JP6358795B2 - Composite plate and manufacturing method thereof - Google Patents
Composite plate and manufacturing method thereof Download PDFInfo
- Publication number
- JP6358795B2 JP6358795B2 JP2013233450A JP2013233450A JP6358795B2 JP 6358795 B2 JP6358795 B2 JP 6358795B2 JP 2013233450 A JP2013233450 A JP 2013233450A JP 2013233450 A JP2013233450 A JP 2013233450A JP 6358795 B2 JP6358795 B2 JP 6358795B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- graphite particles
- matching layer
- acoustic matching
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000002131 composite material Substances 0.000 title description 33
- 239000011347 resin Substances 0.000 claims description 63
- 229920005989 resin Polymers 0.000 claims description 63
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 43
- 229910002804 graphite Inorganic materials 0.000 claims description 29
- 239000010439 graphite Substances 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 27
- 238000010304 firing Methods 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000010000 carbonizing Methods 0.000 claims description 6
- 238000001125 extrusion Methods 0.000 claims description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 10
- 239000004917 carbon fiber Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000007833 carbon precursor Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000007849 furan resin Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000003763 carbonization Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000009849 vacuum degassing Methods 0.000 description 2
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Transducers For Ultrasonic Waves (AREA)
Description
本発明は、複合板とその製造方法、特に、超音波診断装置において振動子からの波の反射を抑え測定対象層へ通過させる音響整合層または電子部品の放熱のための放熱部材として好適な複合板とその製造方法に関する。 The present invention relates to a composite plate and a manufacturing method thereof, and in particular, a composite suitable as a heat radiating member for radiating heat from an acoustic matching layer or an electronic component that suppresses reflection of waves from a vibrator and passes to a measurement target layer in an ultrasonic diagnostic apparatus It is related with a board and its manufacturing method.
超音波診断装置において、振動子として用いられるPZTの音響インピーダンスは約35Mrayl(メガレイル)であるのに対して、測定対象となる人体の音響インピーダンスは1〜2Mraylと著しく異なっている。そのため、振動子と測定対象の中間的な音響インピーダンス値を有する整合層を介在させて超音波を効率よく透過させる必要がある。 In the ultrasonic diagnostic apparatus, the acoustic impedance of PZT used as a vibrator is about 35 Mrayl (megarail), whereas the acoustic impedance of a human body to be measured is significantly different from 1 to 2 Mrayl. Therefore, it is necessary to efficiently transmit ultrasonic waves through a matching layer having an intermediate acoustic impedance value between the transducer and the measurement target.
下記特許文献1には、整合層として音響インピーダンスが1.7〜1.8程度のポリメチルペンテンを用いることが記載されている。 Patent Document 1 below describes that polymethylpentene having an acoustic impedance of about 1.7 to 1.8 is used as the matching layer.
特許文献2には、エポキシ樹脂のマトリクス中に、4.0g/cc以下の密度を有する軽粒子と4.0g/ccを超える密度を有する重粒子とを分散させて3.0メガレイルから約7.0メガレイルの間の音響インピーダンスを有する整合層108を得ること、及び、エポキシ樹脂のマトリクス中に、ミクロンサイズの粒子とナノサイズの粒子とを分散させて約7.0メガレイルから約14.0メガレイルの間の音響インピーダンスを有する整合層110を得ることが記載されている。 Patent Document 2 discloses that light particles having a density of 4.0 g / cc or less and heavy particles having a density of more than 4.0 g / cc are dispersed in a matrix of epoxy resin to 3.0 megarail to about 7 Obtaining a matching layer 108 having an acoustic impedance between 0.0 megarail and dispersing micron-sized and nano-sized particles in an epoxy resin matrix from about 7.0 megarail to about 14.0; It is described to obtain a matching layer 110 having an acoustic impedance between megarails.
本発明の目的は、超音波診断装置における音響整合層としての使用に適した新規な複合板とその製造方法を提供することにある。 An object of the present invention is to provide a novel composite plate suitable for use as an acoustic matching layer in an ultrasonic diagnostic apparatus and a method for manufacturing the same.
本発明の第2の目的は、電子部品の放熱のための放熱部材としての使用にも適した複合板とその製造方法を提供することにある。 A second object of the present invention is to provide a composite plate suitable for use as a heat dissipation member for heat dissipation of electronic components and a method for manufacturing the same.
本発明によれば、板状の母材と、前記母材中に分散し、板面に垂直な方向に配向した結晶性炭素粉とを含む複合板が提供される。 According to the present invention, there is provided a composite plate comprising a plate-like base material and crystalline carbon powder dispersed in the base material and oriented in a direction perpendicular to the plate surface.
前記母材はアモルファス炭素を含む。 The base material includes amorphous carbon.
或いはまた、前記母材は硬化後の樹脂を含む。 Alternatively, the base material includes a cured resin.
前記結晶性炭素粉は前記母材中に均一に分散していることが好ましい。 It is preferable that the crystalline carbon powder is uniformly dispersed in the base material.
前述の複合板は、樹脂に結晶性炭素粉を均一に分散させ、前記結晶性炭素粉が均一に分散した樹脂を押出成形機にて棒状に成形し、前記成形物を加熱して樹脂を硬化させ、前記成形物を樹脂の硬化前または硬化後において所要の長さに切断して所要の厚みの板とすることを含む方法により製造される。 The above-described composite plate is obtained by uniformly dispersing crystalline carbon powder in a resin, forming the resin in which the crystalline carbon powder is uniformly dispersed into a rod shape by an extruder, and curing the resin by heating the molded product. The molded product is cut into a required length before or after the resin is cured to produce a plate having a required thickness.
前記樹脂は炭素含有樹脂であり、前記樹脂が硬化された成形物を前記切断の前または切断の後において非酸化性雰囲気中で焼成・炭素化することをさらに含むことが好ましい。 Preferably, the resin is a carbon-containing resin, and further includes baking and carbonizing the molded product obtained by curing the resin in a non-oxidizing atmosphere before or after the cutting.
前述の複合板は、樹脂に結晶性炭素粉を均一に分散させ、前記結晶性炭素粉が均一に分散した樹脂に型内で厚み方向に磁場を印加し、磁場を印加した樹脂を硬化させることを含む方法によっても製造される。 The above-mentioned composite plate is obtained by uniformly dispersing crystalline carbon powder in a resin, applying a magnetic field in the thickness direction in the mold to the resin in which the crystalline carbon powder is uniformly dispersed, and curing the resin to which the magnetic field is applied. It is manufactured also by the method containing.
前記樹脂は炭素含有樹脂であり、前記硬化後において、非酸化性雰囲気中で樹脂を焼成・炭素化することをさらに含むことが好ましい。 The resin is a carbon-containing resin, and preferably further includes baking and carbonizing the resin in a non-oxidizing atmosphere after the curing.
前述の複合板は、アモルファス炭素または硬化した樹脂の棒状の母材と、該母材の軸方向に配向し母材中に均一に分散した結晶性炭素粉とを含む軸材を複数本束ね、前記束ねられた軸材の隙間に樹脂を注入して軸材を相互に接着し、前記隙間に注入された樹脂を硬化させることを含む方法によっても製造される。 The above-mentioned composite plate is a bundle of a plurality of shaft members each including a rod-shaped base material of amorphous carbon or a cured resin and crystalline carbon powder that is oriented in the axial direction of the base material and is uniformly dispersed in the base material. It is also manufactured by a method including injecting a resin into the gap between the bundled shaft members, bonding the shaft members to each other, and curing the resin injected into the gap.
前記軸材は、樹脂に結晶性炭素粉を均一に分散させ押出成形機にて棒状に成形し非酸化性雰囲気中で焼成しまたは非焼成の軸材、鉛筆芯またはシャープ芯を含む。なお、鉛筆芯やシャープ芯は、樹脂に黒鉛を混合して均一に分散させ押出成形機で細線状に成形した後、熱処理して樹脂を炭素化したものである。 The shaft material includes a shaft material, a pencil core, or a sharp core, in which crystalline carbon powder is uniformly dispersed in a resin, formed into a rod shape with an extruder and fired in a non-oxidizing atmosphere. The pencil lead or sharp lead is obtained by mixing graphite with resin and dispersing it uniformly, forming it into a fine line with an extruder, and then heat treating it to carbonize the resin.
軸材の並べ方は、最密充填が望ましいが、一定の間隔を置いても良い。 The shafts are preferably arranged in close-packed manner, but may be spaced at regular intervals.
前述の結晶性炭素粉は、例えば、黒鉛粒子および/または炭素繊維である。 The aforementioned crystalline carbon powder is, for example, graphite particles and / or carbon fibers.
押出成形による配向
<実施例1>
塩化ビニル樹脂30部、フラン樹脂30部、天然鱗状黒鉛(平均粒子径5μm)20部、およびピッチ系黒鉛質炭素繊維(日本グラファイトファイバー製 HC600−15M、平均直径7μm、平均長さ150μm)20部に、可塑剤としてジアリルフタレートモノマーを添加して、ヘンシェルミキサーで分散させた後、3本ロールにて混練し、ペレタイザーにてペレット化し成形用組成物を得た。
Orientation by Extrusion <Example 1>
30 parts of vinyl chloride resin, 30 parts of furan resin, 20 parts of natural scaly graphite (average particle diameter 5 μm), and 20 parts of pitch-based graphitic carbon fiber (HC600-15M, Nippon Graphite Fiber, average diameter 7 μm, average length 150 μm) Then, a diallyl phthalate monomer was added as a plasticizer, dispersed with a Henschel mixer, kneaded with three rolls, and pelletized with a pelletizer to obtain a molding composition.
この成形用組成物を、口径20mmのダイスを装着した押出成形機にて棒状に成形して炭素繊維を押出方向に配向させ、180℃のエアオーブン中で3時間処理して炭素前駆体とした。その後窒素ガス中で毎時15℃で昇温し、1000℃で3時間保持して焼成・炭素化し、φ17mmの軸材を得た。得られた軸材の軸方向(すなわち、後述するように厚み方向)の音速を超音波プローブを使用した水浸法により測定し、密度を測定し、音速と密度から音響インピーダンスを(音速)×(密度)により計算した。結果を表1に示す。また、軸方向(厚み方向)および軸に垂直な面の方向(すなわち、後述するように板面方向)の断面の顕微鏡写真をそれぞれ図1および図2に示す。
得られた軸材を、焼成・炭素化の前または焼成・炭素化の後において所要の長さに切断することで、所要の厚みを有する複合板が得られる。この場合に、切断前の軸材の軸方向は切断後の複合板の「厚み方向」に相当し、軸に垂直な面の方向は複合板の「板面方向」に相当する。
<比較例1>
実施例1で得られた成形用組成物を、口径2.0mmのシート用ダイスを装着した押出成形機にてシート状に成形して炭素繊維を押出方向に配向させ、180℃のエアオーブン中で3時間処理し炭素前駆体とした。その後窒素ガス中で毎時15℃で昇温し、1000℃で3時間保持して焼成・炭素化し、1.5mm厚のシート材を得た。得られたシート材の厚み方向の音速を実施例1と同様にして測定し、密度を測定し、音速と密度から音響インピーダンスを(音速)×(密度)により計算した。結果を表1に示す。
This molding composition was formed into a rod shape by an extrusion molding machine equipped with a die having a diameter of 20 mm, the carbon fibers were oriented in the extrusion direction, and treated in an air oven at 180 ° C. for 3 hours to obtain a carbon precursor. . Thereafter, the temperature was raised at 15 ° C. per hour in nitrogen gas, and the mixture was calcined and carbonized by holding at 1000 ° C. for 3 hours to obtain a shaft material having a diameter of 17 mm. The sound velocity in the axial direction of the obtained shaft material (that is, the thickness direction as described later) is measured by a water immersion method using an ultrasonic probe, the density is measured, and the acoustic impedance is calculated from the sound velocity and the density (sound velocity) × Calculated by (density). The results are shown in Table 1. Moreover, the micrograph of the cross section of an axial direction (thickness direction) and the direction of a surface perpendicular | vertical to an axis | shaft (namely, plate | board surface direction as mentioned later) is shown in FIG. 1 and FIG.
The obtained shaft material is cut to a required length before firing or carbonization or after firing / carbonization to obtain a composite plate having a required thickness. In this case, the axial direction of the shaft material before cutting corresponds to the “thickness direction” of the composite plate after cutting, and the direction of the surface perpendicular to the axis corresponds to the “plate surface direction” of the composite plate.
<Comparative Example 1>
The molding composition obtained in Example 1 was formed into a sheet shape by an extrusion molding machine equipped with a sheet die having a diameter of 2.0 mm, and the carbon fibers were oriented in the extrusion direction. In an air oven at 180 ° C. To give a carbon precursor. Thereafter, the temperature was raised at 15 ° C./hour in nitrogen gas, and the mixture was baked and carbonized at 1000 ° C. for 3 hours to obtain a sheet material having a thickness of 1.5 mm. The sound speed in the thickness direction of the obtained sheet material was measured in the same manner as in Example 1, the density was measured, and the acoustic impedance was calculated from (sound speed) × (density) from the sound speed and density. The results are shown in Table 1.
磁場による配向
<実施例2>
フラン樹脂90部および薄片状黒鉛(日本黒鉛製UP−5N平均粒子径5μまたは日本国黒鉛製UP−20N平均粒子径20μ)10部に、硬化剤としてp−トルエンスルフォン酸3部とメタノール液3部を添加して、高速ホモミキサーを用いて室温化において充分撹拌しながら減圧脱泡操作を施したものを用意した。
Orientation by magnetic field <Example 2>
90 parts of furan resin and 10 parts of flaky graphite (UP-5N average particle diameter 5 μm made by Japanese graphite or UP-20N average particle diameter 20 μm made by Japanese graphite), 3 parts of p-toluenesulfonic acid and methanol solution 3 as a curing agent Were added and subjected to vacuum degassing with sufficient stirring at room temperature using a high speed homomixer.
この溶液を厚み2mmの型枠に流し込み、YS型可変式電磁石(玉川製作所製)にて1テスラの磁場を厚み方向に印加後に加熱硬化し、180℃のエアオーブン中で3時間処理し炭素前駆体とした。その後窒素ガス中で毎時15℃で昇温し、1400℃で3時間保持し、1.5mm厚のシート材を得た。 This solution is poured into a 2 mm thick mold, applied with a magnetic field of 1 Tesla in the thickness direction with a YS variable electromagnet (manufactured by Tamagawa Seisakusho), heat-cured, treated in an air oven at 180 ° C. for 3 hours, and carbon precursor. The body. Thereafter, the temperature was raised at 15 ° C./hour in nitrogen gas and maintained at 1400 ° C. for 3 hours to obtain a sheet material having a thickness of 1.5 mm.
得られたシート材について、実施例1と同様に音速と密度を測定して音響インピーダンスの値を算出し、さらに、NETZSCH社製レーザーフラッシュ熱物性測定装置LFA457にて厚み方向の熱伝導率を測定した。結果を表2に示す。また、平均粒子径5μmの黒鉛を用いたものについて、厚み方向の断面の顕微鏡写真を図4に示す。
<比較例2>
実施例2と同様な工程で、ただし磁場を印加することなく、1.5mm厚のシート材を得た。結果を表2に示す。また、平均粒子径5μmの黒鉛を用いたものについて、厚み方向の断面の顕微鏡写真を図3に示す。
For the obtained sheet material, the sound velocity and density were measured in the same manner as in Example 1 to calculate the value of acoustic impedance, and the thermal conductivity in the thickness direction was measured with a laser flash thermophysical property measuring apparatus LFA457 manufactured by NETZSCH. did. The results are shown in Table 2. FIG. 4 shows a micrograph of a cross section in the thickness direction of the graphite using an average particle diameter of 5 μm.
<Comparative example 2>
A sheet material having a thickness of 1.5 mm was obtained in the same process as in Example 2, but without applying a magnetic field. The results are shown in Table 2. FIG. 3 shows a micrograph of a cross section in the thickness direction of the graphite using an average particle diameter of 5 μm.
黒鉛に代えて炭素繊維を用いても磁場を厚み方向に印加することにより炭素繊維が厚み方向に配向することが確認されている。 Even if carbon fiber is used instead of graphite, it is confirmed that the carbon fiber is oriented in the thickness direction by applying a magnetic field in the thickness direction.
軸材の接着
<実施例3>
φ0.5のシャープ芯(uni Nano Dia 0.5mm HB)を束ね、その隙間に、フラン樹脂100部に硬化剤としてp−トルエンスルフォン酸3部とメタノール液3部を添加して高速ホモミキサーを用いて室温化において充分撹拌したものを注入し、減圧脱泡操作で脱気し、加熱硬化後、180℃のエアオーブン中で3時間処理した。実施例1と同様にしてその厚み方向の特性を測定し算出した結果を以下の表3に示す。また、その断面の写真を図5に示す。
Adhesion of shaft material <Example 3>
Bundle a 0.5mm sharp core (uni Nano Dia 0.5mm HB) and add 3 parts of p-toluenesulfonic acid and 3 parts of methanol solution as curing agent to 100 parts of furan resin in the gap. The mixture was sufficiently stirred at room temperature and poured, degassed by a vacuum degassing operation, heat-cured, and then treated in an air oven at 180 ° C. for 3 hours. Table 3 below shows the results of measuring and calculating the characteristics in the thickness direction in the same manner as in Example 1. Moreover, the photograph of the cross section is shown in FIG.
〈1〉 板状の母材と、<1> a plate-shaped base material;
前記母材中に分散し、板面に垂直な方向に配向した結晶性炭素粉とを含む複合板。 A composite plate comprising crystalline carbon powder dispersed in the base material and oriented in a direction perpendicular to the plate surface.
〈2〉 前記母材はアモルファス炭素を含む項目1記載の複合板。<2> The composite plate according to Item 1, wherein the base material includes amorphous carbon.
〈3〉 前記母材は硬化後の樹脂を含む項目1または2記載の複合板。<3> The composite plate according to Item 1 or 2, wherein the base material includes a cured resin.
〈4〉 前記結晶性炭素粉は前記母材中に均一に分散している項目1〜3のいずれか1項記載の複合板。<4> The composite plate according to any one of items 1 to 3, wherein the crystalline carbon powder is uniformly dispersed in the base material.
〈5〉 前記結晶性炭素粉は、黒鉛粒子および/または炭素繊維である項目1〜4のいずれか1項記載の複合板。<5> The composite plate according to any one of items 1 to 4, wherein the crystalline carbon powder is graphite particles and / or carbon fibers.
〈6〉 樹脂に結晶性炭素粉を均一に分散させ、<6> Disperse the crystalline carbon powder uniformly in the resin,
前記結晶性炭素粉が均一に分散した樹脂を押出成形機にて棒状に成形し、 The resin in which the crystalline carbon powder is uniformly dispersed is molded into a rod shape by an extruder,
前記成形物を加熱して樹脂を硬化させ、 The molded product is heated to cure the resin,
前記成形物を樹脂の硬化前または硬化後において所要の長さに切断して所要の厚みの板とすることを含む、複合板の製造方法。 A method for producing a composite plate, comprising cutting the molded product into a plate having a required thickness by cutting the molded product to a required length before or after curing the resin.
〈7〉 前記樹脂は炭素含有樹脂であり、前記樹脂が硬化された成形物を前記切断の前または切断の後において非酸化性雰囲気中で焼成・炭素化することをさらに含む項目6記載の複合板の製造方法。<7> The composite according to item 6, wherein the resin is a carbon-containing resin, and further includes firing and carbonizing a molded product obtained by curing the resin in a non-oxidizing atmosphere before or after the cutting. A manufacturing method of a board.
〈8〉 樹脂に結晶性炭素粉を均一に分散させ、<8> Disperse the crystalline carbon powder uniformly in the resin,
前記結晶性炭素粉が均一に分散した樹脂に型内で厚み方向に磁場を印加し、 Applying a magnetic field in the thickness direction in the mold to the resin in which the crystalline carbon powder is uniformly dispersed,
磁場を印加した樹脂を硬化させることを含む、複合板の製造方法。 A method for producing a composite plate, comprising curing a resin to which a magnetic field is applied.
〈9〉 前記樹脂は炭素含有樹脂であり、前記硬化後において、非酸化性雰囲気中で樹脂を焼成・炭素化することをさらに含む項目8記載の複合板の製造方法。<9> The method for producing a composite plate according to Item 8, wherein the resin is a carbon-containing resin, and further includes firing and carbonizing the resin in a non-oxidizing atmosphere after the curing.
〈10〉 アモルファス炭素または硬化した樹脂の棒状の母材と、該母材の軸方向に配向し母材中均一に分散した結晶性炭素粉とを含む軸材を複数本束ね、<10> A plurality of shaft materials including a rod-shaped base material of amorphous carbon or a cured resin and a crystalline carbon powder oriented in the axial direction of the base material and uniformly dispersed in the base material,
前記束ねられた軸材の隙間に樹脂を注入して軸材を相互に接着し、 Injecting resin into the gap between the bundled shaft members to bond the shaft members to each other,
前記隙間に注入された樹脂を硬化させることを含む、複合板の製造方法。 A method for producing a composite plate, comprising curing a resin injected into the gap.
〈11〉 前記軸材は、樹脂に結晶性炭素粉を均一に分散させ押出成形機にて棒状に成形し非酸化性雰囲気中で焼成しまたは非焼成の軸材、鉛筆芯またはシャープ芯を含む項目10記載の複合板の製造方法。<11> The shaft material includes a shaft material, a pencil core, or a sharp core, in which crystalline carbon powder is uniformly dispersed in a resin, formed into a rod shape with an extruder, and fired in a non-oxidizing atmosphere. Item 10. A method for producing a composite plate according to Item 10.
〈12〉 前記結晶性炭素粉は、黒鉛粒子および/または炭素繊維である項目6〜11のいずれか1項記載の複合板の製造方法。<12> The method for producing a composite plate according to any one of items 6 to 11, wherein the crystalline carbon powder is graphite particles and / or carbon fibers.
Claims (11)
前記母材中に分散し、板面に垂直な方向に配向した黒鉛粒子とを含む音響整合層。 A plate-shaped base material;
An acoustic matching layer comprising graphite particles dispersed in the base material and oriented in a direction perpendicular to the plate surface.
前記黒鉛粒子が均一に分散した樹脂を押出成形機にて棒状に成形し、
前記成形物を加熱して樹脂を硬化させ、
前記成形物を樹脂の硬化前または硬化後において、押出方向と垂直な方向で所要の長さに切断して所要の厚みの板とすること
を含む、請求項1〜5のいずれか1項記載の音響整合層の製造方法。 Disperse the graphite particles uniformly in the resin,
A resin in which the graphite particles are uniformly dispersed is formed into a rod shape with an extruder,
The molded product is heated to cure the resin,
6. The method according to claim 1 , comprising cutting the molded product to a required length in a direction perpendicular to the extrusion direction before or after curing the resin to obtain a plate having a required thickness. A method for producing an acoustic matching layer .
前記黒鉛粒子が均一に分散した樹脂に型内で厚み方向に磁場を印加し、
磁場を印加した樹脂を硬化させること
を含む、請求項1〜5のいずれか1項記載の音響整合層の製造方法。 Disperse the graphite particles uniformly in the resin,
Applying a magnetic field in the thickness direction in the mold to the resin in which the graphite particles are uniformly dispersed,
The method for producing an acoustic matching layer according to claim 1 , comprising curing a resin to which a magnetic field is applied.
前記束ねられた軸材の隙間に樹脂を注入して軸材を相互に接着し、
前記隙間に注入された樹脂を硬化させ、そして
前記軸材を、前記軸方向と垂直な方向で所要の長さに切断して所要の厚みの板とすることを含む、請求項1〜5のいずれか1項記載の音響整合層の製造方法。 A bundle of a plurality of shafts including a rod-shaped base material of amorphous carbon or cured resin and graphite particles oriented in the axial direction of the base material and uniformly dispersed in the base material,
Injecting resin into the gap between the bundled shaft members to bond the shaft members to each other,
Curing the resin injected into the gap ; and
The shaft member comprises a plate and be Rukoto the desired thickness and cut to a required length at the axial direction perpendicular manufacturing the acoustic matching layer according to any one of claims 1 to 5 Method.
樹脂に黒鉛粒子を均一に分散させ押出成形機にて棒状に成形し、そして非酸化性雰囲気中で焼成した軸材、または
樹脂に黒鉛粒子を均一に分散させ押出成形機にて棒状に成形した非焼成の軸材
を含む請求項10記載の音響整合層の製造方法。 The shaft material is
A shaft material in which graphite particles are uniformly dispersed in a resin, formed into a rod shape with an extruder , and fired in a non-oxidizing atmosphere , or
The method for producing an acoustic matching layer according to claim 10, comprising an unfired shaft material in which graphite particles are uniformly dispersed in a resin and formed into a rod shape by an extruder .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013233450A JP6358795B2 (en) | 2013-11-11 | 2013-11-11 | Composite plate and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013233450A JP6358795B2 (en) | 2013-11-11 | 2013-11-11 | Composite plate and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015093012A JP2015093012A (en) | 2015-05-18 |
JP6358795B2 true JP6358795B2 (en) | 2018-07-18 |
Family
ID=53195840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013233450A Active JP6358795B2 (en) | 2013-11-11 | 2013-11-11 | Composite plate and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6358795B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7333684B2 (en) * | 2018-04-26 | 2023-08-25 | 三菱鉛筆株式会社 | ultrasonic probe |
JP7240114B2 (en) * | 2018-08-30 | 2023-03-15 | 三菱鉛筆株式会社 | String support member for stringed instrument |
JP2023079663A (en) * | 2021-11-29 | 2023-06-08 | 三菱鉛筆株式会社 | Acoustic matching layer |
JP2023079673A (en) * | 2021-11-29 | 2023-06-08 | 三菱鉛筆株式会社 | Acoustic matching layer |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5034112Y2 (en) * | 1971-03-03 | 1975-10-04 | ||
JPS5757696A (en) * | 1980-09-24 | 1982-04-06 | Inoue Japax Res | Lead of pencil and its manufacture |
JP3589482B2 (en) * | 1994-04-06 | 2004-11-17 | 大西 一正 | Piezoelectric vibrator |
JP2000323633A (en) * | 1999-05-10 | 2000-11-24 | Mitsubishi Pencil Co Ltd | Carbon heat dissipating body and its manufacture |
JP2001309495A (en) * | 2000-04-21 | 2001-11-02 | Onishi Kazumasa | Ultrasonic transducer |
JP3923846B2 (en) * | 2002-04-30 | 2007-06-06 | 松下電器産業株式会社 | Ultrasonic probe |
JP4140359B2 (en) * | 2002-11-27 | 2008-08-27 | 松下電器産業株式会社 | Alignment member for ultrasonic transducer and ultrasonic sensor using the same |
CN100544676C (en) * | 2003-02-27 | 2009-09-30 | 株式会社日立医药 | Ultrasound probe |
JP4454353B2 (en) * | 2003-05-09 | 2010-04-21 | 昭和電工株式会社 | Linear fine carbon fiber and resin composite using the same |
JP4643227B2 (en) * | 2004-11-04 | 2011-03-02 | 株式会社東芝 | Ultrasonic probe and ultrasonic diagnostic apparatus |
US8435606B1 (en) * | 2008-08-01 | 2013-05-07 | Hrl Laboratories, Llc | Polymer-infused carbon nanotube array and method |
JP2012134221A (en) * | 2010-12-20 | 2012-07-12 | Mitsubishi Pencil Co Ltd | Carbon heat dissipator and method of manufacturing the same |
JP2012244273A (en) * | 2011-05-17 | 2012-12-10 | Panasonic Corp | Ultrasonic probe |
JP2013153398A (en) * | 2012-01-25 | 2013-08-08 | Kazumasa Onishi | Ultrasonic vibrator |
-
2013
- 2013-11-11 JP JP2013233450A patent/JP6358795B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015093012A (en) | 2015-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness | |
JP5541400B2 (en) | Manufacturing method of heat conductive sheet | |
CN105378914B (en) | Heat conductive sheet | |
JP6358795B2 (en) | Composite plate and manufacturing method thereof | |
JP6034562B2 (en) | Thermally conductive sheet and method for producing the thermally conductive sheet | |
CN107043538B (en) | Thermal conductive sheet | |
JP6214333B2 (en) | Acoustic matching layer and manufacturing method thereof | |
KR20160147893A (en) | Carbonaceous acoustic matching layer and method for producing same | |
JPWO2007126133A1 (en) | Carbon fiber composite sheet | |
JP2015124122A (en) | Resin-impregnated boron nitride sintered body and use thereof | |
JP4657816B2 (en) | Method for producing thermally conductive molded body and thermally conductive molded body | |
Liu et al. | 4D printing of lead zirconate titanate piezoelectric composites transducer based on direct ink writing | |
JP2013131562A (en) | Heat conductive sheet manufacturing method | |
JP6195442B2 (en) | Carbonaceous acoustic diaphragm and manufacturing method thereof | |
JP6164583B2 (en) | Method for producing thermosetting rod | |
JP7249630B2 (en) | THERMALLY CONDUCTIVE BEADS, METHOD FOR MANUFACTURING SAME, RESIN COMPOSITION AND MOLDED PRODUCT | |
JP2015027772A (en) | Thermosetting sheet | |
JP6983345B1 (en) | Thermally conductive sheet and electronic equipment | |
JP2017087550A (en) | Molding die and method for producing molding | |
KR20200044396A (en) | Method of manufacturing high performance thin film material using polymer precursor | |
JP2015089087A (en) | Acoustic diaphragm and manufacturing method of the same | |
CN106883557B (en) | The method for preparing epoxy matrix composite using acid anhydride non-covalent modification graphene | |
TWI545082B (en) | Manufacturing method of carbon nanotubes with rigid structure | |
JP2007012440A (en) | Porous carbon material for fuel cell, thermal conductive member made of carbon fiber reinforced plastic, and manufacturing method of these | |
Hao et al. | Study on the control of mechanical and electrical properties of 3D printed BTO/PDMS flexible porous composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180522 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180619 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6358795 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |