JP6401094B2 - Manufacturing method of solar cell - Google Patents
Manufacturing method of solar cell Download PDFInfo
- Publication number
- JP6401094B2 JP6401094B2 JP2015065382A JP2015065382A JP6401094B2 JP 6401094 B2 JP6401094 B2 JP 6401094B2 JP 2015065382 A JP2015065382 A JP 2015065382A JP 2015065382 A JP2015065382 A JP 2015065382A JP 6401094 B2 JP6401094 B2 JP 6401094B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- heat treatment
- temperature
- solar cell
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
本発明は拡散層を形成する工程を含む太陽電池の製造方法に関する。 The present invention relates to a method for manufacturing a solar cell including a step of forming a diffusion layer.
単結晶n型シリコン基板を用いた場合の、一般的な高効率型の太陽電池の一例を示した概略図を図2に、断面構造の一例を示した模式図を図3に示す。図2、3に示すように、太陽電池200は、一般に、受光面にフィンガー電極201とバスバー電極202から成る受光面電極203を有している。フィンガー電極201は、受光面の集電電極であり、その幅は数十〜百μmとされるのが一般的であり、受光面上に多数配設される。また、このフィンガー電極201同士の間隔は1mm〜3mm程度が一般的である。また、バスバー電極202は、太陽電池200を構成するセルを連結するための集電電極であり、受光面に一般に2本〜4本配設される。これら受光面電極203の形成方法としては、蒸着法、スパッタ法などが挙げられるが、コストの面から、Agなどの金属微粒子を有機バインダーに混ぜた金属ペーストを、スクリーン版などを用いて印刷し、数百度で熱処理を行って基板と接着する方法が広く利用されている。
FIG. 2 is a schematic diagram showing an example of a general high-efficiency solar cell when a single crystal n-type silicon substrate is used, and FIG. 3 is a schematic diagram showing an example of a cross-sectional structure. As shown in FIGS. 2 and 3, the
また、図3に示すように、太陽電池200の受光面の受光面電極203以外の部分はSiNx等から成る反射防止膜204で覆われている。単結晶n型シリコン基板205の表面の表層部は基板の導電型と反対のp型拡散層206が形成されている。また、受光面と反対の面(以下、裏面とも呼称する)には、n型拡散層208、裏面パシベーション膜209、及び裏面電極210が形成されている。特に受光面電極203の直下には、p型拡散層206と受光面電極203の接触抵抗を低下させる目的で、p型拡散層206よりも高濃度のp型拡散層207が形成されている。この高濃度と低濃度のp型拡散層(p型の選択エミッタ)206、207を形成させるための方法がいくつか開示されている。
Further, as shown in FIG. 3, the portion other than the light receiving
特許文献1には、ドーパントの濃度が互いに異なる2種類の印刷ペーストを用いて拡散層にドーパント濃度の濃淡を形成する技術が開示されている。特許文献1に開示された技術では、互いに濃度が異なる印刷ペーストを作成するために2種類の材料を用意する必要があり、また、2回の印刷工程が必要である。そのため、特許文献1の方法を実施するには手間がかかる。また、特許文献2、特許文献3には、シリコン基板中のボロンが、熱酸化膜中に移動する性質を利用して、拡散層にドーパント濃度の濃淡を形成する技術が開示されている。特許文献2、特許文献3に開示された技術では、一旦ドーパントを拡散したのち、マスクして酸化熱処理するという手間がかかる。
Patent Document 1 discloses a technique for forming a dopant concentration in a diffusion layer using two types of printing pastes having different dopant concentrations. In the technique disclosed in Patent Document 1, it is necessary to prepare two types of materials in order to create printing pastes having different concentrations, and two printing steps are necessary. Therefore, it takes time to implement the method of Patent Document 1.
特許文献4には、シリコンの微細粒子にドーパントを混合した材料を印刷し、レーザーでドーピングする技術が開示されている。この場合、特殊な材料を用意する必要がある。また、レーザーによる基板へのダメージが不可避であり、製品として不良となってしまい歩留まりが悪化する可能性が有る。特許文献5には、基板表面のダメージ層がドーパントを高濃度に拡散させる性質を利用した技術が開示されている。しかしながら、ダメージ層を選択的に形成する方法が難しく、また、光生成キャリアは、少なからずダメージ層で再結合してしまう。 Patent Document 4 discloses a technique in which a material in which a dopant is mixed with fine silicon particles is printed and doped with a laser. In this case, it is necessary to prepare a special material. In addition, damage to the substrate by the laser is unavoidable, and the product may become defective and the yield may be deteriorated. Patent Document 5 discloses a technique using a property that a damaged layer on a substrate surface diffuses a dopant in a high concentration. However, it is difficult to selectively form a damaged layer, and photogenerated carriers are recombined in the damaged layer.
上記のように、太陽電池の製造において、半導体基板の表面の表層部に、例えば選択エミッタ等のような、ドーパントの濃度が高い部分とドーパント濃度が低い部分を有する拡散層を形成しようとすると、従来のいずれの製造方法も一定の手間や材料が必要であったり、製造した太陽電池の性能が劣ったり、歩留まりが悪化するなどの問題があった。 As described above, in the manufacture of solar cells, when trying to form a diffusion layer having a portion with a high dopant concentration and a portion with a low dopant concentration, such as a selective emitter, on the surface layer portion of the surface of the semiconductor substrate, Any of the conventional manufacturing methods has a problem that a certain amount of labor and materials are required, the performance of the manufactured solar cell is inferior, and the yield is deteriorated.
本発明は前述のような問題に鑑みてなされたもので、煩雑な工程や特殊な材料を用意する必要がなく、簡便な方法でドーパントの濃度が高濃度の部分と低濃度の部分を有する拡散層を形成でき、性能の良い太陽電池を低コストで歩留まり良く得られる太陽電池の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and it is not necessary to prepare complicated processes and special materials, and diffusion having a high concentration portion and a low concentration portion by a simple method. An object of the present invention is to provide a method of manufacturing a solar cell that can form a layer and can obtain a high-performance solar cell at a low cost and a high yield.
上記目的を達成するために、本発明は、半導体基板の表面にホウ素を含む塗布剤を塗布する工程と、前記半導体基板の前記塗布剤が塗布された表面の表層部に前記ホウ素を拡散させる拡散熱処理を施す工程とを有する太陽電池の製造方法であって、前記拡散熱処理工程より前に、前記塗布剤を塗布した表面上に酸化物系セラミックス微粒子を含むペーストをパターン状に塗布する工程と、前記拡散熱処理の温度よりも低い温度まで昇温し、該昇温後に降温する熱サイクルを含む低温熱処理を、前記ペーストを塗布した後の半導体基板に1回以上施す工程を有し、前記低温熱処理を1回以上施した後の半導体基板に前記拡散熱処理を施すことを特徴とする太陽電池の製造方法を提供する。 To achieve the above object, the present invention includes a step of applying a boron-containing coating agent on a surface of a semiconductor substrate, and a diffusion for diffusing the boron in a surface layer portion of the surface of the semiconductor substrate on which the coating agent is applied. A step of applying a heat treatment, and a step of applying, in a pattern, a paste containing oxide ceramic fine particles on the surface on which the coating agent has been applied, prior to the diffusion heat treatment step, and The low-temperature heat treatment includes a step of performing low-temperature heat treatment including a thermal cycle in which the temperature is lowered to a temperature lower than the temperature of the diffusion heat treatment and lowering the temperature after the temperature rise on the semiconductor substrate after the paste is applied. A method for manufacturing a solar cell is provided, wherein the diffusion heat treatment is performed on the semiconductor substrate after the step is performed at least once.
ホウ素源の塗布後、パターン状に酸化物系セラミックス微粒子を含むペースト(以下単に「酸化物ペースト」とも称する)を塗布し、その後、低温熱処理を加えることでホウ素源は酸化物ペースト側に移動する。その後、拡散熱処理を加えることで、半導体基板の表面に酸化物ペーストが塗布された部分では低濃度、非塗布部は高濃度のホウ素拡散層を形成できる。本発明の方法であれば、煩雑な工程や特殊な材料を用意する必要がなく、簡便な方法でホウ素の濃度が高い部分と低い部分を有する拡散層を形成でき、性能の良い太陽電池を低コストで得ることができる。 After applying the boron source, a paste containing oxide ceramic fine particles (hereinafter also referred to simply as “oxide paste”) is applied in a pattern, and then the boron source moves to the oxide paste side by applying low-temperature heat treatment. . Thereafter, by performing diffusion heat treatment, a boron diffusion layer having a low concentration can be formed in the portion where the oxide paste is applied to the surface of the semiconductor substrate, and a high concentration boron diffusion layer can be formed in the non-application portion. According to the method of the present invention, it is not necessary to prepare complicated steps or special materials, and a diffusion layer having a high boron concentration portion and a low boron concentration portion can be formed by a simple method. Can be obtained at a cost.
このとき、前記酸化物系セラミックス微粒子を、シリカ微粒子又は酸化アルミニウム微粒子とすることができる。 At this time, the oxide ceramic fine particles may be silica fine particles or aluminum oxide fine particles.
酸化物系セラミックス微粒子の中でも、これらのような微粒子が汎用で扱いやすいため好ましい。 Among oxide ceramic fine particles, such fine particles are preferred because they are general-purpose and easy to handle.
またこのとき、前記低温熱処理工程における前記熱サイクルの最高温度を300℃以上600℃以下、最低温度を15℃以上300℃未満とすることが好ましい。 At this time, it is preferable that the maximum temperature of the thermal cycle in the low-temperature heat treatment step is 300 ° C. or more and 600 ° C. or less, and the minimum temperature is 15 ° C. or more and less than 300 ° C.
このような温度範囲にて、低温熱処理を加えることで、その後の拡散熱処理においてより確実にホウ素の濃度が高い部分と低い部分を有する拡散層を形成できる。 By applying a low-temperature heat treatment in such a temperature range, a diffusion layer having a portion having a high boron concentration and a portion having a low concentration can be more reliably formed in the subsequent diffusion heat treatment.
また、本発明の太陽電池の製造方法は、前記半導体基板をn型半導体基板とし、前記半導体基板の前記ホウ素を拡散させた表面を受光面とし、さらに、該受光面上に受光面電極を形成する工程と、前記半導体基板の前記ホウ素を拡散させた表面の反対の表面上に裏面電極を形成する工程とを含むことができる。 In the method for manufacturing a solar cell of the present invention, the semiconductor substrate is an n-type semiconductor substrate, the surface of the semiconductor substrate on which the boron is diffused is a light receiving surface, and a light receiving surface electrode is formed on the light receiving surface. And a step of forming a back electrode on the surface of the semiconductor substrate opposite to the surface on which the boron is diffused.
太陽電池の製造において、半導体基板としてn型半導体基板を使用する場合、本発明の太陽電池の製造方法を利用すれば、受光面にホウ素を拡散したp型の選択エミッタを有する高効率型の太陽電池を簡便な方法で製造できる。 When an n-type semiconductor substrate is used as a semiconductor substrate in the production of a solar cell, a high-efficiency solar cell having a p-type selective emitter in which boron is diffused on the light receiving surface is used if the method for producing a solar cell of the present invention is used. The battery can be manufactured by a simple method.
また、本発明の太陽電池の製造方法は、前記半導体基板をp型半導体基板とし、前記半導体基板の前記ホウ素を拡散させた表面の反対の表面を受光面とし、さらに、該受光面の表層部にn型拡散層を形成する工程と、該n型拡散層上に受光面電極を形成する工程と、前記半導体基板の前記ホウ素を拡散させた表面上に裏面電極を形成する工程とを含むことができる。 Further, in the method for manufacturing a solar cell of the present invention, the semiconductor substrate is a p-type semiconductor substrate, the surface opposite to the surface on which the boron is diffused of the semiconductor substrate is a light receiving surface, and the surface layer portion of the light receiving surface is further provided. Forming a n-type diffusion layer on the semiconductor substrate, forming a light-receiving surface electrode on the n-type diffusion layer, and forming a back electrode on the boron diffused surface of the semiconductor substrate. Can do.
太陽電池の製造において、半導体基板としてp型半導体基板を使用する場合、本発明の太陽電池の製造方法を使用すれば、p型半導体基板の受光面の反対の面である裏面にホウ素濃度の高い部分と低い部分を有する拡散層を簡便に形成できる。これにより、例えば、ホウ素濃度の高い部分に電極を局在させ、非電極部をBSF(Back Surface Field:裏面電界)層とした太陽電池などを容易に製造できる。 In the production of solar cells, when a p-type semiconductor substrate is used as the semiconductor substrate, if the method for producing a solar cell of the present invention is used, a boron concentration is high on the back surface opposite to the light-receiving surface of the p-type semiconductor substrate. A diffusion layer having a portion and a low portion can be easily formed. Thereby, for example, a solar cell in which an electrode is localized in a portion having a high boron concentration and a non-electrode part is a BSF (Back Surface Field) layer can be easily manufactured.
本発明の太陽電池の製造方法であれば、煩雑な工程や特殊な材料を用意する必要がなく、簡便な方法でドーパントの濃度が高濃度の部分と低濃度の部分を有する拡散層を形成でき、性能の良い太陽電池を低コストで歩留まり良く得られる。 If it is the manufacturing method of the solar cell of this invention, it is not necessary to prepare a complicated process and a special material, and it can form the diffused layer which has a high concentration part and a low concentration part by a simple method. Thus, a high-performance solar cell can be obtained at a low cost and with a high yield.
以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。 Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.
以下に説明する本発明の太陽電池の製造方法の具体例では、n型半導体基板を使用して太陽電池を製造する場合を主に説明する。しかしながら、本発明の太陽電池の製造方法は以下に説明する具体例に限定されず、p型半導体基板を使用して太陽電池を製造してもよい。 In the specific example of the solar cell manufacturing method of the present invention described below, a case where a solar cell is manufactured using an n-type semiconductor substrate will be mainly described. However, the method for manufacturing a solar cell of the present invention is not limited to the specific examples described below, and a solar cell may be manufactured using a p-type semiconductor substrate.
(半導体基板の準備工程)
太陽電池の製造に使用できるn型半導体基板として、高純度シリコンにリン、ヒ素、又はアンチモンのようなV族(15族)元素をドープし、比抵抗0.1〜5Ω・cmとしたアズカット単結晶{100}n型シリコン基板(以下、単にn型シリコン単結晶基板と呼称することも有る)を用意することができる。n型シリコン単結晶基板は、CZ(Czochralski)法、FZ(Floating Zone)法などの方法によって作製されたものでよい。また、基板は必ずしも単結晶シリコンである必要はなく、多結晶シリコンでもかまわない。
(Preparation process of semiconductor substrate)
As an n-type semiconductor substrate that can be used in the manufacture of solar cells, high purity silicon is doped with a group V (group 15) element such as phosphorus, arsenic, or antimony, and an as-cut single-layer having a specific resistance of 0.1-5 Ω · cm A crystal {100} n-type silicon substrate (hereinafter sometimes simply referred to as an n-type silicon single crystal substrate) can be prepared. The n-type silicon single crystal substrate may be produced by a method such as a CZ (Czochralski) method or an FZ (Floating Zone) method. Further, the substrate is not necessarily made of single crystal silicon, but may be polycrystalline silicon.
(ダメージ除去工程)
次に、インゴットからスライスされる際及び研削される際にシリコン単結晶基板に形成される表面の機械的ダメージを、濃度5〜60%の水酸化ナトリウムや水酸化カリウムのような高濃度のアルカリ、又はふっ酸と硝酸の混酸などを用いてエッチングすることができる。ダメージ除去工程は、次工程のテクスチャ形成条件によっては、必ずしも必要ではなく、省略することも可能である。
(Damage removal process)
Next, the mechanical damage of the surface formed on the silicon single crystal substrate when slicing and grinding from the ingot is applied to a high concentration alkali such as sodium hydroxide or potassium hydroxide having a concentration of 5 to 60%. Alternatively, etching can be performed using a mixed acid of hydrofluoric acid and nitric acid. The damage removing step is not necessarily required depending on the texture forming conditions in the next step, and can be omitted.
(テクスチャ形成工程)
引き続き、n型シリコン単結晶基板の表面にテクスチャと呼ばれる微小な凹凸形成を行う。テクスチャは太陽電池の反射率を低下させるための有効な方法である。テクスチャは、加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどのアルカリ溶液(例えば、濃度1〜10%、温度60〜90℃)中に、n型シリコン単結晶基板を10分から30分程度浸漬することで作製できる。上記溶液中に、所定量の2−プロパノールを溶解させ、反応を促進させることが多い。
(Texture formation process)
Subsequently, fine irregularities called textures are formed on the surface of the n-type silicon single crystal substrate. Texture is an effective way to reduce solar cell reflectivity. The texture is obtained by heating an n-type silicon single crystal substrate in a heated alkaline solution such as sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, or sodium bicarbonate (for example, concentration 1 to 10%, temperature 60 to 90 ° C.). Can be produced by immersing for 10 to 30 minutes. In many cases, a predetermined amount of 2-propanol is dissolved in the solution to promote the reaction.
(洗浄工程)
n型シリコン単結晶基板の表面にテクスチャを形成した後、塩酸、硫酸、硝酸、ふっ酸等、もしくはこれらの混合液の酸性水溶液中で洗浄する。
(Washing process)
After a texture is formed on the surface of the n-type silicon single crystal substrate, it is washed in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, or a mixture thereof.
(ホウ素を含む塗布剤の塗布工程)
次に、ホウ素を含む塗布剤をn型シリコン単結晶基板の表面に塗布する。この説明では、半導体基板をn型半導体基板としているため、半導体基板のホウ素を拡散させる表面を受光面とすることができる。塗布剤は、少なくともホウ素源と、溶媒から成るものとできる。ホウ素源としては、メタホウ酸ナトリウム、四ホウ酸ナトリウムなどのホウ酸塩が使用できるが、特にこれらに限定されることは無く、ホウ酸などを使用しても良い。溶媒としては、水、エタノール、又はメタノール等のアルコールが使用できる。さらに、溶媒にポリビニルアルコール等を添加して増粘させてもよい。塗布方法は、n型シリコン単結晶基板の表面に塗布剤を塗布できれば良く、スクリーン印刷や、スピン塗布等のいずれでもよい。また、塗布剤の塗布後、適宜乾燥させても良い。
(Application process of boron-containing coating agent)
Next, a boron-containing coating agent is applied to the surface of the n-type silicon single crystal substrate. In this description, since the semiconductor substrate is an n-type semiconductor substrate, the surface of the semiconductor substrate on which boron is diffused can be the light receiving surface. The coating agent can be composed of at least a boron source and a solvent. As the boron source, borate salts such as sodium metaborate and sodium tetraborate can be used, but the boron source is not particularly limited, and boric acid or the like may be used. As the solvent, water, ethanol, or alcohol such as methanol can be used. Furthermore, you may thicken by adding polyvinyl alcohol etc. to a solvent. The coating method is not limited as long as the coating agent can be applied to the surface of the n-type silicon single crystal substrate, and may be any of screen printing, spin coating, and the like. Moreover, you may dry suitably after apply | coating a coating agent.
(酸化物系セラミックス微粒子を含むペーストの塗布工程)
次に、n型シリコン単結晶基板の塗布剤を塗布した表面上、すなわち太陽電池としたときに受光面となる面上に酸化物系セラミックス微粒子を含むペーストをパターン状に塗布する。酸化物ペーストは酸化物系セラミックス微粒子、有機バインダー、有機溶剤から構成されるものとすることができる。
(Application process of paste containing oxide ceramic fine particles)
Next, a paste containing oxide ceramic fine particles is applied in a pattern on the surface of the n-type silicon single crystal substrate on which the coating agent is applied, that is, on the surface that becomes the light receiving surface when a solar cell is formed. The oxide paste can be composed of oxide ceramic fine particles, an organic binder, and an organic solvent.
酸化物系セラミックス微粒子としては、シリカ、アルミナ、ジルコン、ジルコニア、チタン酸バリウム、チタン酸ジルコン酸鉛、フェライト、フォルステライト、ムライト、ステアタイト、コーディエライト等からなる微粒子が挙げられ、いずれの微粒子を用いてもかまわない。この中でも特に、シリカ微粒子及びアルミナ(酸化アルミニウム)微粒子が汎用で扱いやすく好ましい。以下、酸化物系セラミックス微粒子としてシリカ微粒子を使用する場合を説明する。 Examples of the oxide ceramic fine particles include fine particles made of silica, alumina, zircon, zirconia, barium titanate, lead zirconate titanate, ferrite, forsterite, mullite, steatite, cordierite, etc. May be used. Of these, silica fine particles and alumina (aluminum oxide) fine particles are particularly preferred because they are versatile and easy to handle. Hereinafter, a case where silica fine particles are used as the oxide ceramic fine particles will be described.
有機バインダーの具体例としては、ポリ酢酸ビニル、アクリル樹脂(ポリアクリル酸類及びそれらの塩、ヒドロキシエチルアクリレートのホモポリマー及びコポリマー、ヒドロキシプロピルアクリレートのホモポリマー及びコポリマー、ヒドロキシブチルアクリレートのホモポリマー及びコポリマー)、ポリビニルアセタール樹脂(ポリビニルアセテート又は加水分解度が60質量%以上、好ましくは80質量%以上である加水分解ポリビニルアセテート、ポリビニルホルマール、ポリビニルブチラール、ポリビニルアルコール)、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、ポリアミド樹脂、エポキシ樹脂、メタクリル樹脂(ポリメタクリル酸類及びそれらの塩、ヒドロキシメタクリレートのホモポリマー及びコポリマー、ヒドロキシエチルメタクリレートのホモポリマー及びコポリマー)、ポリスチレン系樹脂、ノボラック型フェノール系樹脂、ポリエステル樹脂、合成ゴム、天然ゴム(アラビアゴム)等が挙げられる。 Specific examples of organic binders include polyvinyl acetate, acrylic resins (polyacrylic acids and their salts, homopolymers and copolymers of hydroxyethyl acrylate, homopolymers and copolymers of hydroxypropyl acrylate, homopolymers and copolymers of hydroxybutyl acrylate) , Polyvinyl acetal resin (polyvinyl acetate or hydrolyzed polyvinyl acetate, polyvinyl formal, polyvinyl butyral, polyvinyl alcohol having a hydrolysis degree of 60% by mass or more, preferably 80% by mass or more), polyurethane resin, polyurea resin, polyimide resin, polyamide Resin, epoxy resin, methacrylic resin (polymethacrylic acids and their salts, homopolymers and copolymers of hydroxymethacrylate, hydride Methacrylate homopolymers and copolymers), polystyrene resin, novolak phenolic resins, polyester resins, synthetic rubber, natural rubber (gum arabic), and the like.
固形分である微粒子シリカと上記の物質から1種以上選択される有機バインダーを組み合わせることで、チクソ剤としても機能する。これにより、高剪断応力発生時と低剪断応力発生時におけるペースト粘度の比を大きくすることができる。 It also functions as a thixotropic agent by combining fine particle silica that is a solid content and one or more organic binders selected from the above substances. Thereby, the ratio of the paste viscosity when high shear stress is generated and when low shear stress is generated can be increased.
また本発明において、有機溶剤は、その沸点が100℃以上の高沸点溶剤であることが好ましい。これは、溶剤の揮発が抑制されてペーストの組成変化が少なくなり、安定した印刷を行うことが可能となるためである。 In the present invention, the organic solvent is preferably a high-boiling solvent having a boiling point of 100 ° C. or higher. This is because the volatilization of the solvent is suppressed, the composition change of the paste is reduced, and stable printing can be performed.
特に、好適な有機溶剤の具体例を挙げるなら、高沸点溶剤としてTPM(イソブチル酸3−ヒドロキシ−2,2,4−トリメチルペンチルエステル:Isobutylic Acid 3−Hydroxy−2,2,4−trimethylpentyl Ester)を用いることができる。しかしながら、高沸点溶剤として使用可能な化合物はこれに限定されない。 In particular, specific examples of suitable organic solvents include TPM (isobutyric acid 3-hydroxy-2,2,4-trimethylpentyl ester) as a high-boiling point solvent, such as TPM (isobutyric acid 3-hydroxy-2,2,4-trimethylpentyl ester). Can be used. However, the compound that can be used as the high boiling point solvent is not limited thereto.
例えば、高沸点溶剤としては、脂肪族炭化水素系溶剤、カルビトール系溶剤、セロソルブ系溶剤、高級脂肪酸エステル系溶剤、高級アルコール系溶剤、高級脂肪酸系溶剤、芳香族炭化水素系溶剤等が挙げられる。カルビトール系溶剤としては、メチルカルビトール、エチルカルビトール、ブチルカルビトール等が挙げられ、セロソルブ系溶剤としては、エチルセロソルブ、イソアミルセロソルブ、ヘキシルセロソルブ等が挙げられる。また、高級脂肪酸エステル系溶剤としては、ジオクチルフタレート、ジブチルコハク酸イソブチルエステル、アジピン酸イソブチルエステル、セバシン酸ジブチル、セバシン酸ジ−2エチルヘキシル等が挙げられ、高級アルコール系溶剤としては、メチルヘキサノール、オレイルアルコール、トリメチルヘキサノール、トリメチルブタノール、テトラメチルノナノール、2−ペンチルノナノール、2−ノニールノナノール、2−ヘキシルデカノール等が挙げられる。また、高級脂肪酸系溶剤としては、カプリル酸、2−エチルヘキサン酸、オレイン酸が挙げられ、芳香族炭化水素系溶剤としては、ブチルベンゼン、ジエチルベンゼン、ジペンチルベンゼン、ジイソプロピルナフタレン等が挙げられる。 Examples of the high boiling point solvent include aliphatic hydrocarbon solvents, carbitol solvents, cellosolve solvents, higher fatty acid ester solvents, higher alcohol solvents, higher fatty acid solvents, aromatic hydrocarbon solvents and the like. . Examples of the carbitol solvent include methyl carbitol, ethyl carbitol, butyl carbitol and the like, and examples of the cellosolve solvent include ethyl cellosolve, isoamyl cellosolve, hexyl cellosolve and the like. Examples of higher fatty acid ester solvents include dioctyl phthalate, dibutyl succinic acid isobutyl ester, adipic acid isobutyl ester, dibutyl sebacate, di-2-ethylhexyl sebacate, and higher alcohol solvents include methyl hexanol, oleyl. Examples include alcohol, trimethylhexanol, trimethylbutanol, tetramethylnonanol, 2-pentylnonanol, 2-nonylnonanol, 2-hexyldecanol and the like. Examples of higher fatty acid solvents include caprylic acid, 2-ethylhexanoic acid, and oleic acid, and examples of aromatic hydrocarbon solvents include butylbenzene, diethylbenzene, dipentylbenzene, and diisopropylnaphthalene.
これらの有機溶剤は、単独で用いることができるが、粘度の調整等、固形分である微粒子シリカの有機バインダーへの分散性、テクスチャの付いたシリコン結晶基板との濡れ性等を調整するため、適宜複数種を併用して用いることもできる。 These organic solvents can be used alone, but in order to adjust the viscosity, etc., the dispersibility of the fine particle silica, which is a solid content, into the organic binder, the wettability with the textured silicon crystal substrate, A plurality of types can be used in combination as appropriate.
ペーストの塗布方法としてはスクリーン印刷法が最も簡便で好ましいが、その他にも、インクジェット法なども使用できる。ペーストの塗布方法は特に限定されることは無く、パターンが描ければ、そのような方法でも使用できる。 As the paste application method, the screen printing method is the simplest and preferable, but an ink jet method or the like can also be used. The method for applying the paste is not particularly limited, and such a method can be used as long as a pattern is drawn.
図1に示すように、n型シリコン単結晶基板10の受光面となる面におけるペーストのパターンは、ペーストが印刷されていない非印刷部12の幅が0.1mm〜0.5mmのライン状になるようにすると、高いセル特性が得られるため好ましい。すなわち、ペーストのパターンは、図1に示すペーストの印刷部11の周期cが1mm〜3mm、印刷部11の幅dが0.5mm〜2.9mmであるライン状とすることが好ましい。 As shown in FIG. 1, the paste pattern on the light receiving surface of the n-type silicon single crystal substrate 10 has a line shape in which the width of the non-printing portion 12 where the paste is not printed is 0.1 mm to 0.5 mm. This is preferable because high cell characteristics can be obtained. That is, it is preferable that the paste pattern has a line shape in which the period c of the printing unit 11 of the paste shown in FIG. 1 is 1 mm to 3 mm and the width d of the printing unit 11 is 0.5 mm to 2.9 mm.
(低温熱処理工程)
続いて、パターン状にペーストが塗布されたn型シリコン単結晶基板10を低温熱処理する。本発明における低温熱処理とは、後工程である拡散熱処理の温度よりも低い温度まで昇温し、昇温後に降温する熱サイクルを含む熱処理である。また、昇温後、温度を一定温度に保持した後、降温を行っても良い。
(Low temperature heat treatment process)
Subsequently, the n-type silicon single crystal substrate 10 on which the paste is applied in a pattern is subjected to low-temperature heat treatment. The low temperature heat treatment in the present invention is a heat treatment including a heat cycle in which the temperature is raised to a temperature lower than the temperature of the diffusion heat treatment, which is a subsequent process, and the temperature is lowered after the temperature rise. In addition, the temperature may be lowered after the temperature is maintained at a constant temperature.
本発明では、低温熱処理工程における熱サイクルの最高温度を300℃以上600℃以下、最低温度を15℃以上300℃未満とすることが好ましい。ここでいう最高温度とは昇温終了後、降温開始前の温度のことであり、最低温度とは降温終了時の温度のことである。例えば、低温熱処理は、この最高温度を300℃〜600℃として昇温し、n型シリコン単結晶基板10を数分〜数十分間加熱し、最低温度を室温付近として降温するといった熱サイクルを有する熱処理とすることができる。低温熱処理の際の雰囲気は酸素雰囲気又は空気であることが望ましい。また、低温熱処理は複数回繰り返して行っても良い。 In the present invention, it is preferable that the maximum temperature of the thermal cycle in the low-temperature heat treatment step is 300 ° C. or more and 600 ° C. or less, and the minimum temperature is 15 ° C. or more and less than 300 ° C. The maximum temperature here is the temperature before the start of temperature decrease after the end of temperature increase, and the minimum temperature is the temperature at the end of temperature decrease. For example, the low-temperature heat treatment involves a thermal cycle in which the maximum temperature is raised to 300 ° C. to 600 ° C., the n-type silicon single crystal substrate 10 is heated for several minutes to several tens of minutes, and the lowest temperature is lowered to around room temperature. Heat treatment. The atmosphere during the low-temperature heat treatment is desirably an oxygen atmosphere or air. The low temperature heat treatment may be repeated a plurality of times.
(拡散熱処理工程)
低温熱処理の後、低温熱処理よりも高温の、例えば、900℃〜1000℃の拡散熱処理を施す。これにより、シリカペースト印刷部、すなわち、図1における印刷部11付近のn型シリコン単結晶基板10の受光面となる面の表層部では比較的低濃度のホウ素拡散層が形成される。一方で、シリカペースト非印刷部、すなわち、図1における非印刷部12付近のn型シリコン単結晶基板10の受光面となる面の表層部では比較的高濃度のホウ素拡散層が形成される。
(Diffusion heat treatment process)
After the low-temperature heat treatment, diffusion heat treatment at a temperature higher than that of the low-temperature heat treatment, for example, 900 ° C. to 1000 ° C. is performed. Thereby, a boron diffusion layer having a relatively low concentration is formed on the surface layer portion of the silica paste printing portion, that is, the light receiving surface of the n-type silicon single crystal substrate 10 in the vicinity of the printing portion 11 in FIG. On the other hand, a relatively high concentration boron diffusion layer is formed in the non-printing portion of the silica paste, that is, the surface layer portion of the surface that becomes the light receiving surface of the n-type silicon single crystal substrate 10 in the vicinity of the non-printing portion 12 in FIG.
拡散層におけるホウ素の濃度の差は、以下のように生じると考えられる。低温熱処理によりホウ素は酸化ホウ素に変化する。酸化ホウ素は融点が低いため、300℃〜600℃程度の温度下では液体として存在する。液体の酸化ホウ素にシリカ(二酸化ケイ素)が接触していると、接触部での二酸化ケイ素の溶解が進行する。そして、降温冷却時にシリカ−酸化ホウ素の中間相が形成され、シリカ印刷部での純粋な酸化ホウ素濃度は減少する。この状態で、900℃〜1000℃の拡散熱処理を施すと、シリカ印刷部では、シリカ非印刷部に比べ基板中に拡散するホウ素濃度を小さくすることができる。さらに、昇温〜降温の熱サイクルを繰り返す、すなわち低温熱処理を繰り返し施すことで、この反応はさらに進行する。すなわち、低温熱処理を繰り返し施せば、シリカ印刷部・非印刷部の濃度差をより大きくすることができる。シリカを他の酸化物系セラミックスに置き換えても同様の現象が発現する。 The difference in boron concentration in the diffusion layer is considered to occur as follows. Boron changes to boron oxide by low-temperature heat treatment. Since boron oxide has a low melting point, it exists as a liquid at a temperature of about 300 ° C. to 600 ° C. When silica (silicon dioxide) is in contact with liquid boron oxide, dissolution of silicon dioxide at the contact portion proceeds. Then, a silica-boron oxide intermediate phase is formed during cooling and cooling, and the pure boron oxide concentration in the silica printing part is reduced. In this state, when a diffusion heat treatment at 900 ° C. to 1000 ° C. is performed, the concentration of boron diffused in the substrate can be reduced in the silica printed portion compared to the silica non-printed portion. Furthermore, this reaction further proceeds by repeating a heat cycle of temperature increase to temperature decrease, that is, repeated low temperature heat treatment. That is, if the low-temperature heat treatment is repeatedly performed, the density difference between the silica printed portion and the non-printed portion can be further increased. The same phenomenon appears even when silica is replaced with other oxide ceramics.
また、拡散熱処理は以下のような態様で行ってよい。まず、一般的なシリコン太陽電池は、pn接合を受光面にのみ形成する必要がある。受光面にのみpn接合を形成するために、拡散熱処理時に2枚の基板の受光面となる面同士を重ね合わせた状態で拡散熱処理したり、拡散熱処理前に裏面(受光面となる面とは逆の面)にSiO2膜やSiNx膜などを拡散マスクとして形成したりして、裏面にPN接合ができないような工夫を施してもよい。特に、n型シリコン単結晶基板の受光面となる面同士を重ね合わせ2枚1組として、拡散熱処理を行い、その際に、例えば、オキシ塩化リンガスを炉内に導入することができる。このような方法であれば、ホウ素の拡散と同時に、n型シリコン単結晶基板の裏面上にn型拡散層も形成することができる。 Further, the diffusion heat treatment may be performed in the following manner. First, a general silicon solar cell needs to form a pn junction only on the light receiving surface. In order to form a pn junction only on the light receiving surface, the diffusion heat treatment is performed in a state where the light receiving surfaces of the two substrates are overlapped at the time of the diffusion heat treatment, or the back surface (the surface serving as the light receiving surface) is On the other hand, an SiO 2 film, SiN x film or the like may be formed as a diffusion mask on the reverse surface, so that a PN junction cannot be formed on the back surface. In particular, diffusion heat treatment can be performed by superimposing the light receiving surfaces of the n-type silicon single crystal substrate to form a set of two sheets, and, for example, phosphorus oxychloride gas can be introduced into the furnace. With such a method, an n-type diffusion layer can be formed on the back surface of the n-type silicon single crystal substrate simultaneously with boron diffusion.
(ガラス除去工程)
次に、熱処理によって生成した、基板の表面のガラスをふっ酸などで除去する。
(Glass removal process)
Next, the glass on the surface of the substrate generated by the heat treatment is removed with hydrofluoric acid or the like.
(反射防止膜形成工程)
次いで、受光面の反射防止膜形成を行う。反射防止膜としては、シリコン窒化膜やシリコン酸化膜が利用できる。シリコン窒化膜を形成する場合は、プラズマCVD(Plasma−enhanced Chemical Vapor Deposition)装置を用い約100nmの膜厚で製膜することが好ましい。シリコン窒化膜の原料となる反応ガスとして、モノシラン(SiH4)及びアンモニア(NH3)を混合して用いることが多いが、NH3の代わりに窒素を用いることも可能である。また、プロセス圧力の調整、反応ガスの希釈のため、反応ガスに水素を混合することもある。シリコン酸化膜を形成する場合は、CVD法でもよいが、熱酸化法により得られるシリコン酸化膜の方が高いセル特性が得られる。
(Antireflection film forming process)
Next, an antireflection film is formed on the light receiving surface. A silicon nitride film or a silicon oxide film can be used as the antireflection film. In the case of forming a silicon nitride film, it is preferable to form the silicon nitride film with a film thickness of about 100 nm using a plasma CVD (Plasma-enhanced Chemical Vapor Deposition) apparatus. Monosilane (SiH 4 ) and ammonia (NH 3 ) are often used as a reaction gas as a raw material for the silicon nitride film, but nitrogen can be used instead of NH 3 . In addition, hydrogen may be mixed with the reaction gas in order to adjust the process pressure and dilute the reaction gas. When a silicon oxide film is formed, a CVD method may be used, but a silicon oxide film obtained by a thermal oxidation method can provide higher cell characteristics.
(裏面電極形成工程)
次いで、裏面電極として、例えば、Agを含有するペーストをスクリーン印刷法で形成する。電極形成領域は裏面全面でもよいが、シリコン窒化膜やシリコン酸化膜で裏面全面を被覆し、一部をレーザー等で開口して開口部のみ電極を形成する局在電極方式でもよい。また、裏面電極形成方法はスクリーン印刷に限らず、蒸着やスパッタを用いて形成してもかまわない。
(Back electrode forming process)
Next, as the back electrode, for example, a paste containing Ag is formed by a screen printing method. The electrode formation region may be the entire back surface, or a localized electrode method in which the entire back surface is covered with a silicon nitride film or a silicon oxide film and a part thereof is opened with a laser or the like to form an electrode only at the opening. Further, the back electrode forming method is not limited to screen printing, and may be formed using vapor deposition or sputtering.
(受光面電極形成工程)
受光面電極形成にはスクリーン印刷法を用いることが好ましく、Ag粉末とガラスフリットを有機物バインダーと混合したAgペーストを印刷することが好ましい。この際、最初に印刷したシリカペースト非印刷部と同じ箇所にAgペーストを印刷する。具体的には、開口が40μm〜100μmであり、シリカペースト印刷部の周期(図1参照)と同じ周期の開口を有するスクリーン製版を用意しておき、シリカペースト非印刷部と受光面電極が重なるよう基板位置を調整して印刷すればよい。受光面電極の形成方法はスクリーン印刷法に限定されることは無く、シリカペースト非印刷部と同じ場所に電極形成できれば、インクジェット法でもよく、また、マスクを用いたスパッタ法や蒸着法でもかまわない。
(Light-receiving surface electrode formation process)
It is preferable to use a screen printing method for forming the light-receiving surface electrode, and it is preferable to print an Ag paste in which Ag powder and glass frit are mixed with an organic binder. At this time, the Ag paste is printed at the same location as the silica paste non-printing portion printed first. Specifically, a screen plate having an opening of 40 μm to 100 μm and an opening having the same period as the period of the silica paste printing part (see FIG. 1) is prepared, and the silica paste non-printing part and the light receiving surface electrode overlap. The substrate position may be adjusted so that printing is performed. The method of forming the light-receiving surface electrode is not limited to the screen printing method, and may be an ink jet method, or a sputtering method or a vapor deposition method using a mask as long as the electrode can be formed at the same place as the silica paste non-printing part. .
以上のように、Agペーストを印刷した後、焼成して電極を形成する。AgペーストをSiNx膜上に形成しても、熱処理によりSiNx膜にAg粉末を貫通させ(ファイアースルー)、電極とシリコンを導通させることができる。裏面電極および受光面電極の焼成は一度に同時に行うことも可能である。焼成は、通常700〜800℃の温度で5〜30分間処理することで行うことができる。受光面電極と裏面電極の形成は順序を逆にしても良い。このようにして、n型半導体基板を使用して太陽電池を製造することができる。 As described above, after the Ag paste is printed, the electrode is formed by firing. Even when the Ag paste is formed on the SiN x film, passed through the Ag powder in the SiN x film by the heat treatment (fire-through), it is possible to conduct the electrode and the silicon. The back electrode and the light-receiving surface electrode can be fired at the same time. Baking can be performed by processing for 5 to 30 minutes normally at the temperature of 700-800 degreeC. The formation of the light receiving surface electrode and the back surface electrode may be reversed. Thus, a solar cell can be manufactured using an n-type semiconductor substrate.
以上、n型シリコン単結晶基板を使用して太陽電池を製造する例を説明した。一方、p型基板を使用する場合、基板の表面にホウ素を拡散させる手順は、n型シリコン単結晶基板を使用した場合と同様とすることができる。また、p型基板を使用する場合、ホウ素を拡散させた表面を裏面、その反対の表面を受光面とできる。 In the above, the example which manufactures a solar cell using an n-type silicon single crystal substrate was demonstrated. On the other hand, when a p-type substrate is used, the procedure for diffusing boron on the surface of the substrate can be the same as that when an n-type silicon single crystal substrate is used. When a p-type substrate is used, the surface on which boron is diffused can be the back surface, and the opposite surface can be the light receiving surface.
この場合、上述の半導体基板の準備工程から拡散熱処理工程までに加えて、受光面となる面の表層部にn型拡散層を形成する工程、n型拡散層上に受光面電極を形成する工程、半導体基板の裏面上に裏面電極を形成する工程を加えることができる。本発明の製造方法を、n型シリコン単結晶基板を使用した太陽電池の製造に適用する場合、基板の裏面にホウ素濃度の高い部分と低い部分を有する拡散層を形成することができるため、裏面電極を局在させ、非電極部をBSF(裏面電界)層とした構造の太陽電池を製造することが可能である。 In this case, in addition to the above-described semiconductor substrate preparation step to diffusion heat treatment step, a step of forming an n-type diffusion layer on the surface layer portion of the surface to be a light-receiving surface, a step of forming a light-receiving surface electrode on the n-type diffusion layer A step of forming a back electrode on the back surface of the semiconductor substrate can be added. When the production method of the present invention is applied to the production of a solar cell using an n-type silicon single crystal substrate, a diffusion layer having a high boron concentration portion and a low boron portion can be formed on the back surface of the substrate. It is possible to manufacture a solar cell having a structure in which an electrode is localized and a non-electrode portion is a BSF (back surface field) layer.
以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples.
本発明の有効性を確認するため、以下に説明するような実施例1、2、比較例3にて製造した太陽電池の特性の比較を行った。まず、厚さ200μm、比抵抗1Ω・cmの、リンドープ{100}n型アズカットシリコン基板18枚を準備した。続いて、全基板の受光面となる表面に対しホウ酸2%水溶液をスピン塗布した。 In order to confirm the effectiveness of the present invention, the characteristics of the solar cells manufactured in Examples 1 and 2 and Comparative Example 3 as described below were compared. First, 18 phosphorous-doped {100} n-type as-cut silicon substrates having a thickness of 200 μm and a specific resistance of 1 Ω · cm were prepared. Subsequently, a 2% boric acid aqueous solution was spin-coated on the surface to be the light-receiving surface of all the substrates.
(実施例1)
上記のように準備したホウ酸塗布後の基板を、6枚取り出し、取り出された基板に対し、シリカペーストをパターン印刷した。シリカペーストとして、ポリビニルアルコール23%、シリカ23%、エタノール47%、水7%の混合物を用いた。印刷にはスクリーン印刷機を用いた。シリカペーストの印刷部の幅は1.6mm、周期は2.0mmとした。
Example 1
Six substrates after the boric acid application prepared as described above were taken out, and a silica paste was pattern printed on the taken out substrates. As a silica paste, a mixture of 23% polyvinyl alcohol, 23% silica, 47% ethanol, and 7% water was used. A screen printer was used for printing. The width of the printed part of the silica paste was 1.6 mm, and the cycle was 2.0 mm.
これらをベルト炉に投入し、最高温度400℃で5分ほどの熱処理を施して室温まで冷却した(低温熱処理)。 These were put into a belt furnace, subjected to heat treatment at a maximum temperature of 400 ° C. for about 5 minutes and cooled to room temperature (low temperature heat treatment).
次いで、横型炉にて低温熱処理後の基板を拡散熱処理した。拡散熱処理条件としては、950℃まで昇温して30分維持とした。この際、ホウ酸塗布面(受光面となる面)同士を重ね合わせ2枚1組とし、横型炉内にオキシ塩化リンを導入して裏面側にはリンの拡散層を形成した。拡散熱処理後、濃度12%のふっ酸に浸漬することで表面ガラスを除去した。 Next, the substrate after the low-temperature heat treatment was subjected to diffusion heat treatment in a horizontal furnace. As diffusion heat treatment conditions, the temperature was raised to 950 ° C. and maintained for 30 minutes. At this time, the boric acid application surfaces (surfaces to be light-receiving surfaces) were overlapped to form a set of two sheets, and phosphorus oxychloride was introduced into the horizontal furnace to form a phosphorus diffusion layer on the back surface side. After the diffusion heat treatment, the surface glass was removed by immersing in hydrofluoric acid having a concentration of 12%.
以上の処理の後、プラズマCVD装置を用いて受光面となる面に反射防止膜としてSiNx膜を形成した。次いで裏面にも同じ条件でSiNx膜を形成した。次に、裏面電極としてAgペーストを裏面全面に櫛歯状にスクリーン印刷し乾燥した。次いで、受光面となる面のシリカペースト非印刷部に重なるようにAgペーストを印刷して乾燥し、780℃の空気雰囲気下で焼成して太陽電池を完成させた。 After the above processing, a SiN x film was formed as an antireflection film on the surface serving as the light receiving surface using a plasma CVD apparatus. Next, a SiN x film was also formed on the back surface under the same conditions. Next, Ag paste as a back electrode was screen-printed in a comb-like shape on the entire back surface and dried. Next, the Ag paste was printed and dried so as to overlap the silica paste non-printing portion on the surface to be the light receiving surface, and fired in an air atmosphere at 780 ° C. to complete the solar cell.
このように製造した太陽電池の擬似太陽光下での電流電圧特性を測定した。特性評価は、25℃の雰囲気の中、ソーラーシミュレーター(照射強度:1kW/m2、スペクトル:AM1.5グローバル)の下で電気測定(短絡電流密度、開放電圧、曲線因子(形状因子)、変換効率)を行った。 The current-voltage characteristics of the solar cell thus manufactured under simulated sunlight were measured. Characteristic evaluation is conducted in an atmosphere of 25 ° C. under a solar simulator (irradiation intensity: 1 kW / m 2 , spectrum: AM1.5 global), electrical measurement (short-circuit current density, open-circuit voltage, curve factor (form factor), conversion Efficiency).
(実施例2)
上記のホウ酸塗布後の基板のうち実施例1とは別の6枚の基板を取り出して使用し、基本的に実施例1と同様の手順で太陽電池を製造した。ただし、実施例2では実施例1で行ったベルト炉を用いた熱処理を2回行うことで、低温熱処理を2回施した。このように製造した太陽電池の擬似太陽光下での電流電圧特性を、実施例1と同様に測定した。
(Example 2)
Six substrates different from Example 1 were taken out and used from the substrates after the above boric acid application, and a solar cell was basically manufactured by the same procedure as Example 1. However, in Example 2, the low temperature heat treatment was performed twice by performing the heat treatment using the belt furnace performed in Example 1 twice. The current-voltage characteristics of the solar cell thus manufactured under simulated sunlight were measured in the same manner as in Example 1.
(比較例1)
上記のホウ酸塗布後の基板うち、残りの6枚の基板を使用し、基本的に実施例1と同様の手順で太陽電池を製造した。ただし、比較例1では、基板の表面へのシリカペーストの印刷を行わず、ベルト炉を用いた低温熱処理も行わなかった。
(Comparative Example 1)
Among the substrates after the boric acid application, the remaining six substrates were used to manufacture a solar cell basically in the same procedure as in Example 1. However, in Comparative Example 1, the silica paste was not printed on the surface of the substrate, and the low temperature heat treatment using a belt furnace was not performed.
表1に、実施例1、2、比較例1における実施結果をまとめたもの示す。表1に示す数値は、全て平均値である。 Table 1 summarizes the results of implementation in Examples 1 and 2 and Comparative Example 1. The numerical values shown in Table 1 are all average values.
実施例1、2では、本願の太陽電池の製造方法により選択エミッタが形成されたため、短絡電流及び開放電圧が大きく改善し、変換効率も改善した。このように、簡便な方法で選択エミッタを形成でき、容易に性能の良い太陽電池が得られることが確認された。 In Examples 1 and 2, since the selective emitter was formed by the method for manufacturing a solar cell of the present application, the short-circuit current and the open-circuit voltage were greatly improved, and the conversion efficiency was also improved. Thus, it was confirmed that a selective emitter can be formed by a simple method, and a solar cell with good performance can be easily obtained.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
10…n型半導体基板、 11…印刷部、 12…非印刷部。 DESCRIPTION OF SYMBOLS 10 ... n-type semiconductor substrate, 11 ... Printing part, 12 ... Non-printing part.
Claims (5)
前記拡散熱処理工程より前に、
前記塗布剤を塗布した表面上に酸化物系セラミックス微粒子を含むペーストをパターン状に塗布する工程と、
前記拡散熱処理の温度よりも低い温度まで昇温し、該昇温後に降温する熱サイクルを含む低温熱処理を、前記ペーストを塗布した後の半導体基板に1回以上施す工程を有し、
前記低温熱処理を1回以上施した後の半導体基板に前記拡散熱処理を施すことを特徴とする太陽電池の製造方法。 Manufacturing a solar cell, comprising: spin- coating a boron-containing coating agent on a surface of a semiconductor substrate; and subjecting a surface layer portion of the surface of the semiconductor substrate on which the coating agent is coated to a diffusion heat treatment to diffuse the boron A method,
Before the diffusion heat treatment step,
Applying a paste containing oxide-based ceramic fine particles in a pattern on the surface coated with the coating agent;
A step of raising the temperature to a temperature lower than the temperature of the diffusion heat treatment, and performing a low-temperature heat treatment including a thermal cycle of lowering the temperature after the temperature rise on the semiconductor substrate after applying the paste one or more times,
A method for manufacturing a solar cell, comprising performing the diffusion heat treatment on a semiconductor substrate after being subjected to the low-temperature heat treatment at least once.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015065382A JP6401094B2 (en) | 2015-03-27 | 2015-03-27 | Manufacturing method of solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015065382A JP6401094B2 (en) | 2015-03-27 | 2015-03-27 | Manufacturing method of solar cell |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018138299A Division JP6619483B2 (en) | 2018-07-24 | 2018-07-24 | Manufacturing method of solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016184709A JP2016184709A (en) | 2016-10-20 |
JP6401094B2 true JP6401094B2 (en) | 2018-10-03 |
Family
ID=57243326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015065382A Active JP6401094B2 (en) | 2015-03-27 | 2015-03-27 | Manufacturing method of solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6401094B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4481869B2 (en) * | 2005-04-26 | 2010-06-16 | 信越半導体株式会社 | SOLAR CELL MANUFACTURING METHOD, SOLAR CELL, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD |
WO2012096018A1 (en) * | 2011-01-13 | 2012-07-19 | 日立化成工業株式会社 | P-type diffusion layer formation composition, method for producing p-type diffusion layer, and method for producing solar cell element |
CN103918088B (en) * | 2011-08-09 | 2017-07-04 | 速力斯公司 | Using the high-efficiency solar photovoltaic battery and module of fine grain semiconductor absorber |
JP2013070048A (en) * | 2011-09-09 | 2013-04-18 | Nippon Synthetic Chem Ind Co Ltd:The | Method for manufacturing solar cell, and solar cell obtained by the same |
JP6379461B2 (en) * | 2013-09-02 | 2018-08-29 | 日立化成株式会社 | Method for manufacturing silicon substrate having p-type diffusion layer, method for manufacturing solar cell element, and solar cell element |
US9059341B1 (en) * | 2014-01-23 | 2015-06-16 | E I Du Pont De Nemours And Company | Method for manufacturing an interdigitated back contact solar cell |
-
2015
- 2015-03-27 JP JP2015065382A patent/JP6401094B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016184709A (en) | 2016-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9355867B2 (en) | Process for the production of solar cells having a local back surface field (LBSF) | |
KR101873563B1 (en) | Solar cell manufacturing method | |
CN102569530B (en) | Local etching method for passivation dielectric layer on back side of crystal silicon solar cell | |
CN102782810A (en) | Methods of forming a low resistance silicon metal contact | |
JP5830143B1 (en) | Method for manufacturing solar battery cell | |
CN103348489A (en) | Method for manufacturing solar cell element and solar cell element | |
JP6619483B2 (en) | Manufacturing method of solar cell | |
JP6401094B2 (en) | Manufacturing method of solar cell | |
JP6114108B2 (en) | Manufacturing method of solar cell | |
US20150053256A1 (en) | Solar cells and methods of making thereof | |
CN110785856B (en) | Method for manufacturing high-efficiency solar cell | |
CN111278575B (en) | Method for drying polyimide paste and method for manufacturing solar cell with high photoelectric conversion efficiency | |
JP6663492B2 (en) | Solar cell, method for manufacturing solar cell, and system for manufacturing solar cell | |
JP5573854B2 (en) | Dopant adsorbing member and solar cell manufacturing method | |
JP5434792B2 (en) | Solar cell manufacturing method and solar cell | |
JP6356855B2 (en) | Manufacturing method of solar cell | |
JP5994895B2 (en) | Manufacturing method of solar cell | |
JP5760956B2 (en) | Method for forming finger electrode | |
JP6121891B2 (en) | Solar cell and method for manufacturing solar cell | |
JP2015216215A (en) | Back-junction solar cell and method for manufacturing the same | |
CN107148680A (en) | Solar cell and solar cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171227 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180724 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20180801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180821 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6401094 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |