JP6358795B2 - Composite plate and manufacturing method thereof - Google Patents

Composite plate and manufacturing method thereof Download PDF

Info

Publication number
JP6358795B2
JP6358795B2 JP2013233450A JP2013233450A JP6358795B2 JP 6358795 B2 JP6358795 B2 JP 6358795B2 JP 2013233450 A JP2013233450 A JP 2013233450A JP 2013233450 A JP2013233450 A JP 2013233450A JP 6358795 B2 JP6358795 B2 JP 6358795B2
Authority
JP
Japan
Prior art keywords
resin
graphite particles
matching layer
acoustic matching
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013233450A
Other languages
Japanese (ja)
Other versions
JP2015093012A (en
Inventor
俊樹 大野
俊樹 大野
厚則 佐竹
厚則 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP2013233450A priority Critical patent/JP6358795B2/en
Publication of JP2015093012A publication Critical patent/JP2015093012A/en
Application granted granted Critical
Publication of JP6358795B2 publication Critical patent/JP6358795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

本発明は、複合板とその製造方法、特に、超音波診断装置において振動子からの波の反射を抑え測定対象層へ通過させる音響整合層または電子部品の放熱のための放熱部材として好適な複合板とその製造方法に関する。   The present invention relates to a composite plate and a manufacturing method thereof, and in particular, a composite suitable as a heat radiating member for radiating heat from an acoustic matching layer or an electronic component that suppresses reflection of waves from a vibrator and passes to a measurement target layer in an ultrasonic diagnostic apparatus It is related with a board and its manufacturing method.

超音波診断装置において、振動子として用いられるPZTの音響インピーダンスは約35Mrayl(メガレイル)であるのに対して、測定対象となる人体の音響インピーダンスは1〜2Mraylと著しく異なっている。そのため、振動子と測定対象の中間的な音響インピーダンス値を有する整合層を介在させて超音波を効率よく透過させる必要がある。   In the ultrasonic diagnostic apparatus, the acoustic impedance of PZT used as a vibrator is about 35 Mrayl (megarail), whereas the acoustic impedance of a human body to be measured is significantly different from 1 to 2 Mrayl. Therefore, it is necessary to efficiently transmit ultrasonic waves through a matching layer having an intermediate acoustic impedance value between the transducer and the measurement target.

下記特許文献1には、整合層として音響インピーダンスが1.7〜1.8程度のポリメチルペンテンを用いることが記載されている。   Patent Document 1 below describes that polymethylpentene having an acoustic impedance of about 1.7 to 1.8 is used as the matching layer.

特許文献2には、エポキシ樹脂のマトリクス中に、4.0g/cc以下の密度を有する軽粒子と4.0g/ccを超える密度を有する重粒子とを分散させて3.0メガレイルから約7.0メガレイルの間の音響インピーダンスを有する整合層108を得ること、及び、エポキシ樹脂のマトリクス中に、ミクロンサイズの粒子とナノサイズの粒子とを分散させて約7.0メガレイルから約14.0メガレイルの間の音響インピーダンスを有する整合層110を得ることが記載されている。   Patent Document 2 discloses that light particles having a density of 4.0 g / cc or less and heavy particles having a density of more than 4.0 g / cc are dispersed in a matrix of epoxy resin to 3.0 megarail to about 7 Obtaining a matching layer 108 having an acoustic impedance between 0.0 megarail and dispersing micron-sized and nano-sized particles in an epoxy resin matrix from about 7.0 megarail to about 14.0; It is described to obtain a matching layer 110 having an acoustic impedance between megarails.

特開2013−34138号公報JP 2013-34138 A 特開2013−81241号公報JP2013-81241A

本発明の目的は、超音波診断装置における音響整合層としての使用に適した新規な複合板とその製造方法を提供することにある。   An object of the present invention is to provide a novel composite plate suitable for use as an acoustic matching layer in an ultrasonic diagnostic apparatus and a method for manufacturing the same.

本発明の第2の目的は、電子部品の放熱のための放熱部材としての使用にも適した複合板とその製造方法を提供することにある。   A second object of the present invention is to provide a composite plate suitable for use as a heat dissipation member for heat dissipation of electronic components and a method for manufacturing the same.

本発明によれば、板状の母材と、前記母材中に分散し、板面に垂直な方向に配向した結晶性炭素粉とを含む複合板が提供される。   According to the present invention, there is provided a composite plate comprising a plate-like base material and crystalline carbon powder dispersed in the base material and oriented in a direction perpendicular to the plate surface.

前記母材はアモルファス炭素を含む。   The base material includes amorphous carbon.

或いはまた、前記母材は硬化後の樹脂を含む。   Alternatively, the base material includes a cured resin.

前記結晶性炭素粉は前記母材中に均一に分散していることが好ましい。   It is preferable that the crystalline carbon powder is uniformly dispersed in the base material.

前述の複合板は、樹脂に結晶性炭素粉を均一に分散させ、前記結晶性炭素粉が均一に分散した樹脂を押出成形機にて棒状に成形し、前記成形物を加熱して樹脂を硬化させ、前記成形物を樹脂の硬化前または硬化後において所要の長さに切断して所要の厚みの板とすることを含む方法により製造される。   The above-described composite plate is obtained by uniformly dispersing crystalline carbon powder in a resin, forming the resin in which the crystalline carbon powder is uniformly dispersed into a rod shape by an extruder, and curing the resin by heating the molded product. The molded product is cut into a required length before or after the resin is cured to produce a plate having a required thickness.

前記樹脂は炭素含有樹脂であり、前記樹脂が硬化された成形物を前記切断の前または切断の後において非酸化性雰囲気中で焼成・炭素化することをさらに含むことが好ましい。   Preferably, the resin is a carbon-containing resin, and further includes baking and carbonizing the molded product obtained by curing the resin in a non-oxidizing atmosphere before or after the cutting.

前述の複合板は、樹脂に結晶性炭素粉を均一に分散させ、前記結晶性炭素粉が均一に分散した樹脂に型内で厚み方向に磁場を印加し、磁場を印加した樹脂を硬化させることを含む方法によっても製造される。   The above-mentioned composite plate is obtained by uniformly dispersing crystalline carbon powder in a resin, applying a magnetic field in the thickness direction in the mold to the resin in which the crystalline carbon powder is uniformly dispersed, and curing the resin to which the magnetic field is applied. It is manufactured also by the method containing.

前記樹脂は炭素含有樹脂であり、前記硬化後において、非酸化性雰囲気中で樹脂を焼成・炭素化することをさらに含むことが好ましい。   The resin is a carbon-containing resin, and preferably further includes baking and carbonizing the resin in a non-oxidizing atmosphere after the curing.

前述の複合板は、アモルファス炭素または硬化した樹脂の棒状の母材と、該母材の軸方向に配向し母材中に均一に分散した結晶性炭素粉とを含む軸材を複数本束ね、前記束ねられた軸材の隙間に樹脂を注入して軸材を相互に接着し、前記隙間に注入された樹脂を硬化させることを含む方法によっても製造される。   The above-mentioned composite plate is a bundle of a plurality of shaft members each including a rod-shaped base material of amorphous carbon or a cured resin and crystalline carbon powder that is oriented in the axial direction of the base material and is uniformly dispersed in the base material. It is also manufactured by a method including injecting a resin into the gap between the bundled shaft members, bonding the shaft members to each other, and curing the resin injected into the gap.

前記軸材は、樹脂に結晶性炭素粉を均一に分散させ押出成形機にて棒状に成形し非酸化性雰囲気中で焼成しまたは非焼成の軸材、鉛筆芯またはシャープ芯を含む。なお、鉛筆芯やシャープ芯は、樹脂に黒鉛を混合して均一に分散させ押出成形機で細線状に成形した後、熱処理して樹脂を炭素化したものである。   The shaft material includes a shaft material, a pencil core, or a sharp core, in which crystalline carbon powder is uniformly dispersed in a resin, formed into a rod shape with an extruder and fired in a non-oxidizing atmosphere. The pencil lead or sharp lead is obtained by mixing graphite with resin and dispersing it uniformly, forming it into a fine line with an extruder, and then heat treating it to carbonize the resin.

軸材の並べ方は、最密充填が望ましいが、一定の間隔を置いても良い。   The shafts are preferably arranged in close-packed manner, but may be spaced at regular intervals.

前述の結晶性炭素粉は、例えば、黒鉛粒子および/または炭素繊維である。   The aforementioned crystalline carbon powder is, for example, graphite particles and / or carbon fibers.

実施例1において得られた複合板の厚み方向の断面の顕微鏡写真である。2 is a photomicrograph of a cross section in the thickness direction of the composite plate obtained in Example 1. FIG. 実施例1において得られた複合板の板面方向の断面の顕微鏡写真である。2 is a micrograph of a cross section in the plate surface direction of the composite plate obtained in Example 1. FIG. 厚み方向に磁場を印加しない比較例2において得られた複合板の厚み方向の断面の顕微鏡写真である。It is a microscope picture of the cross section of the thickness direction of the composite board obtained in the comparative example 2 which does not apply a magnetic field to the thickness direction. 厚み方向に磁場が印加される実施例2において得られた複合板の厚み方向の断面の顕微鏡写真である。It is a microscope picture of the cross section of the thickness direction of the composite board obtained in Example 2 in which a magnetic field is applied to the thickness direction. 軸材の接着による実施例3において得られた複合板の断面の写真である。It is a photograph of the section of the composite board obtained in Example 3 by adhesion of a shaft material.

押出成形による配向
<実施例1>
塩化ビニル樹脂30部、フラン樹脂30部、天然鱗状黒鉛(平均粒子径5μm)20部、およびピッチ系黒鉛質炭素繊維(日本グラファイトファイバー製 HC600−15M、平均直径7μm、平均長さ150μm)20部に、可塑剤としてジアリルフタレートモノマーを添加して、ヘンシェルミキサーで分散させた後、3本ロールにて混練し、ペレタイザーにてペレット化し成形用組成物を得た。
Orientation by Extrusion <Example 1>
30 parts of vinyl chloride resin, 30 parts of furan resin, 20 parts of natural scaly graphite (average particle diameter 5 μm), and 20 parts of pitch-based graphitic carbon fiber (HC600-15M, Nippon Graphite Fiber, average diameter 7 μm, average length 150 μm) Then, a diallyl phthalate monomer was added as a plasticizer, dispersed with a Henschel mixer, kneaded with three rolls, and pelletized with a pelletizer to obtain a molding composition.

この成形用組成物を、口径20mmのダイスを装着した押出成形機にて棒状に成形して炭素繊維を押出方向に配向させ、180℃のエアオーブン中で3時間処理して炭素前駆体とした。その後窒素ガス中で毎時15℃で昇温し、1000℃で3時間保持して焼成・炭素化し、φ17mmの軸材を得た。得られた軸材の軸方向(すなわち、後述するように厚み方向)の音速を超音波プローブを使用した水浸法により測定し、密度を測定し、音速と密度から音響インピーダンスを(音速)×(密度)により計算した。結果を表1に示す。また、軸方向(厚み方向)および軸に垂直な面の方向(すなわち、後述するように板面方向)の断面の顕微鏡写真をそれぞれ図1および図2に示す。
得られた軸材を、焼成・炭素化の前または焼成・炭素化の後において所要の長さに切断することで、所要の厚みを有する複合板が得られる。この場合に、切断前の軸材の軸方向は切断後の複合板の「厚み方向」に相当し、軸に垂直な面の方向は複合板の「板面方向」に相当する。
<比較例1>
実施例1で得られた成形用組成物を、口径2.0mmのシート用ダイスを装着した押出成形機にてシート状に成形して炭素繊維を押出方向に配向させ、180℃のエアオーブン中で3時間処理し炭素前駆体とした。その後窒素ガス中で毎時15℃で昇温し、1000℃で3時間保持して焼成・炭素化し、1.5mm厚のシート材を得た。得られたシート材の厚み方向の音速を実施例1と同様にして測定し、密度を測定し、音速と密度から音響インピーダンスを(音速)×(密度)により計算した。結果を表1に示す。
This molding composition was formed into a rod shape by an extrusion molding machine equipped with a die having a diameter of 20 mm, the carbon fibers were oriented in the extrusion direction, and treated in an air oven at 180 ° C. for 3 hours to obtain a carbon precursor. . Thereafter, the temperature was raised at 15 ° C. per hour in nitrogen gas, and the mixture was calcined and carbonized by holding at 1000 ° C. for 3 hours to obtain a shaft material having a diameter of 17 mm. The sound velocity in the axial direction of the obtained shaft material (that is, the thickness direction as described later) is measured by a water immersion method using an ultrasonic probe, the density is measured, and the acoustic impedance is calculated from the sound velocity and the density (sound velocity) × Calculated by (density). The results are shown in Table 1. Moreover, the micrograph of the cross section of an axial direction (thickness direction) and the direction of a surface perpendicular | vertical to an axis | shaft (namely, plate | board surface direction as mentioned later) is shown in FIG. 1 and FIG.
The obtained shaft material is cut to a required length before firing or carbonization or after firing / carbonization to obtain a composite plate having a required thickness. In this case, the axial direction of the shaft material before cutting corresponds to the “thickness direction” of the composite plate after cutting, and the direction of the surface perpendicular to the axis corresponds to the “plate surface direction” of the composite plate.
<Comparative Example 1>
The molding composition obtained in Example 1 was formed into a sheet shape by an extrusion molding machine equipped with a sheet die having a diameter of 2.0 mm, and the carbon fibers were oriented in the extrusion direction. In an air oven at 180 ° C. To give a carbon precursor. Thereafter, the temperature was raised at 15 ° C./hour in nitrogen gas, and the mixture was baked and carbonized at 1000 ° C. for 3 hours to obtain a sheet material having a thickness of 1.5 mm. The sound speed in the thickness direction of the obtained sheet material was measured in the same manner as in Example 1, the density was measured, and the acoustic impedance was calculated from (sound speed) × (density) from the sound speed and density. The results are shown in Table 1.

図1および図2からわかるように、実施例1で得られる複合板において、黒鉛粒子および炭素繊維が複合板の厚み方向に配向しており、そのため、表1に示すように、音速の値が向上し、11.6Mraylという高い音響インピーダンス値が得られている。また、樹脂を焼成する前においても黒鉛粒子および炭素繊維が焼成後と同じ方向に配向していると考えられるので、焼成前の、硬化した樹脂を母材とする複合板も、音響整合層として有用であることが理解される。 As can be seen from FIG. 1 and FIG. 2, in the composite plate obtained in Example 1, the graphite particles and the carbon fibers are oriented in the thickness direction of the composite plate. As a result, a high acoustic impedance value of 11.6 Mrayl is obtained. Moreover, since it is considered that the graphite particles and the carbon fibers are oriented in the same direction as after the firing even before the resin is fired, the composite plate based on the cured resin before firing is also used as the acoustic matching layer. It is understood that it is useful.

磁場による配向
<実施例2>
フラン樹脂90部および薄片状黒鉛(日本黒鉛製UP−5N平均粒子径5μまたは日本国黒鉛製UP−20N平均粒子径20μ)10部に、硬化剤としてp−トルエンスルフォン酸3部とメタノール液3部を添加して、高速ホモミキサーを用いて室温化において充分撹拌しながら減圧脱泡操作を施したものを用意した。
Orientation by magnetic field <Example 2>
90 parts of furan resin and 10 parts of flaky graphite (UP-5N average particle diameter 5 μm made by Japanese graphite or UP-20N average particle diameter 20 μm made by Japanese graphite), 3 parts of p-toluenesulfonic acid and methanol solution 3 as a curing agent Were added and subjected to vacuum degassing with sufficient stirring at room temperature using a high speed homomixer.

この溶液を厚み2mmの型枠に流し込み、YS型可変式電磁石(玉川製作所製)にて1テスラの磁場を厚み方向に印加後に加熱硬化し、180℃のエアオーブン中で3時間処理し炭素前駆体とした。その後窒素ガス中で毎時15℃で昇温し、1400℃で3時間保持し、1.5mm厚のシート材を得た。   This solution is poured into a 2 mm thick mold, applied with a magnetic field of 1 Tesla in the thickness direction with a YS variable electromagnet (manufactured by Tamagawa Seisakusho), heat-cured, treated in an air oven at 180 ° C. for 3 hours, and carbon precursor. The body. Thereafter, the temperature was raised at 15 ° C./hour in nitrogen gas and maintained at 1400 ° C. for 3 hours to obtain a sheet material having a thickness of 1.5 mm.

得られたシート材について、実施例1と同様に音速と密度を測定して音響インピーダンスの値を算出し、さらに、NETZSCH社製レーザーフラッシュ熱物性測定装置LFA457にて厚み方向の熱伝導率を測定した。結果を表2に示す。また、平均粒子径5μmの黒鉛を用いたものについて、厚み方向の断面の顕微鏡写真を図4に示す。
<比較例2>
実施例2と同様な工程で、ただし磁場を印加することなく、1.5mm厚のシート材を得た。結果を表2に示す。また、平均粒子径5μmの黒鉛を用いたものについて、厚み方向の断面の顕微鏡写真を図3に示す。
For the obtained sheet material, the sound velocity and density were measured in the same manner as in Example 1 to calculate the value of acoustic impedance, and the thermal conductivity in the thickness direction was measured with a laser flash thermophysical property measuring apparatus LFA457 manufactured by NETZSCH. did. The results are shown in Table 2. FIG. 4 shows a micrograph of a cross section in the thickness direction of the graphite using an average particle diameter of 5 μm.
<Comparative example 2>
A sheet material having a thickness of 1.5 mm was obtained in the same process as in Example 2, but without applying a magnetic field. The results are shown in Table 2. FIG. 3 shows a micrograph of a cross section in the thickness direction of the graphite using an average particle diameter of 5 μm.

図3および図4からわかるように、樹脂の硬化前に厚み方向に磁場を印加することで、黒鉛粒子が厚み方向に配向し、そのため、表2に示すように、音響インピーダンスの値が向上する。黒鉛の熱伝導率の異方性により、熱伝導率の値も向上するので、放熱部材としても有用である。また、樹脂を焼成する前においても黒鉛粒子が焼成後と同じ方向に配向していると考えられるので、焼成前の、硬化した樹脂を母材とする複合板も、音響整合層および放熱部材として有用であることが理解される。 As can be seen from FIGS. 3 and 4, by applying a magnetic field in the thickness direction before the resin is cured, the graphite particles are oriented in the thickness direction, so that the acoustic impedance value is improved as shown in Table 2. . Since the value of thermal conductivity is improved by the anisotropy of the thermal conductivity of graphite, it is also useful as a heat radiating member. In addition, since it is considered that the graphite particles are oriented in the same direction as after firing even before the resin is fired, the composite plate based on the cured resin before firing is also used as the acoustic matching layer and the heat dissipation member. It is understood that it is useful.

黒鉛に代えて炭素繊維を用いても磁場を厚み方向に印加することにより炭素繊維が厚み方向に配向することが確認されている。   Even if carbon fiber is used instead of graphite, it is confirmed that the carbon fiber is oriented in the thickness direction by applying a magnetic field in the thickness direction.

軸材の接着
<実施例3>
φ0.5のシャープ芯(uni Nano Dia 0.5mm HB)を束ね、その隙間に、フラン樹脂100部に硬化剤としてp−トルエンスルフォン酸3部とメタノール液3部を添加して高速ホモミキサーを用いて室温化において充分撹拌したものを注入し、減圧脱泡操作で脱気し、加熱硬化後、180℃のエアオーブン中で3時間処理した。実施例1と同様にしてその厚み方向の特性を測定し算出した結果を以下の表3に示す。また、その断面の写真を図5に示す。
Adhesion of shaft material <Example 3>
Bundle a 0.5mm sharp core (uni Nano Dia 0.5mm HB) and add 3 parts of p-toluenesulfonic acid and 3 parts of methanol solution as curing agent to 100 parts of furan resin in the gap. The mixture was sufficiently stirred at room temperature and poured, degassed by a vacuum degassing operation, heat-cured, and then treated in an air oven at 180 ° C. for 3 hours. Table 3 below shows the results of measuring and calculating the characteristics in the thickness direction in the same manner as in Example 1. Moreover, the photograph of the cross section is shown in FIG.

本発明の実施態様の一部を以下の項目〈1〉〜〈12〉に記載する。  A part of the embodiment of the present invention is described in the following items <1> to <12>.
〈1〉 板状の母材と、<1> a plate-shaped base material;
前記母材中に分散し、板面に垂直な方向に配向した結晶性炭素粉とを含む複合板。  A composite plate comprising crystalline carbon powder dispersed in the base material and oriented in a direction perpendicular to the plate surface.
〈2〉 前記母材はアモルファス炭素を含む項目1記載の複合板。<2> The composite plate according to Item 1, wherein the base material includes amorphous carbon.
〈3〉 前記母材は硬化後の樹脂を含む項目1または2記載の複合板。<3> The composite plate according to Item 1 or 2, wherein the base material includes a cured resin.
〈4〉 前記結晶性炭素粉は前記母材中に均一に分散している項目1〜3のいずれか1項記載の複合板。<4> The composite plate according to any one of items 1 to 3, wherein the crystalline carbon powder is uniformly dispersed in the base material.
〈5〉 前記結晶性炭素粉は、黒鉛粒子および/または炭素繊維である項目1〜4のいずれか1項記載の複合板。<5> The composite plate according to any one of items 1 to 4, wherein the crystalline carbon powder is graphite particles and / or carbon fibers.
〈6〉 樹脂に結晶性炭素粉を均一に分散させ、<6> Disperse the crystalline carbon powder uniformly in the resin,
前記結晶性炭素粉が均一に分散した樹脂を押出成形機にて棒状に成形し、  The resin in which the crystalline carbon powder is uniformly dispersed is molded into a rod shape by an extruder,
前記成形物を加熱して樹脂を硬化させ、  The molded product is heated to cure the resin,
前記成形物を樹脂の硬化前または硬化後において所要の長さに切断して所要の厚みの板とすることを含む、複合板の製造方法。  A method for producing a composite plate, comprising cutting the molded product into a plate having a required thickness by cutting the molded product to a required length before or after curing the resin.
〈7〉 前記樹脂は炭素含有樹脂であり、前記樹脂が硬化された成形物を前記切断の前または切断の後において非酸化性雰囲気中で焼成・炭素化することをさらに含む項目6記載の複合板の製造方法。<7> The composite according to item 6, wherein the resin is a carbon-containing resin, and further includes firing and carbonizing a molded product obtained by curing the resin in a non-oxidizing atmosphere before or after the cutting. A manufacturing method of a board.
〈8〉 樹脂に結晶性炭素粉を均一に分散させ、<8> Disperse the crystalline carbon powder uniformly in the resin,
前記結晶性炭素粉が均一に分散した樹脂に型内で厚み方向に磁場を印加し、  Applying a magnetic field in the thickness direction in the mold to the resin in which the crystalline carbon powder is uniformly dispersed,
磁場を印加した樹脂を硬化させることを含む、複合板の製造方法。  A method for producing a composite plate, comprising curing a resin to which a magnetic field is applied.
〈9〉 前記樹脂は炭素含有樹脂であり、前記硬化後において、非酸化性雰囲気中で樹脂を焼成・炭素化することをさらに含む項目8記載の複合板の製造方法。<9> The method for producing a composite plate according to Item 8, wherein the resin is a carbon-containing resin, and further includes firing and carbonizing the resin in a non-oxidizing atmosphere after the curing.
〈10〉 アモルファス炭素または硬化した樹脂の棒状の母材と、該母材の軸方向に配向し母材中均一に分散した結晶性炭素粉とを含む軸材を複数本束ね、<10> A plurality of shaft materials including a rod-shaped base material of amorphous carbon or a cured resin and a crystalline carbon powder oriented in the axial direction of the base material and uniformly dispersed in the base material,
前記束ねられた軸材の隙間に樹脂を注入して軸材を相互に接着し、  Injecting resin into the gap between the bundled shaft members to bond the shaft members to each other,
前記隙間に注入された樹脂を硬化させることを含む、複合板の製造方法。  A method for producing a composite plate, comprising curing a resin injected into the gap.
〈11〉 前記軸材は、樹脂に結晶性炭素粉を均一に分散させ押出成形機にて棒状に成形し非酸化性雰囲気中で焼成しまたは非焼成の軸材、鉛筆芯またはシャープ芯を含む項目10記載の複合板の製造方法。<11> The shaft material includes a shaft material, a pencil core, or a sharp core, in which crystalline carbon powder is uniformly dispersed in a resin, formed into a rod shape with an extruder, and fired in a non-oxidizing atmosphere. Item 10. A method for producing a composite plate according to Item 10.
〈12〉 前記結晶性炭素粉は、黒鉛粒子および/または炭素繊維である項目6〜11のいずれか1項記載の複合板の製造方法。<12> The method for producing a composite plate according to any one of items 6 to 11, wherein the crystalline carbon powder is graphite particles and / or carbon fibers.

Claims (11)

板状の母材と、
前記母材中に分散し、板面に垂直な方向に配向した黒鉛粒子とを含む音響整合層
A plate-shaped base material;
An acoustic matching layer comprising graphite particles dispersed in the base material and oriented in a direction perpendicular to the plate surface.
前記母材はアモルファス炭素を含む請求項1記載の音響整合層The acoustic matching layer according to claim 1, wherein the base material includes amorphous carbon. 前記母材は硬化後の樹脂を含む請求項1または2記載の音響整合層The acoustic matching layer according to claim 1, wherein the base material includes a cured resin. 前記黒鉛粒子は前記母材中に均一に分散している請求項1〜3のいずれか1項記載の音響整合層The acoustic matching layer according to claim 1, wherein the graphite particles are uniformly dispersed in the base material. 前記黒鉛粒子は、天然鱗状黒鉛粒子および/または薄片状黒鉛粒子である請求項1〜4のいずれか1項記載の音響整合層The acoustic matching layer according to claim 1, wherein the graphite particles are natural scaly graphite particles and / or flaky graphite particles. 樹脂に黒鉛粒子を均一に分散させ、
前記黒鉛粒子が均一に分散した樹脂を押出成形機にて棒状に成形し、
前記成形物を加熱して樹脂を硬化させ、
前記成形物を樹脂の硬化前または硬化後において、押出方向と垂直な方向で所要の長さに切断して所要の厚みの板とすること
を含む、請求項1〜5のいずれか1項記載の音響整合層の製造方法。
Disperse the graphite particles uniformly in the resin,
A resin in which the graphite particles are uniformly dispersed is formed into a rod shape with an extruder,
The molded product is heated to cure the resin,
6. The method according to claim 1 , comprising cutting the molded product to a required length in a direction perpendicular to the extrusion direction before or after curing the resin to obtain a plate having a required thickness. A method for producing an acoustic matching layer .
前記樹脂は炭素含有樹脂であり、前記樹脂が硬化された成形物を前記切断の前または切断の後において非酸化性雰囲気中で焼成・炭素化することをさらに含む請求項6記載の音響整合層の製造方法。 The acoustic matching layer according to claim 6, wherein the resin is a carbon-containing resin, and further includes firing and carbonizing the molded product obtained by curing the resin in a non-oxidizing atmosphere before or after the cutting. Manufacturing method. 樹脂に黒鉛粒子を均一に分散させ、
前記黒鉛粒子が均一に分散した樹脂に型内で厚み方向に磁場を印加し、
磁場を印加した樹脂を硬化させること
を含む、請求項1〜5のいずれか1項記載の音響整合層の製造方法。
Disperse the graphite particles uniformly in the resin,
Applying a magnetic field in the thickness direction in the mold to the resin in which the graphite particles are uniformly dispersed,
The method for producing an acoustic matching layer according to claim 1 , comprising curing a resin to which a magnetic field is applied.
前記樹脂は炭素含有樹脂であり、前記硬化後において、非酸化性雰囲気中で樹脂を焼成・炭素化することをさらに含む請求項8記載の音響整合層の製造方法。 The method for producing an acoustic matching layer according to claim 8, wherein the resin is a carbon-containing resin, and further includes baking and carbonizing the resin in a non-oxidizing atmosphere after the curing. アモルファス炭素または硬化した樹脂の棒状の母材と、該母材の軸方向に配向し母材中均一に分散した黒鉛粒子とを含む軸材を複数本束ね、
前記束ねられた軸材の隙間に樹脂を注入して軸材を相互に接着し、
前記隙間に注入された樹脂を硬化させ、そして
前記軸材を、前記軸方向と垂直な方向で所要の長さに切断して所要の厚みの板とすることを含む、請求項1〜5のいずれか1項記載の音響整合層の製造方法。
A bundle of a plurality of shafts including a rod-shaped base material of amorphous carbon or cured resin and graphite particles oriented in the axial direction of the base material and uniformly dispersed in the base material,
Injecting resin into the gap between the bundled shaft members to bond the shaft members to each other,
Curing the resin injected into the gap ; and
The shaft member comprises a plate and be Rukoto the desired thickness and cut to a required length at the axial direction perpendicular manufacturing the acoustic matching layer according to any one of claims 1 to 5 Method.
前記軸材は、
樹脂に黒鉛粒子を均一に分散させ押出成形機にて棒状に成形し、そして非酸化性雰囲気中で焼成した軸材、または
樹脂に黒鉛粒子を均一に分散させ押出成形機にて棒状に成形した非焼成の軸材
を含む請求項10記載の音響整合層の製造方法。
The shaft material is
A shaft material in which graphite particles are uniformly dispersed in a resin, formed into a rod shape with an extruder , and fired in a non-oxidizing atmosphere , or
The method for producing an acoustic matching layer according to claim 10, comprising an unfired shaft material in which graphite particles are uniformly dispersed in a resin and formed into a rod shape by an extruder .
JP2013233450A 2013-11-11 2013-11-11 Composite plate and manufacturing method thereof Active JP6358795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233450A JP6358795B2 (en) 2013-11-11 2013-11-11 Composite plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233450A JP6358795B2 (en) 2013-11-11 2013-11-11 Composite plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015093012A JP2015093012A (en) 2015-05-18
JP6358795B2 true JP6358795B2 (en) 2018-07-18

Family

ID=53195840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233450A Active JP6358795B2 (en) 2013-11-11 2013-11-11 Composite plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6358795B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7333684B2 (en) * 2018-04-26 2023-08-25 三菱鉛筆株式会社 ultrasonic probe
JP7240114B2 (en) * 2018-08-30 2023-03-15 三菱鉛筆株式会社 String support member for stringed instrument
JP2023079663A (en) * 2021-11-29 2023-06-08 三菱鉛筆株式会社 Acoustic matching layer
JP2023079673A (en) * 2021-11-29 2023-06-08 三菱鉛筆株式会社 Acoustic matching layer

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034112Y2 (en) * 1971-03-03 1975-10-04
JPS5757696A (en) * 1980-09-24 1982-04-06 Inoue Japax Res Lead of pencil and its manufacture
JP3589482B2 (en) * 1994-04-06 2004-11-17 大西 一正 Piezoelectric vibrator
JP2000323633A (en) * 1999-05-10 2000-11-24 Mitsubishi Pencil Co Ltd Carbon heat dissipating body and its manufacture
JP2001309495A (en) * 2000-04-21 2001-11-02 Onishi Kazumasa Ultrasonic transducer
JP3923846B2 (en) * 2002-04-30 2007-06-06 松下電器産業株式会社 Ultrasonic probe
JP4140359B2 (en) * 2002-11-27 2008-08-27 松下電器産業株式会社 Alignment member for ultrasonic transducer and ultrasonic sensor using the same
CN100544676C (en) * 2003-02-27 2009-09-30 株式会社日立医药 Ultrasound probe
JP4454353B2 (en) * 2003-05-09 2010-04-21 昭和電工株式会社 Linear fine carbon fiber and resin composite using the same
JP4643227B2 (en) * 2004-11-04 2011-03-02 株式会社東芝 Ultrasonic probe and ultrasonic diagnostic apparatus
US8435606B1 (en) * 2008-08-01 2013-05-07 Hrl Laboratories, Llc Polymer-infused carbon nanotube array and method
JP2012134221A (en) * 2010-12-20 2012-07-12 Mitsubishi Pencil Co Ltd Carbon heat dissipator and method of manufacturing the same
JP2012244273A (en) * 2011-05-17 2012-12-10 Panasonic Corp Ultrasonic probe
JP2013153398A (en) * 2012-01-25 2013-08-08 Kazumasa Onishi Ultrasonic vibrator

Also Published As

Publication number Publication date
JP2015093012A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
Liu et al. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness
JP5541400B2 (en) Manufacturing method of heat conductive sheet
CN105378914B (en) Heat conductive sheet
JP6358795B2 (en) Composite plate and manufacturing method thereof
JP6034562B2 (en) Thermally conductive sheet and method for producing the thermally conductive sheet
CN107043538B (en) Thermal conductive sheet
JP6214333B2 (en) Acoustic matching layer and manufacturing method thereof
KR20160147893A (en) Carbonaceous acoustic matching layer and method for producing same
JPWO2007126133A1 (en) Carbon fiber composite sheet
JP2015124122A (en) Resin-impregnated boron nitride sintered body and use thereof
JP4657816B2 (en) Method for producing thermally conductive molded body and thermally conductive molded body
Liu et al. 4D printing of lead zirconate titanate piezoelectric composites transducer based on direct ink writing
JP2013131562A (en) Heat conductive sheet manufacturing method
JP6195442B2 (en) Carbonaceous acoustic diaphragm and manufacturing method thereof
JP6164583B2 (en) Method for producing thermosetting rod
JP7249630B2 (en) THERMALLY CONDUCTIVE BEADS, METHOD FOR MANUFACTURING SAME, RESIN COMPOSITION AND MOLDED PRODUCT
JP2015027772A (en) Thermosetting sheet
JP6983345B1 (en) Thermally conductive sheet and electronic equipment
JP2017087550A (en) Molding die and method for producing molding
KR20200044396A (en) Method of manufacturing high performance thin film material using polymer precursor
JP2015089087A (en) Acoustic diaphragm and manufacturing method of the same
CN106883557B (en) The method for preparing epoxy matrix composite using acid anhydride non-covalent modification graphene
TWI545082B (en) Manufacturing method of carbon nanotubes with rigid structure
JP2007012440A (en) Porous carbon material for fuel cell, thermal conductive member made of carbon fiber reinforced plastic, and manufacturing method of these
Hao et al. Study on the control of mechanical and electrical properties of 3D printed BTO/PDMS flexible porous composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6358795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250