JP6347405B2 - Method for producing maraging steel - Google Patents
Method for producing maraging steel Download PDFInfo
- Publication number
- JP6347405B2 JP6347405B2 JP2014120541A JP2014120541A JP6347405B2 JP 6347405 B2 JP6347405 B2 JP 6347405B2 JP 2014120541 A JP2014120541 A JP 2014120541A JP 2014120541 A JP2014120541 A JP 2014120541A JP 6347405 B2 JP6347405 B2 JP 6347405B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- steel
- steel ingot
- molten steel
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001240 Maraging steel Inorganic materials 0.000 title claims description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910000831 Steel Inorganic materials 0.000 claims description 142
- 239000010959 steel Substances 0.000 claims description 142
- 238000002844 melting Methods 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 13
- 238000010313 vacuum arc remelting Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 91
- 230000000694 effects Effects 0.000 description 24
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 21
- 229910052802 copper Inorganic materials 0.000 description 21
- 239000010949 copper Substances 0.000 description 21
- 238000005204 segregation Methods 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 238000007711 solidification Methods 0.000 description 13
- 230000008023 solidification Effects 0.000 description 13
- 238000004090 dissolution Methods 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 238000001816 cooling Methods 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910000765 intermetallic Inorganic materials 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- -1 nitrogen carbides Chemical class 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 230000003405 preventing effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、マルエージング鋼の製造方法に関するものである。 The present invention relates to a method for producing maraging steel.
マルエージング鋼は、2000MPa前後の非常に高い引張強さをもつため、高強度が要求される部材、例えば、ロケット用部品、遠心分離機部品、航空機部品、自動車エンジンの無段変速機用部品、金型、等種々の用途に使用されている。
このマルエージング鋼は、通常、強化元素として、Mo、Ti、を適量含んでおり、時効処理を行うことによって、Ni3Mo、Ni3Ti、Fe2Mo等の金属間化合物を析出させて高強度を得ることのできる鋼である。このMoやTiを含んだマルエージング鋼の代表的な組成としては、質量%で18%Ni−8%Co−5%Mo−0.45%Ti−0.1%Al−bal.Feが挙げられる。
近年、このマルエージング鋼は自動車の無段変速機ベルトに用いられている。無段変速機ベルトには高強度、高疲労強度が求められる。
Since maraging steel has a very high tensile strength of around 2000 MPa, members that require high strength, such as rocket parts, centrifuge parts, aircraft parts, automobile engine continuously variable transmission parts, It is used for various applications such as molds.
This maraging steel usually contains appropriate amounts of Mo and Ti as strengthening elements, and by performing an aging treatment, intermetallic compounds such as Ni 3 Mo, Ni 3 Ti, and Fe 2 Mo are precipitated. Steel that can provide strength. A typical composition of this maraging steel containing Mo and Ti is 18% Ni-8% Co-5% Mo-0.45% Ti-0.1% Al-bal. Fe.
In recent years, this maraging steel has been used for continuously variable transmission belts of automobiles. The continuously variable transmission belt is required to have high strength and high fatigue strength.
ところで、マルエージング鋼は溶解・凝固時に成分偏析を起こしやすいMoを含有する。成分偏析が大きくなると、無段変速機ベルト内で機械的特性のばらつきのおそれがある。また、疲労強度を劣化させるTiNやTiCN等といった窒化物や炭窒化物の非金属介在物(以下「介在物」という。)を形成するTiを含有する場合がある。
このような成分偏析の防止と介在物微細化の両方を実現する発明として、例えば、特開2001−64755号公報(特許文献1)には、鋼塊頂部の周長に相当する円周を有する相当円の直径をD1、鋼塊底部の周長に相当する円周を有する相当円の直径をD2、鋼塊高さをH、H/2位置における鋼塊の周長に相当する円周を有する相当円の直径をD、H/2位置における鋼塊の長辺長さ及び短辺長さをそれぞれW1,W2とするとき、テーパーTp=(D1−D2)×100/Hが5.0〜25.0%、高径比Rh=H/Dが1.0〜3.0、扁平比B=W1/W2が1.5以下となる鋳型を用いて、C:0.01%以下、Ni:8〜19%、Co:8〜20%、Mo:2〜9%、Ti:0.1〜2%、Al:0.15%以下、N:0.003%以下、O:0.0015%以下を含み残部実質的にFeの化学成分を有する鋼の溶湯を鋳造して、介在物の大きさが30μm以下、Ti成分偏析比及びMo成分偏析比が各々1.3以下とする疲労特性に優れたマルエージング鋼の製造方法が提案されている。
By the way, maraging steel contains Mo which tends to cause component segregation during melting and solidification. When component segregation increases, there is a risk of variation in mechanical characteristics within the continuously variable transmission belt. In some cases, Ti that forms non-metallic inclusions (hereinafter referred to as “inclusions”) of nitrides or carbonitrides such as TiN or TiCN that deteriorate fatigue strength may be contained.
As invention which implement | achieves both prevention of such component segregation and inclusion refinement | miniaturization, for example, Unexamined-Japanese-Patent No. 2001-64755 (patent document 1) has the circumference corresponded to the circumference of the steel ingot top part. The diameter of the equivalent circle is D1, the diameter of the equivalent circle having a circumference corresponding to the circumference of the steel ingot bottom is D2, the height of the steel ingot is H, and the circumference corresponding to the circumference of the steel ingot at the H / 2 position is When the diameter of the equivalent circle is D and the long side length and short side length of the steel ingot at the H / 2 position are W1 and W2, respectively, the taper Tp = (D1−D2) × 100 / H is 5.0. ~ 25.0%, high diameter ratio Rh = H / D is 1.0 to 3.0, flat ratio B = W1 / W2 is 1.5 or less, C: 0.01% or less, Ni: 8 to 19%, Co: 8 to 20%, Mo: 2 to 9%, Ti: 0.1 to 2%, Al: 0.15% or less, N: 0. Casting a molten steel containing 03% or less, O: 0.0015% or less and the balance substantially having a chemical component of Fe, the size of inclusions is 30 μm or less, the Ti component segregation ratio and the Mo component segregation ratio are There has been proposed a method for producing maraging steel having excellent fatigue characteristics of 1.3 or less.
上記の特許文献1で提案される方法は、真空アーク再溶解(以下、VAR)を行うことなく、通常の溶解設備で生産性に優れた機械構造用マルエージング鋼を製造するものである。しかしながら、VARを行わないマルエージング鋼では、成分偏析しやすい上、介在物品位に問題があり、自動車の無段変速機ベルトに適用されていないのが現状である。
本発明の目的は、成分偏析をより確実に抑制可能なマルエージング鋼の製造方法を提供することである。
The method proposed in Patent Document 1 described above is to produce maraging steel for machine structure having excellent productivity with ordinary melting equipment without performing vacuum arc remelting (hereinafter referred to as VAR). However, in the maraging steel which does not perform VAR, component segregation is easy and there is a problem in intervening articles, and it is not applied to a continuously variable transmission belt of an automobile.
The objective of this invention is providing the manufacturing method of the maraging steel which can suppress a component segregation more reliably.
本発明は、上述した課題に鑑みてなされたものである。
即ち本発明は、
マルエージング鋼の消耗電極を得る一次溶解工程と、
前記消耗電極を用いて真空アーク再溶解を行って鋼塊を得る再溶解工程と、
を含むマルエージング鋼の製造方法において、
前記再溶解工程中に、鋳型と鋼塊の間に0.9kPa以上1.9kPa未満の圧力でHeガスを導入し、
溶鋼プールの深さを170mm以下とする
マルエージング鋼の製造方法である。
The present invention has been made in view of the above-described problems.
That is, the present invention
A primary melting step to obtain a consumable electrode of maraging steel;
Remelting step of obtaining a steel ingot by performing vacuum arc remelting using the consumable electrode;
In the manufacturing method of maraging steel containing
During the remelting step, He gas is introduced between the mold and the steel ingot at a pressure of 0.9 kPa or more and less than 1.9 kPa,
It is a manufacturing method of maraging steel which makes the depth of a molten steel pool 170mm or less.
本発明によれば、成分偏析をより確実に抑制可能となる。 According to the present invention, component segregation can be more reliably suppressed.
以下に本発明を詳しく説明する。
上述したように、本発明ではVARを適用する。そのため、先ず、VAR用の消耗電極を一次溶解として製造する。
マルエージング鋼のような極低C鋼の消耗電極の製造にはVIM(真空誘導溶解)が好適である。VIMを適用すれば、大気中の酸素、窒素と溶鋼との反応による鋼中の酸化物、窒炭化物の増加を避けられる点、酸素と活性な合金元素を安定して溶鋼中に添加するのに有利である点、原料から不可避的に混入する酸素、窒素を除去できる機能を有している点があり、消耗電極の製造に最適であるためである。
The present invention is described in detail below.
As described above, VAR is applied in the present invention. Therefore, first, a consumable electrode for VAR is manufactured as primary melting.
VIM (vacuum induction melting) is suitable for the production of a consumable electrode of extremely low C steel such as maraging steel. If VIM is applied, it is possible to avoid the increase of oxygen in the atmosphere, oxides in the steel due to the reaction between nitrogen and molten steel, nitrogen carbides, and stable addition of oxygen and active alloy elements to the molten steel. This is because it is advantageous in that it has a function of removing oxygen and nitrogen inevitably mixed from raw materials, and is optimal for the production of consumable electrodes.
また、本発明の一次溶解では、Mg酸化物を有するマルエージング鋼の消耗電極を得ることが望ましい。これは、マルエージング鋼がTiを含有する場合、少なからずTi系介在物が形成する。このTi系介在物はMgOを主体とする酸化物を核として晶出しやすいため、Ti系介在物−MgO複合体の形態とすることができるためである。さらに、消耗電極中にTi系介在物が細かく分散した形態で存在させることができる。これにより、一次溶解工程で得られる消耗電極中のTi系介在物を微細分散させることができる。
なお、再溶解用消耗電極中の酸化物をMg酸化物主体にするために、一次真空溶解時のMg添加量を10〜200ppmとするとよい。
また、前記消耗電極を用いてVARを行う際に真空度は可能な限り減圧雰囲気にすることで、再溶解時の溶鋼表面からのMg蒸発を促進させる。
Ti系介在物−MgO複合体の一部を構成するMgO部分が消失することによりTi系介在物が細かく分解し、熱分解が促進してTi系介在物を溶鋼中に完全に溶融させることができる。つまり、Ti系介在物を完全に溶融させることができれば、Ti系介在物のサイズはVARでの凝固中の成長に依存することとなる。そのため、本発明のHeガスの導入効果が十分に発揮できる。
In the primary melting of the present invention, it is desirable to obtain a consumable electrode of maraging steel having Mg oxide. This is because, when maraging steel contains Ti, Ti-based inclusions are formed. This Ti inclusion is easy to crystallize with an oxide mainly composed of MgO as a nucleus, and thus can be in the form of a Ti inclusion / MgO complex. Furthermore, Ti inclusions can be present in the consumable electrode in a finely dispersed form. Thereby, Ti-based inclusions in the consumable electrode obtained in the primary melting step can be finely dispersed.
In order to make the oxide in the remelting consumable electrode mainly composed of Mg oxide, the amount of Mg added at the time of primary vacuum melting is preferably 10 to 200 ppm.
Further, when performing VAR using the consumable electrode, the vacuum degree is set to a reduced pressure atmosphere as much as possible to promote Mg evaporation from the molten steel surface during remelting.
The disappearance of the MgO portion constituting a part of the Ti-based inclusion-MgO complex causes the Ti-based inclusions to be finely decomposed and promotes thermal decomposition to completely melt the Ti-based inclusions in the molten steel. it can. That is, if the Ti-based inclusions can be completely melted, the size of the Ti-based inclusions depends on the growth during solidification in VAR. Therefore, the effect of introducing the He gas of the present invention can be sufficiently exerted.
次に本発明では、前記消耗電極を用いて真空アーク再溶解を行って鋼塊を得る再溶解工程を行う。なお、前記再溶解工程中に、鋳型と鋼塊の間に0.9kPa以上1.9kPa未満の圧力でHeガスを導入し、溶鋼プールの深さを170mm以下とすることが必要となる。
ところで、VARは水冷された銅製坩堝を用いることにより再溶解後の鋼塊の凝固速度を高め、成分偏析や凝固欠陥を防止することができる。一方で、凝固した鋼塊は収縮して銅製坩堝(鋳型)との間に隙間を生じ、抜熱効果が低下する。抜熱効果が低下すると凝固速度が低下して、成分偏析を抑制する効果も低下してしまう。そこで、本発明では、収縮した鋼塊と銅製坩堝間の隙間にHeガスを充填する。充填したHeガスは熱伝導率がおおよそ0.144W/mKであり、Heガスが熱伝達の媒介となって、鋼塊の抜熱に効果を発揮する。
また、Tiを含有するマルエージング鋼においては、鋼中に形成するTi系介在物は高融点であるため、消耗電極を再溶解する際にも一部が溶け残り、溶鋼プール中に固体として存在する。そして、溶鋼プールが凝固して鋼塊となる際に成長する。もし、冷却速度を高めることができれば、Ti系介在物の成長時間が短くなるため、Ti系介在物の微細化を図ることができる。しかし、従来のVARにおいては消耗電極を溶解する速度を変化させても、同一鋼塊径であれば凝固中の冷却速度を大きく変化させることは困難である。これは、VARでは鋼塊が凝固収縮して鋼塊と水冷銅鋳型の間に隙間が生じた後は伝導伝熱が遮断され、鋼塊と銅製坩堝の間に生じる隙間が減圧雰囲気であるために対流伝熱も起こりにくく、主に輻射伝熱でしか抜熱されないためである。
Next, in the present invention, a remelting step is performed to obtain a steel ingot by performing vacuum arc remelting using the consumable electrode. During the remelting step, it is necessary to introduce He gas at a pressure of 0.9 kPa or more and less than 1.9 kPa between the mold and the steel ingot so that the depth of the molten steel pool is 170 mm or less.
By the way, VAR can increase the solidification rate of the steel ingot after remelting by using a water-cooled copper crucible, and can prevent component segregation and solidification defects. On the other hand, the solidified steel ingot shrinks to create a gap with the copper crucible (mold), and the heat removal effect decreases. When the heat removal effect is reduced, the solidification rate is reduced, and the effect of suppressing component segregation is also reduced. Therefore, in the present invention, the gap between the contracted steel ingot and the copper crucible is filled with He gas. The filled He gas has a thermal conductivity of approximately 0.144 W / mK, and the He gas acts as a medium for heat transfer and exerts an effect on heat removal from the steel ingot.
In addition, in maraging steel containing Ti, Ti-based inclusions formed in the steel have a high melting point, so that some of them remain undissolved when the consumable electrode is remelted and exist as a solid in the molten steel pool. To do. And it grows when a molten steel pool solidifies and it becomes a steel ingot. If the cooling rate can be increased, the growth time of the Ti-based inclusions is shortened, so that the Ti-based inclusions can be miniaturized. However, even if the speed at which the consumable electrode is melted is changed in the conventional VAR, it is difficult to greatly change the cooling rate during solidification if the diameter of the steel ingot is the same. This is because, in VAR, after the steel ingot solidifies and shrinks and a gap is formed between the steel ingot and the water-cooled copper mold, the conduction heat transfer is cut off, and the gap generated between the steel ingot and the copper crucible is a reduced pressure atmosphere. This is because convective heat transfer hardly occurs, and heat is extracted only by radiant heat transfer.
上述のように同一鋼塊径でVARにおいて消耗電極を溶解する速度を変化させても、凝固中の冷却速度を大きく変化させることは困難であるものの、溶解する速度を遅くすることで溶鋼プール深さを浅くすることが可能である。この理由としては、消耗電極からの溶湯供給量が減少、すなわち湯上り速度が減少するためである。湯上り速度が減少すると、凝固する速度の方が大きくなるため溶鋼プール深さが小さくなる。ただ、溶解する速度を遅くすると、消耗電極を溶解する時間が長くなり生産性が悪化する上、電力原単位も悪くなる。ゆえに、消耗電極を溶解する速度は過度に遅くすることは望ましくない。そのため、Heガスを充填させ、溶解する速度を変えずに溶鋼プール深さを浅くすることは生産性向上において、非常に有利な方法である。
なお、VARにおいて溶鋼プール深さを浅くすることは、成分偏析の抑制に有効である。液相線と固相線を通過するまでの時間が長い場合、凝固するまでの時間が長くなるため成分偏析が発生しやすくなる。溶鋼プール深さが浅くなると、液相線と固相線を通過する時間が短くなるため、成分偏析の抑制が効果的に行える。特に、VARにおける鋼塊最頂部は普通鋼塊の押湯に相当する部位であり、他の部位より凝固するまでの時間が長くなるため、溶鋼プール深さが小さくなると鋼塊最頂部の成分偏析を抑制し、規格外として切捨てられる部位を減らして、歩留りを向上させることもできる。
また、Heガスと同様の効果はArガス、窒素ガスでも得ることができるが、Arガスは熱伝導率が低く、窒素ガスは窒化物系介在物の形成を促進させる。そのため、本発明ではHeガスを用いることとする。
また、Heガスの充填は、収縮した鋼塊と銅製坩堝間の隙間のみに行うこととする。例えば、溶鋼プール付近の鋼塊と銅製坩堝は接触状態にあるが、その接触状態の場所を超えて消耗電極を溶解する領域までHeガスが到達すると、アークが不安定となって介在物を増加させるおそれがある。
Although it is difficult to greatly change the cooling rate during solidification even if the rate at which the consumable electrode is melted in the VAR with the same steel ingot diameter as described above, it is difficult to change the cooling rate during solidification. It is possible to reduce the depth. The reason for this is that the amount of molten metal supplied from the consumable electrode decreases, that is, the hot water rising speed decreases. When the hot water rising speed decreases, the solidifying pool speed increases, so the molten steel pool depth decreases. However, if the dissolution rate is slowed down, the time for dissolving the consumable electrode becomes longer and the productivity deteriorates, and the power consumption rate also deteriorates. Therefore, it is not desirable to slow down the consumable electrode too slowly. Therefore, filling the He gas and reducing the depth of the molten steel pool without changing the melting rate is a very advantageous method for improving productivity.
In addition, it is effective for suppression of a component segregation to make the molten steel pool depth shallow in VAR. When the time to pass through the liquidus line and the solidus line is long, the time until solidification becomes long, so that component segregation is likely to occur. When the depth of the molten steel pool becomes shallower, the time for passing through the liquidus and solidus becomes shorter, so that component segregation can be effectively suppressed. In particular, the top part of the steel ingot in VAR is a part corresponding to the feeder of the ordinary steel ingot, and the time until solidification is longer than other parts, so when the molten steel pool depth becomes smaller, the component segregation at the top part of the steel ingot , And the number of parts that are discarded as out of specification can be reduced to improve the yield.
The same effect as He gas can be obtained with Ar gas and nitrogen gas, but Ar gas has low thermal conductivity, and nitrogen gas promotes the formation of nitride inclusions. Therefore, He gas is used in the present invention.
He gas filling is performed only in the gap between the contracted steel ingot and the copper crucible. For example, the steel ingot near the molten steel pool and the copper crucible are in contact, but when the He gas reaches the area where the consumable electrode is melted beyond the contact state, the arc becomes unstable and inclusions increase. There is a risk of causing.
上述したように、本発明では鋼塊と鋳型の隙間に導入するガスにはHeガスを用いる。Heガスは溶鋼と鋼塊と化学反応しないため、新たな介在物を形成するおそれがなく、化学反応による爆発事故の危険性を回避することができる。また、Heガスを用いた場合、溶鋼と鋼塊との化学反応が無視できる程度の不純物ガスを含有するHeガスを使用することができるが、Heガスの効果を確実に発揮するには、Heの比率が99.9体積%以上であることが好ましい。
図1に、本発明のHeガスを導入するVARの構造の一例を示す模式図を示す。Heガスの導入圧力は、ガスボンベから水冷銅鋳型4へガスを送る配管内の圧力を圧力測定器6により測定し、圧力制御バルブ7を設置することで制御することができる。基本的にHeガス圧力を高めることでガスの単位体積あたりの熱容量が増えて対流伝熱の効果を高めることができるが、鋳型と鋼塊の間のHeガス圧力が0.9kPa未満であると対流伝熱の効果は低く、冷却速度を高める効果が乏しくなる。また、Heガスの圧力は溶鋼プールの深さにも影響を及ぼし、0.9kPa未満であるとプール深さが深くなって介在物が成長しやすく、また、成分偏析も大きくなる傾向にある。そのため、Heガス圧力の下限は0.9kPaとする。好ましいHeガスの圧力の下限は1.2kPaである。また、VARは常時減圧雰囲気で操業するため、鋼塊と鋳型の隙間に導入した希ガスの圧力を高めたとしても真空ポンプにより排気されるため、過度に高い圧力にしても対流伝熱効果を高めることができにくくなるだけでなく、ガスの圧力を安定化させることができにくくなる。よって、Heガスの圧力の上限は1.9kPaとする。好ましいHeガスの圧力の上限は1.6kPaである。
As described above, in the present invention, He gas is used as the gas introduced into the gap between the steel ingot and the mold. Since the He gas does not chemically react with the molten steel and the steel ingot, there is no risk of forming new inclusions, and the risk of an explosion accident due to a chemical reaction can be avoided. Further, when He gas is used, He gas containing an impurity gas with such a degree that the chemical reaction between the molten steel and the steel ingot can be ignored can be used. The ratio is preferably 99.9% by volume or more.
FIG. 1 is a schematic diagram showing an example of the structure of a VAR in which He gas of the present invention is introduced. The introduction pressure of He gas can be controlled by measuring the pressure in the pipe for sending the gas from the gas cylinder to the water-cooled copper mold 4 with the pressure measuring device 6 and installing the pressure control valve 7. Basically, by increasing the He gas pressure, the heat capacity per unit volume of the gas can be increased and the effect of convective heat transfer can be enhanced, but the He gas pressure between the mold and the steel ingot is less than 0.9 kPa. The effect of convective heat transfer is low, and the effect of increasing the cooling rate is poor. Moreover, the pressure of He gas also affects the depth of the molten steel pool, and if it is less than 0.9 kPa, the pool depth increases and inclusions tend to grow, and component segregation tends to increase. Therefore, the lower limit of the He gas pressure is 0.9 kPa. A preferable lower limit of the pressure of He gas is 1.2 kPa. In addition, since VAR always operates in a reduced-pressure atmosphere, even if the pressure of the rare gas introduced into the gap between the steel ingot and the mold is increased, it is exhausted by the vacuum pump. Not only is it difficult to increase the pressure, it is also difficult to stabilize the gas pressure. Therefore, the upper limit of the pressure of He gas is set to 1.9 kPa. A preferable upper limit of the pressure of He gas is 1.6 kPa.
また、本発明では上述したHeガス圧力の調整により、Heガスを充填しない場合と比較して溶鋼プールの深さを10mm以上浅くできる。溶鋼プールが過度に深くなると、凝固までの時間が長くなって介在物が成長しやすく、また、成分偏析も大きくなる傾向にある。本発明によれば、溶鋼プールの深さを170mm以下とすることができる。本発明者の検討によれば、溶鋼プールの深さを10mm以上浅くには前述のHeガス圧力が0.9kPa以上が必要となる。なお、プール深さを浅くしようとすると充填するHeガスの圧力を高くするのが良いが、鋼塊と鋳型間の対流伝熱効果を高めても鋼塊自体の熱抵抗により抜熱が阻害されるため、Heガス導入による溶鋼プール深さ低減効果には限界がある。前述したように、Heガスの圧力を過度に高い圧力にしても対流伝熱効果を高めることができにくくなるため、現実的な深さの下限はせいぜい120mm程度である。 Moreover, in this invention, the depth of a molten steel pool can be made shallow by 10 mm or more compared with the case where it does not fill with He gas by adjustment of He gas pressure mentioned above. If the molten steel pool becomes excessively deep, the time until solidification becomes longer and inclusions tend to grow, and the component segregation tends to increase. According to the present invention, the depth of the molten steel pool can be 170 mm or less. According to the study of the present inventor, the aforementioned He gas pressure is required to be 0.9 kPa or more in order to reduce the depth of the molten steel pool by 10 mm or more. In order to reduce the pool depth, it is better to increase the pressure of the He gas to be filled. However, even if the convective heat transfer effect between the steel ingot and the mold is enhanced, the heat removal of the steel ingot itself is hindered. Therefore, there is a limit to the effect of reducing the depth of the molten steel pool by introducing He gas. As described above, even if the pressure of the He gas is excessively high, it becomes difficult to enhance the convective heat transfer effect, so the practical lower limit of the depth is about 120 mm at most.
また、本発明で規定するマルエージング鋼の製造方法は、鋼塊径が300〜800mmのものに対して特に有効である。その理由は鋼塊径が大きくなるほど鋼塊と鋳型間の対流伝熱の影響より鋼塊自体の熱抵抗の影響が大きくなり、鋼塊の冷却速度は鋼塊径に依存するためである。熱伝導率が小さい鋼塊ほどその傾向が強くなり、鋼塊径が300mm以上で鋼塊の冷却速度向上効果が顕著になる。一方で、800mmを超えると希ガスを導入して鋼塊と鋳型間の対流伝熱効果を高めても鋼塊自体の熱抵抗により抜熱が阻害されて、鋼塊中心部まで冷却速度を向上させる効果が小さくなり易くなる。そのため、鋼塊径は300〜800mmとするのが好ましい。
以上、説明する本発明に係る製造方法は、鋼塊と鋳型の隙間にガス導入ノズルよりHeガスを導入することで、鋼塊と鋳型間で対流伝熱により抜熱することを可能として、凝固中の冷却速度を高めて、溶鋼プール深さを浅くしたものである。その結果、VARの有する成分偏析防止効果を最大限発揮できるだけでなく、VAR時の介在物の成長を抑制することが可能となる。
Moreover, the manufacturing method of maraging steel prescribed | regulated by this invention is especially effective with respect to a steel ingot diameter of 300-800 mm. The reason is that as the steel ingot diameter increases, the influence of the thermal resistance of the steel ingot itself becomes larger than the influence of convective heat transfer between the steel ingot and the mold, and the cooling rate of the steel ingot depends on the steel ingot diameter. The tendency of the steel ingot having a smaller thermal conductivity becomes stronger, and the effect of improving the cooling rate of the steel ingot becomes remarkable when the steel ingot diameter is 300 mm or more. On the other hand, if it exceeds 800mm, noble gas is introduced to enhance the convective heat transfer effect between the steel ingot and the mold, and heat removal is hindered by the thermal resistance of the steel ingot itself, improving the cooling rate to the center of the steel ingot The effect to make becomes easy to become small. Therefore, the steel ingot diameter is preferably set to 300 to 800 mm.
As described above, the manufacturing method according to the present invention described above enables heat removal by convective heat transfer between the steel ingot and the mold by introducing He gas from the gas introduction nozzle into the gap between the steel ingot and the mold. The cooling rate inside is increased and the depth of the molten steel pool is reduced. As a result, it is possible not only to maximize the component segregation preventing effect of VAR but also to suppress the growth of inclusions during VAR.
ところで、マルエージング鋼の中には、Tiを無添加とするものもあるが、Ti無添加のマルエージング鋼であっても、例えば偏析しやすいMoを積極添加するものであれば、十分に本発明の成分偏析防止効果を得ることができる。勿論、Moに加えてTiを含有するマルエージング鋼に本発明の製造方法を適用すると、抑制効果と介在物微細化効果の両方を得ることができ、特に有効である。好ましい具体的なマルエージング鋼の組成は以下の通りである。なお、含有量は質量%として記す。
Tiは、時効処理により微細な金属間化合物を形成し、析出することによって強化に寄与する元素である。そのため、3.0%を上限として添加することができる。Tiを積極添加するマルエージング鋼であれば、Tiの効果を得るための好ましい下限は0.2%である。
O(酸素)は、酸化物系介在物を形成する元素である。酸化物系介在物となる酸素の量を低減することが望ましい。そのため、Oは0.001%未満に制限するとよい。
N(窒素)は、窒化物や炭窒化物介在物を形成する元素である。本発明では窒化物系の介在物を微細化することができるが、その窒化物系介在物となる窒素の量を低減しておくのが望ましい。そのため、Nは0.0015%未満に制限するとよい。
C(炭素)は、炭化物や炭窒化物を形成し、金属間化合物の析出量を減少させて疲労強度を低下させるため、Cは0.01%以下にするとよい。
By the way, some maraging steels do not contain Ti, but even Ti-added maraging steels are sufficient if, for example, Mo that easily segregates is actively added. The component segregation preventing effect of the invention can be obtained. Of course, when the production method of the present invention is applied to maraging steel containing Ti in addition to Mo, both the suppression effect and the inclusion refinement effect can be obtained, which is particularly effective. A preferred specific maraging steel composition is as follows. In addition, content is described as mass%.
Ti is an element that contributes to strengthening by forming and precipitating fine intermetallic compounds by aging treatment. Therefore, it can be added with 3.0% as the upper limit. In the case of maraging steel to which Ti is positively added, a preferable lower limit for obtaining the effect of Ti is 0.2%.
O (oxygen) is an element that forms oxide inclusions. It is desirable to reduce the amount of oxygen that becomes oxide inclusions. Therefore, O should be limited to less than 0.001%.
N (nitrogen) is an element that forms nitrides and carbonitride inclusions. In the present invention, nitride inclusions can be miniaturized, but it is desirable to reduce the amount of nitrogen that becomes nitride inclusions. Therefore, N should be limited to less than 0.0015%.
C (carbon) forms carbides and carbonitrides, reduces the precipitation amount of intermetallic compounds and lowers fatigue strength, so C is preferably 0.01% or less.
Niは、靱性の高い母相組織を形成させるためには不可欠な元素である。しかし、8%未満では靱性が劣化する。一方、22%を超えるとオーステナイトが安定し、マルテンサイト組織を形成し難くなることから、Niは8〜22%とするとよい。
Coは、マトリックスであるマルテンサイト組織の安定性に大きく影響することなく、Moの固溶度を低下させることによってMoが微細な金属間化合物を形成して析出するのを促進することによって析出強化に寄与する元素である。しかし、その含有量が3%未満では必ずしも十分効果が得られず、また20%を越えると脆化する傾向がみられることから、Coの含有量は3〜20%にするとよい。
Moは、時効処理により、微細な金属間化合物を形成し、マトリックスに析出すること
によって強化に寄与する元素である。しかし、その含有量が2%未満の場合その効果
が少なく、また9%を越えて含有すると延性、靱性を劣化させる粗大析出物を形成し
やすくなるため、Moの含有量を2〜9%にするとよい。
Alは、時効析出による強化に寄与するだけでなく、脱酸作用を持っているため、0.01%以上を含有させるとよいが、1.7%を越えて含有させると靱性が劣化することから、その含有量を1.7%以下とするとよい。
上記の元素以外は実質的にFeでよいが、例えばBは、結晶粒を微細化するのに有効な元素であるため、靱性が劣化しない程度の0.01%以下の範囲で含有させてもよい。
また、不可避的な不純物元素は含有されるものである。
Ni is an indispensable element for forming a tough matrix structure. However, if it is less than 8%, the toughness deteriorates. On the other hand, if it exceeds 22%, austenite becomes stable and it becomes difficult to form a martensite structure. Therefore, Ni is preferably 8 to 22%.
Co does not greatly affect the stability of the matrix martensite structure, but strengthens precipitation by reducing the solid solubility of Mo and promoting the precipitation of Mo by forming fine intermetallic compounds. Is an element that contributes to However, if the content is less than 3%, sufficient effects are not necessarily obtained, and if the content exceeds 20%, embrittlement tends to occur, so the Co content is preferably 3 to 20%.
Mo is an element that contributes to strengthening by forming a fine intermetallic compound by aging treatment and precipitating it in the matrix. However, if the content is less than 2%, the effect is small, and if it exceeds 9%, coarse precipitates that deteriorate ductility and toughness are easily formed, so the Mo content is reduced to 2 to 9%. Good.
Al not only contributes to strengthening by aging precipitation, but also has a deoxidizing action, so it is better to contain 0.01% or more, but if it exceeds 1.7%, toughness will deteriorate. Therefore, the content is preferably 1.7% or less.
Other than the above elements, Fe may be substantially used. For example, B is an element effective for refining crystal grains, and therefore may be contained in a range of 0.01% or less to the extent that toughness does not deteriorate. Good.
Inevitable impurity elements are contained.
(実施例1)
実施例1として詳しく本発明を説明する。一次溶解工程にて再溶解用の消耗電極を5本製造した。5本のそれぞれをVARした際のHeガス圧力条件を表1に示す。5本のうち4本の再溶解用電極1は、VARで再溶解した際に鋼塊3と水冷銅鋳型4の間に、Heの比率が99.9体積%以上のHeガスを導入した。本発明例をNo.1、2、3及び比較例をNo.11とした。残り1本は、再溶解電極をVARした際に鋼塊3と水冷銅鋳型4の間にHeガスを導入しなかった。この比較例をNo.12とした。Heガス圧力を1.9kPa以上にしようとしたが、減圧雰囲気では圧力が安定しなかったので、実施例ではHeガス圧力を1.60kPaまでとした。本発明例及び比較例の鋼塊直径は500mmであった。Heガス導入圧力以外の電流・電圧・溶解速度の溶解条件は同一とした。
Example 1
The present invention will be described in detail as Example 1. Five consumable electrodes for redissolving were produced in the primary melting step. Table 1 shows the He gas pressure conditions when each of the five was VAR. Four of the five remelting electrodes 1 introduced He gas having a He ratio of 99.9% by volume or more between the steel ingot 3 and the water-cooled copper mold 4 when remelted by VAR. Examples of the present invention are as follows. 1, 2, 3 and Comparative Examples It was set to 11. The remaining one did not introduce He gas between the steel ingot 3 and the water-cooled copper mold 4 when the remelting electrode was VARed. This comparative example is No. It was set to 12. Although the He gas pressure was attempted to be 1.9 kPa or higher, the pressure was not stable in a reduced-pressure atmosphere. Therefore, in the examples, the He gas pressure was set to 1.60 kPa. The diameter of the steel ingot of the inventive example and the comparative example was 500 mm. The dissolution conditions for current, voltage, and dissolution rate other than the He gas introduction pressure were the same.
Heガスによる冷却は、図1に示す真空アーク再溶解炉を用いて再溶解用電極1を設置して、水冷銅鋳型内4で溶解した。溶解中においては水冷銅鋳型4下部に設置されたガス導入ノズル5より鋼塊3と鋳型4の隙間にHeガスを導入する。Heガスボンベから鋳型4へガスを送る配管内の圧力を圧力測定器6にて測定し、圧力制御バルブ7を設置することで設定したHeガス圧力に常時一定に制御した。導入されたHeガスは、鋼塊3と水冷銅鋳型4の隙間に充填されて鋼塊3から熱を奪い、隙間から漏れたガスは最終的には図示しない真空ポンプで外部に排出された。
溶解中において配管に設置された配管バルブ8を開けて、設定したHeガス圧力に制御されていることを確認後、再溶解用電極の溶解を継続した。本発明例No.1において設定した配管内Heガス圧力は1.60kPa、本発明例No.2においては1.33kPa、本発明例3においては0.93kPa、比較例11においては0.53kPaとした。前記電極の溶解が終わった後、配管に設置された配管バルブ8を閉め、さらに圧力制御装置の設定値を0にした。本発明例No.1、2、3及び比較例No.11、12の再溶解用電極の組成を表2に示す。
For cooling with He gas, a remelting electrode 1 was installed using a vacuum arc remelting furnace shown in FIG. During melting, He gas is introduced into the gap between the steel ingot 3 and the mold 4 from the gas introduction nozzle 5 installed at the lower part of the water-cooled copper mold 4. The pressure in the pipe for sending gas from the He gas cylinder to the mold 4 was measured by the pressure measuring device 6, and the He gas pressure set by installing the pressure control valve 7 was always controlled to be constant. The introduced He gas was filled in the gap between the steel ingot 3 and the water-cooled copper mold 4 to remove heat from the steel ingot 3, and the gas leaked from the gap was finally discharged to the outside by a vacuum pump (not shown).
During the dissolution, the piping valve 8 installed in the piping was opened, and after confirming that the set He gas pressure was controlled, the dissolution of the electrode for re-dissolution was continued. Invention Example No. The He gas pressure in the pipe set in 1. was 1.60 kPa, and Example No. of the present invention. 2 was 1.33 kPa, Inventive Example 3 was 0.93 kPa, and Comparative Example 11 was 0.53 kPa. After the dissolution of the electrode was finished, the pipe valve 8 installed in the pipe was closed, and the set value of the pressure control device was set to zero. Invention Example No. 1, 2, 3 and Comparative Example No. Table 2 shows the compositions of the remelting electrodes 11 and 12.
溶鋼プール形状を判別しやすくするために、5本全てにおいて消耗電極を溶解して鋼塊の重量が2100kgになった時点で磁場を印加して溶鋼プール内に電磁撹拌を発生させた。電磁撹拌により凝固界面のデンドライト先端が切断され、凝固界面に沿って等軸晶化が促進される。図2に電磁撹拌装置の概要を示す。
水冷銅鋳型4が入っているSUS製水冷ジャケット9の周りに磁場印加コイル10が巻きつけてあり、そのコイル10に電流を流すことで外部磁場を印加させる。その結果、溶鋼プール内でローレンツ力が生じて撹拌される。磁場印加パターンとしては、磁束密度20×10−4Tとして40s周期で正負を反転させた。鋼塊重量2100kgの箇所での電磁撹拌の時間は5minとした。磁束密度の正負を一定周期で逆転させることで等軸晶化が促進される。電磁撹拌終了後、30min以上経過して溶解を停止した。溶解停止後、60min以上経過して鋼塊を取り出した。
In order to make it easy to discriminate the shape of the molten steel pool, when all of the five consumable electrodes were melted and the weight of the steel ingot reached 2100 kg, a magnetic field was applied to generate electromagnetic stirring in the molten steel pool. The dendritic tip of the solidification interface is cut by electromagnetic stirring, and equiaxed crystallization is promoted along the solidification interface. FIG. 2 shows an outline of the electromagnetic stirring device.
A magnetic field application coil 10 is wound around a SUS water-cooled jacket 9 containing the water-cooled copper mold 4, and an external magnetic field is applied by passing an electric current through the coil 10. As a result, a Lorentz force is generated and stirred in the molten steel pool. As a magnetic field application pattern, positive and negative were reversed at a cycle of 40 s with a magnetic flux density of 20 × 10 −4 T. The time of electromagnetic stirring at the location where the steel ingot weight was 2100 kg was 5 min. Equiaxial crystallization is promoted by reversing the sign of the magnetic flux density at a constant period. After completion of electromagnetic stirring, dissolution was stopped after 30 min. After the dissolution was stopped, the steel ingot was taken out after 60 min.
次に、VARで再溶解したマルエージング鋼鋼塊の頂部から溶鋼プール深さを判別するために、鋼塊を中心線に沿って切断し、縦断面スライス試料を採取した。縦断面スライス試料の切断面を研磨し、マクロ腐食させて溶鋼プール形状を確認した。
腐食液として工業用塩酸を等容量の水に希釈したものを使用した。腐食した縦断面スライスよりお椀型の溶鋼プール形状より電磁撹拌発生時の湯面位置から底部までの鋼塊中心軸における距離を溶鋼プール深さとして測定した。ここでの溶鋼プール深さは電磁撹拌を発生させた鋼塊底部から2100kg重量位置のものである。表3に本発明例1、2、3及び比較例1、2の溶鋼プール深さを示す。
Next, in order to discriminate the depth of the molten steel pool from the top of the maraging steel ingot remelted by VAR, the ingot was cut along the center line, and a longitudinal section slice sample was collected. The cut surface of the longitudinal section slice sample was polished and macro-corroded to confirm the molten steel pool shape.
A solution obtained by diluting industrial hydrochloric acid in an equal volume of water was used as the corrosive liquid. From the corroded vertical slice, the distance from the molten steel pool shape to the bottom when the electromagnetic stirring occurred was measured as the molten pool depth. The depth of the molten steel pool here is that at the 2100 kg weight position from the bottom of the steel ingot where electromagnetic stirring was generated. Table 3 shows the depths of the molten steel pools of Invention Examples 1, 2, 3 and Comparative Examples 1, 2.
表3よりHeガスを導入した本発明例No.1、2、3及び比較例11は、Heガスを導入しなかった比較例12より溶鋼プール深さが浅くなっていた。ただし、比較例11の溶鋼プール深さは比較例12より5mm程度しか浅くなっておらず、Heガス導入による溶鋼プール深さ低減効果は小さいものであった。同一条件で溶解したとしても溶鋼プール深さは数mm程度変動する可能性があるので、比較例11では十分にHeガス導入による効果があったとは明確に言えなかった。
一方、本発明例No.1、2及び3では溶鋼プール深さが比較例12と比較して10mm以上浅くなっていた。Heガス導入圧力が0.9kPa以上では溶鋼プール低減の効果が大きいことが確認された。さらに、1.6kPaまではガス導入圧力を大きくすればするほど、より溶鋼プール深さが浅くなった。特に0.9kPaから1.33kPaまで圧力を上げると、ガス圧力の上昇幅に対して溶鋼プール深さの低減幅が大きくなった。
よって、本発明例1、2、3より溶鋼プール深さを顕著に浅くするにはHeガス導入圧力は0.9kPa以上必要である。さらに、0.9kPaから1.33kPaまで圧力を上げた方が溶鋼プール深さ低減効果が大きいので、望ましくはHeガス導入圧力は1.2kPa以上にするのが良いことが分かる。
From Table 3, the present invention example No. in which He gas was introduced. In 1, 2, 3, and Comparative Example 11, the depth of the molten steel pool was shallower than that of Comparative Example 12 in which He gas was not introduced. However, the depth of the molten steel pool of Comparative Example 11 was only about 5 mm shallower than that of Comparative Example 12, and the effect of reducing the depth of the molten steel pool by introducing He gas was small. Even if the molten steel is melted under the same conditions, the depth of the molten steel pool may fluctuate by several millimeters. Therefore, in Comparative Example 11, it could not be clearly said that there was a sufficient effect by introducing He gas.
On the other hand, Invention Example No. In 1, 2 and 3, the depth of the molten steel pool was shallower by 10 mm or more than that of Comparative Example 12. It was confirmed that the effect of reducing the molten steel pool was great when the He gas introduction pressure was 0.9 kPa or more. Furthermore, the depth of the molten steel pool became shallower as the gas introduction pressure was increased up to 1.6 kPa. In particular, when the pressure was increased from 0.9 kPa to 1.33 kPa, the reduction width of the molten steel pool depth increased with respect to the increase width of the gas pressure.
Therefore, the He gas introduction pressure needs to be 0.9 kPa or more in order to make the molten steel pool depth remarkably shallower than those of Invention Examples 1, 2, and 3. Furthermore, it can be seen that increasing the pressure from 0.9 kPa to 1.33 kPa has a greater effect of reducing the depth of the molten steel pool, so that the He gas introduction pressure should desirably be 1.2 kPa or higher.
溶鋼プール深さは消耗電極1よりのアーク入熱量と溶鋼プール2及び鋼塊3から銅鋳型4への抜熱量のバランスで決まる。本発明例No.1、2、3及び比較例11、12のアーク入熱量がほぼ同一であるので、Heガスを導入した場合に溶鋼プール深さが浅くなったということは、溶鋼プール2及び鋼塊3から銅鋳型4への抜熱量が増加したと言える。つまり、Heガスが導入されない場合は鋼塊3と銅鋳型4の隙間が減圧雰囲気であるため対流熱伝達により抜熱量は小さいが、その隙間にHeガスが導入されたことで熱媒介となって対流熱伝達による抜熱量が増加したと考えられる。Heガス導入圧力をある一定量以上にすることで鋼塊3と銅鋳型4の隙間に存在するHeガスの単位体積あたりの熱容量が増えると考えられる。
ゆえに、Heガスの圧力を0.9kPa以上にすると対流熱伝達の抜熱量が増加して、溶鋼プール深さが顕著に浅くなる。ただし、VARの炉内は真空ポンプによる減圧雰囲気になっており、Heガス導入圧力を高めたとして鋼塊3と銅鋳型4の接触部より漏れて排気されるため、ガス導入圧力には上限がある。実施例1では1.9kPaを超えるとガス圧力が安定しなかったので、1.9kPaを超える圧力の操業は困難と判断した。
The depth of the molten steel pool is determined by the balance between the amount of heat input from the consumable electrode 1 and the amount of heat removed from the molten steel pool 2 and the steel ingot 3 to the copper mold 4. Invention Example No. Since the arc heat input amounts of 1, 2, 3 and Comparative Examples 11 and 12 are almost the same, when the He gas is introduced, the depth of the molten steel pool becomes shallow. It can be said that the amount of heat removed to the mold 4 has increased. That is, when He gas is not introduced, the gap between the steel ingot 3 and the copper mold 4 is a reduced pressure atmosphere, so the amount of heat removal is small due to convective heat transfer, but the He gas is introduced into the gap and becomes a heat medium. It is thought that the amount of heat removed by convective heat transfer increased. It is considered that the heat capacity per unit volume of the He gas existing in the gap between the steel ingot 3 and the copper mold 4 is increased by setting the He gas introduction pressure to a certain amount or more.
Therefore, when the pressure of He gas is set to 0.9 kPa or more, the heat removal amount of the convection heat transfer increases, and the molten steel pool depth becomes remarkably shallow. However, the inside of the VAR furnace is in a reduced pressure atmosphere by a vacuum pump, and if the He gas introduction pressure is increased, it leaks from the contact portion between the steel ingot 3 and the copper mold 4 and is exhausted. is there. In Example 1, since gas pressure was not stabilized when it exceeded 1.9 kPa, it was judged that the operation of the pressure exceeding 1.9 kPa was difficult.
(実施例2)
一次溶解工程にて再溶解用の消耗電極を3本製造した。3本のそれぞれをVARした際のHeガス圧力条件を表4に示す。3本のうち2本の再溶解用電極1は、VARで再溶解した際に鋼塊3と水冷銅鋳型4の間に、Heの比率が99.9体積%以上のHeガスを導入した。この本発明例をNo.4、5とした。残り1本は、再溶解電極を真空アーク再溶解した際に鋼塊3と水冷銅鋳型4の間にHeガスを導入しなかった。この比較例をNo.13とした。本発明例及び比較例の鋼塊直径は800mmであった。Heガス導入圧力以外の電流・電圧・溶解速度の溶解条件は同一とした。
(Example 2)
Three consumable electrodes for redissolving were produced in the primary dissolving step. Table 4 shows the He gas pressure conditions when each of the three was subjected to VAR. Two of the three remelting electrodes 1 introduced He gas having a He ratio of 99.9% by volume or more between the steel ingot 3 and the water-cooled copper mold 4 when remelted by VAR. This invention example is No. 4 and 5. For the remaining one, no He gas was introduced between the steel ingot 3 and the water-cooled copper mold 4 when the remelting electrode was remelted by vacuum arc. This comparative example is No. It was set to 13. The diameter of the steel ingot of the present invention example and the comparative example was 800 mm. The dissolution conditions for current, voltage, and dissolution rate other than the He gas introduction pressure were the same.
Heガスによる冷却は、実施例1と同様の装置を用いた。本発明例No.4において設定した配管内Heガス圧力は1.33kPa、本発明例No.5においては1.20kPaとした。前記電極の溶解が終わった後、配管に設置された配管バルブ8を閉め、さらに圧力制御装置の設定値を0にした。本発明例No.4、5及び比較例No.13の再溶解用電極の組成を表5に示す。 The same apparatus as in Example 1 was used for cooling with He gas. Invention Example No. The He gas pressure in the pipe set in No. 4 is 1.33 kPa, and the present invention example No. 5 was 1.20 kPa. After the dissolution of the electrode was finished, the pipe valve 8 installed in the pipe was closed, and the set value of the pressure control device was set to zero. Invention Example No. 4, 5 and Comparative Example No. Table 5 shows the composition of 13 redissolving electrodes.
溶鋼プール形状を判別しやすくするために、実施例1と同じく電磁撹拌を実施した。3本全てにおいて消耗電極を溶解して鋼塊の重量が6800kgになった時点で磁場を印加して溶鋼プール内に電磁撹拌を発生させた。実施例2で用いた鋼塊の直径が800mmであり、溶鋼プール深さが安定するまでに鋼塊重量を直径500mmの鋼塊より多く溶解する必要があった。磁場印加パターンも実施例1と同様である。 In order to make it easy to distinguish the molten steel pool shape, electromagnetic stirring was performed as in Example 1. In all three, when the consumable electrode was melted and the weight of the steel ingot reached 6800 kg, a magnetic field was applied to generate electromagnetic stirring in the molten steel pool. The diameter of the steel ingot used in Example 2 was 800 mm, and it was necessary to dissolve the steel ingot weight more than the steel ingot with a diameter of 500 mm before the molten steel pool depth was stabilized. The magnetic field application pattern is the same as in the first embodiment.
次に、VARで再溶解したマルエージング鋼鋼塊の頂部から溶鋼プール深さを判別するために、鋼塊を中心線に沿って切断し縦断面スライスを採取した。縦断面スライスの腐食方法及び溶鋼プール深さ測定方法は実施例1と同様である。ここでの溶鋼プール深さは電磁撹拌を発生させた鋼塊底部から6800kg重量位置のものである。表6に本発明例4、5及び比較例13の溶鋼プール深さを示す。 Next, in order to discriminate the depth of the molten steel pool from the top of the maraging steel ingot remelted by VAR, the ingot was cut along the center line and a longitudinal section slice was collected. The corrosion method for the longitudinal slice and the method for measuring the depth of the molten steel pool are the same as in Example 1. The depth of the molten steel pool here is that at a weight position of 6800 kg from the bottom of the steel ingot where electromagnetic stirring is generated. Table 6 shows the depths of the molten steel pools of Invention Examples 4 and 5 and Comparative Example 13.
表6よりHeガスを導入した本発明例No.No.4及び5は、Heガスを導入しなかった比較例13より溶鋼プール深さが50mm以上浅くなっていた。鋼塊直径800mmの場合ではHeガス導入圧力が1.2kPa以上では溶鋼プール低減の効果が大きいことが確認された。さらに、ガス導入圧力を1.2kPaから1.3kPaに大きくすれば、より溶鋼プール深さが浅くなった。以上より、実施例1より大きい鋼塊直径800mmの場合でも鋼塊3と銅鋳型4の隙間にHeガス導入することで、溶鋼プール深さが浅くなることが確認された。 From Table 6, the present invention example No. in which He gas was introduced. No. In Nos. 4 and 5, the molten steel pool depth was shallower by 50 mm or more than Comparative Example 13 in which no He gas was introduced. In the case of a steel ingot diameter of 800 mm, it was confirmed that the effect of reducing the molten steel pool was great when the He gas introduction pressure was 1.2 kPa or more. Furthermore, if the gas introduction pressure was increased from 1.2 kPa to 1.3 kPa, the molten steel pool depth became shallower. From the above, it was confirmed that the molten steel pool depth becomes shallow by introducing He gas into the gap between the steel ingot 3 and the copper mold 4 even in the case where the steel ingot diameter is 800 mm larger than Example 1.
以上より、マルエージング鋼を真空アーク再溶解にて製造する際に鋼塊と鋳型の隙間にHeガスを導入することにより溶鋼プール深さを浅くすることができる。その際に適正なガス導入圧力を選択することで、高価なHeガスを使用する製造プロセスでの費用対効果を大きくすることができる。その結果、マルエージング鋼での成分偏析の抑制や介在物の微細化を図ることで、マルエージング鋼製品の品質や特性の安定化をさせることができる。 From the above, when the maraging steel is produced by vacuum arc remelting, the depth of the molten steel pool can be reduced by introducing He gas into the gap between the steel ingot and the mold. In this case, by selecting an appropriate gas introduction pressure, it is possible to increase the cost effectiveness in a manufacturing process using expensive He gas. As a result, it is possible to stabilize the quality and characteristics of maraging steel products by suppressing component segregation in maraging steel and making inclusions finer.
1 再溶解用消耗電極
2 溶鋼プール
3 鋼塊
4 水冷銅鋳型
5 ガス導入ノズル
6 圧力測定器
7 圧力制御バルブ
8 配管バルブ
9 SUS製水冷ジャケット
10 磁場コイル
1 Consumable electrode for remelting 2 Molten steel pool 3 Steel ingot 4 Water-cooled copper mold 5 Gas introduction nozzle 6 Pressure measuring instrument 7 Pressure control valve 8 Piping valve 9 Water-cooled jacket 10 made of SUS Magnetic field coil
Claims (1)
前記消耗電極を用いて真空アーク再溶解を行って鋼塊を得る再溶解工程と、
を含むマルエージング鋼の製造方法において、
前記再溶解工程中に、鋳型と鋼塊の間に0.9kPa以上1.9kPa未満の圧力でHeガスを導入し、
溶鋼プールの深さを170mm以下とする
ことを特徴とするマルエージング鋼の製造方法。
A primary melting step to obtain a consumable electrode of maraging steel;
Remelting step of obtaining a steel ingot by performing vacuum arc remelting using the consumable electrode;
In the manufacturing method of maraging steel containing
During the remelting step, He gas is introduced between the mold and the steel ingot at a pressure of 0.9 kPa or more and less than 1.9 kPa,
The depth of a molten steel pool shall be 170 mm or less. The manufacturing method of the maraging steel characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014120541A JP6347405B2 (en) | 2014-06-11 | 2014-06-11 | Method for producing maraging steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014120541A JP6347405B2 (en) | 2014-06-11 | 2014-06-11 | Method for producing maraging steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016000409A JP2016000409A (en) | 2016-01-07 |
JP6347405B2 true JP6347405B2 (en) | 2018-06-27 |
Family
ID=55076295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014120541A Active JP6347405B2 (en) | 2014-06-11 | 2014-06-11 | Method for producing maraging steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6347405B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7447377B2 (en) * | 2020-03-24 | 2024-03-12 | 株式会社プロテリアル | Manufacturing method of Ti-free maraging steel |
CN113186406B (en) * | 2021-04-15 | 2023-03-31 | 西部超导材料科技股份有限公司 | VAR smelting method for preparing large-size easy-segregation titanium alloy ingot casting in strong cooling mode |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2963268B2 (en) * | 1992-01-31 | 1999-10-18 | 日本鋼管株式会社 | Melting method of titanium alloy ingot by VAR method |
JPH0873960A (en) * | 1994-08-31 | 1996-03-19 | Sumitomo Metal Ind Ltd | Production of extra-low oxygen titanium |
JP3110733B1 (en) * | 1999-06-24 | 2000-11-20 | 住友特殊金属株式会社 | Maraging steel sheet excellent in fatigue characteristics and method for producing the same |
JP2004183097A (en) * | 2002-11-19 | 2004-07-02 | Hitachi Metals Ltd | Method for producing maraging steel and maraging steel |
JP4403129B2 (en) * | 2005-10-14 | 2010-01-20 | 東邦チタニウム株式会社 | Vacuum arc melting method for refractory metals |
JP2010116581A (en) * | 2008-11-11 | 2010-05-27 | Toho Titanium Co Ltd | Method for producing titanium ingot using vacuum arc melting furnace |
JP2010116589A (en) * | 2008-11-12 | 2010-05-27 | Toho Titanium Co Ltd | Vacuum arc melting apparatus for metal and vacuum arc melting method for metal using the same apparatus |
-
2014
- 2014-06-11 JP JP2014120541A patent/JP6347405B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016000409A (en) | 2016-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106350631A (en) | Production method of armco iron for amorphous soft magnetic materials | |
CN114318109B (en) | Method for smelting high-nitrogen die steel by using vacuum induction furnace and pressurized electroslag furnace | |
JP6347405B2 (en) | Method for producing maraging steel | |
JP5381243B2 (en) | Method for refining molten steel | |
JP6455289B2 (en) | Continuous casting method for molten steel | |
JP5048222B2 (en) | Method for producing long ingots of active refractory metal alloys | |
CN112605557A (en) | HGH1131 welding wire and preparation method thereof | |
JP2010052026A (en) | Method for continuous casting of high-nitrogen-containing duplex stainless steel | |
JP5967324B2 (en) | Method for producing maraging steel and method for producing consumable electrode of maraging steel | |
CN112621022A (en) | ERNiCrMo-11 welding wire and preparation method thereof | |
JP2017131933A (en) | Production method for low-carbon steel thin-walled cast slab, the thin-walled cast slab, and production method for low-carbon thin-walled steel sheet | |
JP6728934B2 (en) | Continuous casting method for molten steel | |
JP2011012300A (en) | Copper alloy and method for producing copper alloy | |
JP6809243B2 (en) | Continuously cast steel slabs and their manufacturing methods | |
JP6455287B2 (en) | Manufacturing method of continuous cast slab | |
JP2018127670A (en) | Method for refining molten steel | |
JP5308857B2 (en) | Martensitic stainless steel continuous casting slab and manufacturing method thereof | |
JP4650725B2 (en) | Method for producing maraging steel | |
JP4569458B2 (en) | Continuous casting method of steel material with finely dispersed precipitates and slab for steel material | |
CN112011747A (en) | High-nitrogen steel and slab continuous casting process thereof | |
JP2003342630A (en) | Method for continuous casting molten steel containing added rare earth element | |
JP6191781B1 (en) | Spheroidal graphite cast iron with excellent gas defect resistance | |
JP6544638B2 (en) | Method of manufacturing Ti-containing maraging steel and method of manufacturing preform thereof | |
JP3573344B2 (en) | Manufacturing method of highly clean maraging steel | |
JP3604035B2 (en) | Method for producing maraging steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180507 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6347405 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180520 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |