (the position shown in FIGS. 1 to 3). You can go back to Although it is possible to urge the compression side spool 23 with a separate spring member, the extension side check valve Te and the spring member 25 can be used in common, and the number of parts can be reduced and the structure can be simplified. There is. The outer diameter of the spool body 23a in the pressure-side spool 23 is set to be larger than the inner diameter of the annular protrusion 23b, and the annular protrusion 23b comes into contact with the pressure-side second valve body 21. 23 is urged toward the pressure side second valve body 21 by the pressure of the pressure side back pressure chamber Cp. Further, the inner diameter of the annular protrusion 23b is set larger than the outer diameter of the intermediate spacer 20, and the pressure side spool 23 has an outer periphery that is closer to the first valve body 2 side than the intermediate spacer 20 of the pressure side second valve body 21. That is, it is biased toward the valve disc 1 side.

そして、伸側スプール51は、伸側背圧室Ceの圧力を受けて伸側弁体5をバルブディスク1へ向けて附勢するが、伸側スプール51の伸側背圧室Ceの圧力を受ける受圧面積は、伸側スプール51のスプール本体51aの外径を直径とする円の面積から環状突起51bの内径を直径とする円の面積の差分となる。同様に、圧側スプール23は、圧側背圧室Cpの圧力を受けて圧側第二弁体21を圧側第一弁体2へ向けて附勢するが、圧側スプール23の圧側背圧室Cpの圧力を受ける受圧面積は、圧側スプール23のスプール本体23aの外径を直径とする円の面積から環状突起23bの内径を直径とする円の面積の差分となる。そして、この実施の形態の緩衝器Dの場合、伸側スプール51の受圧面積は、圧側スプール23の受圧面積よりも大きくしてある。   The extension side spool 51 receives the pressure of the extension side back pressure chamber Ce and urges the extension side valve body 5 toward the valve disk 1. However, the extension side spool 51 reduces the pressure of the extension side back pressure chamber Ce of the extension side spool 51. The pressure receiving area is a difference between the area of a circle whose diameter is the outer diameter of the spool body 51a of the expansion side spool 51 and the area of a circle whose diameter is the inner diameter of the annular protrusion 51b. Similarly, the pressure side spool 23 receives the pressure of the pressure side back pressure chamber Cp and urges the pressure side second valve body 21 toward the pressure side first valve body 2, but the pressure side spool 23 has a pressure in the pressure side back pressure chamber Cp. The pressure receiving area that receives the pressure is the difference between the area of a circle whose diameter is the outer diameter of the spool body 23a of the pressure side spool 23 and the area of the circle whose diameter is the inner diameter of the annular protrusion 23b. In the case of the shock absorber D of this embodiment, the pressure receiving area of the expansion side spool 51 is larger than the pressure receiving area of the compression side spool 23.

伸側弁体5の背面には伸側スプール51の環状突起51bが当接するとともに、間座50に支持されているので、伸側弁体5に伸側背圧室Ceの圧力が直接的に作用する受圧面積は、環状突起51bの内径を直径とする円の面積から間座50の外径を直径とする円の面積を除いた面積となる。よって、伸側スプール51のスプール本体51aの外径を直径とする円の面積から間座50の外径を直径とする円の面積を除いた面積に伸側背圧室Ceの圧力を乗じた力を伸側荷重として、この伸側荷重によって伸側弁体5がバルブディスク1へ向けて附勢される。   Since the annular protrusion 51b of the expansion side spool 51 abuts on the back surface of the expansion side valve body 5 and is supported by the spacer 50, the pressure of the expansion side back pressure chamber Ce is directly applied to the expansion side valve body 5. The acting pressure receiving area is an area obtained by subtracting the area of the circle whose diameter is the outer diameter of the spacer 50 from the area of the circle whose diameter is the inner diameter of the annular protrusion 51b. Therefore, the pressure of the extension-side back pressure chamber Ce is multiplied by the area obtained by subtracting the area of the circle having the outer diameter of the spacer 50 as the diameter from the area of the circle having the outer diameter of the spool body 51a of the extension-side spool 51 as a diameter. Using the force as the extension side load, the extension side valve element 5 is biased toward the valve disc 1 by the extension side load.

他方、圧側第二弁体21の背面には圧側スプール23の環状突起23bが当接するとともに、間座22に支持されているので、圧側第二弁体21に圧側背圧室Cpの圧力が直接的に作用する受圧面積は、環状突起23bの内径を直径とする円の面積から間座22の外径を直径とする円の面積を除いた面積となる。よって、圧側スプール23のスプール本体23aの外径を直径とする円の面積から間座22の外径を直径とする円の面積を除いた面積に圧側背圧室Cpの圧力を乗じた力を圧側荷重として、この圧側荷重によって圧側第二弁体21が圧側第一弁体2へ向けて附勢される。   On the other hand, the annular protrusion 23b of the pressure side spool 23 abuts on the back surface of the pressure side second valve body 21 and is supported by the spacer 22. Therefore, the pressure of the pressure side back pressure chamber Cp is directly applied to the pressure side second valve body 21. The pressure receiving area that acts in an automatic manner is an area obtained by subtracting the area of a circle having the diameter of the outer diameter of the spacer 22 from the area of a circle having the diameter of the annular protrusion 23b as the diameter. Therefore, the force obtained by multiplying the area obtained by subtracting the area of the circle whose outer diameter is the outer diameter of the spacer 22 from the area of the circle whose diameter is the outer diameter of the spool body 23a of the pressure-side spool 23 by the pressure of the pressure-side back pressure chamber Cp. As the pressure side load, the pressure side second valve body 21 is urged toward the pressure side first valve body 2 by the pressure side load.

さらに、この圧側第二弁体21は、中間間座20に支持されて外周が圧側荷重を受けて圧側第一弁体2側に撓み、これによって弁体間隙間aの開口量を可変にするとともに、圧側第一弁体2に当接すると、当該圧側第一弁体2に圧側荷重がバルブディスク1に向けてかかるようになる。   Further, the pressure side second valve body 21 is supported by the intermediate spacer 20 and the outer periphery thereof receives a pressure side load and bends to the pressure side first valve body 2 side, thereby making the opening amount of the inter-valve gap a variable. At the same time, when coming into contact with the pressure-side first valve body 2, a pressure-side load is applied to the pressure-side first valve body 2 toward the valve disc 1.

上記構成によれば、伸側背圧室Ceの圧力と圧側背圧室Cpの圧力が等圧である場合、伸側弁体5が伸側背圧室Ceから受ける荷重である伸側荷重は、圧側第一弁体2や圧側第二弁体21が圧側背圧室Cpから受ける荷重である圧側荷重よりも大きくなるように設定されている。なお、伸側背圧室Ceを伸側スプール51で閉鎖して伸側背圧室Ceの圧力を伸側弁体5に直接に作用させない場合には、伸側荷重は伸側スプール51の伸側背圧室Ceの圧力を受ける受圧面積のみによって決まり、圧側も同様に、圧側背圧室Cpを圧側スプール23で閉鎖して圧側背圧室Cpの圧力を圧側第二弁体21に直接に作用させない場合には、圧側荷重は圧側スプール23の圧側背圧室Cpの圧力を受ける受圧面積のみによって決まる。伸側背圧室Ceの圧力と圧側背圧室Cpの圧力が等圧である場合に、伸側弁体5が伸側背圧室Ceから受ける伸側荷重が、圧側第一弁体2や圧側第二弁体21が圧側背圧室Cpから受ける圧側荷重よりも大きくなるように設定されればよいので、伸側弁体5、圧側第二弁体21に直接背圧室から圧力を作用させない場合には、伸側スプール51の受圧面積を圧側スプール23の受圧面積より大きくすれば足りる。伸側背圧室Ceの圧力を伸側弁体5に直接に作用させるが、圧側背圧室Cpの圧力は圧側第二弁体21に直接作用させないようにしてもよいし、その逆を採用してもよい。本発明では、伸側スプール51と圧側スプール23を用いているので、伸側弁体5に実質的に伸側背圧室Ceの圧力を作用させる受圧面積を伸側弁体5のみの受圧面積よりも大きく設定することができ、圧側スプール23と伸側スプール51の受圧面積差も大きく設定することができるので、伸側荷重と圧側荷重に大きな差を持たせることができ伸側荷重と圧側荷重の設定幅に非常に高い自由度を与えることができる。   According to the above configuration, when the pressure in the expansion side back pressure chamber Ce and the pressure in the compression side back pressure chamber Cp are equal, the expansion side load that is the load that the expansion side valve body 5 receives from the expansion side back pressure chamber Ce is The pressure side first valve body 2 and the pressure side second valve body 21 are set to be larger than the pressure side load that is a load received from the pressure side back pressure chamber Cp. When the extension side back pressure chamber Ce is closed by the extension side spool 51 and the pressure in the extension side back pressure chamber Ce is not directly applied to the extension side valve body 5, the extension side load is increased by the extension side spool 51. The pressure side is also determined by only the pressure receiving area that receives the pressure of the side back pressure chamber Ce. Similarly, the pressure side back pressure chamber Cp is closed by the pressure side spool 23 and the pressure of the pressure side back pressure chamber Cp is directly applied to the pressure side second valve body 21. When not acting, the pressure side load is determined only by the pressure receiving area that receives the pressure of the pressure side back pressure chamber Cp of the pressure side spool 23. When the pressure in the extension side back pressure chamber Ce and the pressure in the compression side back pressure chamber Cp are equal, the extension side load received by the extension side valve body 5 from the extension side back pressure chamber Ce is the compression side first valve body 2 or Since the pressure side second valve body 21 only needs to be set to be larger than the pressure side load received from the pressure side back pressure chamber Cp, pressure is directly applied to the expansion side valve body 5 and the pressure side second valve body 21 from the back pressure chamber. If not, it is sufficient to make the pressure receiving area of the expansion side spool 51 larger than the pressure receiving area of the compression side spool 23. The pressure in the expansion side back pressure chamber Ce is directly applied to the expansion side valve body 5, but the pressure in the compression side back pressure chamber Cp may not be directly applied to the compression side second valve body 21, or vice versa. May be. In the present invention, since the expansion side spool 51 and the compression side spool 23 are used, the pressure receiving area for applying the pressure of the expansion side back pressure chamber Ce to the expansion side valve body 5 substantially is the pressure receiving area of only the expansion side valve body 5. Since the pressure receiving area difference between the compression side spool 23 and the expansion side spool 51 can also be set large, there can be a large difference between the expansion side load and the compression side load. A very high degree of freedom can be given to the set width of the load.

また、図1に示すように、伸側背圧室Ceと圧側背圧室Cpを上流、伸側排出通路Eeおよび圧側排出通路Epを下流として、調整通路Pcでこれらを連通しており、電磁圧力制御弁4は、この調整通路Pcの途中に設けられていて、上流の伸側背圧室Ceおよび圧側背圧室Cpの圧力を制御できるようになっている。よって、電磁圧力制御弁4によって伸側背圧室Ceと圧側背圧室Cp内の圧力を制御するに際して、伸側荷重を圧側荷重よりも大きくしているので、小さな圧力でも伸側荷重を大きくすることができ、伸側の減衰力を大きくしたい場合にあっても、電磁圧力制御弁4で制御すべき最大圧力を低くすることができるのである。   Further, as shown in FIG. 1, the extension side back pressure chamber Ce and the pressure side back pressure chamber Cp are upstream, the extension side discharge passage Ee and the pressure side discharge passage Ep are downstream, and these are communicated with each other through an adjustment passage Pc. The pressure control valve 4 is provided in the middle of the adjustment passage Pc and can control the pressures of the upstream extension side back pressure chamber Ce and the pressure side back pressure chamber Cp. Therefore, when the pressure in the extension side back pressure chamber Ce and the pressure side back pressure chamber Cp is controlled by the electromagnetic pressure control valve 4, the extension side load is made larger than the compression side load. Even when it is desired to increase the damping force on the extension side, the maximum pressure to be controlled by the electromagnetic pressure control valve 4 can be reduced.

なお、本実施の形態において、伸側スプール51は、内周が伸側チャンバ52の装着部52aの外周に摺接しておらず、伸側背圧室Ceの圧力が伸側弁体5の背面側であって環状突起51bの当接部位の内側にも作用して当該伸側弁体5を附勢するので、伸側荷重の設定に当たり、伸側背圧室Ceの圧力で伸側弁体5を直接に附勢する荷重を加味して設定するとよい。圧側スプール23も内周が圧側チャンバ24の装着部24aの外周に摺接しておらず、圧側背圧室Cpの圧力が圧側第二弁体21の背面側であって環状突起23bの当接部位の内側にも作用して当該圧側第二弁体21を附勢するので、圧側荷重の設定に当たり、圧側背圧室Cpの圧力で圧側第二弁体21を直接に附勢する荷重を加味して設定するとよい。   In the present embodiment, the expansion side spool 51 is not slidably contacted with the outer periphery of the mounting portion 52 a of the expansion side chamber 52, and the pressure of the expansion side back pressure chamber Ce is the back surface of the expansion side valve element 5. Since the extension side valve element 5 also acts on the inner side of the contact portion of the annular protrusion 51b to urge the extension side valve element 5, the extension side valve element is set by the pressure of the extension side back pressure chamber Ce when setting the extension side load. It is good to set taking into account the load that directly energizes 5. The inner circumference of the pressure side spool 23 is not in sliding contact with the outer periphery of the mounting portion 24a of the pressure side chamber 24, and the pressure side back pressure chamber Cp is on the back side of the pressure side second valve body 21 and the contact portion of the annular protrusion 23b. Since the pressure side second valve body 21 is also urged inside the pressure side, the load for directly urging the pressure side second valve body 21 with the pressure of the pressure side back pressure chamber Cp is taken into account when setting the pressure side load. To set.

また、伸側弁体5と圧側第一弁体2及び圧側第二弁体21は、共に、内周がロッドDrに固定されるようになっているが、ロッドDrにフローティング支持させるようにして、バルブディスク1に対して全体が離間できるようにしてもよい。   Further, the extension side valve body 5, the pressure side first valve body 2 and the pressure side second valve body 21 are all fixed to the rod Dr at the inner periphery. The whole may be separated from the valve disk 1.

電磁圧力制御弁4は、本実施の形態において、非通電時に調整通路Pcを閉じるとともに通電時に圧力制御を行うよう設定され、また、調整通路Pcの途中には、電磁圧力制御弁4を迂回するフェール弁6が設けられている。 In the present embodiment, the electromagnetic pressure control valve 4 is set to close the adjustment passage Pc when not energized and to perform pressure control when energization, and bypass the electromagnetic pressure control valve 4 in the middle of the adjustment passage Pc. A fail valve 6 is provided.

電磁圧力制御弁4は、図5に示すように、弁収容筒40aと制御弁弁座40dとを備えた弁座部材40と、制御弁弁座40dに離着座する電磁弁弁体41と、電磁弁弁体41に推力を与えこれを軸方向に駆動するソレノイドSolとを備えて構成されている。   As shown in FIG. 5, the electromagnetic pressure control valve 4 includes a valve seat member 40 including a valve housing cylinder 40a and a control valve valve seat 40d, an electromagnetic valve valve body 41 that is attached to and detached from the control valve valve seat 40d, The solenoid valve body 41 is provided with a solenoid Sol that applies thrust to the valve body 41 and drives it in the axial direction.

そして、弁座部材40は、ピストン保持部材3のソケット3c内に嵌合されて、フランジ3bの図5中上端に積層される環状のバルブハウジング60の内周に弁収容筒40aを挿入することで径方向へ位置決められつつ、収容部L内に収容されている。   The valve seat member 40 is fitted into the socket 3c of the piston holding member 3, and the valve housing cylinder 40a is inserted into the inner periphery of the annular valve housing 60 stacked on the upper end of the flange 3b in FIG. And is accommodated in the accommodating portion L while being positioned in the radial direction.

バルブハウジング60は、環状であって、図5中上端に設けた環状窓60aと、環状窓60aから開口して図5中下端に通じるポート60bと、図5中上端内周から開口してポート60bに通じる切欠溝60cと、外周に設けられて軸方向に沿って設けた溝60dと、上記環状窓60aの外周を囲む環状のフェール弁弁座60eとを備えて構成されている。   The valve housing 60 is annular and has an annular window 60a provided at the upper end in FIG. 5, a port 60b that opens from the annular window 60a and communicates with the lower end in FIG. 5, and a port that opens from the inner periphery of the upper end in FIG. A notch groove 60c communicating with 60b, a groove 60d provided on the outer periphery along the axial direction, and an annular fail valve seat 60e surrounding the outer periphery of the annular window 60a are provided.

このバルブハウジング60をソケット3c内に挿入してフランジ3bの図5中上端に積層すると、ポート60bがポート3fのフランジ3bの上端に面する開口に対向してポート60bおよび切欠溝60cがポート3fに連通され、さらに、溝60dがフランジ3bに設けた溝3hに対向してこれらが連通されるようになっている。   When the valve housing 60 is inserted into the socket 3c and stacked on the upper end of the flange 3b in FIG. 5, the port 60b faces the opening facing the upper end of the flange 3b of the port 3f, and the port 60b and the cutout groove 60c are connected to the port 3f. Further, the groove 60d is communicated with the groove 3h provided in the flange 3b so as to face the groove 3h.

よって、ポート60bおよび切欠溝60cは、図1,3に示す環状溝3e、ポート3fおよび横孔3gを通じて連通路33に連通され、さらには、この連通路33、圧側パイロットオリフィスPpおよび伸側パイロットオリフィスPeを介して伸側背圧室Ceおよび圧側背圧室Cpに連通されている。また、図5に示すように、溝60dは、溝3hを通じてセパレータ32内、逆止弁35で形成される伸側排出通路Eeを通じて圧側室R2に連通されるとともに、透孔30c、凹部3i、貫通孔3jおよび逆止弁34によって形成される圧側排出通路Epを通じて伸側室R1に連通されている。   Therefore, the port 60b and the cutout groove 60c are communicated with the communication path 33 through the annular groove 3e, the port 3f and the lateral hole 3g shown in FIGS. 1 and 3, and further, the communication path 33, the pressure side pilot orifice Pp and the expansion side pilot. The expansion side back pressure chamber Ce and the pressure side back pressure chamber Cp communicate with each other through the orifice Pe. Further, as shown in FIG. 5, the groove 60d communicates with the pressure side chamber R2 through the groove 3h in the separator 32 and through the expansion side discharge passage Ee formed by the check valve 35, as well as through holes 30c, recesses 3i, It communicates with the extension side chamber R1 through the pressure side discharge passage Ep formed by the through hole 3j and the check valve 34.

バルブハウジング60内には、筒状の弁座部材40における弁収容筒40aが収容されている。この弁座部材40は、有底筒状であって図5中上端外周にフランジ40bを備えた弁収容筒40aと、弁収容筒40aの側方から開口して内部へ通じる透孔40cと、弁収容筒40aの図5中上端に軸方向へ向けて突出する環状の制御弁弁座40dとを備えて構成されている。   In the valve housing 60, the valve accommodating cylinder 40a in the cylindrical valve seat member 40 is accommodated. The valve seat member 40 has a bottomed cylindrical shape and has a valve accommodating cylinder 40a provided with a flange 40b on the outer periphery of the upper end in FIG. 5, a through hole 40c that opens from the side of the valve accommodating cylinder 40a and communicates with the inside, An annular control valve seat 40d that protrudes in the axial direction is provided at the upper end in FIG. 5 of the valve accommodating cylinder 40a.

また、弁座部材40の弁収容筒40aの外周には、環状のリーフバルブであるフェール弁弁体61が装着されており、弁収容筒40aをバルブハウジング60に挿入して弁座部材40をバルブハウジング60に組み付けると、フェール弁弁体61は、内周が弁座部材40におけるフランジ40bとバルブハウジング60の図5中上端内周とで挟持されて固定されるともに、外周側がバルブハウジング60に設けた環状のフェール弁弁座60eに初期撓みが与えられた状態で着座し、環状窓60aを閉塞する。このフェール弁弁体61は、ポート60bを通じて環状窓60a内に作用する圧力が開弁圧に達すると撓んで、環状窓60aを開放してポート60bを伸側排出通路Eeおよび圧側排出通路Epへ連通させるようになっており、このフェール弁弁体61とフェール弁弁座60eとでフェール弁6を形成している。   Further, a fail valve valve body 61, which is an annular leaf valve, is mounted on the outer periphery of the valve housing cylinder 40a of the valve seat member 40. The valve housing cylinder 40a is inserted into the valve housing 60, and the valve seat member 40 is inserted. When assembled to the valve housing 60, the fail valve body 61 is fixed by being sandwiched between the flange 40b of the valve seat member 40 and the inner periphery of the upper end of the valve housing 60 in FIG. The annular fail valve seat 60e provided in the seat is seated in an initial deflection state, and the annular window 60a is closed. The fail valve body 61 bends when the pressure acting in the annular window 60a through the port 60b reaches the valve opening pressure, opens the annular window 60a, and connects the port 60b to the expansion side discharge passage Ee and the pressure side discharge passage Ep. The fail valve body 61 and the fail valve valve seat 60e form the fail valve 6 in communication.

また、弁収容筒40aをバルブハウジング60に挿入して弁座部材40をバルブハウジング60に組み付けると、バルブハウジング60に設けた切欠溝60cが弁収容筒40aに設けた透孔40cに対向して、伸側背圧室Ceおよび圧側背圧室Cpがポート60bを通じて弁収容筒40a内に連通される。   When the valve housing cylinder 40a is inserted into the valve housing 60 and the valve seat member 40 is assembled to the valve housing 60, the notch groove 60c provided in the valve housing 60 is opposed to the through hole 40c provided in the valve housing cylinder 40a. The extension-side back pressure chamber Ce and the compression-side back pressure chamber Cp are communicated with each other in the valve housing cylinder 40a through the port 60b.

弁座部材40の図5中上方には、環状であってフランジ40bの図5中上端に当接する弁固定部材36が積層されており、さらに、弁固定部材36の図5中上方には電磁弁収容筒30内に収容されるソレノイドSolが配置されていて、電磁弁収容筒30にピストン保持部材3を螺着して一体化する際に、バルブハウジング60、フェール弁弁体61、弁座部材40、弁固定部材36およびソレノイドSolが電磁弁収容筒30とピストン保持部材3に挟持されて固定される。なお、弁固定部材36には、弁座部材40のフランジ40bに当接しても、弁固定部材36の内周側の空間が弁座部材40の外周側の空間に連通できるように切欠溝36aが設けられている。この連通は、切欠溝36aではなく、ポートなどの孔で行うようにしてもよい。   A valve fixing member 36 that is annular and contacts the upper end of the flange 40b in FIG. 5 is stacked above the valve seat member 40 in FIG. A solenoid Sol accommodated in the valve accommodating cylinder 30 is arranged, and when the piston holding member 3 is screwed and integrated with the electromagnetic valve accommodating cylinder 30, the valve housing 60, the fail valve valve body 61, the valve seat The member 40, the valve fixing member 36 and the solenoid Sol are sandwiched and fixed between the electromagnetic valve housing cylinder 30 and the piston holding member 3. It should be noted that the valve fixing member 36 has a notch groove 36 a so that the space on the inner peripheral side of the valve fixing member 36 can communicate with the space on the outer peripheral side of the valve seat member 40 even when abutting against the flange 40 b of the valve seat member 40. Is provided. This communication may be performed not by the notch groove 36a but by a hole such as a port.

図1に示すように、ソレノイドSolは、巻線42と巻線42に通電するハーネスHとをモールド樹脂で一体化した有頂筒状のモールドステータ43と、有頂筒状であってモールドステータ43の内周に嵌合される第一固定鉄心44と、モールドステータ43の図1中下端に積層される環状の第二固定鉄心45と、第一固定鉄心44と第二固定鉄心45との間に介装されて磁気的な空隙を形成するフィラーリング46と、第一固定鉄心44と第二固定鉄心45の内周側に軸方向移動可能に配置された筒状の可動鉄心47と、可動鉄心47の内周に固定されるシャフト48とを備えて構成されており、巻線42に通電することによって、可動鉄心47を吸引してシャフト48に図1中下方向きの推力を与えることができるようになっている。   As shown in FIG. 1, the solenoid Sol includes a top-end cylindrical mold stator 43 in which a winding 42 and a harness H energizing the winding 42 are integrated with a mold resin, and a top-end cylindrical stator stator. A first fixed iron core 44 fitted to the inner periphery of 43, an annular second fixed iron core 45 laminated on the lower end in FIG. 1 of the mold stator 43, a first fixed iron core 44, and a second fixed iron core 45 A filler ring 46 interposed therebetween to form a magnetic gap, a cylindrical movable iron core 47 disposed on the inner peripheral side of the first fixed iron core 44 and the second fixed iron core 45 so as to be axially movable, 1 and a shaft 48 fixed to the inner periphery of the movable iron core 47. By energizing the winding 42, the movable iron core 47 is sucked to give the shaft 48 thrust downward in FIG. Can be done.

さらに、図5に示すように、弁座部材40内には、電磁弁弁体41が摺動自在に挿入されている。電磁弁弁体41は、詳しくは、弁座部材40における弁収容筒40a内に摺動自在に挿入される小径部41aと、小径部41aの図5中上方側である反弁座部材側に設けられて弁収容筒40aには挿入されない大径部41bと、小径部41aと大径部41bとの間に設けた環状の凹部41cと、大径部41bの反弁座部材側端の外周に設けたフランジ状のばね受部41dと、電磁弁弁体41の先端から後端へ貫通する連絡路41eと、連絡路41eの途中に設けたオリフィス41fとを備えて構成されている。   Further, as shown in FIG. 5, a solenoid valve body 41 is slidably inserted into the valve seat member 40. Specifically, the solenoid valve body 41 includes a small diameter portion 41a that is slidably inserted into the valve housing cylinder 40a of the valve seat member 40, and a counter valve seat member side that is the upper side of the small diameter portion 41a in FIG. A large-diameter portion 41b that is provided and is not inserted into the valve housing cylinder 40a, an annular recess 41c provided between the small-diameter portion 41a and the large-diameter portion 41b, and an outer periphery of the large-diameter portion 41b on the side opposite to the valve seat member A flange-shaped spring receiving portion 41d provided in the communication valve 41, a communication path 41e penetrating from the front end to the rear end of the solenoid valve valve body 41, and an orifice 41f provided in the middle of the communication path 41e.

また、電磁弁弁体41にあっては、上述のように、凹部41cを境にして反弁座部材側の外径を小径部41aより大径とした大径部41bが形成されており、この大径部41bの図5中下端に制御弁弁座40dに対向する着座部41gを備え、電磁弁弁体41が弁座部材40に対して軸方向へ移動することで着座部41gが制御弁弁座40dに離着座するようになっている。つまり、電磁弁弁体41と弁座部材40とを備えて電磁圧力制御弁4が構成されており、着座部41gが制御弁弁座40dに着座すると電磁圧力制御弁4が閉弁するようになっている。   Further, in the electromagnetic valve body 41, as described above, the large diameter portion 41b having the outer diameter on the side opposite to the valve seat member larger than the small diameter portion 41a is formed with the recess 41c as a boundary. The large-diameter portion 41b is provided with a seating portion 41g facing the control valve valve seat 40d at the lower end in FIG. 5, and the seating portion 41g is controlled by the solenoid valve body 41 moving in the axial direction with respect to the valve seat member 40. The valve seat 40d is separated from the seat. That is, the electromagnetic pressure control valve 4 is configured by including the electromagnetic valve body 41 and the valve seat member 40, and the electromagnetic pressure control valve 4 is closed when the seating portion 41g is seated on the control valve valve seat 40d. It has become.

また、弁座部材40のフランジ40bとばね受部41dとの間には、電磁弁弁体41を弁座部材40から離間する方向へ附勢するコイルばね37が介装されており、このコイルばね37の附勢力に対して対抗する推力を発揮するソレノイドSolが設けられている。したがって、電磁弁弁体41は、コイルばね37によって常に弁座部材40から離間する方向へ附勢されており、ソレノイドSolからのコイルばね37に対抗する推力が作用しないと、弁座部材40から最も離間する位置に位置決められる。なお、この場合、コイルばね37を利用して、電磁弁弁体41を弁座部材40から離間させる方向へ附勢するようにしているが、コイルばね37以外にも附勢力を発揮することができる弾性体を使用することができる。   A coil spring 37 for biasing the electromagnetic valve valve body 41 in a direction away from the valve seat member 40 is interposed between the flange 40b of the valve seat member 40 and the spring receiving portion 41d. A solenoid Sol that exerts a thrust force against the urging force of the spring 37 is provided. Therefore, the solenoid valve body 41 is always urged in the direction away from the valve seat member 40 by the coil spring 37, and if the thrust against the coil spring 37 from the solenoid Sol does not act, the valve seat member 40 It is positioned at the most distant position. In this case, the electromagnetic valve valve body 41 is urged away from the valve seat member 40 by using the coil spring 37, but an urging force can be exerted in addition to the coil spring 37. An elastic body that can be used can be used.

そして、電磁弁弁体41は、弁座部材40に対して最も離間すると、透孔40cに小径部41aを対向させて透孔40cを閉塞し、ソレノイドSolに通電して弁座部材40に対して最も離間する位置から弁座部材側へ所定量移動させると、常に、凹部41cを透孔40cに対向させて透孔40cを開放するようになっている。   When the solenoid valve body 41 is farthest from the valve seat member 40, the small diameter portion 41a is opposed to the through hole 40c to close the through hole 40c, and the solenoid Sol is energized to the valve seat member 40. When a predetermined amount is moved from the position farthest away to the valve seat member side, the concave portion 41c is always opposed to the through hole 40c and the through hole 40c is opened.

電磁弁弁体41が透孔40cを開放し、着座部41gが制御弁弁座40dから離座すると透孔40cが電磁弁弁体41の凹部41cおよび弁固定部材36に設けた切欠溝36aを通じて伸側排出通路Eeおよび圧側排出通路Epに連通されるようになっており、ソレノイドSolの推力を調節することで、電磁弁弁体41を弁座部材40側へ附勢する力をコントロールすることができ、電磁圧力制御弁4の上流の圧力の作用とコイルばね37による電磁弁弁体41を図5中において押し上げる力がソレノイドSolによる電磁弁弁体41を押し下げる力を上回ると電磁圧力制御弁4は開弁して、電磁圧力制御弁4の上流側の圧力をソレノイドSolの推力に応じて制御することができる。そして、電磁圧力制御弁4の上流は、調整通路Pcを介して伸側背圧室Ceおよび圧側背圧室Cpに通じているので、この電磁圧力制御弁4によって伸側背圧室Ceまたは圧側背圧室Cpの圧力を制御することができる。   When the solenoid valve body 41 opens the through hole 40c and the seating portion 41g is separated from the control valve valve seat 40d, the through hole 40c passes through the recess 41c of the solenoid valve valve body 41 and the notch groove 36a provided in the valve fixing member 36. It communicates with the extension side discharge passage Ee and the pressure side discharge passage Ep, and controls the force for biasing the solenoid valve body 41 toward the valve seat member 40 by adjusting the thrust of the solenoid Sol. If the action of the pressure upstream of the electromagnetic pressure control valve 4 and the force that pushes up the electromagnetic valve body 41 by the coil spring 37 in FIG. 5 exceeds the force that pushes down the electromagnetic valve body 41 by the solenoid Sol, the electromagnetic pressure control valve 4 can be opened to control the pressure on the upstream side of the electromagnetic pressure control valve 4 according to the thrust of the solenoid Sol. Since the upstream side of the electromagnetic pressure control valve 4 communicates with the expansion side back pressure chamber Ce and the pressure side back pressure chamber Cp through the adjustment passage Pc, the electromagnetic pressure control valve 4 allows the expansion side back pressure chamber Ce or the pressure side. The pressure in the back pressure chamber Cp can be controlled.

本実施の形態において、電磁圧力制御弁4は、伸側背圧室Ceと圧側背圧室Cpの圧力を最大に制御したハードモードと、伸側背圧室Ceと圧側背圧室Cpの圧力を最低に制御したソフトモードとの間で、無段階に調節できるようになっている。そして、伸側背圧室Ceの圧力を調節することで、この伸側背圧室Ceの圧力に起因する伸側荷重を制御できる。同様に、圧側背圧室Cpの圧力を調節することで、この圧側背圧室Cpの圧力に起因する圧側荷重を制御でき、また、圧側背圧室Cpの圧力を調節して圧側スプール23が圧側第二弁体21を圧側第一弁体2側へ撓ませる撓み量を可変にできるので、弁体間隙間aの開口量を可変にできる。つまり、本実施の形態において、圧側スプール23と、圧側背圧室Cpと、電磁圧力制御弁4とを備えて、弁体間隙間aの開口量を変更する変更手段Aが構成されている。   In the present embodiment, the electromagnetic pressure control valve 4 includes a hard mode in which the pressures in the extension-side back pressure chamber Ce and the compression-side back pressure chamber Cp are controlled to the maximum, and the pressures in the extension-side back pressure chamber Ce and the compression-side back pressure chamber Cp. Can be adjusted steplessly between the soft mode with the lowest control. Then, by adjusting the pressure in the extension side back pressure chamber Ce, the extension side load resulting from the pressure in the extension side back pressure chamber Ce can be controlled. Similarly, by adjusting the pressure in the pressure side back pressure chamber Cp, the pressure side load caused by the pressure in the pressure side back pressure chamber Cp can be controlled, and the pressure in the pressure side back pressure chamber Cp can be adjusted so that the pressure side spool 23 Since the amount of deflection for bending the pressure side second valve body 21 toward the pressure side first valve body 2 can be made variable, the opening amount of the inter-valve gap a can be made variable. That is, in the present embodiment, the changing means A that includes the pressure-side spool 23, the pressure-side back pressure chamber Cp, and the electromagnetic pressure control valve 4 and changes the opening amount of the inter-valve gap a is configured.

また、電磁圧力制御弁4で圧側背圧室Cpの圧力を高めると、圧側スプール23による圧側第二弁体21を圧側第一弁体2側に附勢する力が大きくなるので、圧側第二弁体21が下方に撓む。当該撓みにより圧側第二弁体21を弁座1dに着座する圧側第一弁体2に当接させ、弁体間隙間aと伸側室R1との連通を遮断する圧力に圧側背圧室Cpの圧力を調節した状態をミディアムモードとすると、ミディアムモードからハードモードでは、弁体間隙間aと伸側室R1との連通が遮断された状態に維持される。   Further, when the pressure in the pressure side back pressure chamber Cp is increased by the electromagnetic pressure control valve 4, the force for urging the pressure side second valve body 21 to the pressure side first valve body 2 side by the pressure side spool 23 becomes larger. The valve body 21 bends downward. The pressure side second valve body 21 is brought into contact with the pressure side first valve body 2 seated on the valve seat 1d by the bending, and the pressure of the pressure side back pressure chamber Cp is set to a pressure that blocks communication between the inter-valve gap a and the extension side chamber R1. If the state in which the pressure is adjusted is set to the medium mode, the communication between the inter-valve gap a and the extension side chamber R1 is maintained from the medium mode to the hard mode.

また、電磁圧力制御弁4の下流は、伸側排出通路Eeおよび圧側排出通路Epに通じており、電磁圧力制御弁4を通過した作動油は、緩衝器Dの伸長作動時には低圧側の圧側室R2へ、緩衝器Dの圧縮作動時には低圧側の伸側室R1へ排出されることになる。よって、調整通路Pcは、上記した環状溝3e、ポート3f、横孔3g、ポート60b、切欠溝60c、収容部Lの一部によって形成される。   Further, the downstream side of the electromagnetic pressure control valve 4 communicates with the expansion side discharge passage Ee and the pressure side discharge passage Ep, and the hydraulic oil that has passed through the electromagnetic pressure control valve 4 is the pressure side chamber on the low pressure side when the shock absorber D is extended. When the shock absorber D is compressed to R2, it is discharged to the low-pressure side expansion chamber R1. Therefore, the adjustment passage Pc is formed by the annular groove 3e, the port 3f, the lateral hole 3g, the port 60b, the notch groove 60c, and a part of the housing portion L described above.

また、電磁圧力制御弁4は、ソレノイドSolへ通電できないフェール時には、弁座部材40における透孔40cを電磁弁弁体41における小径部41aで閉塞する遮断ポジションを備えて、圧力制御弁としてだけではなく、開閉弁としても機能する。フェール弁6は、ポート60bに通じる環状窓60aを開閉するようになっていて、その開弁圧が電磁圧力制御弁4の制御可能な上限圧を超える圧力に設定されており、電磁圧力制御弁4を迂回してポート60bを伸側排出通路Eeおよび圧側排出通路Epに連通することができるようになっているので、電磁圧力制御弁4の上流側の圧力が制御上限圧を超えるような場合、フェール弁6が開弁して伸側背圧室Ceおよび圧側背圧室Cpの圧力をフェール弁6の開弁圧に制御できるようになっている。したがって、たとえば、フェール時において電磁圧力制御弁4が遮断ポジションをとっている場合には、伸側背圧室Ceおよび圧側背圧室Cpの圧力はフェール弁6により制御されることになる。   Further, the electromagnetic pressure control valve 4 has a blocking position in which the through hole 40c in the valve seat member 40 is closed by the small diameter portion 41a in the electromagnetic valve valve body 41 during a failure in which the solenoid Sol cannot be energized. It also functions as an on-off valve. The fail valve 6 opens and closes an annular window 60a communicating with the port 60b, and the valve opening pressure is set to a pressure exceeding the controllable upper limit pressure of the electromagnetic pressure control valve 4. The electromagnetic pressure control valve When the pressure on the upstream side of the electromagnetic pressure control valve 4 exceeds the control upper limit pressure because the port 60b can be communicated with the expansion side discharge passage Ee and the pressure side discharge passage Ep by bypassing 4. The fail valve 6 is opened so that the pressure in the extension side back pressure chamber Ce and the pressure side back pressure chamber Cp can be controlled to the valve opening pressure of the fail valve 6. Therefore, for example, when the electromagnetic pressure control valve 4 is in the cutoff position at the time of a failure, the pressures in the extension side back pressure chamber Ce and the pressure side back pressure chamber Cp are controlled by the fail valve 6.

さらに、電磁弁弁体41は、弁座部材40の弁収容筒40a内に挿入されると、弁収容筒40a内であって透孔40cより先端側に空間Kを形成する。この空間Kは、電磁弁弁体41に設けた連絡路41eおよびオリフィス41fを介して電磁弁弁体41外に連通されている。これにより、電磁弁弁体41が弁座部材40に対して図5中上下方向である軸方向に移動する際、上記空間Kがダッシュポットとして機能して、電磁弁弁体41の急な変位を抑制するとともに、電磁弁弁体41の振動的な動きを抑制することができる。   Further, when the solenoid valve body 41 is inserted into the valve housing cylinder 40a of the valve seat member 40, the electromagnetic valve valve body 41 forms a space K in the valve housing cylinder 40a on the tip side from the through hole 40c. The space K communicates with the outside of the solenoid valve valve body 41 through a communication path 41e and an orifice 41f provided in the solenoid valve valve body 41. Thereby, when the solenoid valve valve body 41 moves in the axial direction which is the vertical direction in FIG. 5 with respect to the valve seat member 40, the space K functions as a dashpot, and the solenoid valve valve body 41 is suddenly displaced. And the vibrational movement of the solenoid valve body 41 can be suppressed.

つづいて、本発明の一実施の形態に係るバルブであるピストンバルブV1を備える緩衝器Dの作動について説明する。   It continues and demonstrates the action | operation of the buffer D provided with the piston valve V1 which is a valve | bulb which concerns on one embodiment of this invention.

ロッドDrがシリンダDcに進入する緩衝器Dの圧縮作動時において、ピストンバルブV1で加圧される圧側室R2の圧力が圧側通路1bを通じて圧側第一弁体2を図1〜3中上方に撓ませるように作用する。これに対して、圧側第一弁体2は、圧側第一弁体2自体が持つばね反力で弁座1dに着座する位置へ戻ろうとする。他方、圧側第二弁体21は、圧側背圧室Cpの圧力に起因する圧側荷重を受けて圧側第一弁体2側に附勢されている。   During the compression operation of the shock absorber D in which the rod Dr enters the cylinder Dc, the pressure in the pressure side chamber R2 pressurized by the piston valve V1 deflects the pressure side first valve body 2 upward in FIGS. 1 to 3 through the pressure side passage 1b. Acts like it does. On the other hand, the pressure side first valve body 2 tries to return to the position where it is seated on the valve seat 1d by the spring reaction force of the pressure side first valve body 2 itself. On the other hand, the pressure side second valve body 21 is biased toward the pressure side first valve body 2 by receiving a pressure side load caused by the pressure of the pressure side back pressure chamber Cp.

また、圧側室R2内の作動油は、圧側逆止弁Tpを押し開いて圧側圧力導入通路Ipを通過し、圧側パイロットオリフィスPpを通って調整通路Pcへ流れる。この調整通路Pcには、電磁圧力制御弁4が設けてあり、電磁圧力制御弁4のソレノイドSolに通電して、調整通路Pcの上流側の圧力を制御してやれば、圧側背圧室Cpの圧力を所望の圧力に制御することができる。   Further, the hydraulic oil in the pressure side chamber R2 pushes open the pressure side check valve Tp, passes through the pressure side pressure introduction passage Ip, and flows to the adjustment passage Pc through the pressure side pilot orifice Pp. In this adjustment passage Pc, an electromagnetic pressure control valve 4 is provided. If the solenoid Sol of the electromagnetic pressure control valve 4 is energized to control the pressure upstream of the adjustment passage Pc, the pressure in the pressure-side back pressure chamber Cp is increased. Can be controlled to a desired pressure.

ソフトモードでは、電磁圧力制御弁4で圧側背圧室Cpの圧力が低く調節されており、圧側スプール23による圧側第二弁体21を圧側第一弁体2側に附勢する力が小さい。   In the soft mode, the pressure of the pressure-side back pressure chamber Cp is adjusted to be low by the electromagnetic pressure control valve 4, and the force for urging the pressure-side second valve body 21 by the pressure-side spool 23 toward the pressure-side first valve body 2 is small.

このため、ピストン速度が低く、圧側第一弁体2が開弁しない圧側低速領域では、弁座1dに着座している圧側第一弁体2に圧側第二弁体21が当接せず、弁体間隙間aと伸側室R1との連通が許容された状態となるので、縮小される圧側室R2の作動油が弁体間隙間aと切欠2bによるオリフィスを通って拡大する伸側室R1に移動し、緩衝器Dは、ソフトモードで、弁体間隙間aと切欠2bの抵抗に起因する圧側低速減衰力を発揮する。   For this reason, in the pressure side low speed region where the piston speed is low and the pressure side first valve body 2 is not opened, the pressure side second valve body 21 does not contact the pressure side first valve body 2 seated on the valve seat 1d. Since the communication between the inter-valve gap a and the extension side chamber R1 is allowed, the hydraulic oil in the compression side chamber R2 to be reduced enters the extension side chamber R1 that expands through the orifice formed by the inter-valve gap a and the notch 2b. The shock absorber D moves and exhibits a compression-side low-speed damping force due to the resistance between the valve element gap a and the notch 2b in the soft mode.

これに対して、電磁圧力制御弁4で圧側背圧室Cpの圧力を高めたミディアムモードからハードモードにかけての圧側低速領域では、圧側第二弁体21が圧側第一弁体2側に撓んで弁体間隙間aと伸側室R1との連通が遮断された状態となるので、縮小される圧側室R2の作動油が切欠2bによるオリフィスを通って拡大する伸側室R1に移動し、緩衝器Dは、切欠2bの抵抗に起因する圧側低速減衰力を発揮する。つまり、弁体間隙間aと切欠2bの両方を移動可能なソフトモードと比較して、ミディアムモードからハードモードにかけては、作動油が圧側室R2から伸側室R1に移動するための流路面積が弁体間隙間a分狭くなるので、ソフトモードと比較して大きな圧側低速減衰力を発揮できるようになる。   On the other hand, in the pressure side low speed region from the medium mode to the hard mode in which the pressure of the pressure side back pressure chamber Cp is increased by the electromagnetic pressure control valve 4, the pressure side second valve body 21 is bent toward the pressure side first valve body 2 side. Since the communication between the inter-valve gap a and the expansion side chamber R1 is cut off, the hydraulic fluid in the compression side chamber R2 to be reduced moves to the expansion side chamber R1 expanding through the orifice by the notch 2b, and the shock absorber D Exerts a compression-side slow damping force due to the resistance of the notch 2b. That is, compared with the soft mode in which both the gap a between the valve bodies and the notch 2b can move, the flow path area for the hydraulic oil to move from the compression side chamber R2 to the extension side chamber R1 is increased from the medium mode to the hard mode. Since it becomes narrow by the clearance gap a between valve bodies, compared with soft mode, a big compression side low speed damping force can be exhibited now.

圧縮作動時においてピストン速度が高くなる圧側中高速領域では、作動油が圧側第一弁体2を押し撓ませて、圧側通路1bを縮小される圧側室R2から拡大する伸側室R1へ移動する。ソフトモードでは、圧側第一弁体2が図1〜3中上側に撓んで圧側第二弁体21に当接するまでの間、圧側通路1b側から受ける圧側室R2の圧力によって圧側第一弁体2を撓ませようとする力と、圧側第一弁体2自体が持つ撓み量に応じたばね反力とがバランスするように撓んで圧側通路1bを開放する。   In the compression-side medium / high-speed region where the piston speed increases during the compression operation, the hydraulic oil pushes and bends the compression-side first valve body 2 and moves from the compression-side chamber R2 to the expansion-side chamber R1 that expands the compression-side passage 1b. In the soft mode, the pressure-side first valve body 2 is received by the pressure of the pressure-side chamber R2 received from the pressure-side passage 1b until the pressure-side first valve body 2 is bent upward in FIGS. The pressure side passage 1b is opened by bending so as to balance the force to bend 2 and the spring reaction force corresponding to the amount of bending of the pressure side first valve body 2 itself.

また、ソフトモードにおいて、圧側第一弁体2が圧側第二弁体21に当接した後、及び、圧側第二弁体21が圧側第一弁体2に当接するミディアムモードからハードモードにかけて、圧側第一弁体2と圧側第二弁体21は、圧側通路1b側から受ける圧側室R2の圧力によって圧側第一弁体2及び圧側第二弁体21を撓ませようとする力と、圧側第一弁体2と圧側第二弁体21自体が持つ撓み量に応じたばね反力及び圧側荷重とがバランスするように撓んで圧側通路1bを開放することになる。   Further, in the soft mode, after the pressure side first valve body 2 contacts the pressure side second valve body 21, and from the medium mode where the pressure side second valve body 21 contacts the pressure side first valve body 2 to the hard mode, The pressure-side first valve body 2 and the pressure-side second valve body 21 are configured so that the pressure-side first valve body 2 and the pressure-side second valve body 21 are bent by the pressure of the pressure-side chamber R2 received from the pressure-side passage 1b side, The pressure side passage 1b is opened by bending so that the spring reaction force and the pressure side load corresponding to the bending amount of the first valve body 2 and the pressure side second valve body 21 itself are balanced.

このため、電磁圧力制御弁4で圧側背圧室Cpの圧力を調節することで、圧側荷重を所望の荷重に制御し、これにより圧側第一弁体2の開度を制御することができる。具体的には、圧側背圧室Cpの圧力を低く調節すれば圧側荷重が小さくなり、圧側第一弁体2の開度を大きくできるので、圧側第一弁体2による抵抗が小さくなり、当該抵抗に起因する緩衝器Dの圧側中高速減衰力を小さくできる。反対に、圧側背圧室Cpの圧力を高く調節すれば圧側荷重が大きくなり、圧側第一弁体2の開度を小さくできるので、圧側第一弁体2による抵抗が小さくなり、当該抵抗に起因する緩衝器Dの圧側中高速減衰力を大きくできる。   For this reason, by adjusting the pressure of the pressure side back pressure chamber Cp with the electromagnetic pressure control valve 4, the pressure side load can be controlled to a desired load, and thereby the opening degree of the pressure side first valve body 2 can be controlled. Specifically, if the pressure in the pressure-side back pressure chamber Cp is adjusted to be low, the pressure-side load is reduced and the opening of the pressure-side first valve body 2 can be increased, so that the resistance by the pressure-side first valve body 2 is reduced. The compression side medium and high speed damping force of the shock absorber D caused by the resistance can be reduced. On the other hand, if the pressure in the pressure side back pressure chamber Cp is adjusted to be high, the pressure side load increases and the opening degree of the pressure side first valve body 2 can be reduced. The compression side medium and high speed damping force of the shock absorber D can be increased.

上記した調整通路Pcを通過した作動油は、逆止弁34を押し開いて圧側排出通路Epを介して低圧側の伸側室R1へ排出される。なお、圧側パイロットオリフィスPpは、作動油の通過の際に抵抗を与えて圧力損失をもたらすので、作動油が流れている状態では、調整通路Pcの下流では、圧側室R2よりも低圧となるため、伸側排出通路Eeに設けた逆止弁35は開かず閉塞されたままとなる。   The hydraulic oil that has passed through the adjustment passage Pc pushes the check valve 34 open and is discharged to the low pressure side expansion chamber R1 via the pressure side discharge passage Ep. Note that the pressure side pilot orifice Pp gives a resistance and a pressure loss when the hydraulic oil passes, so that the pressure side pilot orifice Pp has a lower pressure than the pressure side chamber R2 downstream of the adjustment passage Pc when the hydraulic oil is flowing. The check valve 35 provided in the extension-side discharge passage Ee does not open and remains closed.

また、圧側圧力導入通路Ipは、伸側背圧室Ceに通じるだけでなく、連通路33を介して圧側背圧室Cpに通じており、緩衝器Dの圧縮作動時において圧側背圧室Cp内の圧力が伸側室R1よりも高くなるので、伸側圧力導入通路Ieが伸側逆止弁Teによって閉塞されたままとなる。   Further, the pressure side pressure introduction passage Ip not only communicates with the expansion side back pressure chamber Ce, but also communicates with the pressure side back pressure chamber Cp through the communication passage 33, and when the shock absorber D is compressed, the pressure side back pressure chamber Cp. Since the internal pressure becomes higher than that of the expansion side chamber R1, the expansion side pressure introduction passage Ie remains blocked by the expansion side check valve Te.

つづいて、ロッドDrがシリンダDcから退出する緩衝器Dの伸長作動時において、ピストンバルブV1で加圧される伸側室R1の圧力が伸側通路1aを通じて伸側弁体5を図1,3中下方に撓ませるように作用する。これに対して、伸側弁体5は、伸側弁体5自体が持つばね反力で弁座1cに着座する位置へ戻ろうとするとともに、伸側背圧室Ceの圧力に起因する伸側荷重を受けてバルブディスク1側に附勢されている。   Subsequently, during the extension operation of the shock absorber D in which the rod Dr retreats from the cylinder Dc, the pressure in the extension side chamber R1 pressurized by the piston valve V1 moves the extension side valve element 5 through the extension side passage 1a in FIGS. It acts to bend downward. On the other hand, the extension side valve element 5 tries to return to the position where it is seated on the valve seat 1c by the spring reaction force of the extension side valve element 5 itself, and the extension side caused by the pressure in the extension side back pressure chamber Ce. Under load, it is biased toward the valve disc 1 side.

また、伸側室R1内の作動油は、伸側逆止弁Teを押し開いて伸側圧力導入通路Ieを通過し、伸側パイロットオリフィスPeを通って調整通路Pcへ流れる。この調整通路Pcには、電磁圧力制御弁4が設けてあり、電磁圧力制御弁4のソレノイドSolに通電して、調整通路Pcの上流側の圧力を制御してやれば、伸側背圧室Ceの圧力を所望の圧力に制御することができる。   Further, the hydraulic oil in the extension side chamber R1 pushes open the extension side check valve Te, passes through the extension side pressure introduction passage Ie, and flows to the adjustment passage Pc through the extension side pilot orifice Pe. An electromagnetic pressure control valve 4 is provided in the adjustment passage Pc, and if the solenoid Sol of the electromagnetic pressure control valve 4 is energized to control the pressure upstream of the adjustment passage Pc, the expansion side back pressure chamber Ce The pressure can be controlled to a desired pressure.

伸側圧力導入通路Ieは、作動油の流れに抵抗を与えないように配慮されているので、ソフトモードでは、圧側背圧室Cpの圧力は伸側室R1の圧力と同じになり、圧側スプール23による圧側第二弁体21を圧側第一弁体2側に附勢する力が生じないので、弁体間隙間aと伸側室R1との連通が許容された状態に維持される。   In the soft mode, the pressure in the compression-side back pressure chamber Cp is the same as the pressure in the expansion-side chamber R1, and the compression-side spool 23 is designed so that the expansion-side pressure introduction passage Ie does not give resistance to the flow of hydraulic oil. Since no force is generated to urge the pressure side second valve body 21 to the pressure side first valve body 2 side, the communication between the inter-valve gap a and the extension side chamber R1 is maintained.

このため、ピストン速度が低く、伸側弁体5が開弁しない伸側低速領域では、縮小される伸側室R1の作動油が弁体間隙間aと切欠2bによるオリフィスを通って拡大する圧側室R2に移動するので、緩衝器Dは、ソフトモードで、弁体間隙間aと切欠2bの抵抗に起因する伸側低速減衰力を発揮する。   For this reason, in the extension side low speed region where the piston speed is low and the extension side valve element 5 is not opened, the hydraulic oil in the extension side chamber R1 to be reduced expands through the orifice between the valve element gap a and the notch 2b. Since it moves to R2, the shock absorber D exhibits the extension side low-speed damping force resulting from the resistance of the inter-valve gap a and the notch 2b in the soft mode.

また、ミディアムモードからハードモードにかけての伸側低速領域でも、縮小される伸側室R1の作動油が弁体間隙間aと切欠2bによるオリフィスを通って拡大する圧側室R2に移動するので、緩衝器Dは、弁体間隙間aと切欠2bの抵抗に起因する伸側低速減衰力を発揮する。   Further, even in the extension side low speed region from the medium mode to the hard mode, the hydraulic oil in the extension side chamber R1 to be reduced moves to the pressure side chamber R2 that expands through the orifice by the gap a between the valve bodies and the notch 2b. D exhibits the extension side low-speed damping force resulting from the resistance of the clearance a between the valve bodies and the notch 2b.

伸長作動時においてピストン速度が高くなる伸側中高速領域では、作動油が伸側弁体5を押し撓ませて、伸側通路1aを縮小される伸側室R1から拡大する圧側室R2へ移動する。伸側弁体5は、伸側通路1a側から受ける伸側室R1の圧力によって伸側弁体5を撓ませようとする力と、伸側弁体5自体が持つ撓み量に応じたばね反力及び伸側荷重とがバランスするように撓んで伸側通路1bを開放することになる。   In the extension side medium and high speed region where the piston speed becomes high during the extension operation, the hydraulic oil pushes and flexes the extension side valve body 5 and moves the extension side passage 1a from the extension side chamber R1 to be reduced to the pressure side chamber R2. . The extension side valve element 5 has a force to bend the extension side valve element 5 by the pressure of the extension side chamber R1 received from the extension side passage 1a side, and a spring reaction force according to the amount of deflection of the extension side valve element 5 itself. The extension side passage 1b is opened by bending so as to balance the extension side load.

このため、電磁圧力制御弁4で伸側背圧室Ceの圧力をソフトモードからハードモードの間で調節することで、伸側荷重を所望の荷重に制御し、これにより伸側弁体5の開度を制御することができる。具体的には、伸側背圧室Ceの圧力を低く調節すれば伸側荷重が小さくなり、伸側弁体5の開度を大きくできるので、伸側弁体5による抵抗が小さくなり、当該抵抗に起因する緩衝器Dの伸側中高速減衰力を小さくできる。反対に、伸側背圧室Ceの圧力を高く調節すれば伸側荷重が大きくなり、伸側弁体5の開度を小さくできるので、伸側弁体5による抵抗が大きくなり、当該抵抗に起因する緩衝器Dの伸側中高速減衰力を大きくできる。   For this reason, by adjusting the pressure of the extension side back pressure chamber Ce between the soft mode and the hard mode with the electromagnetic pressure control valve 4, the extension side load is controlled to a desired load. The opening degree can be controlled. Specifically, if the pressure in the extension side back pressure chamber Ce is adjusted to be low, the extension side load can be reduced and the opening degree of the extension side valve element 5 can be increased, so that the resistance by the extension side valve element 5 is reduced. It is possible to reduce the extension side medium and high speed damping force of the shock absorber D caused by the resistance. On the other hand, if the pressure in the extension side back pressure chamber Ce is adjusted to be high, the extension side load increases and the opening of the extension side valve element 5 can be reduced, so that the resistance by the extension side valve element 5 increases, It is possible to increase the middle- and high-speed damping force of the shock absorber D due to the extension.

上記した調整通路Pcを通過した作動油は、逆止弁35を押し開いて伸側排出通路Eeを介して低圧側の圧側室R2へ排出される。なお、伸側パイロットオリフィスPeは、作動油の通過の際に抵抗を与えて圧力損失をもたらし、作動油が流れている状態では、調整通路Pcの下流では、伸側室R1よりも低圧となるため、圧側排出通路Epに設けた逆止弁34は開かず閉塞されたままとなる。   The hydraulic oil that has passed through the adjustment passage Pc pushes the check valve 35 open and is discharged to the low pressure side pressure side chamber R2 through the expansion side discharge passage Ee. The expansion side pilot orifice Pe gives resistance when the hydraulic oil passes and causes a pressure loss. In a state where the hydraulic oil flows, the expansion side pilot orifice Pe has a lower pressure than the expansion side chamber R1 downstream of the adjustment passage Pc. The check valve 34 provided in the pressure side discharge passage Ep is not opened and remains closed.

また、伸側圧力導入通路Ieは、圧側背圧室Cpに通じるだけでなく、連通路33を介して伸側背圧室Ceにも通じており、緩衝器Dの伸長作動時において伸側背圧室Ce内の圧力が圧側室R2よりも高くなるので、圧側圧力導入通路Ipが圧側逆止弁Tpによって閉塞されたままとなる。   The extension side pressure introduction passage Ie not only communicates with the compression side back pressure chamber Cp but also with the extension side back pressure chamber Ce via the communication passage 33. Since the pressure in the pressure chamber Ce becomes higher than that in the pressure side chamber R2, the pressure side pressure introduction passage Ip remains closed by the pressure side check valve Tp.

本実施の形態における緩衝器Dの伸長作動時と圧縮作動時において、ピストン速度を、低速領域と、中高速領域とに区画しているが、各領域の閾値はそれぞれ任意に設定することが可能である。   The piston speed is divided into a low speed region and a medium high speed region during the expansion operation and compression operation of the shock absorber D in the present embodiment, but the threshold value of each region can be arbitrarily set. It is.

つづいて、本実施の形態に係るバルブであるピストンバルブV1と、当該ピストンバルブV1を備える緩衝器Dの作用効果について説明する。   It continues and demonstrates the effect of the piston valve V1 which is a valve | bulb which concerns on this Embodiment, and the buffer D provided with the said piston valve V1.

車両用の緩衝器Dにあっては、伸長作動時の伸側減衰力を圧縮作動時の圧側減衰力に比して大きくする必要があり、片ロッド型に設定される緩衝器Dでは伸側室R1の圧力を受ける受圧面積がバルブディスク1の断面積からロッド部材31の断面積を除いた面積となることもあって、伸長作動時における伸側室R1の圧力は、圧縮作動時における圧側室R2の圧力に比して非常に大きくする必要がある。   In the shock absorber D for the vehicle, it is necessary to increase the extension side damping force during the extension operation compared to the compression side damping force during the compression operation. The pressure receiving area that receives the pressure of R1 may be an area obtained by subtracting the cross-sectional area of the rod member 31 from the cross-sectional area of the valve disk 1, and the pressure in the expansion side chamber R1 during the expansion operation is the pressure side chamber R2 during the compression operation. It must be very large compared to the pressure of

これに対して本実施の形態の緩衝器Dにあっては、伸側背圧室Ceと圧側背圧室Cpとが等圧である場合に、伸側弁体5を附勢する伸側荷重が圧側第一弁体2や圧側第二弁体21を附勢する圧側荷重よりも大きくしてある。また、本発明では、伸側スプール51を用いることで、伸側スプール51を用いずに伸側弁体5の背面側に伸側背圧室Ceの圧力を作用させるだけの構造に比較して、伸側スプール51の伸側背圧室Ceの圧力を受ける受圧面積を伸側弁体5の背面面積よりも大きく稼ぐことができ、伸側弁体5に対して大きな伸側荷重を作用させることができる。さらに、伸側スプール51と圧側スプール23を用いることで、伸側荷重と圧側荷重の設計自由度も向上する。   On the other hand, in the shock absorber D of the present embodiment, when the extension side back pressure chamber Ce and the compression side back pressure chamber Cp are at the same pressure, the extension side load that biases the extension side valve element 5. Is larger than the pressure side load for urging the pressure side first valve body 2 and the pressure side second valve body 21. Further, in the present invention, by using the expansion side spool 51, compared with a structure in which the pressure of the expansion side back pressure chamber Ce is applied to the back side of the expansion side valve body 5 without using the expansion side spool 51. The pressure receiving area that receives the pressure of the extension side back pressure chamber Ce of the extension side spool 51 can be made larger than the back surface area of the extension side valve element 5, and a large extension side load is applied to the extension side valve element 5. be able to. Furthermore, by using the extension side spool 51 and the compression side spool 23, the degree of freedom in designing the extension side load and the compression side load is also improved.

よって、上記構成を備える緩衝器Dにあっては、伸長作動時において伸側減衰力を調整するために伸側荷重を非常に大きくする必要がある場合に、伸側背圧室Ceの圧力が小さくとも大きな伸側荷重を出力させるように設定することができ、大型なソレノイドSolを使用せずとも伸側減衰力の制御幅を確保することができる。   Therefore, in the shock absorber D having the above-described configuration, the pressure in the extension-side back pressure chamber Ce is increased when the extension-side load needs to be very large in order to adjust the extension-side damping force during the extension operation. Even if it is small, it can be set so as to output a large extension side load, and the control range of the extension side damping force can be secured without using a large solenoid Sol.

また、伸側背圧室Ceと圧側背圧室Cpの圧力制御をそれぞれ独立した弁体を駆動して行うのではなく、圧側荷重に比して伸側荷重を大きくすることで伸側背圧室Ceと圧側背圧室Cpの圧力を連通して制御しても伸側減衰力の制御幅を確保することができるので、電磁圧力制御弁4には一つの電磁弁弁体41を設ければ足り、その構造は非常に簡単となり、コストも低減される。   In addition, pressure control of the extension side back pressure chamber Ce and the pressure side back pressure chamber Cp is not performed by driving independent valve bodies, but by increasing the extension side load relative to the compression side load, the extension side back pressure is increased. Even if the pressures in the chamber Ce and the pressure side back pressure chamber Cp are communicated and controlled, the control range of the extension side damping force can be secured, so the electromagnetic pressure control valve 4 is provided with one electromagnetic valve valve body 41. All that is required is a very simple structure and reduced costs.

以上より、電磁圧力制御弁4におけるソレノイドSolを小型化することができることに加え、電磁圧力制御弁4の構造も簡単となり、緩衝器Dのピストン部へ適用しても緩衝器Dが大型化されない。よって、上記緩衝器Dによれば、緩衝器Dの構造が簡単となって小型化でき、車両への搭載性の悪化を招くこともなく、ソレノイドSolが伸側減衰力を大きくするうえで大きな推力を発揮しなくて済むために、減衰力を大きくする場合の消費電力を小さくして省電力化することができる。   As described above, the solenoid Sol in the electromagnetic pressure control valve 4 can be reduced in size, and the structure of the electromagnetic pressure control valve 4 is simplified, and the shock absorber D is not enlarged even when applied to the piston portion of the shock absorber D. . Therefore, according to the shock absorber D, the structure of the shock absorber D can be simplified and miniaturized, and the solenoid Sol is large in increasing the extension side damping force without deteriorating the mountability on the vehicle. Since it is not necessary to exhibit thrust, power consumption when increasing damping force can be reduced to save power.

また、伸側スプール51の伸側背圧室Ceの圧力を受ける受圧面積を圧側スプール23の圧側背圧室Cpの圧力を受ける受圧面積よりも大きくしたので、容易に伸側荷重を圧側荷重に比して大きくすることができる。   Further, since the pressure receiving area for receiving the pressure of the expansion side back pressure chamber Ce of the expansion side spool 51 is made larger than the pressure receiving area for receiving the pressure of the compression side back pressure chamber Cp of the compression side spool 23, the expansion side load can be easily converted into the compression side load. It can be made larger than that.

また、伸側背圧室Ceと圧側背圧室Cpをそれぞれ圧側抵抗要素および伸側抵抗要素を介して連通路33で連通するようにしてあり、圧側圧力導入通路Ipはほとんど抵抗なく伸側背圧室Ceに圧側室R2から作動油を導入するので、緩衝器Dが伸長作動から圧縮作動へ切り換わる際に、伸側背圧室Ce内へ圧側室R2内の圧力が速やかに導入され、伸側スプール51が伸側背圧室Ce内の圧力とばね部材53の附勢によって伸側弁体5を押圧して当該伸側弁体5を弁座1cへ速やかに着座させて伸側通路1aを閉鎖することができる。伸側圧力導入通路Ieもほとんど抵抗なく圧側背圧室Cpに伸側室R1から作動油を導入するので、反対に、緩衝器Dが圧縮作動から伸長作動へ切り換わる際に、圧側背圧室Cp内へ伸側室R1内の圧力が速やかに導入され、圧側スプール23が圧側背圧室Cp内の圧力とばね部材25の附勢によって圧側第二弁体21を圧側第一弁体2側に押圧することができる。   Further, the expansion side back pressure chamber Ce and the compression side back pressure chamber Cp are communicated with each other through the communication path 33 through the compression side resistance element and the expansion side resistance element, respectively, and the compression side pressure introduction path Ip has almost no resistance. Since hydraulic oil is introduced into the pressure chamber Ce from the pressure side chamber R2, when the shock absorber D switches from the expansion operation to the compression operation, the pressure in the pressure side chamber R2 is quickly introduced into the expansion side back pressure chamber Ce, The extension side spool 51 presses the extension side valve body 5 by the pressure in the extension side back pressure chamber Ce and the urging of the spring member 53 so that the extension side valve body 5 is quickly seated on the valve seat 1c, and the extension side passage 1a can be closed. The expansion side pressure introduction passage Ie also introduces hydraulic oil from the expansion side chamber R1 to the compression side back pressure chamber Cp with almost no resistance. Conversely, when the shock absorber D switches from the compression operation to the expansion operation, the compression side back pressure chamber Cp The pressure in the extension side chamber R1 is rapidly introduced into the pressure side spool 23, and the pressure side spool 23 presses the pressure side second valve body 21 toward the pressure side first valve body 2 by the pressure in the pressure side back pressure chamber Cp and the spring member 25. can do.

また、伸側逆止弁Teにおける逆止弁弁体である環状板26および圧側逆止弁Tpにおける逆止弁弁体である環状板54が経年劣化で、対応する圧側チャンバ24および伸側チャンバ52との間に隙間が生じたとしても、伸側抵抗要素が伸側圧力導入通路Ieおよび圧側背圧室Cpの下流側に設けられ、圧側抵抗要素が圧側圧力導入通路Ipおよび伸側背圧室Ceの下流側に設けられているので、伸側圧力導入通路Ieおよび圧側圧力導入通路Ipを通過する流量が変化しても、減衰力制御および伸縮切り換わり時の閉弁動作に影響を与えることもない。   Further, the annular plate 26 which is a check valve body in the extension side check valve Te and the annular plate 54 which is a check valve valve body in the pressure side check valve Tp are deteriorated over time, and the corresponding pressure side chamber 24 and extension side chamber are correspondingly deteriorated. Even if a gap is generated between the pressure side resistance element 52 and the pressure side back pressure chamber Cp, the pressure side resistance element is provided on the downstream side of the pressure side pressure introduction path Ip and the pressure side pressure introduction path Ip. Since it is provided downstream of the chamber Ce, even if the flow rate passing through the expansion side pressure introduction passage Ie and the pressure side pressure introduction passage Ip changes, the damping force control and the valve closing operation at the time of expansion / contraction switching are affected. There is nothing.

また、ロッドDrの外周側に、伸側通路1aと圧側通路1bとを備えたバルブディスク1と、バルブディスク1に積層された伸側弁体5、圧側第一弁体2及び圧側第二弁体21と、筒状であって内周に伸側スプール51が摺動自在に挿入されるとともに伸側背圧室Ceを形成する伸側チャンバ52と、筒状であって内周に圧側スプール23が摺動自在に挿入されるとともに圧側背圧室Cpを形成する圧側チャンバ24とを装着するとともに、上記伸側チャンバ52に圧側圧力導入通路Ipを設け、圧側チャンバ24に伸側圧力導入通路Ieを設けるようにしたので、緩衝器Dのピストン部に減衰力調整に要する各部材を集中配置することができる。   Further, a valve disc 1 having an extension side passage 1a and a pressure side passage 1b on the outer peripheral side of the rod Dr, an extension side valve body 5, a pressure side first valve body 2 and a pressure side second valve laminated on the valve disc 1. The body 21, the cylinder-shaped extension side spool 51 in which the extension side spool 51 is slidably inserted in the inner periphery and the extension side back pressure chamber Ce is formed, and the cylinder, the pressure side spool in the inner periphery. 23 is slidably inserted, and a pressure side chamber 24 forming a pressure side back pressure chamber Cp is mounted, a pressure side pressure introduction passage Ip is provided in the extension side chamber 52, and an extension side pressure introduction passage is provided in the pressure side chamber 24. Since Ie is provided, each member required for adjusting the damping force can be concentrated on the piston portion of the shock absorber D.

さらに、伸側スプール51の伸側弁体5側への附勢と圧側圧力導入通路Ipを開閉する圧側逆止弁Tpにおける逆止弁弁体としての環状板54の附勢とを一つのばね部材53で行い、圧側スプール23の圧側第二弁体21側への附勢と伸側圧力導入通路Ieを開閉する伸側逆止弁Teにおける逆止弁弁体としての環状板26の附勢とを一つのばね部材25で行うようにしたので、一つのばね部材53,25にて逆止弁Te,Tpとスプール51,23の戻り側への復元を行うことができ、部品点数を削減することができる。   Further, the biasing of the expansion side spool 51 toward the expansion side valve body 5 and the urging of the annular plate 54 as a check valve valve body in the pressure side check valve Tp that opens and closes the pressure side pressure introduction passage Ip are provided as one spring. Energizing the pressure side spool 23 to the pressure side second valve body 21 side and energizing the annular plate 26 as a check valve body in the extension side check valve Te that opens and closes the extension side pressure introduction passage Ie. Is performed by one spring member 25, so that the check valves Te and Tp and the spools 51 and 23 can be restored to the return side by one spring member 53 and 25, thereby reducing the number of parts. can do.

また、緩衝器Dは、ロッドDrに、先端に設けられてバルブディスク1、伸側弁体5、圧側第一弁体2、圧側第二弁体21、伸側チャンバ52および圧側チャンバ24が外周に装着される保持軸3aと、保持軸3aの先端から開口する縦孔3dと、保持軸3aに設けられて縦孔3d内に設けた連通路33に通じる伸側抵抗要素としての伸側パイロットオリフィスPeおよび圧側抵抗要素としての圧側パイロットオリフィスPpと、内部に設けられて縦孔3dに通じて電磁圧力制御弁4を収容する収容部Lと、連通路33を収容部Lに連通する調整通路Pcと、収容部Lを伸側室R1に連通する圧側排出通路Epとを設け、縦孔3d内に挿入されて外周に設けた環状溝32aで縦孔3d内に伸側背圧室Ceと圧側背圧室Cpとを連通する連通路33を形成するとともに内周に伸側排出通路Eeを形成するセパレータ32を備えるので、無理なく、ロッドDrに電磁圧力制御弁4を収容するとともに、電磁圧力制御弁4とは軸方向にずらしてロッドDrの外周に伸側背圧室Ceと圧側背圧室Cpとを設けることができる。 Further, the shock absorber D is provided at the tip of the rod Dr, and the valve disc 1, the extension side valve body 5, the pressure side first valve body 2, the pressure side second valve body 21, the extension side chamber 52, and the pressure side chamber 24 are arranged on the outer periphery. An extension side pilot as an extension side resistance element that is provided in the holding shaft 3a, a vertical hole 3d that opens from the tip of the holding shaft 3a, and a communication path 33 provided in the holding shaft 3a and provided in the vertical hole 3d. An orifice Pe and a pressure-side pilot orifice Pp as a pressure-side resistance element, a housing portion L that is provided inside and accommodates the electromagnetic pressure control valve 4 through the vertical hole 3d, and an adjustment passage that communicates the communication passage 33 with the housing portion L Pc and a pressure side discharge passage Ep that communicates the accommodating portion L with the expansion side chamber R1 are provided, and the expansion side back pressure chamber Ce and the pressure side are inserted into the vertical hole 3d by an annular groove 32a that is inserted into the vertical hole 3d and provided on the outer periphery. A communication path communicating with the back pressure chamber Cp 3 and the separator 32 that forms the extended-side discharge passage Ee on the inner periphery, the electromagnetic pressure control valve 4 is accommodated in the rod Dr without any difficulty and is shifted in the axial direction from the electromagnetic pressure control valve 4. An extension-side back pressure chamber Ce and a compression-side back pressure chamber Cp can be provided on the outer periphery of the rod Dr.

さらに、電磁圧力制御弁4が非通電時に調整通路Pcを閉じるとともに通電時に圧力制御を行うよう設定され、調整通路Pcの途中に設けられて電磁圧力制御弁4を迂回するフェール弁6を備え、フェール弁6の開弁圧を電磁圧力制御弁4による最大制御圧力より大きくしたので、フェール時には、伸側荷重と圧側荷重が最大となり、緩衝器Dは、もっとも大きな減衰力を発揮して、フェール時にあっても車体姿勢を安定させることができる。 Furthermore, the electromagnetic pressure control valve 4 is set to close the adjustment passage Pc when not energized and to perform pressure control when energized, and includes a fail valve 6 provided in the middle of the adjustment passage Pc to bypass the electromagnetic pressure control valve 4; Since the valve opening pressure of the fail valve 6 is made larger than the maximum control pressure by the electromagnetic pressure control valve 4, at the time of failure, the extension side load and the pressure side load become maximum, and the shock absorber D exhibits the largest damping force, and fails. Even at times, the body posture can be stabilized.

なお、電磁圧力制御弁4が遮断ポジションをとる際に、電磁弁弁体41の小径部41aを透孔40cに対向させて透孔40cを閉塞して閉弁するようになっているが、完全に、透孔40cを閉塞せずに遮断ポジションにて凹部41cを少しし透孔40cに対向させるなどして絞り弁として機能させることも可能である。このようにすることで、フェール時の緩衝器Dの減衰特性において、ピストン速度が低い領域にて電磁圧力制御弁4における遮断ポジション絞り弁の特性を付加することができ、フェール時にあっても車両における乗り心地を向上させることができる。   In addition, when the electromagnetic pressure control valve 4 takes the cutoff position, the small diameter portion 41a of the electromagnetic valve valve body 41 is opposed to the through hole 40c, and the through hole 40c is closed to close the valve. In addition, it is possible to function as a throttle valve by closing the through-hole 40c without causing the through-hole 40c to close and slightly facing the through-hole 40c at the blocking position. In this way, the damping characteristic of the shock absorber D at the time of failure can be added with the characteristic of the cutoff position throttle valve in the electromagnetic pressure control valve 4 in the region where the piston speed is low. Riding comfort can be improved.

さらに、電磁圧力制御弁4は、筒状であって内外を連通する透孔40cを有して調整通路Pcの一部を形成する弁収容筒40aと弁収容筒40aの端部に設けられた環状の制御弁弁座40dとを備えた弁座部材40と、弁収容筒40a内に摺動自在に挿入される小径部41aと、大径部41bと、当該小径部41aと当該大径部41bとの間に設けられて透孔40cに対向可能な凹部41cと、大径部41bの端部を制御弁弁座40dに離着座させる電磁弁弁体41とを備え、透孔40cに小径部41aを対向させることで調整通路Pcを遮断する。よって、電磁弁弁体41を弁座部材40から抜け出る方向へ圧力が作用する受圧面積は、制御弁弁座40dの内径を直径とする円の面積から小径部41aの外径を直径とする円の面積を引いた面積となって、非常に受圧面積を小さくすることができるとともに、開弁時の流路面積を大きくすることができる。そのため、必要なソレノイドSolの推力が小さくてすみ、電磁弁弁体41の移動量も小さくてすむので、電磁弁弁体41の動きが安定する。また、小径部41aの外周を透孔40cに対向させて透孔40cを閉塞するから遮断ポジションにあっては、上流側から圧力を受けても閉弁したままとなり、フェール弁6のみを有効とすることができる。   Furthermore, the electromagnetic pressure control valve 4 is provided in the end part of the valve storage cylinder 40a and the valve storage cylinder 40a which are cylindrical and have the through-hole 40c which connects inside and outside, and forms a part of adjustment passage Pc. A valve seat member 40 having an annular control valve valve seat 40d, a small diameter portion 41a slidably inserted into the valve housing cylinder 40a, a large diameter portion 41b, the small diameter portion 41a, and the large diameter portion 41b, a recess 41c that can be opposed to the through hole 40c, and an electromagnetic valve valve body 41 that allows the end of the large diameter part 41b to be separated from and seated on the control valve valve seat 40d, with a small diameter in the through hole 40c. The adjustment passage Pc is blocked by facing the portion 41a. Therefore, the pressure receiving area in which the pressure acts in the direction in which the solenoid valve body 41 is removed from the valve seat member 40 is a circle having the outer diameter of the small diameter portion 41a as the diameter from the area of the circle having the inner diameter of the control valve valve seat 40d as the diameter. As a result of subtracting the area, the pressure receiving area can be greatly reduced, and the flow path area at the time of valve opening can be increased. Therefore, the necessary thrust of the solenoid Sol is small, and the movement amount of the solenoid valve valve body 41 is small, so that the movement of the solenoid valve valve body 41 is stabilized. Further, since the outer periphery of the small-diameter portion 41a is opposed to the through hole 40c to close the through hole 40c, the valve is kept closed even when pressure is applied from the upstream side in the blocking position, and only the fail valve 6 is effective. can do.

また、本実施の形態において、弁体間隙間aの開口量を変更する変更手段Aは、圧側第二弁体21の反圧側第一弁体側で中間間座20よりも外周に当接する圧側スプール23と、内部圧力で上記圧側スプール23を上記圧側第一弁体2側に附勢する圧側背圧室Cpと、この圧側背圧室Cpの内部圧力を制御する電磁圧力制御弁4とを備えて構成されている。弁体間隙間aの開口量を変更する目的のみであれば、圧側スプール23を直接ソレノイドSolで駆動するとしても推力の小さなソレノイドを採用することができる。しかし、このようにすると、本実施の形態のように、減衰力もソレノイドSolで調節する場合、推力の大きなソレノイドを採用する必要が生じ、ピストンバルブV1が大径化する不具合が生じる。これに対して本実施の形態においては、圧側背圧室Cpの圧力を電磁圧力制御弁4で調節し、圧側第一弁体2や圧側第二弁体21に作用する圧側荷重を制御しているので、一つのソレノイドSolで弁体間隙間aの開口量と減衰力の調整をしたとしても、小型のソレノイドSolを採用できる。   Further, in the present embodiment, the changing means A that changes the opening amount of the inter-valve gap a is a pressure-side spool that contacts the outer periphery of the intermediate spacer 20 on the counter-pressure side first valve body side of the pressure-side second valve body 21. 23, a pressure-side back pressure chamber Cp that urges the pressure-side spool 23 toward the pressure-side first valve body 2 with internal pressure, and an electromagnetic pressure control valve 4 that controls the internal pressure of the pressure-side back pressure chamber Cp. Configured. For the purpose of only changing the opening amount of the clearance a between the valve bodies, a solenoid with a small thrust can be employed even if the compression side spool 23 is directly driven by the solenoid Sol. However, in this case, as in the present embodiment, when the damping force is also adjusted by the solenoid Sol, it is necessary to employ a solenoid having a large thrust, and there is a problem that the piston valve V1 has a large diameter. On the other hand, in the present embodiment, the pressure in the pressure side back pressure chamber Cp is adjusted by the electromagnetic pressure control valve 4 to control the pressure side load acting on the pressure side first valve body 2 and the pressure side second valve body 21. Therefore, even if the opening amount of the inter-valve gap a and the damping force are adjusted with one solenoid Sol, a small solenoid Sol can be employed.

また、本実施の形態において、ピストンバルブV1は、圧側第一弁体2と圧側第二弁体21との間に介装される中間間座20を備え、圧側第一弁体2と圧側第二弁体21との間で中間間座20の外周に弁体間隙間aを形成するとともに、圧側第一弁体2に形成されて圧側通路1bと弁体間隙間aとを連通する孔2aと、圧側第二弁体21を圧側第一弁体2側に附勢して弁体間隙間aの開口量を変更する変更手段Aとを備えている。よって、この変更手段Aで弁体間隙間aの開口量を変更することで低速減衰力を可変にできる。また、弁体間隙間aの開口量を大きくして、ソフトモードでの低速減衰力を小さくしたとしても、ミディアムモードからハードモードでは弁体間隙間aと伸側室R1との連通を遮断することができるので、減衰力可変幅を大きくすることが可能となる。   Further, in the present embodiment, the piston valve V1 includes an intermediate spacer 20 interposed between the pressure side first valve body 2 and the pressure side second valve body 21, and the pressure side first valve body 2 and the pressure side first valve body 21 are provided. A hole 2a is formed between the two valve bodies 21 on the outer periphery of the intermediate spacer 20 and between the pressure side passage 1b and the valve body gap a. And a changing means A for biasing the pressure side second valve body 21 toward the pressure side first valve body 2 to change the opening amount of the inter-valve gap a. Therefore, the low-speed damping force can be varied by changing the opening amount of the inter-valve gap a by the changing means A. Even if the opening amount of the inter-valve gap a is increased to reduce the low-speed damping force in the soft mode, the communication between the inter-valve gap a and the extension side chamber R1 is blocked from the medium mode to the hard mode. Therefore, it is possible to increase the variable damping force range.

なお、本実施の形態において、圧側通路1bを開閉する構成にのみ本発明を具現化しているが、伸側通路1aを開閉する構成に本発明を具現化するとしてもよく、両方に具現化するとしてもよい。   In the present embodiment, the present invention is embodied only in a configuration that opens and closes the compression side passage 1b. However, the present invention may be embodied in a configuration that opens and closes the extension side passage 1a. It is good.

また、本実施の形態において、圧側第一弁体2の外周部にオリフィスを形成するための切欠2bを設けているが、この圧側第一弁体2が着座する弁座1dに打刻や溝を設け、当該打刻や溝によりオリフィスを形成するとしてもよい。また、伸側弁体5の外周部に切欠を設けたり、この伸側弁体5の着座する弁座1cに打刻や溝を設けたりして、切欠、打刻、溝によりオリフィスを形成するとしてもよいが、切欠や打刻、溝を必ずしも設けなくてもよい。   Further, in the present embodiment, a notch 2b for forming an orifice is provided in the outer peripheral portion of the pressure side first valve body 2, but the valve seat 1d on which the pressure side first valve body 2 is seated is notched or grooved. And an orifice may be formed by the embossing or groove. Further, an orifice is formed by the notch, the notch, and the groove by providing a notch in the outer peripheral portion of the extension-side valve body 5 or by providing a notch or groove in the valve seat 1c on which the extension-side valve element 5 is seated. However, it is not always necessary to provide notches, stamps, or grooves.

また、本実施の形態において、本発明に係るバルブは、ピストンバルブV1であるが、緩衝器が、例えば、特開2013−177976号公報に開示のようなユニフロー型の緩衝器であって、図6に示すように、シリンダDcと、シリンダDcに出入りするロッドDrと、このロッドDrの先端部に保持されるピストンバルブV2と、シリンダDcの反ロッド側端に固定されるベースバルブV3と、シリンダDc内に形成されてピストンバルブV2で区画される伸側室R1及び圧側室R2と、シリンダDc外に形成されてベースバルブV3で圧側室R2と区画されるリザーバR3と、伸側室R1とリザーバR3とを連通する排出通路8と、この排出通路8の途中に設けられる減衰バルブV4とを備えている場合、本発明に係るバルブが減衰バルブV4として利用されるとしてもよい。   Further, in the present embodiment, the valve according to the present invention is the piston valve V1, but the shock absorber is a uniflow type shock absorber as disclosed in, for example, Japanese Patent Application Laid-Open No. 2013-177976. 6, a cylinder Dc, a rod Dr that enters and exits the cylinder Dc, a piston valve V2 that is held at the tip of the rod Dr, a base valve V3 that is fixed to the opposite end of the cylinder Dc, The extension side chamber R1 and the pressure side chamber R2 formed in the cylinder Dc and defined by the piston valve V2, the reservoir R3 formed outside the cylinder Dc and defined by the base valve V3 and the pressure side chamber R2, and the extension side chamber R1 and the reservoir When the discharge passage 8 communicating with R3 and the damping valve V4 provided in the middle of the discharge passage 8 are provided, the valve according to the present invention is provided with a damping valve. It may be used as a blanking V4.

このようなユニフロー型の緩衝器において、ピストンバルブV2は、圧側室R2から伸側室R1に移動する作動油の流れのみを許容し、ベースバルブV3は、リザーバR3から圧側室R2に移動する作動油の流れのみを許容している。そして、緩衝器の伸長作動時には、縮小される伸側室R1の作動油が排出通路8を通ってリザーバR3に移動し、ロッド退出体積分に相当する量の作動油がベースバルブV3を通過してリザーバR3から拡大する圧側室R2に移動する。反対に緩衝器の圧縮作動時には、縮小される圧側室R2の作動油がピストンバルブV2を通過して拡大する伸側室R1に移動するとともに、ロッド進入体積分に相当する量の作動油が排出通路8を通って伸側室R1からリザーバR3に排出される。   In such a uniflow-type shock absorber, the piston valve V2 allows only the flow of hydraulic oil that moves from the pressure side chamber R2 to the expansion side chamber R1, and the base valve V3 moves from the reservoir R3 to the pressure side chamber R2. Only the flow of is allowed. During the expansion operation of the shock absorber, the hydraulic oil in the expansion side chamber R1 to be reduced moves through the discharge passage 8 to the reservoir R3, and an amount of hydraulic oil corresponding to the rod withdrawal volume passes through the base valve V3. It moves from the reservoir R3 to the compression side chamber R2. On the contrary, during the compression operation of the shock absorber, the hydraulic oil in the compression side chamber R2 to be reduced moves to the expansion side chamber R1 that passes through the piston valve V2 and expands, and an amount of hydraulic oil corresponding to the rod entry volume is discharged. 8 is discharged from the extension side chamber R1 to the reservoir R3.

図7に示すように、減衰バルブV4は、一実施の形態のピストンバルブV1と異なり、伸側室R1とリザーバR3とをバルブディスク100で区画するものの、ピストンバルブV1と同様に、二つの室を区画するバルブディスク100と、このバルブディスク100に形成されて当該バルブディスク100で区画される室を連通する通路101と、バルブディスク100に積層されて通路101を開閉する環板状の第一弁体200と、この第一弁体200の反バルブディスク側に積層されて外径が第一弁体200の外径よりも小さい環状の中間間座201と、この中間間座201の反バルブディスク側に積層されて外径が中間間座201の外径よりも大きい環板状の第二弁体202と、第一弁体200と第二弁体202との間で中間間座201の外周に形成される弁体間隙間aと、第一弁体200に形成されて通路101と弁体間隙間aとを連通する孔200aと、第二弁体202を第一弁体200側に附勢して弁体間隙間aの開口量を変更する変更手段Aとを備えている。   As shown in FIG. 7, unlike the piston valve V1 of the embodiment, the damping valve V4 partitions the expansion side chamber R1 and the reservoir R3 with the valve disc 100, but, like the piston valve V1, two chambers are provided. A valve disc 100 that partitions, a passage 101 that is formed in the valve disc 100 and communicates with a chamber partitioned by the valve disc 100, and a ring-plate-shaped first valve that is stacked on the valve disc 100 and opens and closes the passage 101 Body 200, an annular intermediate spacer 201 which is laminated on the side opposite to the valve disc of the first valve body 200 and whose outer diameter is smaller than the outer diameter of the first valve body 200, and the anti-valve disc of the intermediate spacer 201 A ring-shaped second valve body 202 having a larger outer diameter than that of the intermediate spacer 201, and the intermediate spacer 20 between the first valve body 200 and the second valve body 202. Between the valve body a formed on the outer periphery of the valve body, a hole 200a formed in the first valve body 200 for communicating the passage 101 and the clearance a between the valve bodies, and the second valve body 202 on the first valve body 200 side. And changing means A for changing the opening amount of the inter-valve gap a.

上記構成によれば、緩衝器の伸長作動時にも圧縮作動時にも作動油が減衰バルブV4を通過して伸側室R1からリザーバR3に移動するので、伸長作動時と圧縮作動時の両方で弁体間隙間aの開口量を変更することにより低速減衰力を調節できる。さらに、弁体間隙間aを閉じることができるので、減衰力可変幅を大きくできる。   According to the above configuration, since the hydraulic oil passes through the damping valve V4 and moves from the expansion side chamber R1 to the reservoir R3 during both the expansion operation and the compression operation of the shock absorber, the valve body is used during both the expansion operation and the compression operation. The low-speed damping force can be adjusted by changing the opening amount of the gap a. Furthermore, since the clearance a between valve bodies can be closed, the damping force variable width can be increased.

また、本実施の形態においても、一実施の形態と同様に、変更手段Aは、第二弁体202の反第一弁体側で中間間座201よりも外周に当接するスプール203と、内部圧力で第二弁体202を第一弁体200側に附勢する背圧室Cと、この背圧室Cの内部圧力を制御する図示しない電磁圧力制御弁とを備えるとともに、詳細に図示しないが、伸側室R1側からの圧力を電磁圧力制御弁に導く圧力導入通路Iと、背圧室Cに接続されて上記電磁圧力制御弁が設けられる調整通路と、電磁制御弁を通過した作動油をリザーバR3側に排出する排出通路とを備えているが、この場合においても、弁体間隙間aの開口量を変更する変更手段Aの構成はこの限りではない。   Also in the present embodiment, similarly to the first embodiment, the changing means A includes the spool 203 that contacts the outer periphery of the intermediate spacer 201 on the side opposite to the first valve body of the second valve body 202, and the internal pressure. The back pressure chamber C for urging the second valve body 202 toward the first valve body 200 and an electromagnetic pressure control valve (not shown) for controlling the internal pressure of the back pressure chamber C are provided, although not shown in detail. , A pressure introducing passage I for guiding the pressure from the expansion side chamber R1 side to the electromagnetic pressure control valve, an adjustment passage connected to the back pressure chamber C and provided with the electromagnetic pressure control valve, and hydraulic oil that has passed through the electromagnetic control valve In this case, the configuration of the changing means A for changing the opening amount of the inter-valve gap a is not limited to this.

以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱することなく改造、変形及び変更を行うことができることは理解すべきである。   Although preferred embodiments of the present invention have been described in detail above, it should be understood that modifications, variations and changes may be made without departing from the scope of the claims.

a 弁体間隙間
A 変更手段
C 背圧室
Cp 圧側背圧室(背圧室)
R1 伸側室(一実施の形態における一方室、他の実施の形態における他方室)
R2 圧側室(一実施の形態における他方室)
R3 リザーバ(他の実施の形態における一方室)
V1 ピストンバルブ(バルブ)
V4 減衰バルブ(バルブ)
1,100 バルブディスク
1b 圧側通路(通路)
2 圧側第一弁体(第一弁体)
2a,200a 孔
4 電磁圧力制御弁
20,201 中間間座
21 圧側第二弁体(第二弁体)
23 圧側スプール(スプール)
101 通路
200 第一弁体
202 第二弁体
203 スプール
a Inter-valve clearance A Changing means C Back pressure chamber Cp Pressure side back pressure chamber (back pressure chamber)
R1 extension side chamber (one chamber in one embodiment, the other chamber in another embodiment)
R2 pressure side chamber (the other chamber in one embodiment)
R3 reservoir (one chamber in other embodiments)
V1 Piston valve (valve)
V4 Damping valve (valve)
1,100 Valve disc 1b Pressure side passage (passage)
2 Pressure side first valve element (first valve element)
2a, 200a Hole 4 Electromagnetic pressure control valve 20, 201 Intermediate spacer 21 Pressure side second valve body (second valve body)
23 Pressure side spool (spool)
101 passage 200 first valve body 202 second valve body 203 spool

Claims (2)

一方室と他方室とを区画するバルブディスクと、
上記バルブディスクに形成されて上記一方室と上記他方室とを連通する通路と、
上記バルブディスクに積層されて上記通路を開閉する環板状の第一弁体と、
上記第一弁体の反バルブディスク側に積層されて外径が上記第一弁体の外径よりも小さい環状の中間間座と、
上記中間間座の反バルブディスク側に積層されて外径が上記中間間座の外径よりも大きい環板状の第二弁体と、
上記第一弁体と上記第二弁体との間で上記中間間座の外周に形成される弁体間隙間と、
上記第一弁体に形成されて上記通路と上記弁体間隙間とを連通する孔と、
上記第二弁体を上記第一弁体側に附勢して上記弁体間隙間の開口量を変更する変更手段とを備え
上記変更手段は、内部圧力で上記第二弁体を上記第一弁体側に附勢する背圧室と、上記背圧室の上記内部圧力を制御する電磁圧力制御弁とを有することを特徴とするバルブ。
A valve disk that divides the one chamber and the other chamber;
A passage communicating the hand chamber and the other chamber above is formed in the valve disc,
An annular plate-like first valve body that is stacked on the valve disc and opens and closes the passage;
An annular intermediate spacer that is laminated on the side opposite to the valve disc of the first valve body and whose outer diameter is smaller than the outer diameter of the first valve body;
An annular plate-like second valve body laminated on the valve disc side of the intermediate spacer and having an outer diameter larger than the outer diameter of the intermediate spacer;
The inter-valve gap formed on the outer periphery of the intermediate spacer between the first valve body and the second valve body,
A hole formed in the first valve body to communicate the passage and the gap between the valve bodies;
Changing means for urging the second valve body toward the first valve body side to change the opening amount between the valve body gaps ;
The changing means includes a back pressure chamber that biases the second valve body toward the first valve body with internal pressure, and an electromagnetic pressure control valve that controls the internal pressure of the back pressure chamber. Valve to do.
一方室と他方室とを区画するバルブディスクと、A valve disk that divides the one chamber and the other chamber;
上記バルブディスクに形成されて上記一方室と上記他方室とを連通する通路と、A passage formed in the valve disk and communicating with the one chamber and the other chamber;
上記バルブディスクに積層されて上記通路を開閉する環板状の第一弁体と、An annular plate-like first valve body that is stacked on the valve disc and opens and closes the passage;
上記第一弁体の反バルブディスク側に積層されて外径が上記第一弁体の外径よりも小さい環状の中間間座と、An annular intermediate spacer that is laminated on the side opposite to the valve disc of the first valve body and whose outer diameter is smaller than the outer diameter of the first valve body;
上記中間間座の反バルブディスク側に積層されて外径が上記中間間座の外径よりも大きい環板状の第二弁体と、An annular plate-like second valve body laminated on the valve disc side of the intermediate spacer and having an outer diameter larger than the outer diameter of the intermediate spacer;
上記第一弁体と上記第二弁体との間で上記中間間座の外周に形成される弁体間隙間と、The inter-valve gap formed on the outer periphery of the intermediate spacer between the first valve body and the second valve body,
上記第一弁体に形成されて上記通路と上記弁体間隙間とを連通する孔と、A hole formed in the first valve body to communicate the passage and the gap between the valve bodies;
上記第二弁体を上記第一弁体側に附勢して上記弁体間隙間の開口量を変更する変更手段とを備え、Changing means for urging the second valve body toward the first valve body side to change the opening amount between the valve body gaps;
上記変更手段は、上記第二弁体の反第一弁体側で上記中間間座よりも外周に当接するスプールと、内部圧力で上記スプールを上記第一弁体側に附勢する背圧室と、上記背圧室の上記内部圧力を制御する電磁圧力制御弁とを有することを特徴とするバルブ。The change means includes a spool that is in contact with the outer periphery of the intermediate spacer on the anti-first valve body side of the second valve body, a back pressure chamber that biases the spool toward the first valve body side with internal pressure, An electromagnetic pressure control valve for controlling the internal pressure of the back pressure chamber.
JP2014237838A 2014-11-25 2014-11-25 valve Active JP6442247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014237838A JP6442247B2 (en) 2014-11-25 2014-11-25 valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014237838A JP6442247B2 (en) 2014-11-25 2014-11-25 valve

Publications (2)

Publication Number Publication Date
JP2016098946A JP2016098946A (en) 2016-05-30
JP6442247B2 true JP6442247B2 (en) 2018-12-19

Family

ID=56076786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014237838A Active JP6442247B2 (en) 2014-11-25 2014-11-25 valve

Country Status (1)

Country Link
JP (1) JP6442247B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7296268B2 (en) * 2019-07-26 2023-06-22 日立Astemo株式会社 damping force adjustable shock absorber
JP7407667B2 (en) * 2020-07-09 2024-01-04 日立Astemo株式会社 Damping mechanism and buffer
US20220412430A1 (en) * 2021-06-25 2022-12-29 Fox Factory, Inc. Frequency dependent 2-stage valves for shock absorbers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0351247U (en) * 1989-09-26 1991-05-17
JP4048512B2 (en) * 1998-03-31 2008-02-20 株式会社日立製作所 Damping force adjustable hydraulic shock absorber
JP5796995B2 (en) * 2011-04-25 2015-10-21 日立オートモティブシステムズ株式会社 Shock absorber
JP5909557B2 (en) * 2012-09-20 2016-04-26 日立オートモティブシステムズ株式会社 Suspension device
JP2015206458A (en) * 2014-04-10 2015-11-19 本田技研工業株式会社 damper device

Also Published As

Publication number Publication date
JP2016098946A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
JP6239921B2 (en) Hydraulic buffer
JP6378618B2 (en) Damping valve and shock absorber
JP4630760B2 (en) Valves and shock absorbers
JP5418778B2 (en) Shock absorber
WO2013081004A1 (en) Shock absorber
WO2015068711A1 (en) Shock absorber device
US10830305B2 (en) Damping valve and shock absorber
JP5639870B2 (en) Hydraulic shock absorber for vehicles
JP6597191B2 (en) Damping force adjustment mechanism
WO2017010526A1 (en) Damping valve and shock absorber provided with damping valve
JP6442247B2 (en) valve
JP2007303545A (en) Shock absorber
JP2004257507A (en) Hydraulic damper
JP2007100726A (en) Hydraulic draft gear
JP6047035B2 (en) Hydraulic shock absorber for vehicles
JP2018004026A (en) Damping valve and buffer
JP6262977B2 (en) Hydraulic buffer
JP6442248B2 (en) Damping valve and shock absorber
US20190128360A1 (en) Damping force-adjusting valve and shock absorber
JP6514492B2 (en) Damping valve and shock absorber
JP2005054923A (en) Air pressure shock absorber
JP4750593B2 (en) Shock absorber
WO2018180434A1 (en) Damping force adjusting shock absorber
JP6006621B2 (en) Shock absorber
JP6468016B2 (en) Shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R151 Written notification of patent or utility model registration

Ref document number: 6442247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350