JP6326266B2 - Dry coating material - Google Patents

Dry coating material Download PDF

Info

Publication number
JP6326266B2
JP6326266B2 JP2014075545A JP2014075545A JP6326266B2 JP 6326266 B2 JP6326266 B2 JP 6326266B2 JP 2014075545 A JP2014075545 A JP 2014075545A JP 2014075545 A JP2014075545 A JP 2014075545A JP 6326266 B2 JP6326266 B2 JP 6326266B2
Authority
JP
Japan
Prior art keywords
coating material
less
dry coating
mass
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014075545A
Other languages
Japanese (ja)
Other versions
JP2015196177A (en
Inventor
佳寛 笹谷
佳寛 笹谷
洋一 古田
洋一 古田
本田 和寛
和寛 本田
洋輔 大野
洋輔 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2014075545A priority Critical patent/JP6326266B2/en
Publication of JP2015196177A publication Critical patent/JP2015196177A/en
Application granted granted Critical
Publication of JP6326266B2 publication Critical patent/JP6326266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

本発明は、タンディッシュ用のコーティング材として好適に使用されるドライコーティング材に関する。   The present invention relates to a dry coating material suitably used as a tundish coating material.

タンディッシュは、鋼の連続鋳造において、溶鋼の分配、溶鋼温度の均一化、脱酸生成物の浮上等を行う役割をもつ。タンディッシュの内張りには通常、溶鋼汚染防止と内張り耐火物保護のために、マグネシア、ドロマイト等の塩基性質耐火原料を主材とした薄肉の耐火性コーティング材が被覆される。その施工は水を添加し、吹き付け又はコテ塗りによって行われるのが一般的である。   In the continuous casting of steel, the tundish has a role of distributing the molten steel, homogenizing the molten steel temperature, and floating the deoxidized product. The tundish lining is usually coated with a thin refractory coating material mainly composed of basic refractory raw materials such as magnesia and dolomite to prevent molten steel contamination and refractory lining protection. The construction is generally performed by adding water and spraying or troweling.

このコーティング材は施工後、使用前に加熱乾燥される。しかし、コーティング材に添加された水は乾燥によっても完全には抜けきれず、水が原因した水素ピックアップによる鋼製品の品質低下を招いている。   This coating material is heat-dried after construction and before use. However, the water added to the coating material cannot be completely removed even by drying, and the quality of the steel product is lowered due to the hydrogen pickup caused by the water.

また、コーティング材は、損耗等によって残厚が少なくなると解体して新規に施工されるが、内張り耐火物への焼き付きによって解体に相当な手間と時間を要し、タンディッシュの稼働率を低下させている。   In addition, the coating material is dismantled and newly constructed when the remaining thickness decreases due to wear, etc., but seizure to the lining refractory requires considerable labor and time to reduce the operating rate of the tundish. ing.

そこで、近年、乾式によるコーティング材の施工法が提案されている(例えば、特許文献1)。この乾式法は、内張り耐火物を配したタンディッシュ内に中子を設け、内張り耐火物と中子との間に耐火性原料及び結合剤(フェノールレジン)よりなる水添加をしない乾粉状のコーティング材を投入し、充填後、中子の内側からガスバーナー等で加熱してコーティング材を仮硬化させ、中子の脱型後、最終硬化させるものである。この乾式法は、吹き付けあるいはコテ塗りと違ってコーティング材に水を添加しないことにより、水素ピックアップや焼き付きの問題が解消される。   Thus, in recent years, a dry coating material construction method has been proposed (for example, Patent Document 1). In this dry method, a core is provided in a tundish where a lining refractory is arranged, and a dry powder-like state in which water consisting of a refractory raw material and a binder (phenol resin) is not added between the lining refractory and the core. The coating material is charged, and after filling, the coating material is preliminarily cured by heating from the inside of the core with a gas burner, and the core is demolded and finally cured. This dry method, unlike spraying or ironing, eliminates the problems of hydrogen pickup and image sticking by not adding water to the coating material.

上記乾式法で用いる乾粉状のコーティング材(以下「ドライコーティング材」という。)は、仮硬化後の強度が不足すると、中子の脱型時において、中子にドライコーティング材が付着してしまう。このため、ドライコーティング材の具備特性としては、仮硬化後の強度を向上させることが必要である。   When the dry powder coating material (hereinafter referred to as “dry coating material”) used in the dry method has insufficient strength after temporary curing, the dry coating material adheres to the core when the core is removed. End up. For this reason, it is necessary to improve the strength after temporary curing as a characteristic of the dry coating material.

ドライコーティング材の強度を向上させる技術としては、フェノールレジンを増量することが考えられる。しかし、フェノールレジンを増量すると、異臭が発生する問題やコストを要する問題がある。そこで、フェノールレジンを増量することなく、ドライコーティング材の強度向上を実現する要請があった。   As a technique for improving the strength of the dry coating material, it is conceivable to increase the amount of phenol resin. However, when the amount of the phenol resin is increased, there is a problem that a bad odor is generated and a problem that requires a cost. Therefore, there has been a demand for realizing an improvement in the strength of the dry coating material without increasing the amount of phenol resin.

2006−7317号公報No. 2006-7317

本発明が解決しようとする課題は、中子の脱型前、すなわち仮硬化後のドライコーティング材の強度を向上させ、脱型時の中子への付着を抑制することにある。   The problem to be solved by the present invention is to improve the strength of the dry coating material before demolding of the core, that is, after pre-curing, and to suppress adhesion to the core during demolding.

本発明の一観点によれば、マグネシア質原料を80質量%以上98質量%以下、フェノールレジンを2質量%以上8質量%以下含むドライコーティング材であって、当該ドライコーティング材の粒度構成は、粒径1mm以上3mm未満の粒子が20質量%以上40質量%以下、粒径0.075mm以上1mm未満の粒子が20質量%以上40質量%以下、粒径0.075mm未満の粒子が20質量%以上40質量%以下であり、当該ドライコーティング材中の粒径1mm以上3mm未満の粒子のゆるみ見掛け比重が1.5(g/mL)以上であり、粒径0.075mm未満の粒子のゆるみ見掛け比重が0.8(g/mL)以上であるドライコーティング材が提供される。
なお、本発明でいう「ゆるみ見掛け比重」とは、後述(段落0024)の方法で測定したものであり単位は(g/mL)であるが、以下の説明では単位は省略する。
According to one aspect of the present invention, a dry coating material containing a magnesia material in an amount of 80% by mass to 98% by mass and a phenol resin in an amount of 2% by mass to 8% by mass , Particles having a particle size of 1 mm or more and less than 3 mm are 20% by mass or more and 40% by mass or less, particles having a particle size of 0.075 mm or more and less than 1 mm are 20% by mass or more and 40% by mass or less, and particles having a particle size of 0.075 mm or less are 20% by mass. or more and 40 mass% or less, the loose apparent specific gravity of the particles having a particle size of less than 1mm or 3mm in the dry coating material 1.5 (g / mL) above, loose apparent diameter of less than 0.075mm particles A dry coating material having a specific gravity of 0.8 (g / mL) or more is provided.
The “slack apparent specific gravity” as used in the present invention is measured by the method described later (paragraph 0024), and the unit is (g / mL), but the unit is omitted in the following description.

本発明のドライコーティング材において、骨材に相当する粒径1mm以上3mm未満の粒子のゆるみ見掛け比重が1.5以上である。このため、ゆるみ見掛け比重が1.5未満の場合と比較して、骨材間は密な組織となり、骨材間の隙間は小さくなるので、仮硬化後のドライコーティング材の強度が向上する。   In the dry coating material of the present invention, the apparent specific gravity of loose particles having a particle diameter of 1 mm or more and less than 3 mm corresponding to the aggregate is 1.5 or more. For this reason, compared with the case where the loose apparent specific gravity is less than 1.5, the aggregates have a dense structure and the gaps between the aggregates are reduced, so that the strength of the dry coating material after temporary curing is improved.

また、骨材に相当する粒径1mm以上3mm未満の粒子のゆるみ見掛け比重が1.5以上であるので、マグネシア質原料の骨材は図1(a)に概念的に示すように気孔が少なく緻密質である。一方、骨材に相当する粒径1mm以上3mm未満の粒子のゆるみ見掛け比重が1.5未満であると、マグネシア質原料の骨材は図1(b)に概念的に示すように気孔が多くポーラス質である。このようにマグネシア質原料の骨材がポーラス質であるとその骨材の気孔にフェノールレジンが入り込み、強度発現に寄与するフェノールレジン量が減ることでドライコーティング材の強度が低下する(図1(b))。これに対して、本発明によれば、マグネシア質原料の骨材が緻密質であるため、その骨材の気孔に入り込むフェノールレジンが少なくなり、強度発現に寄与するフェノールレジン量の減少が抑制されるので、ドライコーティング材の強度が向上する(図1(a))。   Further, since the apparent specific gravity of loose particles having a particle diameter of 1 mm or more and less than 3 mm corresponding to the aggregate is 1.5 or more, the aggregate of the magnesia material has few pores as conceptually shown in FIG. It is dense. On the other hand, if the apparent specific gravity of particles having a particle diameter of 1 mm or more and less than 3 mm corresponding to the aggregate is less than 1.5, the aggregate of the magnesia material has many pores as conceptually shown in FIG. It is porous. Thus, if the aggregate of the magnesia material is porous, the phenol resin enters the pores of the aggregate, and the amount of the phenol resin contributing to the strength development is reduced, thereby reducing the strength of the dry coating material (FIG. 1 ( b)). On the other hand, according to the present invention, since the aggregate of the magnesia raw material is dense, the amount of phenol resin entering the pores of the aggregate is reduced, and the decrease in the amount of phenol resin contributing to strength development is suppressed. Therefore, the strength of the dry coating material is improved (FIG. 1 (a)).

一方、ドライコーティング材は凹凸状の隙間に充填されるため、流動性がないと凹凸状の隙間に入り込めずに空隙ができる。この点、本発明によれば、粒径0.075mm未満の粒子のゆるみ見掛け比重が0.8以上であることから、流動性を確保でき、凹凸状の隙間に入り込むことが可能となる。このため、ドライコーティング材の充填性が向上し、結果としてドライコーティング材の強度が向上する。   On the other hand, since the dry coating material is filled in the concavo-convex gap, if there is no fluidity, a void is formed without entering the concavo-convex gap. In this respect, according to the present invention, since the apparent specific gravity of the loose particles having a particle diameter of less than 0.075 mm is 0.8 or more, fluidity can be ensured and it becomes possible to enter the uneven gap. For this reason, the filling property of the dry coating material is improved, and as a result, the strength of the dry coating material is improved.

ドライコーティング材の強度発現のメカニズムを概念的に示し、(a)は本発明の場合、(b)は従来の場合である。The mechanism of strength development of the dry coating material is conceptually shown, in which (a) is the case of the present invention and (b) is the conventional case. ゆるみ見掛け比重の測定に用いる測定用容器である。It is a measuring container used for measurement of loose apparent specific gravity.

本発明のドライコーティング材は、原料粒子としてマグネシア質原料とフェノールレジンとを含む。   The dry coating material of the present invention contains a magnesia raw material and a phenol resin as raw material particles.

ここで、「マグネシア質原料」とは、MgOを主成分の一つとする耐火性原料のことをいい、マグネシア、ドロマイト、オリビン等が挙げられる。また、「フェノールレジン」としては、ノボラック型のフェノールレジン又はレゾール型のフェノールレジンが挙げられる。   Here, the “magnesia raw material” refers to a refractory raw material mainly composed of MgO, and includes magnesia, dolomite, olivine and the like. Examples of the “phenol resin” include novolak type phenol resins and resole type phenol resins.

本発明のドライコーティング材は、マグネシア質原料を80質量%以上98質量%以下含む。マグネシア質原料が80質量%未満では、耐用が劣り、コーティング材としての目的を果たせない。98質量%を超えると、硬化不良で脱型ができない。   The dry coating material of the present invention contains 80 mass% or more and 98 mass% or less of magnesia material. When the magnesia raw material is less than 80% by mass, the durability is inferior and the purpose as a coating material cannot be achieved. If it exceeds 98 mass%, demolding cannot be performed due to poor curing.

また、本発明のドライコーティング材は、フェノールレジンを2質量%以上8質量%以下含む。フェノールレジンが2質量%未満では、硬化不良で脱型ができない。8質量%を超えると、異臭が発生し、高コストになる。さらに、8質量%を超えると、ドライコーティング材の強度は確保できるが、過剰なフェノールレジンが中子表面に融着してしまう問題がある。   The dry coating material of the present invention contains 2% by mass or more and 8% by mass or less of phenol resin. When the phenol resin is less than 2% by mass, demolding is impossible due to poor curing. If it exceeds 8% by mass, a strange odor is generated, resulting in high costs. Furthermore, when it exceeds 8 mass%, the strength of the dry coating material can be ensured, but there is a problem that excess phenol resin is fused to the core surface.

また、本発明のドライコーティング材は、その他の結合剤として、珪酸塩、燐酸塩、硫酸マグネシウム、ブドウ糖等から選択される1種以上を適宜含みうる。さらに、本発明のドライコーティング材は、マグネシア質原料及びフェノールレジンのほか、粘土、シリカ超微粉等から選択される1種以上の耐火性原料を適宜含みうる。   In addition, the dry coating material of the present invention may appropriately include one or more selected from silicates, phosphates, magnesium sulfate, glucose and the like as other binders. Furthermore, the dry coating material of the present invention may appropriately contain one or more refractory raw materials selected from clay, ultrafine silica powder, etc., in addition to the magnesia raw material and phenol resin.

ドライコーティング材は乾粉状であることが前提であるから、その全体が粒子(固体)によって構成される、そして本発明のドライコーティング材は上述したとおり、ドライコーティング材中の粒径1mm以上3mm未満の粒子のゆるみ見掛け比重が1.5以上であり、粒径0.075mm未満の粒子のゆるみ見掛け比重が0.8以上であることを特徴とする。粒径1mm以上3mm未満の粒子のゆるみ見掛け比重が1.5未満、あるいは粒径0.075mm未満の粒子のゆるみ見掛け比重が0.8未満では、上述した効果が得られない。   Since it is assumed that the dry coating material is in the form of a dry powder, the whole is constituted by particles (solid). The loose specific gravity of particles having a particle diameter of less than 0.075 mm is 0.8 or more. When the loose apparent specific gravity of particles having a particle diameter of 1 mm or more and less than 3 mm is less than 1.5, or when the loose apparent specific gravity of particles having a particle diameter of less than 0.075 mm is less than 0.8, the above-described effects cannot be obtained.

粒径1mm以上3mm未満の粒子のゆるみ見掛け比重は、1.7以上であることが好ましく、1.9以上であることがより好ましい。また、粒径0.075mm未満の粒子のゆるみ見掛け比重は、0.9以上であることが好ましく、1.0以上であることがより好ましい。   The loose apparent specific gravity of particles having a particle size of 1 mm or more and less than 3 mm is preferably 1.7 or more, and more preferably 1.9 or more. The apparent specific gravity of loose particles having a particle size of less than 0.075 mm is preferably 0.9 or more, and more preferably 1.0 or more.

更に、本発明のドライコーティング材は、その全体のゆるみ見掛け比重が1.6以上であることが好ましい。そうすれば、ドライコーティング材全体の充填性が向上し、結果としてドライコーティング材の強度が向上する。   Furthermore, the dry coating material of the present invention preferably has an overall loose specific gravity of 1.6 or more. If it does so, the fillability of the whole dry coating material will improve, and the intensity | strength of a dry coating material will improve as a result.

本発明のドライコーティング材の粒度構成としては、強度向上や流動性向上の点から粒径1mm以上3mm未満の粒子が20質量%以上40質量%以下、粒径0.075mm以上1mm未満の粒子が20質量%以上40質量%以下、粒径0.075mm未満の粒子が20質量%以上40質量%以下であることが好ましい。   As the particle size constitution of the dry coating material of the present invention, particles having a particle size of 1 mm or more and less than 3 mm are 20% by mass or more and 40% by mass or less, and particles having a particle size of 0.075 mm or more and less than 1 mm from the viewpoint of improving strength or fluidity. It is preferable that 20 mass% or more and 40 mass% or less and the particle size of less than 0.075 mm is 20 mass% or more and 40 mass% or less.

なお、本発明でいう「ゆるみ見掛け比重」とは、次の方法で測定したものをいう。ゆるみ見掛け比重の測定には、図2に示すように、内径50.5(mm)、高さ50(mm)を有するステンレス製の円筒形の100mLの測定用容器を用いる。測定にあたっては、試料(粒度調整したドライコーティング材又はドライコーティング材全体を指す)を測定用容器に溢れるまで流入させる。試料を測定用容器に溢れるまで流入させたら、測定用容器の上面からすり落とす。あらかじめ測定しておいた空の測定用容器の質量を差し引くことによって試料の質量(m)を0.1%まで測定する。式m/100によってかさ密度(g/mL)を計算し、3つの異なった試料を用いて3回の測定から算出されたかさ密度の平均値を「ゆるみ見掛け比重」とする。   The “slack apparent specific gravity” as used in the present invention refers to that measured by the following method. As shown in FIG. 2, the measurement of the loose apparent specific gravity uses a stainless steel cylindrical 100 mL measuring container having an inner diameter of 50.5 (mm) and a height of 50 (mm). In the measurement, a sample (referring to a dry coating material adjusted in particle size or the entire dry coating material) is allowed to flow into the measurement container until it overflows. When the sample flows into the measurement container until it overflows, it is scraped off from the upper surface of the measurement container. The mass (m) of the sample is measured to 0.1% by subtracting the mass of the empty measurement container that has been measured in advance. The bulk density (g / mL) is calculated by the formula m / 100, and the average value of the bulk density calculated from three measurements using three different samples is defined as the “slack apparent specific gravity”.

なお、上記の粒度調整したドライコーティング材は、篩いによって粒度調整した材料である。具体的には、1mmの篩いを通し、篩い上に残存した粒子をドライコーティング材中の粒径1mm以上3mm未満の粒子とした。また、0.075mmの篩いを通し、篩い下に落下した粒子をドライコーティング材中の粒径0.075mm未満の粒子とした。そして、1mm以上3mm未満の粒子、0.075mm未満の粒子それぞれのゆるみ見掛け比重を上記手法により測定した。また、ドライコーティング材全体のゆるみ見掛け比重も同様に上記手法により測定した。   In addition, said dry-coating material which adjusted the particle size is a material which adjusted the particle size by the sieve. Specifically, a 1 mm sieve was passed, and the particles remaining on the sieve were made particles having a particle size of 1 mm or more and less than 3 mm in the dry coating material. Moreover, the particle | grains which passed the 0.075mm sieve and fell under the sieve were made into the particle | grains in the dry coating material with a particle size of less than 0.075mm. Then, the apparent specific gravity of each of the particles of 1 mm or more and less than 3 mm and particles of less than 0.075 mm was measured by the above method. The loose apparent specific gravity of the entire dry coating material was also measured by the above method.

表1は本発明の実施例及び比較例の原料構成と評価結果を示す。   Table 1 shows the raw material structures and evaluation results of Examples and Comparative Examples of the present invention.

マグネシア質原料としては、天然マグネシア、オリビン及びドロマイトを使用した。表1中の天然マグネシアA及び天然マグネシアBは産地等が異なる天然マグネシアである。各マグネシア質原料のゆるみ見掛け比重は、「天然マグネシアB>天然マグネシアA≧ドロマイト>オリビン」である。   Natural magnesia, olivine and dolomite were used as the magnesia material. Natural magnesia A and natural magnesia B in Table 1 are natural magnesias with different origins. The loose apparent specific gravity of each magnesia material is “natural magnesia B> natural magnesia A ≧ dolomite> olivine”.

フェノールレジンとしてはノボラック型のフェノールレジンを使用し、その他の結合剤としては珪酸塩及び硫酸マグネシウムを使用した。その他の耐火原料は粘土及びシリカ超微粉を使用した。   As the phenolic resin, a novolac type phenolic resin was used, and as other binders, silicate and magnesium sulfate were used. The other refractory raw materials used clay and ultrafine silica powder.

各例のドライコーティング材について、ゆるみ見掛け比重及び曲げ強さを測定するとともに、臭気を評価した。   About the dry coating material of each case, while measuring the loose specific gravity and bending strength, odor was evaluated.

ゆるみ見掛け比重は上述の方法で測定した。   The loose apparent specific gravity was measured by the method described above.

曲げ強さは次の方法で測定した。振動テーブルの上に40×40×160の金枠内を置き、3Gの振動をかけながら、原料を充填する。原料充填後、金枠ごと材料を200℃×3hで乾燥する。乾燥後に脱型し、試料の曲げ強さをJIS−R2553の規定に準拠して測定する。曲げ強さが0.5MPa以上あれば脱型可能な強度であり、2MPa以上あれば更に良い。0.5MPa未満であると脱型可能な強度に満たない。表1では、曲げ強さが2MPa以上を〇、0.5MPa以上2MPa未満を△、0.5MPa未満を×で表記した。この曲げ強さは、仮硬化後のドライコーティング材の強度を表す指標である。   The bending strength was measured by the following method. The inside of a 40 × 40 × 160 metal frame is placed on the vibration table, and the raw material is filled while applying 3G vibration. After filling the raw material, the material with the metal frame is dried at 200 ° C. × 3 h. After drying, the mold is removed, and the bending strength of the sample is measured in accordance with the provisions of JIS-R2553. If the bending strength is 0.5 MPa or more, it is a strength capable of demolding, and if it is 2 MPa or more, it is even better. If it is less than 0.5 MPa, it does not have sufficient strength for demolding. In Table 1, the bending strength is represented by ◯ when 2 MPa or more, Δ by 0.5 MPa or more and less than 2 MPa, and x by less than 0.5 MPa. This bending strength is an index representing the strength of the dry coating material after temporary curing.

臭気の評価としては、試料を200℃で加熱した際に発生する臭気を評価した。ほとんど臭気がない場合を○、臭気はあるが作業に支障がない場合を△、臭気があり作業不可の場合×とした。この臭気の評価は、ドライコーティング材の仮硬化時に発生する臭気を表す指標である。   As the odor evaluation, the odor generated when the sample was heated at 200 ° C. was evaluated. The case where there was almost no odor was rated as ◯, the case where there was an odor but there was no trouble in the work was marked as Δ, and the case where there was an odor and work was impossible, was marked as ×. This odor evaluation is an index representing the odor generated when the dry coating material is temporarily cured.

総合評価は、曲げ強さと臭気のいずれか一方が×の場合は×、曲げ強さと臭気のいずれか一方又は両方が△の場合は△、曲げ強さと臭気いずれも○の場合は○とした。   The overall evaluation was X when either one of bending strength and odor was x, △ when either or both of bending strength and odor was Δ, and ◯ when both bending strength and odor were ○.

実施例1〜8は総合評価が△以上であり、仮硬化後のドライコーティング材の強度向上が確認され、臭気も許容範囲内であった。なかでも、粒径1mm以上3mm未満の粒子のゆるみ見掛け比重が1.7以上であり、粒径0.075mm未満の粒子のゆるみ見掛け比重が0.9以上である実施例4及び5は総合評価が○であり、特に良好であった。   In Examples 1 to 8, the overall evaluation was Δ or more, the strength improvement of the dry coating material after the temporary curing was confirmed, and the odor was within the allowable range. Among them, Examples 4 and 5 in which the loose specific gravity of particles having a particle size of 1 mm or more and less than 3 mm is 1.7 or more and the loose specific gravity of particles having a particle size of less than 0.075 mm are 0.9 or more are comprehensively evaluated. Was ◯ and was particularly good.

比較例1は、粒径1mm以上3mm未満の粒子のゆるみ見掛け比重が小さすぎる例、比較例2は、粒径0.075mm未満の粒子のゆるみ見掛け比重が小さすぎる例であり、いずれも強度不足であった。   Comparative Example 1 is an example in which the loose apparent specific gravity of particles having a particle size of 1 mm or more and less than 3 mm is too small, and Comparative Example 2 is an example in which the loose apparent specific gravity of particles having a particle size of less than 0.075 mm is too small. Met.

比較例3は、フェノールレジンが少なすぎる例であり、これも強度不足であった。一方、比較例4は、フェノールレジンが多すぎる例であり、強度は十分であったが、臭気の評価が悪かった。   Comparative Example 3 was an example in which there was too little phenol resin, and this was also insufficient in strength. On the other hand, Comparative Example 4 is an example in which there is too much phenol resin, and the strength was sufficient, but the evaluation of odor was bad.

Claims (4)

マグネシア質原料を80質量%以上98質量%以下、フェノールレジンを2質量%以上8質量%以下含むドライコーティング材であって、
当該ドライコーティング材の粒度構成は、粒径1mm以上3mm未満の粒子が20質量%以上40質量%以下、粒径0.075mm以上1mm未満の粒子が20質量%以上40質量%以下、粒径0.075mm未満の粒子が20質量%以上40質量%以下であり、
当該ドライコーティング材中の粒径1mm以上3mm未満の粒子のゆるみ見掛け比重が1.5(g/mL)以上であり、粒径0.075mm未満の粒子のゆるみ見掛け比重が0.8(g/mL)以上であるドライコーティング材。
A dry coating material comprising a magnesia material in an amount of 80% by mass to 98% by mass and a phenol resin in an amount of 2% by mass to 8% by mass,
The particle size composition of the dry coating material is such that particles having a particle size of 1 mm or more and less than 3 mm are 20% by mass or more and 40% by mass or less, particles having a particle size of 0.075 mm or more and less than 1 mm are 20% by mass or more and 40% by mass or less, and particle size 0 0.075 mm or less of particles are 20% by mass or more and 40% by mass or less,
The loose specific gravity of particles having a particle size of 1 mm or more and less than 3 mm in the dry coating material is 1.5 (g / mL) or more, and the loose apparent specific gravity of particles having a particle size of less than 0.075 mm is 0.8 (g / g). mL) or more dry coating material.
粒径1mm以上3mm未満の粒子のゆるみ見掛け比重が1.7(g/mL)以上であり、粒径0.075mm未満の粒子のゆるみ見掛け比重が0.9(g/mL)以上である請求項1に記載のドライコーティング材。 A loose apparent specific gravity of particles having a particle size of 1 mm or more and less than 3 mm is 1.7 (g / mL) or more, and a loose apparent specific gravity of particles having a particle size of less than 0.075 mm is 0.9 (g / mL) or more. Item 2. The dry coating material according to Item 1. 粒径1mm以上3mm未満の粒子のゆるみ見掛け比重が1.9(g/mL)以上であり、粒径0.075mm未満の粒子のゆるみ見掛け比重が1.0(g/mL)以上である請求項1に記載のドライコーティング材。 The loose apparent specific gravity of particles having a particle size of 1 mm or more and less than 3 mm is 1.9 (g / mL) or more, and the loose apparent specific gravity of particles having a particle size of less than 0.075 mm is 1.0 (g / mL) or more. Item 2. The dry coating material according to Item 1. 全体のゆるみ見掛け比重が1.6(g/mL)以上である請求項1から3のいずれかに記載のドライコーティング材。 The dry coating material according to any one of claims 1 to 3, wherein an overall loose specific gravity is 1.6 (g / mL) or more.
JP2014075545A 2014-04-01 2014-04-01 Dry coating material Active JP6326266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014075545A JP6326266B2 (en) 2014-04-01 2014-04-01 Dry coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014075545A JP6326266B2 (en) 2014-04-01 2014-04-01 Dry coating material

Publications (2)

Publication Number Publication Date
JP2015196177A JP2015196177A (en) 2015-11-09
JP6326266B2 true JP6326266B2 (en) 2018-05-16

Family

ID=54546248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014075545A Active JP6326266B2 (en) 2014-04-01 2014-04-01 Dry coating material

Country Status (1)

Country Link
JP (1) JP6326266B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340131B1 (en) * 2017-12-28 2018-06-06 黒崎播磨株式会社 Hot repair spray material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI69259C (en) * 1982-02-09 1986-01-10 Aikoh Co FORM FOER BLAOSFORMNING AV INFODRINGEN I ETT FOER SMAELT METALL AVSETT KAERL INFODRINGSFOERFARANDE I VILKET NAEMNDA FORM ANVAENDS OCH INFODRINGSBLANDNING SOM ANVAENDS VID NAEMNDA INFODRINGSFOERFARANDE
JPH01122640A (en) * 1987-11-02 1989-05-15 Taiko Rozai Kk Heat insulating blown coating material for tundish
JP2789116B2 (en) * 1989-10-14 1998-08-20 九州耐火煉瓦株式会社 Basic amorphous refractories
JPH07206511A (en) * 1993-12-29 1995-08-08 Toshiba Ceramics Co Ltd Magnesia clinker, monolithic refractory and ladle for steel making
JP4478061B2 (en) * 2004-05-25 2010-06-09 黒崎播磨株式会社 Dry tundish coating material and its construction method
JP5302651B2 (en) * 2008-12-15 2013-10-02 黒崎播磨株式会社 Method for forming coating layer on tundish
JP5754295B2 (en) * 2011-08-17 2015-07-29 品川リフラクトリーズ株式会社 Dry coating material

Also Published As

Publication number Publication date
JP2015196177A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
JP5590518B2 (en) Molding material mixture containing borosilicate glass
CN102407275B (en) Expendable pattern casting (EPC) molding shell paint for casting steel and preparation method thereof
US8802003B2 (en) Method for the production of a refractory filter
US10092947B2 (en) Method for producing lost cores or molded parts for the production of cast parts
MX2011013937A (en) Foundry coating composition.
CN104493150B (en) A kind of alumina-silica drainage agent and preparation method thereof
CN103100676B (en) A kind of continuous casting pouring basket constant staticizer and preparation method thereof
JP6326266B2 (en) Dry coating material
TW201125835A (en) Carbon-containing refractory material for use in the casting of steel by the bottom pour method and shaped bodies produced therefrom
JP4855339B2 (en) Amorphous refractories and methods for producing refractories
CN102601329A (en) Novel composite current stabilizer and manufacturing method of the novel composite current stabilizer
CN102773404B (en) Anti-whiting coating for cast iron and methods for preparing and using anti-whiting coating for cast iron
JP4478061B2 (en) Dry tundish coating material and its construction method
JP2008207238A (en) Casting mold
Dady et al. Sulfonic acid coating of refractory sand for three-dimensional printing applications
Kumar et al. Casting
JP4960906B2 (en) Hot filler
JP2016172280A (en) Dry coating material and construction method of the same
JP6358736B2 (en) Dry coat material
JP6975380B2 (en) Resin-coated casting sand for shell molds, main molds and cores using it
JP5786826B2 (en) How to apply coating material to the inner surface of molten steel tank
CN104058768A (en) Baffle wall for continuous casting tundish and preparation method of baffle wall
JP5372725B2 (en) Molding agent composition for sand casting
JP2019173163A (en) Gas blowing plug and method for manufacturing same
JPS58149977A (en) Highly corrosion-resistant and highly airtight packing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6326266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250