JP6363340B2 - Emulsions containing nano-sized fibrous polysaccharides, materials and methods for producing them - Google Patents
Emulsions containing nano-sized fibrous polysaccharides, materials and methods for producing them Download PDFInfo
- Publication number
- JP6363340B2 JP6363340B2 JP2013239073A JP2013239073A JP6363340B2 JP 6363340 B2 JP6363340 B2 JP 6363340B2 JP 2013239073 A JP2013239073 A JP 2013239073A JP 2013239073 A JP2013239073 A JP 2013239073A JP 6363340 B2 JP6363340 B2 JP 6363340B2
- Authority
- JP
- Japan
- Prior art keywords
- cnf
- water
- emulsion
- cellulose
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/01—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/20—Jet mixers, i.e. mixers using high-speed fluid streams
- B01F25/23—Mixing by intersecting jets
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Colloid Chemistry (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cosmetics (AREA)
Description
本発明はナノ微細化した繊維状多糖の懸濁水と非水溶性の有機溶剤の混合により得られるエマルション、このエマルションから得られる材料、及びこれらの製造方法に関する。
The present invention relates to an emulsion obtained by mixing nano-fine fibrous polysaccharide suspension water and a water-insoluble organic solvent, a material obtained from the emulsion, and a method for producing them.
繊維状多糖の一種であるセルロースは、植物、例えば、広葉樹や針葉樹などの木本植物、及び竹や葦などの草本植物、ホヤに代表される一部の動物、および酢酸菌に代表される一部の菌類等によって産生されることが知られている。このセルロースが繊維状に集合した構造を有するものをセルロースファイバーと呼ぶ。特に繊維幅が100nm以下でアスペクト比が100以上のセルロースファイバーは一般的にセルロースナノファイバー(CNF)と呼ばれ、軽量、高強度、低熱膨張率等の優れた性質を有する。 Cellulose, a kind of fibrous polysaccharide, is a plant such as woody plants such as broad-leaved trees and coniferous trees, herbaceous plants such as bamboo and bamboo, some animals represented by sea squirts, and one represented by acetic acid bacteria. It is known that it is produced by some fungi and the like. What has the structure where this cellulose aggregated in the fiber form is called a cellulose fiber. In particular, a cellulose fiber having a fiber width of 100 nm or less and an aspect ratio of 100 or more is generally called cellulose nanofiber (CNF), and has excellent properties such as light weight, high strength, and low thermal expansion coefficient.
天然においてCNFは、酢酸菌に代表される一部の菌類等によって産生されたCNFを除くと、単繊維として存在しない。CNFの殆どはCNF間の水素結合に代表される相互作用によって強固に集合したマイクロサイズの繊維幅を有した状態で存在する。そのマイクロサイズの繊維幅を有した繊維もさらに高次の集合体として存在する。 In nature, CNF does not exist as a single fiber except for CNF produced by some fungi represented by acetic acid bacteria. Most of CNF exists in the state which has the fiber width of the micro size tightly assembled by the interaction represented by the hydrogen bond between CNF. The fibers having the micro-sized fiber width also exist as higher order aggregates.
製紙の過程では、これらの繊維集合体である木材を化学パルプ化の一つであるクラフト蒸解法に代表されるパルプ化によって、マイクロサイズの繊維幅を有するパルプの状態にまで解繊し、これを原料に紙を製造している。このパルプの繊維幅は、原料によって異なるが、広葉樹を原料とした晒クラフトパルプで5−20μm、針葉樹を原料とした晒クラフトパルプで20−80μm、竹を原料とした晒クラフトパルプで5−20μm程度である。 In the papermaking process, these fiber aggregates are pulverized to pulp with a micro-sized fiber width by pulping, represented by the kraft cooking method, which is one of chemical pulping. The paper is made from the raw material. The fiber width of this pulp varies depending on the raw material, but it is 5-20 μm for bleached kraft pulp made from hardwood, 20-80 μm for bleached kraft pulp made from softwood, and 5-20 μm for bleached kraft pulp made from bamboo. Degree.
前述のとおりこれらマイクロサイズの繊維幅を有するパルプは、CNFが水素結合に代表される相互作用によって強固に集合した繊維状の形態を有する単繊維の集合体であり、さらに解繊を進めることによってナノサイズの繊維幅を有する単繊維であるCNFを得ることができる。 As described above, the pulp having these micro-sized fiber widths is an aggregate of single fibers having a fibrous form in which CNF is firmly assembled by an interaction typified by hydrogen bonding, and by further defibrating. CNF, which is a single fiber having a nano-sized fiber width, can be obtained.
CNFの調製方法は多々報告されているが、酸加水分解法や TEMPO触媒酸化法といった化学的手法と、グラインダー法や高圧ホモジナイザー法、水中対向衝突法(ACC法)といった物理的手法の2種類に大別される。 Many methods for preparing CNF have been reported, but there are two types of methods: chemical methods such as acid hydrolysis and TEMPO catalytic oxidation, and physical methods such as the grinder method, high-pressure homogenizer method, and underwater collision method (ACC method). Broadly divided.
CNFの化学的調製方法の一つであるTEMPO触媒酸化法は、木材の晒クラフトパルプに代表されるマイクロサイズの繊維幅を有するCNF集合体のCNF表面の水酸基を、TEMPO触媒を用いてカルボキシル基に変換してNa塩にすることによって、水中でCNF間の静電反発と浸透圧効果が作用し、簡単な水中解繊処理でCNFのナノ分散を可能にする。そのため、得られるCNFは、化学修飾を受けている。また、CNFの化学的調製方法の一つである酸加水分解法においても、用いる酸触媒により、得られるCNFは、化学修飾を受けている。 The TEMPO catalytic oxidation method, which is one of the chemical preparation methods for CNF, uses a TEMPO catalyst to convert the hydroxyl group on the CNF surface of a CNF aggregate having a micro-sized fiber width represented by wood bleached kraft pulp to a carboxyl group. By converting it into Na salt, electrostatic repulsion between CNFs and osmotic pressure effect act in water, and nano dispersion of CNF is made possible by simple underwater fibrillation treatment. Therefore, the obtained CNF is chemically modified. Also in the acid hydrolysis method, which is one of the chemical preparation methods for CNF, the resulting CNF is chemically modified by the acid catalyst used.
CNFの物理的調製方法であるグラインダー法、高圧ホモジナーザー法では、セルロースは、ナノ微細化過程で受ける磨砕や衝撃により、セルロース分子構造の損傷や、重合度低下を受ける。したがって、得られるCNFは、その特性に影響を及ぼすセルロース分子構造の損傷や、重合度低下を受けている。 In the grinder method and the high-pressure homogenizer method, which are physical preparation methods of CNF, cellulose undergoes damage to the molecular structure of the cellulose and a decrease in the degree of polymerization due to grinding and impact received during the nano-miniaturization process. Therefore, the obtained CNF is subjected to damage of the cellulose molecular structure that affects its properties and a degree of polymerization.
これに対し、CNFの調製方法のうち物理的方法の一つであるACC法は、木材の晒クラフトパルプに代表されるマイクロサイズの繊維幅を有するCNF集合体の懸濁水を高圧下で対向衝突させることによって、実質的に水等の流動媒体とパルプの流動エネルギのみを駆動源としてCNF間の相互作用のみを解裂させてナノ微細化を行う。 On the other hand, the ACC method, which is one of the physical methods among the CNF preparation methods, collides the suspended water of CNF aggregates having a micro-sized fiber width represented by wood bleached kraft pulp under high pressure. As a result, only the interaction between the CNFs is cleaved by using only a fluid medium such as water and the fluid energy of the pulp as a driving source, thereby performing nano-miniaturization.
このACC法は特許文献1にも開示されているように、水に懸濁した天然セルロース繊維を、チャンバー(図5:3)内で相対する二つのノズル(図5:4a,4b)に導入し、これらのノズルから一点に向かって噴射、衝突させる手法である(図5)。この手法によれば、天然微結晶セルロース繊維(例えば、フナセル)の懸濁水を対向衝突させ、その表面をナノフィブリル化させて引き剥がし、キャリアーである水との親和性を向上させることによって、最終的には溶解に近い状態に至らせることが可能となる。図5に示される装置は液体循環型となっており、タンク(図5:1)、プランジャー(図5:2)、対向する二つのノズル(図5:4a,4b)、必要に応じて熱交換器(図5:5)を備え、水中に分散させた微粒子を二つのノズルに導入し高圧下で合い対するノズル(図5:4a,4b)から噴射して水中で対向衝突させる。この手法では天然セルロース繊維の他には水しか使用せず、実質的に水等の流動媒体とパルプの流動エネルギのみを駆動源として繊維間の相互作用のみを解裂させることによってナノ微細化を行うためセルロース分子の構造変化がなく、解裂に伴う重合度低下を最小限にした状態でナノ微細化品を得ることが可能となる。物理的処理によるCNFの調製方法であるACC法は、木材の晒クラフトパルプに代表されるマイクロサイズの繊維幅を有するCNF集合体の懸濁水を高圧下で対向衝突させることにより、CNF間の相互作用のみを解裂させてナノ微細化を行う。そのため、得られるCNFは、セルロース分子構造の損傷や、重合度の低下をほとんど受けていない。 As disclosed in Patent Document 1, this ACC method introduces natural cellulose fibers suspended in water into two nozzles (FIG. 5: 4a, 4b) facing each other in the chamber (FIG. 5: 3). In this method, the nozzles inject and collide toward one point (FIG. 5). According to this technique, the suspension water of natural microcrystalline cellulose fibers (e.g., funacell) is collided oppositely, the surface is nanofibrillated and peeled off, and the affinity with water as a carrier is improved. In particular, it becomes possible to reach a state close to dissolution. The device shown in FIG. 5 is a liquid circulation type, and includes a tank (FIG. 5: 1), a plunger (FIG. 5: 2), two opposing nozzles (FIG. 5: 4a, 4b), and as necessary. A heat exchanger (FIG. 5: 5) is provided, and fine particles dispersed in water are introduced into two nozzles, sprayed from opposite nozzles (FIG. 5: 4a, 4b) under high pressure, and opposed to each other in water. In this method, only water is used in addition to natural cellulose fibers, and nano-miniaturization is achieved by cleaving only the interaction between fibers using only a fluid medium such as water and the flow energy of pulp as a driving source. Therefore, there is no change in the structure of the cellulose molecule, and it becomes possible to obtain a nano-miniaturized product in a state in which the decrease in the degree of polymerization accompanying cleavage is minimized. The ACC method, which is a method for preparing CNF by physical treatment, allows CNF aggregates having micro-sized fiber widths typified by bleached wood kraft pulp to collide with each other under high pressure, thereby causing mutual interaction between CNFs. Nano-miniaturization is performed by cleaving only the action. For this reason, the obtained CNF is hardly damaged by the molecular structure of the cellulose or the degree of polymerization.
これらの手法等により得られたCNFは、その特徴を利用したさまざまなアプリケーションの提案がなされている。すなわち、軽量・高強度・低熱膨張といった繊維自体の特徴や、ナノサイズの繊維幅という形態的特徴を利用し、プラスチック等の樹脂の補強材や透明フィルム等への応用が期待されている。 Various applications using the features of CNF obtained by these methods have been proposed. That is, using the characteristics of the fiber itself such as light weight, high strength, and low thermal expansion, and the morphological characteristic of the nano-sized fiber width, application to a resin reinforcing material such as plastic or a transparent film is expected.
CNFを利用していくにあたり問題となるのがCNFの相溶性である。CNFはセルロース分子に由来する水酸基により、繊維表面は親水性の特徴を持つため、プラスチック等の樹脂の補強材として利用する際には相溶性が悪いためCNF同士が凝集を起こしてしまう。そのためCNF表面の化学修飾等による分散性向上の試み等が盛んに行われている(非特許文献1、2)。 A problem in using CNF is the compatibility of CNF. Since CNF is a hydroxyl group derived from cellulose molecules and the fiber surface has a hydrophilic characteristic, when used as a reinforcing material for a resin such as plastic, the compatibility between CNFs causes aggregation. For this reason, attempts have been actively made to improve dispersibility by chemical modification of the CNF surface (Non-Patent Documents 1 and 2).
化学修飾を施したCNFは、有機溶剤への相溶性が向上することが知られている(非特許文献1、2)。CNF表面の水酸基を化学修飾することにより疎水化し、疎水性性質を有する樹脂等への複合化を目的に研究が行われている。一方、この特徴を生かし、有機溶剤との混合によるエマルション形成の研究もいくつか報告されている(非特許文献3、4)。しかし、いずれも化学修飾を用いて繊維表面の電荷を変えていたり、エマルション形成に用いるCNFやセルロースナノクリスタル、セルロースナノウィスカー等は先述の化学的調製方法により調製されているためにナノ微細化過程で化学修飾を受けている。CNF表面の水酸基による親水的性質と化学修飾により付加された疎水的性質を同一繊維内に有することにより、有機溶剤との混合においてエマルションを形成する。 It is known that chemically modified CNF has improved compatibility with organic solvents (Non-Patent Documents 1 and 2). Studies have been carried out for the purpose of making it hydrophobic by chemically modifying the hydroxyl group on the CNF surface to make it composite with a resin having hydrophobic properties. On the other hand, taking advantage of this feature, some studies on emulsion formation by mixing with an organic solvent have been reported (Non-Patent Documents 3 and 4). However, all of them use chemical modification to change the charge on the fiber surface, and CNF, cellulose nanocrystals, cellulose nanowhiskers, etc. used for emulsion formation are prepared by the above-mentioned chemical preparation method. Has undergone chemical modification. Having the hydrophilic property by the hydroxyl group on the CNF surface and the hydrophobic property added by chemical modification in the same fiber, an emulsion is formed in mixing with an organic solvent.
CNF表面を化学修飾したCNFや、化学的調製方法により化学修飾を受けてナノ微細化されたCNFは、本来自然界に存在する天然のセルロースとは異なる。そのため、長期間の暴露による安全性や環境への影響は分からない。 CNF obtained by chemically modifying the surface of CNF, or CNF obtained by chemical modification by a chemical preparation method is different from natural cellulose that naturally exists in nature. Therefore, the effects on safety and the environment due to long-term exposure are unknown.
また、ACC法以外の物理的方法によりナノ微細化して調製されたCNFは、ナノ微細化の過程で、セルロース分子構造の損傷や重合度の低下を受けることがあり、本来自然界に存在する天然のセルロースとは特性が異なる可能性がある。 In addition, CNF prepared by nano refining by a physical method other than the ACC method may be damaged in the molecular structure of the cellulose and the degree of polymerization may be reduced during the nano refining process. Properties may be different from cellulose.
CNFは現在さまざまな利用法の検討が行われているが、その一つとしてエマルション形成を利用した新規用途開発が挙げられる。しかし、現在エマルション形成のため検討されているCNFは、CNF調製工程及び/又は前後の工程で意図的に化学修飾したり、使用する化学薬品で化学修飾を受けたりしたCNFで、本来は天然に存在しないCNFである。
Various uses of CNF are currently being studied, and one of these is the development of new applications using emulsion formation. However, CNF currently being studied for emulsion formation is CNF that has been intentionally chemically modified in the CNF preparation process and / or before and after the process, or that has been chemically modified with the chemicals used. CNF that does not exist.
本発明は、セルロースに、物理的なダメージをほとんど与えないだけでなく、安全性や環境保全を重視して化学的処理や化学修飾を行うことなく、実質的に水とパルプの流動エネルギのみを駆動源とするナノ微細化手法により調製したCNF懸濁水を用い、現在さまざまな利用法の検討がなされているCNFのアプリケーションのひとつとして、有機溶剤とのエマルション、このエマルションから得られる材料及びこれらの製造方法を提供することを目的とする。
The present invention not only causes little physical damage to cellulose, but also substantially reduces the flow energy of water and pulp without giving chemical treatment or chemical modification with an emphasis on safety and environmental conservation. One of the applications of CNF that uses CNF suspension water prepared by a nano-miniaturization method as a driving source and is currently studying various uses. Emulsions with organic solvents, materials obtained from these emulsions, and An object is to provide a manufacturing method.
本発明によれば、ナノ微細化した繊維状多糖の薄層が、個別の球状中空体の形態で存在するナノ微細化した繊維状多糖の懸濁水と非水溶性の有機溶剤とのエマルションが提供される。
さらに、本発明によれば、ナノ微細化した繊維状多糖が、多数の球状の空隙を有する網状組織の形態で存在するナノ微細化した繊維状多糖の懸濁水と非水溶性の有機溶剤とのエマルションが提供される。
また、ナノ微細化した繊維状多糖の薄層からなる球状中空材料が提供される。
さらに、多数の球状の空隙を有するナノ微細化した繊維状多糖の網状組織からなる材料が提供される。
これらのエマルション及び材料においては、ナノ微細化した繊維状多糖がセルロースナノファイバーであり、且つそのセルロースナノファイバーは化学修飾が施されていないことが好ましい。
また、これらのエマルション及び材料においては、ナノ微細化した繊維状多糖がセルロースナノファイバーであり、且つそのセルロースナノファイバーはセルロース分子構造の損傷や重合度の低下を受けていないことが好ましい。
本発明の別の特徴によれば、ナノ微細化した繊維状多糖の懸濁水と非水溶性の有機溶媒とを混合することからなるエマルションの製造方法が提供される。このエマルションにおいては、ナノ微細化した繊維状多糖の薄層が、個別の球状中空体の形態で、又はナノ微細化した繊維状多糖が、多数の球状の空隙を有する網状組織の形態で存在する
さらに、本発明によれば、ナノ微細化した繊維状多糖の懸濁水と非水溶性の有機溶媒と混合してエマルションを調製することと、このエマルションを乾燥させることからなる材料の製造方法が提供される。この材料は、ナノ微細化した繊維状多糖の薄層からなる球状中空材料、又は多数の球状の空隙を有するナノ微細化した繊維状多糖の網状組織である。
これらの製造方法においては、ナノ微細化した繊維状多糖がセルロースナノファイバーであり、且つそのセルロースナノファイバーは化学修飾が施されていないことが好ましい。
また、これらの製造方法においては、ナノ微細化した繊維状多糖がセルロースナノファイバーであり、且つそのセルロースナノファイバーはセルロース分子構造の損傷や重合度の低下を受けていないことが好ましい。
さらに、これらの製造方法においては、非水溶性の有機溶媒がアルカンであることが好ましい。
According to the present invention, there is provided an emulsion of nano-fine fibrous polysaccharide suspension in which a thin layer of nano-fine fibrous polysaccharide exists in the form of individual spherical hollow bodies and a water-insoluble organic solvent. Is done.
Furthermore, according to the present invention, the nano-fine fibrous polysaccharide is composed of a suspension of nano-fine fibrous polysaccharide that exists in the form of a network having a large number of spherical voids and a water-insoluble organic solvent. An emulsion is provided.
Moreover, the spherical hollow material which consists of a thin layer of the nano refined | miniaturized fibrous polysaccharide is provided.
Furthermore, a material comprising a network of nano-sized fibrous polysaccharides having a large number of spherical voids is provided.
In these emulsions and materials, it is preferable that the nano-sized fibrous polysaccharide is a cellulose nanofiber, and the cellulose nanofiber is not chemically modified.
In these emulsions and materials, it is preferable that the nano-sized fibrous polysaccharide is a cellulose nanofiber, and that the cellulose nanofiber is not damaged by the cellulose molecular structure or the degree of polymerization.
According to another aspect of the present invention, there is provided a method for producing an emulsion comprising mixing a nano-miniaturized fibrous polysaccharide suspension with a water-insoluble organic solvent. In this emulsion, a thin layer of nano-fine fibrous polysaccharide exists in the form of individual spherical hollow bodies, or a nano-fine fibrous polysaccharide exists in the form of a network with many spherical voids. Furthermore, according to the present invention, there is provided a method for producing a material comprising preparing an emulsion by mixing nano-fine fibrous polysaccharide suspension with a water-insoluble organic solvent and drying the emulsion. Is done. This material is a spherical hollow material composed of a thin layer of nano-fine fibrous polysaccharide, or a nano-fine fibrous polysaccharide network having a number of spherical voids.
In these production methods, it is preferable that the nanosized fibrous polysaccharide is cellulose nanofiber, and the cellulose nanofiber is not chemically modified.
In these production methods, it is preferable that the nano-sized fibrous polysaccharide is a cellulose nanofiber, and the cellulose nanofiber is not damaged by the cellulose molecular structure or the degree of polymerization.
Furthermore, in these production methods, the water-insoluble organic solvent is preferably an alkane.
非水溶性の有機溶剤は、ナノ微細化した繊維状多糖、例えばCNFと反応を起こさないものであれば特に限定されない。繊維状多糖としては、セルロースのほか、グルカン、フルクタン、キチン、キトサン、グルコマンナンなどが挙げられる。混合する方法は機器や人力による撹拌、超音波等を使った混合でもよく、特に限定されない。 The water-insoluble organic solvent is not particularly limited as long as it does not react with nano-fine fibrous polysaccharides such as CNF. Examples of the fibrous polysaccharide include cellulose, glucan, fructan, chitin, chitosan, glucomannan and the like. The mixing method is not particularly limited, and may be stirring using equipment or human power, mixing using ultrasonic waves, or the like.
この混合により得られた混合液はエマルションを形成する。形成されるエマルションの状態は、混合に用いるCNFの原料により異なる。具体的には、原料に竹を用いたCNF懸濁水を用いると、各々のミセルは内部および外部に溶媒が存在した単独の球状ミセルとして存在する。しかし、木材由来のCNF懸濁水を用いた場合はミセル内部にのみ溶媒が存在し、外部にはセルロースナノファイバーが存在している。そのため、セルロースナノファイバーは、原料が竹の場合は独立した球状中空粒子を形成する。一方、木質由来の場合は多数の球状の空隙を有するスポンジ状構造を形成する。 The mixed solution obtained by this mixing forms an emulsion. The state of the emulsion to be formed varies depending on the CNF raw material used for mixing. Specifically, when CNF suspension water using bamboo as a raw material is used, each micelle exists as a single spherical micelle having a solvent inside and outside. However, when wood-derived CNF suspension water is used, the solvent exists only inside the micelle and the cellulose nanofiber exists outside. Therefore, cellulose nanofibers form independent spherical hollow particles when the raw material is bamboo. On the other hand, when derived from wood, a sponge-like structure having a large number of spherical voids is formed.
形成されたエマルションは非常に安定であり、長期にわたって維持される。
The emulsion formed is very stable and is maintained over a long period of time.
本発明によれば、化学修飾等の複雑な処理を行わないCNF懸濁水を用い、非水溶性の有機溶剤と混合するだけで、容易にエマルションを得ることが可能であり、既存の工業製品等への応用だけでなく、CNFの新規利用法としての可能性を秘めている。
According to the present invention, it is possible to easily obtain an emulsion simply by mixing with a water-insoluble organic solvent using CNF suspension water that is not subjected to complicated treatment such as chemical modification. It has the potential as a new use of CNF as well as its application.
以下に本発明のCNF懸濁水と非水溶性の有機溶剤との混合により得られるエマルションの調製方法と得られたエマルションの特徴について詳細に説明する。 Below, the preparation method of the emulsion obtained by mixing the CNF suspension water of this invention and a water-insoluble organic solvent, and the characteristic of the obtained emulsion are demonstrated in detail.
CNF懸濁水の原料としては、セルロースを含むものであれば特に限定されず、例えば各種木材パルプ、非木材パルプ、バクテリアセルロース、古紙パルプ、コットン、バロニアセルロース、ホヤセルロース等が挙げられる。また市販されている各種セルロース粉末も使用できる。 The raw material of the CNF suspension water is not particularly limited as long as it contains cellulose, and examples thereof include various wood pulp, non-wood pulp, bacterial cellulose, waste paper pulp, cotton, valonia cellulose, and squirt cellulose. Various cellulose powders that are commercially available can also be used.
CNF懸濁水の調製方法は、実質的に水等の流動媒体の流動エネルギのみを駆動源として繊維間の相互作用のみを解裂させることによってナノ微細化を行うナノ微細化手法であればよく、ACC法がこれに該当するものの、特にACC法に限定されない。以下に、図5を参照して、ACC法の一例を説明する。上記の原料の懸濁水を調製してタンク1に投入し、所定の噴射圧力を得るためプランジャー2で昇圧し、チャンバー3内の相対する二つのノズル4a、4bに導入する。これら二つのノズル4a、4bから、上記懸濁水を所定の噴射圧力で一点に向かって噴射、衝突させた後、熱交換器5によって冷却し、タンク1に戻す。このタンク1→プランジャー2→チャンバー3→熱交換器5の循環サイクルの反復数を処理回数(パス)とする。原料の濃度は使用する機器の性能により異なるため、処理可能な濃度であれば特に限定されないが、20wt%以下、好ましくは10wt%以下である。噴射圧力も使用する機器の性能により異なるため、原料のナノ微細化が起こる噴出圧力であれば特に限定されないが、通常100MPa以上、好ましくは150〜250MPaである。処理回数は噴出圧力との兼ね合いで異なるが、好ましくは3パス以上、より好ましくは30〜150パスである。 The method for preparing CNF suspension water may be a nano-miniaturization technique that performs nano-miniaturization by cleaving only the interaction between fibers using only the flow energy of a fluid medium such as water as a driving source, Although the ACC method corresponds to this, it is not particularly limited to the ACC method. Hereinafter, an example of the ACC method will be described with reference to FIG. Suspended water of the above raw material is prepared and charged into the tank 1, and the pressure is increased by the plunger 2 to obtain a predetermined injection pressure, and then introduced into two opposing nozzles 4 a and 4 b in the chamber 3. From these two nozzles 4 a, 4 b, the suspension water is injected and collided at a predetermined injection pressure toward one point, and then cooled by the heat exchanger 5 and returned to the tank 1. The number of cycles of this tank 1 → plunger 2 → chamber 3 → heat exchanger 5 is defined as the number of treatments (pass). Since the concentration of the raw material varies depending on the performance of the equipment used, it is not particularly limited as long as it can be processed, but it is 20 wt% or less, preferably 10 wt% or less. Since the injection pressure also varies depending on the performance of the equipment to be used, it is not particularly limited as long as it is an ejection pressure at which nano refinement of the raw material occurs, but it is usually 100 MPa or more, preferably 150 to 250 MPa. The number of treatments varies depending on the jet pressure, but is preferably 3 passes or more, more preferably 30 to 150 passes.
このACC法以外に実質的に水等の流動媒体の流動エネルギのみを駆動源として繊維間の相互作用のみを解裂させることによってナノ微細化を行うナノ微細化手法としては、図6に示すようにパルプスラリー液を一のチャンバーを介して第1の循環系内を循環させると共に、水を前記一のチャンバーを介して第2の循環系を循環させ、前記第1の循環系内を循環して前記一のチャンバー内を流通するパルプスラリー液に対して前記第2の循環系を循環する水をオリフィス噴射するナノ微細化手法を適用することができる。ナノ微細化手法ではACC法とは異なりパルプスラリー液の対抗衝突エネルギが微細化の駆動源とはならず、パルプスラリー液に対してオリフィス噴射される水の高速・高圧エネルギによって、パルプスラリー液のパルプの微細化が行われる。 In addition to this ACC method, as a nano-miniaturization method for performing nano-miniaturization by cleaving only the interaction between fibers using only the flow energy of a fluid medium such as water as a driving source, as shown in FIG. The pulp slurry liquid is circulated in the first circulation system through the one chamber, and the water is circulated in the second circulation system through the one chamber, and is circulated in the first circulation system. Thus, a nano-miniaturization technique can be applied in which water circulating in the second circulation system is orifice-injected with respect to the pulp slurry liquid flowing in the one chamber. Unlike the ACC method, in the nano-miniaturization method, the collision energy of the pulp slurry liquid is not a driving source for the miniaturization, and the high-speed and high-pressure energy of the water jetted to the pulp slurry liquid causes the pulp slurry liquid to Pulp is refined.
非水溶性の有機溶剤は、常温常圧において液体であって水と相溶性のないものが好ましいが、特に限定されない。非水溶性の有機溶剤の例としては、炭素数5以上のアルカン、好ましくは炭素数6〜20のアルカンがあげられる。
The water-insoluble organic solvent is preferably a liquid that is liquid at room temperature and normal pressure and incompatible with water, but is not particularly limited. Examples of the water-insoluble organic solvent include alkanes having 5 or more carbon atoms, preferably alkanes having 6 to 20 carbon atoms.
CNF懸濁水と非水溶性の有機溶剤との割合は、CNF懸濁水中のCNF含有量とエマルション中のミセルの大きさにより左右されるため特に限定されない。
混合を行う際の、温度も特に限定されないが、用いる有機溶剤の沸点以下でなければならない。さらに、温度の下限値は水の凍結する温度である0℃以上であれば限定されない。低沸点の有機溶剤を使用する際には10℃以下0℃以上が好ましい。
The ratio of the CNF suspension water to the water-insoluble organic solvent is not particularly limited because it depends on the CNF content in the CNF suspension water and the size of micelles in the emulsion.
The temperature at the time of mixing is not particularly limited, but it must be lower than the boiling point of the organic solvent to be used. Furthermore, the lower limit of the temperature is not limited as long as it is 0 ° C. or higher, which is the temperature at which water freezes. When using a low-boiling organic solvent, it is preferably 10 ° C. or lower and 0 ° C. or higher.
CNF懸濁水と非水溶性の有機溶剤との混合は、両者が混ざる方法であれば、機器を用いても、人力で混合してもよい。手法としては、アジテーターや攪拌機を用いた撹拌による混合の他、超音波等による混合でもよく、特に限定されない。 The mixing of the CNF suspension water and the water-insoluble organic solvent may be performed by using a device or by human power as long as both are mixed. The technique is not particularly limited, and may be mixing by ultrasonic waves or the like in addition to mixing by stirring using an agitator or a stirrer.
本発明のCNF懸濁水と非水溶性の有機溶剤との混合により得られるエマルションは、図1に示すように長期間にわたりその状態を維持することが確認された。 It was confirmed that the emulsion obtained by mixing the CNF suspension water of the present invention and the water-insoluble organic solvent maintains the state for a long period of time as shown in FIG.
本発明のCNF懸濁水と非水溶性の有機溶剤との混合により得られるエマルションは、用いるCNF懸濁水の原料によりその状態が異なる。図1に示すように、木材パルプが原料のCNF懸濁水を用いると、エマルションは水層(下層)と有機溶媒層(上層)の間に生じ、竹パルプが原料のCNF懸濁水を用いると、エマルションは有機溶媒を全て取り込み、有機溶媒層は確認出来ない状態となった。エマルション形成5日後の液を傾けて観察した図2から分かるように、竹パルプが原料のCNF懸濁水を用いて得られたエマルションは高い粘性を示した。また図3の光学顕微鏡写真からエマルション中にはミセルが形成されていることが確認された。さらには、図4のエマルション形成部を凍結したのち割断した面の走査型電子顕微鏡写真から、木材パルプが原料のCNF懸濁水を用いて得られたエマルションではミセル内部が空洞で、ミセルとミセルの間をCNFが埋め尽くしていることが分かった。竹パルプが原料のCNF懸濁水を用いて得られたエマルションでは、ミセルは単独で存在し、CNFがミセルを形成している状態が確認された。このようなミセルの形成には、CNFの両親媒性的な働きが寄与していると思われる。 The state of the emulsion obtained by mixing the CNF suspension water of the present invention with a water-insoluble organic solvent varies depending on the raw material of the CNF suspension water used. As shown in FIG. 1, when wood pulp uses CNF suspension water as a raw material, an emulsion is generated between an aqueous layer (lower layer) and an organic solvent layer (upper layer), and bamboo pulp uses CNF suspension water as a raw material. The emulsion took up all of the organic solvent, and the organic solvent layer could not be confirmed. As can be seen from FIG. 2 which was observed by tilting the liquid 5 days after the emulsion formation, the emulsion obtained using the CNF suspension water from which bamboo pulp was a raw material showed high viscosity. Further, it was confirmed from the optical micrograph of FIG. 3 that micelles were formed in the emulsion. Furthermore, from the scanning electron micrograph of the surface that was cut after freezing the emulsion forming portion in FIG. 4, the emulsion obtained using the CNF suspension water of which the wood pulp is the raw material has a hollow inside the micelle, and the micelle and micelle It turned out that CNF was filled up. In the emulsion in which bamboo pulp was obtained using CNF suspension water as a raw material, micelles existed alone, and it was confirmed that CNF formed micelles. It seems that the amphipathic action of CNF contributes to the formation of such micelles.
これらの結果から、CNF懸濁水と非水溶性の有機溶剤との混合により得られる本発明のエマルションの調製には、化学修飾等の特別な処理を一切必要としない。単に、CNF懸濁水を有機溶剤と混合するだけで容易に調製可能であり、また得られたエマルションは長期にわたりその状態を維持する。さらには、用いるCNF懸濁水の原料種を変えることにより異なる特徴を有するエマルションが調製可能である。 From these results, the preparation of the emulsion of the present invention obtained by mixing the CNF suspension water and the water-insoluble organic solvent does not require any special treatment such as chemical modification. It can be easily prepared simply by mixing CNF suspension water with an organic solvent, and the obtained emulsion maintains its state for a long time. Furthermore, emulsions having different characteristics can be prepared by changing the raw material species of CNF suspension water to be used.
CNF懸濁水と非水溶性の有機溶剤との混合により得られる本発明のエマルションは、その容易な調整方法と特徴から、既存の工業製品への応用だけでなく、CNFを用いた新たな用途開発の基礎になることが期待される。
The emulsion of the present invention obtained by mixing CNF suspension water with a water-insoluble organic solvent is not only applied to existing industrial products but also developed a new application using CNF because of its easy adjustment method and characteristics. It is expected to become the basis of
以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。 Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited by the following description.
非水溶性の有機溶剤との混合に使用したCNF懸濁水は以下の手順により調製した。湿潤状態の広葉樹由来の晒クラフトパルプを、濃度0.10wt%になるように水に懸濁させ、特許文献1に示されるACC法を用いて噴出圧力180MPa、処理回数90パスの条件で処理を行い、広葉樹由来の晒クラフトパルプを原料とした0.10wt%のCNF懸濁水を得た。同様の手順により、竹由来の晒クラフトパルプを原料とした0.10wt%のCNF懸濁水を得た。 The CNF suspension used for mixing with the water-insoluble organic solvent was prepared by the following procedure. A bleached kraft pulp derived from wet hardwood is suspended in water so as to have a concentration of 0.10 wt%, and treated under the conditions of an ejection pressure of 180 MPa and a treatment frequency of 90 passes using the ACC method disclosed in Patent Document 1. And 0.10 wt% CNF suspension water was obtained from bleached kraft pulp derived from hardwood. By the same procedure, 0.10 wt% CNF suspension water was obtained from bamboo-derived bleached kraft pulp.
上記手法により調製された直後のCNF懸濁水10mlを、n−ヘキサン(和光純薬工業(株)製)10mlが入った容量30ccスクリュー管に入れて上下に振って混合した後、超音波処理を2分行うことにより乳化させた。なお、通常、水とn−ヘキサンを混合すると、混合直後は懸濁した状態になるが数分後には2層に分離する。その際、水が下層、n−ヘキサンが上層になって分離する。しかし、CNF懸濁水を用いると図1に示すように5日経過しても白濁した状態を維持した。 10 ml of CNF suspension immediately after being prepared by the above method was placed in a 30 cc screw tube containing 10 ml of n-hexane (manufactured by Wako Pure Chemical Industries, Ltd.), shaken up and down, and then subjected to ultrasonic treatment. It was emulsified by performing for 2 minutes. Normally, when water and n-hexane are mixed, they are in a suspended state immediately after mixing but are separated into two layers after a few minutes. At that time, water is separated into the lower layer and n-hexane is separated into the upper layer. However, when CNF suspension water was used, the cloudy state was maintained even after 5 days, as shown in FIG.
静置して5日目の各種混合溶液の状態を、スクリュー管容器を傾けて観察したものが図2である。原料の種類により得られた混合液の状態が異なることが分かる。 FIG. 2 shows the state of various mixed solutions after standing still, with the screw tube container tilted. It turns out that the state of the liquid mixture obtained by the kind of raw material changes.
また、図1に観られる白濁箇所を採取し、光学顕微鏡(BHA:オリンパス社製)で100倍に拡大して観察したものが図3である。共に球状のミセルを形成していることが判明し、白濁した箇所はエマルションであることが示唆された。 Further, FIG. 3 shows a clouded portion observed in FIG. 1, which is observed by magnifying it 100 times with an optical microscope (BHA: manufactured by Olympus). Both were found to form spherical micelles, suggesting that the cloudy part was an emulsion.
ミセルの状態をより詳細に観察するため、走査型電子顕微鏡観察を行った。図1に観られる白濁箇所を走査型顕微鏡観察用の試料台に滴下し、液体窒素で凍結した後、凍結した試料をピンセットで割断してから凍結乾燥に供した。乾燥後の試料を走査型電子顕微鏡(JSM5600LV:日本電子株式会社製)により観察を行った。 In order to observe the micelle state in more detail, observation with a scanning electron microscope was performed. The cloudy portion seen in FIG. 1 was dropped on a sample stage for scanning microscope observation and frozen with liquid nitrogen, and then the frozen sample was cleaved with tweezers and then subjected to lyophilization. The sample after drying was observed with a scanning electron microscope (JSM5600LV: manufactured by JEOL Ltd.).
図4より、広葉樹由来の晒クラフトパルプを原料にしたCNF懸濁水を用いた場合と、竹由来の晒クラフトパルプを原料にしたCNF懸濁水を用いた場合では、得られるミセルの状態が異なることが判明した。すなわち、広葉樹由来の晒クラフトパルプを原料にしたCNF懸濁水を用いた場合には、n−ヘキサンが存在していたと思われる球状の空隙が観られ、その空隙と空隙の隙間(ミセル間)をCNFが密に占めていた。つまり、CNF懸濁水の中にn−ヘキサンが球状のミセルになって存在するO/W型エマルションを形成していたことが伺えた。一方、竹由来の晒クラフトパルプを原料にしたCNF懸濁水を用いた場合には、CNFが中空球状に集合したミセルと思われる形態が観察されたが、ミセルとミセルの間には殆ど何も存在しない状態だった。つまり、ミセルとミセルは個々に独立して存在している。また、そのエマルションタイプは、広葉樹由来の場合と同様にO/W型エマルションを形成しているか、もしくは内部が水で周りがn−ヘキサンを占めるW/O型エマルションを形成しているのだが、たとえミセル内部が水溶媒だとしても、その溶媒中にはCNFが極めて少なく、ほぼ水の状態になっている状態だと考えられる。 From FIG. 4, when using CNF suspension water made from bleached kraft pulp derived from hardwood and using CNF suspension water made from bleached kraft pulp derived from bamboo, the state of the micelle obtained is different. There was found. That is, when CNF suspension water made from bleached kraft pulp derived from hardwood is used, spherical voids where n-hexane seems to have existed are observed, and the gap between the voids (between micelles) CNF was densely occupied. That is, it can be seen that an O / W type emulsion in which n-hexane is present in spherical micelles in CNF suspension water was formed. On the other hand, when CNF suspension water made from bamboo-derived bleached kraft pulp was used, it was observed that the CNFs seemed to be assembled into hollow spheres, but there was almost nothing between the micelles and micelles. It did not exist. That is, the micelle and the micelle exist independently. In addition, the emulsion type forms an O / W type emulsion as in the case of hardwood, or forms a W / O type emulsion in which the inside is water and the surroundings are n-hexane. Even if the micelle interior is an aqueous solvent, it is considered that the solvent is in an almost water state with very little CNF.
これらの結果から、CNF懸濁水の原料の違いにより異なるエマルションを形成することが示唆された。
From these results, it was suggested that different emulsions were formed due to differences in the raw materials of CNF suspension water.
Claims (4)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013239073A JP6363340B2 (en) | 2013-11-19 | 2013-11-19 | Emulsions containing nano-sized fibrous polysaccharides, materials and methods for producing them |
PCT/JP2014/080158 WO2015076191A1 (en) | 2013-11-19 | 2014-11-14 | Emulsion which contains nanofibrillated fibrous polysaccharide, material, and processes for manufacturing same |
CN201480063197.1A CN105873673B (en) | 2013-11-19 | 2014-11-14 | Include lotion, material and its manufacturing method of the fibrous polysaccharide of nanometer miniaturization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013239073A JP6363340B2 (en) | 2013-11-19 | 2013-11-19 | Emulsions containing nano-sized fibrous polysaccharides, materials and methods for producing them |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015097992A JP2015097992A (en) | 2015-05-28 |
JP6363340B2 true JP6363340B2 (en) | 2018-07-25 |
Family
ID=53179456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013239073A Active JP6363340B2 (en) | 2013-11-19 | 2013-11-19 | Emulsions containing nano-sized fibrous polysaccharides, materials and methods for producing them |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6363340B2 (en) |
CN (1) | CN105873673B (en) |
WO (1) | WO2015076191A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020050153A1 (en) * | 2018-09-03 | 2021-08-26 | リンテック株式会社 | Composition |
WO2020050155A1 (en) * | 2018-09-03 | 2020-03-12 | リンテック株式会社 | Composition |
JPWO2020050152A1 (en) * | 2018-09-03 | 2021-09-02 | リンテック株式会社 | Composition |
WO2020050154A1 (en) * | 2018-09-03 | 2020-03-12 | リンテック株式会社 | Composition |
JP2020182903A (en) * | 2019-05-08 | 2020-11-12 | 日本製紙株式会社 | Emulsifier including carboxymethylated cellulose nanofiber and water-soluble polymer |
WO2020226061A1 (en) * | 2019-05-08 | 2020-11-12 | 日本製紙株式会社 | Emulsifier including carboxymethyl cellulose nanofibers and water-soluble polymer, and method for manufacturing emulsion using said emulsifier |
JP7477333B2 (en) * | 2020-01-17 | 2024-05-01 | 日本製紙株式会社 | Method for producing emulsion using emulsifier containing dry solid of mixture of carboxymethylated cellulose nanofiber and water-soluble polymer |
JP7429504B2 (en) * | 2019-06-28 | 2024-02-08 | リンテック株式会社 | Injection device, composition injection method, and composition for injection |
JP7421729B2 (en) * | 2020-02-28 | 2024-01-25 | 愛媛県 | Long-term retention sheet for aroma ingredients |
EP4151308A4 (en) | 2020-05-14 | 2024-06-19 | Fukuoka University | Method for producing cellulose nanofiber capsule |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2783437B1 (en) * | 1998-09-22 | 2001-02-02 | Rhodia Chimie Sa | USE OF ESSENTIALLY AMORPHOUS CELLULOSE NANOFIBRILLES AS AN EMULSIFYING AND / OR STABILIZING AGENT |
FR2794466B1 (en) * | 1999-06-02 | 2001-06-29 | Oreal | COMPOSITION IN THE FORM OF AN OIL-IN-WATER EMULSION CONTAINING CELLULOSE FIBRILLES AND ITS IN PARTICULAR COSMETIC USES |
JP2005270891A (en) * | 2004-03-26 | 2005-10-06 | Tetsuo Kondo | Wet crushing method of polysaccharide |
CN102309943A (en) * | 2010-07-02 | 2012-01-11 | 天津科技大学 | Method for preparing Pickering emulsion by using bacterial cellulose |
CN102553470B (en) * | 2011-11-10 | 2014-06-25 | 海南光宇生物科技有限公司 | Biological cellulose micro powder and application thereof |
-
2013
- 2013-11-19 JP JP2013239073A patent/JP6363340B2/en active Active
-
2014
- 2014-11-14 WO PCT/JP2014/080158 patent/WO2015076191A1/en active Application Filing
- 2014-11-14 CN CN201480063197.1A patent/CN105873673B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN105873673A (en) | 2016-08-17 |
CN105873673B (en) | 2018-08-24 |
JP2015097992A (en) | 2015-05-28 |
WO2015076191A1 (en) | 2015-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6363340B2 (en) | Emulsions containing nano-sized fibrous polysaccharides, materials and methods for producing them | |
Tardy et al. | Deconstruction and reassembly of renewable polymers and biocolloids into next generation structured materials | |
Yokota et al. | Pickering emulsion stabilization by using amphiphilic cellulose nanofibrils prepared by aqueous counter collision | |
Cunha et al. | Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses | |
Kalia et al. | Nanofibrillated cellulose: surface modification and potential applications | |
Lin et al. | TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges | |
Besbes et al. | Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content | |
Khalil et al. | Production and modification of nanofibrillated cellulose using various mechanical processes: a review | |
Salas et al. | Nanocellulose properties and applications in colloids and interfaces | |
Holt et al. | Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives | |
JP6978843B2 (en) | Manufacturing method of cellulose nanofiber film and cellulose nanofiber film | |
JP2003528935A (en) | Fine fiber and / or microcrystalline dispersions of cellulose, especially in organic solvents | |
JP6286131B2 (en) | Fine cellulose fiber, production method thereof and dispersion | |
JP6345925B2 (en) | Nanocomposite and method for producing nanocomposite | |
Dai et al. | Enhanced interface properties and stability of lignocellulose nanocrystals stabilized pickering emulsions: The leading role of tannic acid | |
JP2019521846A (en) | Cellulose filament stabilized pickering emulsion | |
CN104903511B (en) | The combination drying of nanometer fibrillation polysaccharide | |
CN113454146B (en) | Composite particle, composite particle composition, and method for producing composite particle composition | |
Kaku et al. | Synthesis of chitin nanofiber-coated polymer microparticles via Pickering emulsion | |
JP2018162436A (en) | H type carboxylated cellulose nanofibers | |
Carvalho et al. | Polystyrene/cellulose nanofibril composites: fiber dispersion driven by nanoemulsion flocculation | |
JP2020097733A (en) | Fine cellulose fiber-containing dry solid, and fine cellulose fiber re-dispersion liquid | |
JP2010013604A (en) | Cellulose dispersion | |
JP6534172B2 (en) | Dry solid of cellulose nanofiber, method for producing the same, and redispersion of dry solid | |
Liu et al. | Large-scale preparation of carboxylated cellulose nanocrystals and their application for stabilizing pickering emulsions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160923 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171005 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180628 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6363340 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |