JP6383674B2 - 基板処理装置 - Google Patents

基板処理装置 Download PDF

Info

Publication number
JP6383674B2
JP6383674B2 JP2015016499A JP2015016499A JP6383674B2 JP 6383674 B2 JP6383674 B2 JP 6383674B2 JP 2015016499 A JP2015016499 A JP 2015016499A JP 2015016499 A JP2015016499 A JP 2015016499A JP 6383674 B2 JP6383674 B2 JP 6383674B2
Authority
JP
Japan
Prior art keywords
antenna
substrate
axis
processing apparatus
substrate processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015016499A
Other languages
English (en)
Other versions
JP2015173097A (ja
Inventor
俊彦 岩尾
俊彦 岩尾
高広 平野
高広 平野
石橋 清隆
清隆 石橋
聡 川上
聡 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2015016499A priority Critical patent/JP6383674B2/ja
Priority to KR1020150021684A priority patent/KR101915833B1/ko
Priority to CN201510086922.3A priority patent/CN104851771B/zh
Priority to TW104105703A priority patent/TWI638904B/zh
Priority to US14/624,799 priority patent/US10570512B2/en
Publication of JP2015173097A publication Critical patent/JP2015173097A/ja
Application granted granted Critical
Publication of JP6383674B2 publication Critical patent/JP6383674B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/32779Continuous moving of batches of workpieces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明の種々の側面及び実施形態は、基板処理装置に関するものである。
基板上に成膜を行う手法の一種として、プラズマ励起原子層堆積(PE-ALD:Plasma Enhanced Atomic Layer Deposition)法が知られている。PE−ALD法においては、基板を前駆体ガスに晒すことにより、基板上に形成しようとする薄膜の構成元素を含有する前駆体ガスを化学吸着させる。次いで、基板をパージガスに晒すことにより、当該基板に過剰に化学吸着した前駆体ガスを除去する。そして、形成しようとする薄膜の構成元素を含有する反応ガスのプラズマに基板を晒すことにより、基板上に所望の薄膜を形成する。PE−ALD法では、このような工程が繰り返されることにより、前駆体ガスに含まれる原子又は分子の処理された膜が基板上に生成される。
かかるPE−ALD法を実施する装置として、セミバッチ式の成膜装置が知られている。セミバッチ式の成膜装置では、前駆体ガスを供給する領域と反応ガスのプラズマを生成する領域とが別個に処理室内に設けられており、基板がこれら領域を順に通過することで、所望の膜が基板上に生成される。
このような成膜装置は、載置台、噴射部、およびプラズマ生成部を備えている。載置台は、基板を支持するものであり、回転軸線中心に回転可能である。噴射部およびプラズマ生成部は、載置台に対面配置されており、周方向に配列されている。噴射部は、略扇形の平面形状を有しており、前駆体ガスを供給する。プラズマ生成部は、反応ガスを供給し、板状のアンテナの面方向に沿って配置された導波管から供給されたマイクロ波を、略扇形のアンテナから放射することで、反応ガスのプラズマを生成する。噴射部の周囲及びプラズマ生成部の周囲には、排気孔が設けられており、噴射部の周縁には、パージガスを供給する噴射口が設けられている。また、プラズマ生成部には、丸形のアンテナが用いられる場合もある。
国際公開第2013/122043号
ところで、プラズマ生成部においてマイクロ波を放射するアンテナの形状を丸型とすると、丸型のアンテナによって生成されるプラズマの領域は、アンテナの形状に沿った形状となるため、セミバッチ式の成膜装置では、生成されたプラズマの領域を基板が通過する時間が、基板の位置(回転中心からの距離)に応じて異なる。そのため、基板上に均一なプラズマ処理を施すことが難しい。
一方、アンテナの形状を扇形にすると、生成されたプラズマの領域が扇形のアンテナの形状に沿った形状となるため、生成されたプラズマの領域を基板が通過する時間を、基板の位置によらず均一にすることができる。しかし、扇形のアンテナでは、アンテナの面方向に沿って配置された導波管からマイクロ波が供給されるため、アンテナ全体にマイクロ波を均一に供給することが難しい。そのため、扇形のアンテナから均一性の高いマイクロ波を放射することが難しく、生成されるプラズマの均一性を高めることが難しくなる。
開示する基板処理装置は、被処理基板を載置し、前記被処理基板が軸線の周囲を移動するよう前記軸線を中心に回転可能に設けられた載置台と、前記載置台の回転により前記軸線に対して周方向に移動する前記被処理基板が順に通過する複数の領域のそれぞれにガスを供給するガス供給部と、前記複数の領域の中の1つの領域であるプラズマ生成領域において、当該プラズマ生成領域に供給されたガスのプラズマを生成するプラズマ生成部と、を備え、前記プラズマ生成部は、前記プラズマ生成領域に高周波を放射するアンテナと、前記アンテナに高周波を供給する給電部とを有し、前記アンテナを前記軸線に沿う方向から見た場合の断面形状を構成する線分には、前記軸線から離れるに従って互いに遠ざかる2つの線分が含まれ、前記給電部は、前記アンテナの重心から前記アンテナに高周波を供給する。
開示する基板処理装置の1つの態様によれば、基板上の位置毎の、プラズマの領域を通過する時間のばらつきを低く抑えると共に、生成されるプラズマの均一性を高めることが可能となるという効果を奏する。
図1は、一実施形態に係る基板処理装置を概略的に示す上面図である。 図2は、図1に示す基板処理装置から処理容器の上部を取り除いた状態を示す平面図である。 図3は、図1および図2における基板処理装置のA−A断面図である。 図4は、図3に向かって軸線Xの左側の部分の拡大断面図である。 図5は、図3に向かって軸線Xの右側の部分の拡大断面図である。 図6は、同軸導波管とアンテナとの接続部分の拡大断面図である。 図7は、遅波板の概略形状の一例を示す平面図である。 図8は、スロット板の概略形状の一例を示す平面図である。 図9は、天板の概略形状の一例を示す平面図である。 図10は、アンテナ全体の概略形状の一例を示す斜視図である。 図11は、アンテナの辺の角度を説明するための図である。 図12は、アンテナの辺の角度と、マイクロ波の分布の均一性との関係のシミュレーション結果の一例を示す図である。 図13は、スタブ部材の挿入量と、マイクロ波の分布の均一性との関係のシミュレーション結果の一例を示す図である。 図14は、アンテナの辺の位置と、基板の通過領域との関係の一例を説明するための図である。
開示する基板処理装置は、1つの実施形態において、被処理基板を載置し、被処理基板が軸線の周囲を移動するよう軸線を中心に回転可能に設けられた載置台と、載置台の回転により軸線に対して周方向に移動する被処理基板が順に通過する複数の領域のそれぞれにガスを供給するガス供給部と、複数の領域の中の1つの領域であるプラズマ生成領域において、当該プラズマ生成領域に供給されたガスのプラズマを生成するプラズマ生成部と、を備え、プラズマ生成部は、プラズマ生成領域に高周波を放射するアンテナと、アンテナに高周波を供給する給電部とを有し、アンテナを軸線に沿う方向から見た場合の断面形状を構成する線分には、軸線から離れるに従って互いに遠ざかる2つの線分が含まれ、給電部は、アンテナの重心からアンテナに高周波を供給する。
また、開示する基板処理装置の1つの実施形態において、アンテナを軸線に沿う方向から見た場合の断面形状は、回転対称性を有する形状である。
また、開示する基板処理装置の1つの実施形態において、アンテナを軸線に沿う方向から見た場合の断面形状は、略正三角形状である。
また、開示する基板処理装置の1つの実施形態において、軸線に沿う方向から見た場合のアンテナの断面形状を構成する線分に含まれる2つの線分のそれぞれは、円板状の被処理基板の直径よりも長く、アンテナは、軸線に沿う方向から見た場合に、載置台上の被処理基板が、2つの線分内を通過するように、プラズマ生成領域に設けられる。
また、開示する基板処理装置の1つの実施形態において、アンテナは、軸線に沿う方向から見た場合に、載置台上の被処理基板の中心が、2つの線分の中央を通過するように、プラズマ生成領域に設けられる。
また、開示する基板処理装置の1つの実施形態において、プラズマ生成部は、給電部に挿入され、挿入量の制御が可能なスタブをさらに有する。
また、開示する基板処理装置の1つの実施形態において、軸線に沿う方向から見た場合のアンテナの断面形状を構成する線分に含まれる2つの線分は、所定の半径を有する円の一部である曲線で結ばれている。
また、開示する基板処理装置の1つの実施形態において、アンテナを軸線に沿う方向から見た場合の断面形状は、当該断面形状を構成する3つの辺をそれぞれ延長させた場合に形成される略正三角形の3つの内角において、1つの内角が60度±1度の範囲内であり、他の2つの内角がそれぞれ60度±0.5度の範囲内である。
また、開示する基板処理装置の1つの実施形態において、高周波はマイクロ波である。
また、開示する基板処理装置の1つの実施形態において、給電部は同軸導波管である。
また、開示する基板処理装置の1つの実施形態において、アンテナは、第1の誘電体と、第1の誘電体上に設けられ、同軸導波管の内導体が接続されるスロット板と、スロット板上に設けられる第2の誘電体と、第2の誘電体上に設けられ、内部に冷媒を流通させるための流路を有する冷却プレートとを有する。また、スロット板には、2つのスロットを有するスロットペアが、軸線に沿う方向から見た場合に、同軸導波管の内導体が接続される位置を中心として、半径の異なる同心円状に並ぶように複数形成される。また、複数のスロットペアは、軸線に沿う方向から見た場合に、回転対称となるようにスロット板に形成されている。
また、基板処理装置は、1つの実施形態において、同軸導波管が接続される側のアンテナの面上に配置され、冷却プレートを第2の誘電体に押圧する押圧部をさらに備え、冷却プレート、第2の誘電体、スロット板、および第1の誘電体は、押圧部の押圧力により互いに密着している。
また、開示する基板処理装置は、1つの実施形態において、同軸導波管が接続される側のアンテナの面上に配置され、冷却プレートを第2の誘電体に押圧する押圧部をさらに備え、冷却プレート、第2の誘電体、スロット板、および第1の誘電体は、押圧部の押圧力により互いに密着している。
以下に、開示する基板処理装置の実施形態について、図面に基づいて詳細に説明する。なお、本実施形態により開示する発明が限定されるものではない。各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
(実施形態)
図1は、一実施形態に係る基板処理装置を概略的に示す上面図である。図2は、図1に示す基板処理装置から処理容器の上部部材を取り除いた状態を示す平面図である。図3は、図1および図2における基板処理装置のA−A断面図である。図4は、図3に向かって軸線Xの左側の部分の拡大断面図である。図5は、図3に向かって軸線Xの右側の部分の拡大断面図である。図1〜図5に示す基板処理装置10は、主に、処理容器12、載置台14、第1のガス供給部16、排気部18、第2のガス供給部20、およびプラズマ生成部22を備える。
図1に示すように、処理容器12は、軸線Xを中心軸とする略円筒状の容器である。処理容器12は、処理室Cを内部に備える。処理室Cは、噴射部16aを備えたユニットUを含む。処理容器12は、例えば、アルマイト処理またはY2O3(酸化イットリウム)の溶射処理等の耐プラズマ処理が内面に施されたAl(アルミニウム)等の金属で形成される。基板処理装置10は、処理容器12内に複数のプラズマ生成部22を有する。それぞれのプラズマ生成部22は、処理容器12の上方に、マイクロ波を出力するアンテナ22aを備える。処理容器12の上方に設けられたアンテナ22aの数は、図1および図2に図示するものに限定されず、適宜変更してもよい。
図2に示すように、基板処理装置10は、上面に複数の基板載置領域14aを有する載置台14を備える。載置台14は、軸線Xを中心軸とする略円板状の部材である。載置台14の上面には、基板Wを載置する基板載置領域14aが、軸線Xを中心として同心円状に複数(図2の例では5個)形成される。基板Wは基板載置領域14a内に配置され、基板載置領域14aは、載置台14が回転した際、基板Wがズレないように基板Wを支持する。基板載置領域14aは、略円状の基板Wと略同形状の略円状の凹部である。基板載置領域14aの凹部の直径W1は、基板載置領域14aに載置される基板Wの直径と比べ、略同一である。すなわち、基板載置領域14aの凹部の直径W1は、載置される基板Wが凹部に嵌合し、載置台14が回転しても、遠心力により基板Wが嵌合位置から移動しないように基板Wを固定する程度であればよい。
基板処理装置10は、処理容器12の外縁に、ロボットアーム等の搬送装置を介して、基板Wを処理室Cへ搬入し、基板Wを処理室Cから搬出するゲートバルブGを備える。また、基板処理装置10は、載置台14の外縁の下方に、排気口22hを備える。排気口22hには、排気装置52が接続される。基板処理装置10は、排気装置52の動作を制御することにより、処理室C内の圧力を、目的とする圧力に維持する。
図3に示すように、処理容器12は、下部部材12aおよび上部部材12bを有する。下部部材12aは、上方に開口した略筒形状を有し、処理室Cを形成する側壁および底壁を含む凹部を形成する。上部部材12bは、略筒形状を有し、下部部材12aの凹部の上部開口を閉蓋することにより処理室Cを形成する蓋体である。下部部材12aと上部部材12bとの間の外周部には、処理室Cを密閉するための弾性封止部材、例えばOリングが設けられてもよい。
基板処理装置10は、処理容器12により形成される処理室Cの内部に、載置台14を備える。載置台14は、駆動機構24によって軸線Xを中心に回転駆動される。駆動機構24は、モータ等の駆動装置24aおよび回転軸24bを有し、処理容器12の下部部材12aに取り付けられる。
回転軸24bは、軸線Xを中心軸線とし、処理室Cの内部まで延在する。回転軸24bは、駆動装置24aから伝達される駆動力により軸線Xを中心に回転する。載置台14は、中央部分が回転軸24bにより支持される。よって、載置台14は、軸線Xを中心に、回転軸24bの回転に従って回転する。なお、処理容器12の下部部材12aと駆動機構24との間には、処理室Cを密閉するOリング等の弾性封止部材が設けられていてもよい。
基板処理装置10は、処理室C内部の載置台14の下方に、基板載置領域14aに載置された基板Wを加熱するためのヒータ26を備える。具体的には、載置台14を加熱することで基板Wを加熱する。基板Wは、処理容器12に設けられたゲートバルブGを介して、図示しないロボットアーム等の搬送装置により処理室Cに搬送され、基板載置領域14aに載置される。また、基板Wは、搬送装置によりゲートバルブGを介して処理室Cから取り出される。
処理室Cは、軸線Xを中心とする円周上に配列された第1の領域R1(図2参照)および第2の領域R2を形成する。基板載置領域14aに載置された基板Wは、載置台14の回転にともない、第1の領域R1および第2の領域R2を順に通過する。
図4に示すように、基板処理装置10は、第1の領域R1の上方に、載置台14の上面に対面するように、第1のガス供給部16が配置される。第1のガス供給部16は、噴射部16aを備える。すなわち、処理室Cに含まれる領域のうち噴射部16aに対面する領域が第1の領域R1である。
噴射部16aは、複数の噴射口16hを備える。第1のガス供給部16は、複数の噴射口16hを介して第1の領域R1へ前駆体ガスを供給する。前駆体ガスが第1の領域R1に供給されることにより、第1の領域R1を通過する基板Wの表面に、前駆体ガスの原子または分子が化学的に吸着する。前駆体ガスは、例えば、DCS(ジクロロシラン)やモノクロロシラン、トリクロロシラン等である。
第1の領域R1の上方には、載置台14の上面に対面するように、排気部18の排気口18aが設けられている。排気口18aは、噴射部16aの周囲に設けられる。排気部18は、真空ポンプなどの排気装置34の動作により、排気口18aを介して処理室C内のガスを排気する。
第1の領域R1の上方には、載置台14の上面に対面するように、第2のガス供給部20の噴射口20aが設けられている。噴射口20aは、排気口18aの周囲に設けられている。第2のガス供給部20は、噴射口20aを介して第1の領域R1へパージガスを供給する。第2のガス供給部20によって供給されるパージガスは、例えばAr(アルゴン)等の不活性ガスである。パージガスが基板Wの表面に噴射されることにより、基板Wに過剰に化学的に吸着した前駆体ガスの原子または分子(残留ガス成分)が基板Wから除去される。これにより、基板Wの表面に、前駆体ガスの原子または分子が化学的に吸着した原子層または分子層が形成されることになる。
基板処理装置10は、噴射口20aからパージガスを噴射し、排気口18aより載置台14の表面に沿ってパージガスを排気する。これにより、基板処理装置10は、第1の領域R1に供給される前駆体ガスが第1の領域R1外に漏れ出すことを抑制する。また、基板処理装置10は、噴射口20aからパージガスを噴射して排気口18aより載置台14の面に沿ってパージガスを排気するので、第2の領域R2に供給する反応ガスまたは反応ガスのラジカル等が第1の領域R1内に侵入することを抑制する。すなわち、基板処理装置10は、第2のガス供給部20からのパージガスの噴射および排気部18からの排気により、第1の領域R1と、第2の領域R2とを分離する。
なお、基板処理装置10は、噴射部16a、排気口18a、噴射口20aを含むユニットUを備える。すなわち、噴射部16a、排気口18a、および噴射口20aは、ユニットUを構成する部位として形成される。図4に示すように、ユニットUは、第1の部材M1、第2の部材M2、第3の部材M3、およびM4が順次積み重ねられた構造を有する。ユニットUは、処理容器12の上部部材12bの下面に当接するように処理容器12に取り付けられる。
図4に示すように、ユニットUには、第2の部材M2〜第4の部材M4を貫通するガス供給路16pが形成されている。ガス供給路16pは、上端が、処理容器12の上部部材12bに設けられたガス供給路12pと接続される。ガス供給路12pには、弁16vおよびマスフローコントローラ等の流量制御器16cを介して、前駆体ガスのガス供給源16gが接続される。また、ガス供給路16pの下端は、第1の部材M1と、第2の部材M2との間に形成された空間16dに接続される。空間16dには、第1の部材M1に設けられた噴射部16aの噴射口16hが接続される。
ユニットUには、第4の部材M4を貫通するガス供給路20rが形成される。ガス供給路20rは、上端が、処理容器12の上部部材12bに設けられたガス供給路12rと接続される。ガス供給路12rには、弁20vおよびマスフローコントローラ等の流量制御器20cを介して、パージガスのガス供給源20gが接続される。
ユニットUは、ガス供給路20rの下端が、第4の部材M4の下面と第3の部材M3の上面との間に設けられた空間20dに接続される。また、第4の部材M4は、第1の部材M1〜第3の部材M3を収容する凹部を形成する。凹部を形成する第4の部材M4の内側面と、第3の部材M3の外側面との間にはギャップ20pが設けられる。ギャップ20pは、空間20dに接続される。ギャップ20pの下端は、噴射口20aとして機能する。
ユニットUには、第3の部材M3および第4の部材M4を貫通する排気路18qが形成される。排気路18qは、上端が、処理容器12の上部部材12bに設けられた排気路12qと接続される。排気路12qは、真空ポンプ等の排気装置34に接続される。また、排気路18qは、下端が、第3の部材M3の下面と、第2の部材M2の上面との間に設けられた空間18dに接続される。
第3の部材M3は、第1の部材M1および第2の部材M2を収容する凹部を備える。第3の部材M3が備える凹部を構成する第3の部材M3の内側面と、第1の部材M1および第2の部材M2の外側面との間には、ギャップ18gが設けられる。空間18dは、ギャップ18gに接続される。ギャップ18gの下端は、排気口18aとして機能する。基板処理装置10は、噴射口20aからパージガスを噴射して排気口18aより載置台14の面に沿ってパージガスを排気することにより、第1の領域R1に供給する前駆体ガスが第1の領域R1外へ漏れ出すことを抑制する。
図5に示すように、基板処理装置10は、第2の領域R2の上方である上部部材12bの開口APに、載置台14の上面に対面するように設けられたプラズマ生成部22を備える。プラズマ生成部22は、アンテナ22aと、アンテナ22aにマイクロ波および反応ガスを供給する同軸導波管22bとを有する。同軸導波管22bは、給電部の一例である。上部部材12bには例えば3つの開口APが形成され、基板処理装置10は、例えば3つのプラズマ生成部22を備える。
プラズマ生成部22は、第2の領域R2へ、反応ガスおよびマイクロ波を供給して、第2の領域R2において反応ガスのプラズマを生成する。反応ガスに窒素含有ガスを用いた場合、基板Wに化学的に吸着した原子層または分子層を窒化させる。反応ガスとしては、例えばN2(窒素)またはNH3(アンモニア)等の窒素含有ガスを用いることができる。
図5に示すように、プラズマ生成部22は、開口APを閉塞するようにアンテナ22aを気密に配置する。アンテナ22aは、天板40、スロット板42、遅波板44、および冷却プレート46を有する。天板40は、誘電体で形成された角の丸い略正三角形状の部材であり、例えばアルミナセラミック等で形成される。天板40は、第1の誘電体の一例である。天板40は、その下面が処理容器12の上部部材12bに形成された開口APから第2の領域R2に露出するように上部部材12bによって支持されている。天板40の下面には、天板40の外縁に沿って第1のリブ40aが形成され、さらにその内側に略円状の第2のリブ40bが形成される。また、第2のリブ40bの内側には、下方に突出した突出部40cが設けられており、突出部40cの略中央には、厚み方向に貫通する噴射口40dが形成される。
天板40の下面、すなわち、第2の領域R2に露出する天板40の面は、Al2O3、Y2O3、またはYOxFy系膜(xは0以上の整数、yは1以上の整数)でコーティングされていてもよい。YOxFy系膜は、例えばYF3の膜であってもよい。これらのコーティングは溶射やエアロゾルデポジション法などによって行うことができる。これにより、天板40の材料が基板Wへの処理の過程で混入するコンタミネーションを防止することができる。また、図5に例示した天板40の下面には、第1のリブ40aおよび第2のリブ40b等により凹凸が形成されているが、天板40の下面はフラットな面であってもよい。これにより、コンタミネーションを防止するために天板40の下面に形成するコーティング膜の密着性を向上させることができる。
天板40の上面には、スロット板42が配置される。スロット板42は、角の丸い略正三角形状に形成された板状の金属製部材である。スロット板42には、軸線Xの方向において天板40の噴射口40dと重なる位置に開口が設けられている。また、スロット板42には、複数のスロット対が形成されている。各スロット対には、互いに直交または交差する二つのスロット孔が含まれている。これらスロット対は、スロット板42の面内に半径の異なる同心円状に周方向に複数形成されている。同心円の中心は、軸線Xの方向から見た場合に、例えばスロット板42の重心である。
また、スロット板42の上面には遅波板44が設けられている。遅波板44は、誘電体で形成された角の丸い略正三角形状の部材であり、例えばアルミナセラミック等により形成される。遅波板44は、第2の誘電体の一例である。遅波板44には、同軸導波管22bの外側導体62bを配置するための略円筒状の開口が設けられる。当該開口の周囲を形成する遅波板44の内径側の端部には、遅波板44の厚み方向に突出するリング状の突出部44aが設けられる。遅波板44は、突出部44aが上側に突出するように、スロット板42上に取り付けられる。
遅波板44の上面には冷却プレート46が設けられる。冷却プレート46は、その内部に形成された流路を流通する冷媒により、遅波板44を介してアンテナ22aを冷却する。冷却プレート46の表面は金属製である。冷却プレート46上には冷却プレート46の全面または複数の部分を遅波板44に押圧する押圧部47が設けられている。押圧部47は、例えばスパイラルスプリングガスケット等のバネを用いて構成することができる。冷却プレート46、遅波板44、スロット板42、および天板40は、押圧部47の押圧力により互いに密着している。これにより、大気圧やプラズマからの熱により天板40が畝った場合であっても、冷却プレート46、遅波板44、スロット板42、および天板40は、密着し続けることができる。その結果、アンテナ22aは、冷却プレート46を介して効率よく放熱することができる。また、冷却プレート46を介したアンテナ22aの放熱により、アンテナ22aの変形が抑制される。そして、スロットの変形が抑制されることにより、第2の領域R2へ放射されるマイクロ波によって形成される電磁界分布の変動が抑制される。
同軸導波管22bは、中空の略円筒状の内側導体62aおよび外側導体62bを備える。内側導体62aは、アンテナ22aの上方から遅波板44の開口およびスロット板42の開口を貫通する。内側導体62a内の空間64は、天板40の噴射口40dに連通している。また、内側導体62aの上端には、弁62vおよびマスフローコントローラ等の流量制御部62cを介して、反応ガスのガス供給源62gが接続される。弁62vから同軸導波管22bへ供給された反応ガスは、内側導体62a内の空間64および天板40の噴射口40dを介して、第2の領域R2に供給される。
外側導体62bは、内側導体62aの外周面と、外側導体62bの内周面との間に隙間をあけて、内側導体62aを囲むように設けられる。外側導体62bの下端は、冷却プレート46の開口部に接続される。
基板処理装置10は、導波管60および高周波発生器68を有する。高周波発生器68は、例えば1MHz〜3THzの帯域に含まれる高周波を発生させる。本実施形態において、高周波発生器68は、300MHz〜3THzの帯域に含まれるマイクロ波(例えば2.45GHzのマイクロ波)を発生させる。高周波発生器68が発生したマイクロ波は、導波管60を介して同軸導波管22bに伝搬し、内側導体62aと外側導体62bとの隙間を伝搬する。そして、遅波板44内を伝搬したマイクロ波は、スロット板42のスロット孔から天板40へ伝搬し、天板40かから第2の領域R2へ放射される。
また、第2の領域R2には、反応ガス供給部22cからも反応ガスが供給される。反応ガス供給部22cは、ガス供給部50aおよび噴射部50bを有する。ガス供給部50aは、例えば開口APの周囲に延在するように、処理容器12の上部部材12b内側に複数設けられる。噴射部50bは、ガス供給部50aから供給された反応ガスを天板40の下方に向けて噴射する。ガス供給部50aには、弁50vおよびマスフローコントローラ等の流量制御部50cを介して、反応ガスのガス供給源50gが接続される。
プラズマ生成部22は、天板40の噴射口40dおよび反応ガス供給部22cの噴射部50bにより第2の領域R2に反応ガスを供給し、アンテナ22aにより第2の領域R2にマイクロ波を放射する。これにより、第2の領域R2において反応ガスプラズマが生成される。
また、図3に示すように、基板処理装置10は、基板処理装置10の各構成要素を制御するための制御部70を備える。制御部70は、CPU(Central Processing Unit)等の制御装置、メモリ等の記憶装置、入出力装置等を備えるコンピュータであってもよい。制御部70は、メモリに記憶された制御プログラムに従ってCPUが動作することにより、基板処理装置10の各構成要素を制御する。
制御部70は、載置台14の回転速度を制御する制御信号を駆動装置24aへ送信する。また、制御部70は、基板Wの温度を制御する制御信号をヒータ26に接続された電源へ送出する。また、制御部70は、前駆体ガスの流量を制御する制御信号を弁16vおよび流量制御器16cへ送出する。また、制御部70は、排気口18aに接続される排気装置34の排気量を制御する制御信号を排気装置34へ送信する。
また、制御部70は、パージガスの流量を制御する制御信号を弁20vおよび流量制御器20cへ送信する。また、制御部70は、マイクロ波のパワーを制御する制御信号をマイクロ波発生器68へ送信する。また、制御部70は、反応ガスの流量を制御する制御信号を弁50v、弁62v、流量制御部50c、および流量制御部62cへ送信する。また、制御部70は、排気口22hからの排気量を制御する制御信号を排気装置52へ送信する。
図6は、同軸導波管22bとアンテナ22aとの接続部分の拡大断面図である。冷却プレート46は、略平板状であり、中央には同軸導波管22bを配置させるための開口が設けられている。開口の周囲を形成する冷却プレート46の内径側の端部は、厚み方向に突出している。すなわち、冷却プレート46は、内径側の端部から板厚方向に突出するリング状の突出部46aを有する。冷却プレート46は、突出部46aが上側になるようにアンテナ22a上に取り付けられる。
突出部46aの上端部には、外側導体62bの下端が接続される。外側導体62bの内周面と突出部46aの内周面とは、連なって、内側導体62aの外周面と外側導体62bの内周面との径方向の距離が、内側導体62aの外周面と突出部46aの内周面の径方向の距離と略同じとなるように構成される。なお、上記した突出部44aの上方には、内側導体62aの外周面と突出部46aの内周面との間に形成されるすき間が位置することとなる。
突出部46aには、冷却プレート46の外周側から内周側へ向かって斜め下方向に延伸するねじ孔46bが形成されている。ねじ孔46bの内面にはねじ溝が形成されている。ねじ孔46bには、スタブ部材80が挿入される。スタブ部材80は、外周にねじ山が形成されたネジ部80aと棒状部80bとを有する。ネジ部80aを回転させることにより、その回転量に応じて、棒状部80bを含むスタブ部材80全体を、ねじ孔46bに沿って移動させることができる。
スタブ部材80は、棒状部80bの先端が内側導体62aに向くように、内側導体62aの周囲の突出部46a内に複数(例えば6個)設けられる。それぞれのスタブ部材80のネジ部80aを回転させることにより、内側導体62aの外周面と突出部46aの内周面との間に設けられた隙間への、棒状部80bの挿入量を個別に制御することができる。棒状部80bの挿入量を制御することにより、天板40の下面から第2の領域R2へ放射されるマイクロ波の分布を制御することができる。
図7は、遅波板44の概略形状の一例を示す平面図である。軸線Xの方向から見た場合の遅波板44の断面形状は、角の丸い略正三角形の形状を有しており、その外形には、3本の線44bと、3本の線44cとが含まれる。それぞれの線44bは、略正三角形の三角形45を構成するそれぞれの辺45aに、それぞれ含まれる。それぞれの線44cは、隣り合う線44bの端部同士を、遅波板44の外側に凸になる曲線で結ぶ。線44cは、例えば所定の半径を有する円の一部である。これにより、遅波板44内の特定の位置に応力が集中することを抑制することができる。
軸線Xの方向から見た場合の遅波板44は、回転対称性(例えば3回対称性)を有する形状であることが好ましい。そして、突出部44aは、遅波板44の中心(例えば重心)に設けられることが好ましい。これにより、同軸導波管22bの内側導体62aと外側導体62bとの間を伝搬したマイクロ波は、例えば扇形の形状を有する遅波板に比べて、突出部44aの上端から遅波板44内により均一に伝搬する。これにより、遅波板44内を伝搬したマイクロ波が、スロット板42により均一に伝搬する。なお、扇形の形状は、軸線Xの方向から見た場合の断面形状を構成する線分に、軸線Xから離れるに従って互いに遠ざかる2つの線分を含むが、回転対称性はない。
ここで、扇形のアンテナの場合、マイクロ波は、アンテナの面方向に沿ってアンテナの上面に配置された導波管を介して供給される。そのため、アンテナの上面には、冷却プレート46を配置することができず、アンテナを効率よく放熱することができない。そのため、扇形のアンテナでは、発生した熱によりアンテナが変形したり、割れたりする場合がある。これに対し、本実施形態のアンテナ22aでは、遅波板44の中心(例えば重心)からマイクロ波が供給される。そのため、アンテナ22aの上面(遅波板44の上面)の多くの領域を、冷却プレート46に密着させることができる。これにより、アンテナ22aをより効率よく放熱させることができ、熱によるアンテナ22aの変形や割れを抑制することが可能となる。
図8は、スロット板42の概略形状の一例を示す平面図である。スロット板42は、板状の金属部材であり、軸線Xの方向から見た場合の断面形状は、例えば遅波板44と同様の形状に形成される。スロット板42の面内(例えばスロット板42の重心)には、スロット板42の厚み方向に貫通する開口42dが形成される。また、スロット板42には、開口42dを中心とし、半径の異なる同心円上に、複数のスロット対42cが形成される。本実施形態では、半径の異なる3つの同心円のそれぞれに沿って、複数のスロット対42cが形成されている。
それぞれのスロット対42cは、スロット板42の厚み方向に貫通するスロット42aおよび42bを含む。スロット42aおよび42bは、長丸状に形成される。それぞれの42cに含まれるスロット42aおよびスロット42bは、略L字状となるように配置される。
また、スロット板42上の複数のスロット対42cの配置は、軸線Xの方向から見た場合に、回転対称性(例えば3回対称性)を有する配置であることが好ましい。これにより、遅波板44から伝搬したマイクロ波を、より均一に天板40に伝搬させることができる。
図9は、天板40の概略形状の一例を示す平面図である。図9には、第2の領域R2に露出する側から見た場合の天板40が例示されている。軸線Xの方向から見た場合の天板40の断面形状は、例えば遅波板44と同様の形状であり、遅波板44よりも若干大きく形成される。天板40の下面には、天板40の外縁に沿って第1のリブ40aが形成され、さらにその内側に略円状の第2のリブ40bが形成される。また、第2のリブ40bの内側には、下方に突出した突出部40cが設けられており、突出部40cの略中央には、天板40の厚み方向に貫通する噴射口40dが形成される。
図10は、アンテナ22a全体の概略形状の一例を示す斜視図である。軸線Xの方向から見た場合に、遅波板44の突出部44a、スロット板42のスロット42a、および天板40の噴射口40dの位置を合わせるように、遅波板44、スロット板42、および天板40が重ね合わせられることにより、アンテナ22aは、例えば図10のように構成される。遅波板44、スロット板42、および天板40が、それぞれ角の丸い略正三角形状であるため、軸線Xの方向から見た場合のアンテナ22aの断面形状は、全体として、角の丸い略正三角形状となる。
遅波板44が略正三角形の形状を有しているため、例えば遅波板44の重心に接続された同軸導波管22bを介して伝搬したマイクロ波が、突出部44aから遅波板44内をより均一に伝搬する。また、スロット板42には、回転対称性を有する配置でスロット対42cが形成されているため、遅波板44を伝搬したマイクロ波が、スロット板42を介してより均一に天板40に伝搬される。そのため、アンテナ22aは、天板40からより均一なマイクロ波を第2の領域R2へ放射することができる。
ここで、アンテナ22aの各辺の角度の好ましい範囲について説明する。図11は、アンテナ22aの辺の角度を説明するための図である。アンテナ22aは、遅波板44と同様に、例えば図11に示すように、軸線Xの方向から見た場合に、角の丸い略正三角形の形状を有しており、その外形には、3本の線220aと、3本の線220bとが含まれる。それぞれの線220aは、略正三角形の三角形221を構成するそれぞれの辺221aに、それぞれ含まれる。それぞれの線220bは、隣り合う線220aの端部同士を、アンテナ22aの外側に凸になる曲線で結ぶ。線220bは、例えば所定の半径を有する円の一部である。
アンテナ22aは、例えば図11に示すように、軸線Xが、アンテナ22aの外形を含む三角形221の頂点の一つを通るように、上部部材12bの開口APに設けられる。図11に示すように、アンテナ22aの外形を含む三角形221の頂点のうち、軸線Xに一致する頂点から延びる2つの辺221aがなす角度を(60−2β)度、他の頂点から延びる2つの辺221aがなす角度をそれぞれ(60+β)度と定義する。
図12は、アンテナ22aの辺221a辺の角度と、マイクロ波の分布の均一性との関係のシミュレーション結果の一例を示す図である。図12に示すように、βの値が0の場合(すなわち、アンテナ22aの各辺221aを含む三角形221が正三角形である場合)がアンテナ22aから放射されるマイクロ波の均一性が最もよく、βの値を0から増加または減少させることにより、マイクロ波の均一性が悪化する。
なお、図12では、マイクロ波の均一性(強度分布の対称性)を、(最大値−最小値)/(2×平均値)で算出しているため、値が低いほど均一性がよいことを示している。発明者は、さらに鋭意検討を重ねた結果、βの値が−0.5から+0.5の範囲内であれば、マイクロ波の均一性が、およそ0.5%以内に抑えられることが分かった。
図13は、スタブ部材80の挿入量と、マイクロ波の分布の均一性との関係のシミュレーション結果の一例を示す図である。図13に例示したグラフにおいて、横軸は、スタブ部材80の棒状部80bの先端と、内側導体62aの外周面との間の距離であるスタブギャップを示している。また、図13に示したシミュレーションにおける棒状部80bの挿入方向は、図11に示したアンテナ22aにおいて、軸線Xから突出部44a(アンテナ22aの重心)へ向かう方向である。
図13のシミュレーション結果から明らかなように、スタブギャップを変化させることで、アンテナ22aから放射されるマイクロ波の均一性が、約18%から約13%に変化する。すなわち、スタブ部材80の棒状部80bの挿入量を制御することで、アンテナ22aから放射されるマイクロ波の均一性を約5%改善させることができることが分かった。
図12および図13のシミュレーション結果から、アンテナ22aの外形を含む三角形221の頂点のうち、軸線Xが通る頂点から延びる2つの辺221aのなす角度が60度±1度の範囲内であり、かつ、他の頂点から延びる2つの辺221aのなす角度がそれぞれ60度±0.5度の範囲内であれば、マイクロ波の均一性の悪化を、およそ5%以内に抑えることが可能となる。そして、マイクロ波の均一性の悪化が5%以内であれば、スタブ部材80の棒状部80bの挿入量で、マイクロ波の均一性の悪化を打ち消すことが可能となる。
図14は、アンテナ22aの線220aの位置と、基板Wの通過領域との関係の一例を説明するための図である。アンテナ22aは、軸線Xが、アンテナ22aの外形を含む三角形の頂点の一つを通るように、上部部材12bの開口APに設けられる。そして、アンテナ22aは、アンテナ22aの外形に含まれる2つの線220aが、それぞれ、例えば、軸線Xと直交する平面内を、軸線Xから径方向に延びる直線上に位置するように、上部部材12bの開口APに設けられる。
アンテナ22aは、直線状の線220aの長さL1が、基板Wの直径W2よりも長くなるように形成されることが好ましい。そして、アンテナ22aは、軸線Xの方向から見た場合に、載置台14の基板載置領域14a上に載置された基板Wが、載置台14の回転に伴ってアンテナ22aの下を通過する際に、基板W全体がそれぞれの線220a内を通過する位置に配置されることが好ましい。このように、基板W全体が、軸線Xから径方向に延びる線220aの下を通過することにより、基板Wは、プラズマ生成部22によって生成されたプラズマに晒される時間を、基板W上の各位置で、軸線Xからの距離によらず一定にすることができる。
また、アンテナ22aは、軸線Xの方向から見た場合に、基板Wの中心Qが通過する軌道上に、線220aの中央Pが位置するように上部部材12bに配置されることが好ましい。これにより、基板Wを、より均一なプラズマの領域を通過させることができる。なお、基板Wの中心Qが通過する軌道上に線220aの中央Pが位置するようにアンテナ22aを配置した場合、アンテナ22aの重心(同軸導波管22bからマイクロ波が供給される突出部44aの位置)は、基板Wの中心Qが通過する軌道から、軸線Xと反対側の方向に所定距離L2分離れた位置となる。
以上、一実施形態について説明した。
本実施形態の基板処理装置10によれば、基板W上の位置毎の、プラズマの領域を通過する時間のばらつきを低く抑えると共に、生成されるプラズマの均一性を高めることが可能となるという効果を奏する。
なお、上記した実施形態において、各プラズマ生成部22のアンテナ22aは、上部部材12bの開口APに固定されるが、本発明はこれに限られない。例えば、それぞれのアンテナ22aは、略円筒状の処理容器12の径方向に移動可能となるように上部部材12bの開口APに取り付けられていてもよい。これにより、プラズマ生成部22において生成されたプラズマの分布を、処理容器12の径方向において微調整することが可能となる。
また、上記した実施形態において、アンテナ22aの外形は、角の丸い略正三角形の形状であるが、本発明はこれに限られない。例えば、アンテナ22aの外形は、軸線Xの方向から見た場合の断面形状を構成する線分に、軸線Xから離れるに従って互いに遠ざかる2つの線分を含む形状であれば、例えば扇形の形状であってもよい。ただし、その場合であっても、マイクロ波は、同軸導波管22bにより、アンテナ22aの中央(例えば重心)からアンテナ22aに供給される。これにより、基板W上の位置毎の、プラズマの領域を通過する時間のばらつきを低く抑えることができると共に、アンテナ22aの上面に密着している冷却プレート46から効率よくアンテナ22aの熱を放出することができる。また、上記した実施形態において、アンテナ22aは天板40を有するが、開示の技術はこれに限られず、アンテナ22aは天板40を有していなくてもよい。この場合、アンテナ22aは、真空中に晒された導電性の電極として機能する。また、載置台14の材質は、導電性であってもよく、誘電体であってもよい。さらにガスの供給は、天板40、もしくは電極から行われてもよい。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に多様な変更または改良を加えることが可能であることが当業者には明らかである。また、そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
U ユニット
X 軸線
10 基板処理装置
12 処理容器
14 載置台
16a 噴射部
22 プラズマ生成部
22a アンテナ

Claims (10)

  1. 被処理基板を載置し、前記被処理基板が軸線の周囲を移動するよう前記軸線を中心に回転可能に設けられた載置台と、
    前記載置台の回転により前記軸線に対して周方向に移動する前記被処理基板が順に通過する複数の領域のそれぞれにガスを供給するガス供給部と、
    前記複数の領域の中の1つの領域であるプラズマ生成領域において、当該プラズマ生成領域に供給されたガスのプラズマを生成するプラズマ生成部と、
    を備え、
    前記プラズマ生成部は、
    前記プラズマ生成領域に高周波を放射するアンテナと、
    前記アンテナに高周波を供給する給電部と、
    を有し、
    前記アンテナを前記軸線に沿う方向から見た場合の断面形状を構成する線分には、
    前記軸線から離れるに従って互いに遠ざかる2つの線分が含まれ、
    前記アンテナを前記軸線に沿う方向から見た場合の断面形状は、回転対称性を有する略正三角形状であり
    前記軸線は、前記互いに遠ざかる2つの線分のそれぞれの延長線上に位置しており、
    前記給電部は、
    前記アンテナの重心であって、回転対称の中心から前記アンテナに高周波を供給することを特徴とする基板処理装置。
  2. 前記2つの線分のそれぞれは、円板状の前記被処理基板の直径よりも長く、
    前記アンテナは、
    前記軸線に沿う方向から見た場合に、前記載置台上の前記被処理基板が、前記2つの線分内を通過するように、前記プラズマ生成領域に設けられることを特徴とする請求項に記載の基板処理装置。
  3. 前記アンテナは、
    前記軸線に沿う方向から見た場合に、前記載置台上の前記被処理基板の中心が、前記2つの線分の中央を通過するように、前記プラズマ生成領域に設けられることを特徴とする請求項1または2に記載の基板処理装置。
  4. 前記プラズマ生成部は、
    前記給電部に挿入され、挿入量の制御が可能なスタブをさらに有することを特徴とする請求項1からのいずれか一項に記載の基板処理装置。
  5. 前記2つの線分は、
    所定の半径を有する円の一部である曲線で結ばれていることを特徴とする請求項1からのいずれか一項に記載の基板処理装置。
  6. 前記アンテナを前記軸線に沿う方向から見た場合の断面形状は、
    当該断面形状を構成する3つの辺をそれぞれ延長させた場合に形成される略正三角形の3つの内角において、1つの内角が60度±1度の範囲内であり、他の2つの内角がそれぞれ60度±0.5度の範囲内であることを特徴とする請求項に記載の基板処理装置。
  7. 前記高周波はマイクロ波であることを特徴とする請求項1からのいずれか一項に記載の基板処理装置。
  8. 前記給電部は同軸導波管であることを特徴とする請求項に記載の基板処理装置。
  9. 前記アンテナは、
    第1の誘電体と、
    前記第1の誘電体上に設けられ、前記同軸導波管の内導体が接続されるスロット板と、
    前記スロット板上に設けられる第2の誘電体と、
    前記第2の誘電体上に設けられ、内部に冷媒を流通させるための流路を有する冷却プレートと
    を有し、
    前記スロット板には、2つのスロットを有するスロットペアが、前記軸線に沿う方向から見た場合に、前記同軸導波管の内導体が接続される位置を中心として、半径の異なる同心円状に並ぶように複数形成され、
    前記複数のスロットペアは、前記軸線に沿う方向から見た場合に、回転対称となるように前記スロット板に形成されていることを特徴とする請求項に記載の基板処理装置。
  10. 前記同軸導波管が接続される側の前記アンテナの面上に配置され、前記冷却プレートを前記第2の誘電体に押圧する押圧部をさらに備え、
    前記冷却プレート、前記第2の誘電体、前記スロット板、および前記第1の誘電体は、
    前記押圧部の押圧力により互いに密着していることを特徴とする請求項に記載の基板処理装置。
JP2015016499A 2014-02-19 2015-01-30 基板処理装置 Active JP6383674B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015016499A JP6383674B2 (ja) 2014-02-19 2015-01-30 基板処理装置
KR1020150021684A KR101915833B1 (ko) 2014-02-19 2015-02-12 기판 처리 장치
CN201510086922.3A CN104851771B (zh) 2014-02-19 2015-02-17 基板处理装置
TW104105703A TWI638904B (zh) 2014-02-19 2015-02-17 Substrate processing device
US14/624,799 US10570512B2 (en) 2014-02-19 2015-02-18 Substrate processing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014030057 2014-02-19
JP2014030057 2014-02-19
JP2015016499A JP6383674B2 (ja) 2014-02-19 2015-01-30 基板処理装置

Publications (2)

Publication Number Publication Date
JP2015173097A JP2015173097A (ja) 2015-10-01
JP6383674B2 true JP6383674B2 (ja) 2018-08-29

Family

ID=53797583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016499A Active JP6383674B2 (ja) 2014-02-19 2015-01-30 基板処理装置

Country Status (5)

Country Link
US (1) US10570512B2 (ja)
JP (1) JP6383674B2 (ja)
KR (1) KR101915833B1 (ja)
CN (1) CN104851771B (ja)
TW (1) TWI638904B (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6305314B2 (ja) * 2014-10-29 2018-04-04 東京エレクトロン株式会社 成膜装置およびシャワーヘッド
JP6479550B2 (ja) * 2015-04-22 2019-03-06 東京エレクトロン株式会社 プラズマ処理装置
JP6569521B2 (ja) * 2015-12-24 2019-09-04 東京エレクトロン株式会社 成膜装置
KR102084235B1 (ko) * 2015-12-28 2020-03-03 아이원스 주식회사 투명 불소계 박막의 형성 방법 및 이에 따른 투명 불소계 박막
JP6584355B2 (ja) * 2016-03-29 2019-10-02 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US10370763B2 (en) * 2016-04-18 2019-08-06 Tokyo Electron Limited Plasma processing apparatus
US10748745B2 (en) 2016-08-16 2020-08-18 Applied Materials, Inc. Modular microwave plasma source
JP6850636B2 (ja) 2017-03-03 2021-03-31 東京エレクトロン株式会社 プラズマ処理装置
US10707058B2 (en) * 2017-04-11 2020-07-07 Applied Materials, Inc. Symmetric and irregular shaped plasmas using modular microwave sources
US11037764B2 (en) 2017-05-06 2021-06-15 Applied Materials, Inc. Modular microwave source with local Lorentz force
JP7067913B2 (ja) * 2017-12-13 2022-05-16 東京エレクトロン株式会社 プラズマ処理装置
US11393661B2 (en) 2018-04-20 2022-07-19 Applied Materials, Inc. Remote modular high-frequency source
US11081317B2 (en) 2018-04-20 2021-08-03 Applied Materials, Inc. Modular high-frequency source
US10504699B2 (en) 2018-04-20 2019-12-10 Applied Materials, Inc. Phased array modular high-frequency source
KR20220021514A (ko) * 2020-08-14 2022-02-22 삼성전자주식회사 상부 전극 및 이를 포함하는 기판 처리 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135438A (ja) * 1997-10-28 1999-05-21 Nippon Asm Kk 半導体プラズマ処理装置
TW508693B (en) * 1999-08-31 2002-11-01 Tokyo Electron Limted Plasma treating apparatus and plasma treating method
WO2001052302A1 (en) * 2000-01-10 2001-07-19 Tokyo Electron Limited Segmented electrode assembly and method for plasma processing
KR100980529B1 (ko) * 2006-03-27 2010-09-06 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치
WO2008016836A2 (en) * 2006-07-29 2008-02-07 Lotus Applied Technology, Llc Radical-enhanced atomic layer deposition system and method
CN101632329B (zh) * 2007-06-11 2012-10-31 东京毅力科创株式会社 等离子体处理装置及处理方法
JP5096047B2 (ja) * 2007-06-14 2012-12-12 東京エレクトロン株式会社 マイクロ波プラズマ処理装置およびマイクロ波透過板
JP5213530B2 (ja) 2008-06-11 2013-06-19 東京エレクトロン株式会社 プラズマ処理装置
JP5195176B2 (ja) * 2008-08-29 2013-05-08 東京エレクトロン株式会社 成膜装置
KR101378304B1 (ko) * 2009-08-21 2014-03-27 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 기판 처리 방법
JP5812606B2 (ja) * 2010-02-26 2015-11-17 株式会社日立国際電気 基板処理装置及び半導体装置の製造方法
KR101246170B1 (ko) * 2011-01-13 2013-03-25 국제엘렉트릭코리아 주식회사 반도체 제조에 사용되는 분사부재 및 그것을 갖는 플라즈마 처리 장치
JP5644719B2 (ja) * 2011-08-24 2014-12-24 東京エレクトロン株式会社 成膜装置、基板処理装置及びプラズマ発生装置
JP5712874B2 (ja) * 2011-09-05 2015-05-07 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP5882777B2 (ja) * 2012-02-14 2016-03-09 東京エレクトロン株式会社 成膜装置

Also Published As

Publication number Publication date
CN104851771A (zh) 2015-08-19
CN104851771B (zh) 2018-10-23
KR20150098199A (ko) 2015-08-27
US20150232993A1 (en) 2015-08-20
KR101915833B1 (ko) 2018-11-06
TW201542863A (zh) 2015-11-16
TWI638904B (zh) 2018-10-21
JP2015173097A (ja) 2015-10-01
US10570512B2 (en) 2020-02-25

Similar Documents

Publication Publication Date Title
JP6383674B2 (ja) 基板処理装置
JP5805227B2 (ja) プラズマ処理装置
US8636871B2 (en) Plasma processing apparatus, plasma processing method and storage medium
US9831067B2 (en) Film-forming apparatus
KR102094576B1 (ko) 기판 처리 방법 및 기판 처리 장치
US10844489B2 (en) Film forming apparatus and shower head
TWI663626B (zh) 用於處理工件的反應器以及微波源
JP6258184B2 (ja) 基板処理装置
US20100252412A1 (en) Plasma processing apparatus and method for adjusting plasma density distribution
US10370763B2 (en) Plasma processing apparatus
JP7266346B1 (ja) 成膜装置、成膜方法及びガスノズル
US10309015B2 (en) Substrate treating apparatus and substrate treating method
JP7111380B2 (ja) スパッタ装置及びこれを用いた成膜方法
JP6479550B2 (ja) プラズマ処理装置
JP2006278652A (ja) 基板処理装置
KR20070118481A (ko) 플라즈마 처리 장치 및 이를 이용한 기판 처리 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R150 Certificate of patent or registration of utility model

Ref document number: 6383674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250