JP6320228B2 - Solar air turbine power generation system - Google Patents

Solar air turbine power generation system Download PDF

Info

Publication number
JP6320228B2
JP6320228B2 JP2014156841A JP2014156841A JP6320228B2 JP 6320228 B2 JP6320228 B2 JP 6320228B2 JP 2014156841 A JP2014156841 A JP 2014156841A JP 2014156841 A JP2014156841 A JP 2014156841A JP 6320228 B2 JP6320228 B2 JP 6320228B2
Authority
JP
Japan
Prior art keywords
air
temperature
solar
air turbine
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014156841A
Other languages
Japanese (ja)
Other versions
JP2016033360A (en
JP2016033360A5 (en
Inventor
信義 三島
信義 三島
長田 俊幸
俊幸 長田
永渕 尚之
尚之 永渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2014156841A priority Critical patent/JP6320228B2/en
Priority to CA2894926A priority patent/CA2894926C/en
Priority to US14/808,568 priority patent/US10001112B2/en
Priority to CN201510450868.6A priority patent/CN105317553B/en
Priority to EP15179074.8A priority patent/EP2980383B1/en
Priority to ES15179074.8T priority patent/ES2660992T3/en
Publication of JP2016033360A publication Critical patent/JP2016033360A/en
Publication of JP2016033360A5 publication Critical patent/JP2016033360A5/ja
Application granted granted Critical
Publication of JP6320228B2 publication Critical patent/JP6320228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • F02C7/10Heating air supply before combustion, e.g. by exhaust gases by means of regenerative heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/007Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/02Devices for producing mechanical power from solar energy using a single state working fluid
    • F03G6/04Devices for producing mechanical power from solar energy using a single state working fluid gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/068Devices for producing mechanical power from solar energy with solar energy concentrating means having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/303Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、太陽熱空気タービン発電システムに関する。   The present invention relates to a solar air turbine power generation system.

太陽熱を利用した太陽熱発電システムとして、導入した空気を圧縮して圧縮流体を生成する圧縮機と、圧縮流体を太陽熱により更に加熱して高温圧縮流体とする太陽集光受熱器と、高温圧縮流体を導入して出力を得るガスタービンと、ガスタービンと連結された発電機とを備えたものがある(例えば、特許文献1参照)。   As a solar thermal power generation system using solar heat, a compressor that compresses the introduced air to generate a compressed fluid, a solar condensing receiver that further heats the compressed fluid with solar heat to form a high-temperature compressed fluid, and a high-temperature compressed fluid Some include a gas turbine that obtains an output by being introduced, and a generator connected to the gas turbine (see, for example, Patent Document 1).

上述した太陽熱発電システムを構成する太陽集光受熱器は、高温配管の長さを最短とするためタワーの上に太陽熱ガスタービンと共に配置されている。このため、タワーの製作コストが増大するという問題がある。圧縮機をタービンと分離して配置することでタワーの積載重量を低減し、タワー製作コストを抑制できる太陽熱ガスタービン及び太陽熱ガスタービン発電装置がある(例えば、特許文献2参照)。   The solar condensing heat receiver constituting the solar thermal power generation system described above is arranged together with the solar gas turbine on the tower in order to minimize the length of the high-temperature pipe. For this reason, there exists a problem that the manufacturing cost of a tower increases. There is a solar thermal gas turbine and a solar thermal gas turbine power generation device that can reduce the tower loading weight by arranging the compressor separately from the turbine and suppress the tower manufacturing cost (see, for example, Patent Document 2).

特開2011−7149号公報JP 2011-7149 A 特開2010−275997号公報JP 2010-275997 A

特許文献1に記載の太陽熱発電システムは、太陽の光が十分に得られない場合には、太陽集光受熱器とタービンとの間に配置された補助燃焼器により化石燃料を噴射燃焼させて、タービンに供給される圧縮流体を所定の温度まで昇温させることが必要になる。このため、補助燃焼器用の化石燃料供給設備が必要になるので、建設コストが上昇するとともに、化石燃料を消費するため発電コストが高くなる。   In the solar thermal power generation system described in Patent Document 1, when sufficient solar light is not obtained, the fossil fuel is injected and burned by the auxiliary combustor disposed between the solar concentrating heat receiver and the turbine. It is necessary to raise the temperature of the compressed fluid supplied to the turbine to a predetermined temperature. For this reason, since a fossil fuel supply facility for an auxiliary combustor is required, the construction cost increases and the power generation cost increases because fossil fuel is consumed.

特許文献2に記載の太陽熱ガスタービン発電装置は、圧縮機1と圧縮機駆動用電動機7を地上に設置し、受熱器2とタービン3と発電機4と再熱器5とを纏めて集熱器タワーTの頂上に設置している。このため、タワーTの積載重量は、特許文献1の場合より低減されるが、タービン3と発電機4とがタワーTに積載される構成であるので、タービン3の運転が不安定となり、タワーTの基礎の建設コストの増加や運転時の振動対策が懸念されるといった課題が残る。また、圧縮機1の動力がタービン軸から直接供給されない軸構成となるため、圧縮機1を駆動する大型の電動機7が必要になり設備費の増加を招くという課題が生じる。   In the solar gas turbine power generator described in Patent Document 2, the compressor 1 and the compressor driving motor 7 are installed on the ground, and the heat receiver 2, the turbine 3, the generator 4, and the reheater 5 are collectively collected. It is installed on the top of the instrument tower T. For this reason, although the load weight of the tower T is reduced from the case of the patent document 1, since the turbine 3 and the generator 4 are mounted on the tower T, the operation of the turbine 3 becomes unstable, and the tower 3 Problems remain such as an increase in the construction cost of the foundation of T and concerns about vibration countermeasures during operation. In addition, since the power of the compressor 1 is not directly supplied from the turbine shaft, a large electric motor 7 for driving the compressor 1 is required, resulting in an increase in equipment costs.

本発明は上述した事柄に基づいてなされたものであって、その目的は、建設コストと発電コストを低減すると共に、化石燃料を使用しない太陽熱空気タービン発電システムを提供することにある。   The present invention has been made based on the above-described matters, and an object thereof is to provide a solar air turbine power generation system that reduces the construction cost and power generation cost and does not use fossil fuel.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、空気を吸入して昇圧させる圧縮機と、集光器で集めた太陽光の熱により前記圧縮機で昇圧された圧縮空気を加熱して昇温させる受熱器と、前記受熱器で加熱された圧縮空気を導入して前記圧縮機と発電機とを駆動する空気タービンと、前記圧縮機の下流側かつ前記受熱器の上流側に設けられ、前記空気タービンからの排気を加熱媒体として前記圧縮機で昇圧された圧縮空気を加熱する再生熱交換器と、前記圧縮機の下流側かつ前記再生熱交換器の上流側に設けられ、前記圧縮機で昇圧された圧縮空気を前記再生熱交換器の側と前記空気タービンの入口側であるバイパス側とに分配する分配装置とを備えた太陽熱空気タービン発電システムにおいて、加熱媒体として前記再生熱交換器へ流入する前記空気タービンからの排気流量を調節することで、前記空気タービンの入口の空気温度を一定値になるように制御する制御装置と、前記空気タービンの排気を前記再生熱交換器に導く再生熱交換器流入系統と、前記空気タービンの排気の前記再生熱交換器への流入をバイパスさせる再生熱交換器バイパス系統と、前記再生熱交換器バイパス系統に流入する排気流量を調節する流量調節弁とを備え、前記制御装置は、前記流量調節弁の開度を制御する制御装置であることを特徴とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. For example, a compressor that sucks air to boost pressure and a compressor that boosts pressure by the heat of sunlight collected by a condenser. A heat receiver for heating the compressed air to raise the temperature, an air turbine for driving the compressor and the generator by introducing the compressed air heated by the heat receiver, a downstream side of the compressor and the A regenerative heat exchanger that is provided on the upstream side of the heat receiver and that heats the compressed air that has been pressurized by the compressor using the exhaust from the air turbine as a heating medium; and a downstream side of the compressor and the regenerative heat exchanger In a solar air turbine power generation system provided with a distribution device provided on the upstream side and distributing compressed air pressurized by the compressor to a side of the regenerative heat exchanger and a bypass side which is an inlet side of the air turbine , With heating medium By adjusting the exhaust flow rate from the air turbine flowing into the regenerative heat exchanger Te, and a control unit for controlling so that the air temperature at the inlet of the air turbine at a constant value, the exhaust of the air turbine the A regenerative heat exchanger inflow system that leads to a regenerative heat exchanger, a regenerative heat exchanger bypass system that bypasses the inflow of exhaust air from the air turbine to the regenerative heat exchanger, and exhaust gas that flows into the regenerative heat exchanger bypass system A flow control valve for adjusting a flow rate, and the control device is a control device for controlling an opening degree of the flow control valve .

本発明によれば、建設コストと発電コストを低減すると共に、化石燃料を使用しない太陽熱空気タービン発電システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, while reducing construction cost and electric power generation cost, the solar thermal air turbine electric power generation system which does not use a fossil fuel can be provided.

本発明の太陽熱空気タービン発電システムの一実施の形態の構成を示す概念図である。It is a conceptual diagram which shows the structure of one Embodiment of the solar thermal air turbine electric power generation system of this invention. 本発明の太陽熱空気タービン発電システムの一実施の形態を構成する圧縮機の起動の態様を説明するための特性図である。It is a characteristic view for demonstrating the aspect of a starting of the compressor which comprises one embodiment of the solar thermal air turbine power generation system of this invention. 従来のガスタービンを構成する圧縮機の起動の態様を説明するための特性図である。It is a characteristic view for demonstrating the aspect of starting of the compressor which comprises the conventional gas turbine. 本発明の太陽熱空気タービン発電システムの一実施の形態における1日の天候変化に対する機器の動作を説明するために、大気温度、タービン入口高温空気温度、及び直達日射強度の特性を示す特性概念図である。FIG. 2 is a characteristic conceptual diagram showing the characteristics of atmospheric temperature, turbine inlet high temperature air temperature, and direct solar radiation intensity in order to explain the operation of the device with respect to the daily weather change in one embodiment of the solar air turbine power generation system of the present invention. is there. 本発明の太陽熱空気タービン発電システムの一実施の形態における1日の天候変化に対する機器の動作を説明するために、冷水バイパス流量及び再生熱交バイパス空気量の特性を示す特性概念図である。It is a characteristic conceptual diagram which shows the characteristic of the cold water bypass flow rate and the reproduction | regeneration heat exchange bypass air amount, in order to demonstrate the operation | movement of the apparatus with respect to the daily weather change in one embodiment of the solar air turbine power generation system of this invention. 本発明の太陽熱空気タービン発電システムの一実施の形態における1日の天候変化に対する機器の動作を説明するために、発電機出力、太陽熱集熱装置側空気量、及び太陽熱集熱装置バイパス側空気量の特性を示す特性概念図である。In order to explain the operation of the device against the daily weather change in one embodiment of the solar air turbine power generation system of the present invention, the generator output, the solar heat collector side air amount, and the solar heat collector bypass air amount It is a characteristic conceptual diagram which shows the characteristic of these.

以下、本発明の太陽熱空気タービン発電システムの実施の形態を説明する。
本発明の太陽熱空気タービン発電システムの実施の形態を構成する主要機器は、太陽熱集熱器、別名、太陽熱受熱器がタワーの頂上の高い位置に設置される以外は、地上に設置される。
Hereinafter, embodiments of the solar air turbine power generation system of the present invention will be described.
The main equipment constituting the embodiment of the solar air turbine power generation system of the present invention is installed on the ground except that a solar heat collector, also known as a solar heat receiver, is installed at a high position on the top of the tower.

すなわち、タワー上に設置された太陽受熱器へ向かって、太陽からの直達日射光を反射して太陽熱受熱器へ反射する多数の反射鏡と、圧縮機と、空気タービンと発電機を直結した太陽熱空気タービン発電機と、圧縮機の吸い込み空気を冷却する冷却機と、圧縮機出口空気をさらに過熱する再生熱交換器と、太陽熱空気タービン発電機を起動時に電動機として使うためのインバータ装置とを備えている。太陽熱空気タービン発電機が出力する電力により、1日の天候の変化に影響されず、有害な化石燃料の燃焼ガスを大気に一切排出せずに、経済的で安価な電気を太陽熱から安定的に生成できる。   In other words, toward the solar heat receiver installed on the tower, the solar heat that directly connected the solar reflector with many reflectors that reflect the direct sunlight from the sun and reflected to the solar heat receiver An air turbine generator, a cooler that cools the intake air of the compressor, a regenerative heat exchanger that further superheats the compressor outlet air, and an inverter device for using the solar air air turbine generator as an electric motor at startup ing. The power output from the solar air turbine generator is not affected by changes in the weather of the day, and does not emit harmful fossil fuel combustion gas to the atmosphere at all. Can be generated.

太陽熱空気タービン発電機の発生電力の一部を所内電力系統から取り出し、冷水冷却機、例えばターボ冷却機等を駆動して冷水を生成し、この冷水を空気冷却器に流すことで、圧縮機の吸い込み空気を冷却する。   A part of the generated electric power of the solar air turbine generator is taken out from the in-house power system, a chilled water cooler such as a turbo chiller is driven to generate chilled water, and this chilled water is allowed to flow through the air cooler. Cool the intake air.

圧縮機出口の中圧中温空気を太陽熱受熱器側と太陽熱受熱器をバイパスする側とに分配する3方空気分配装置を使用することで、天候の変化に対応して圧縮機出口空気の流出先を分配する。日の出からの時間経過とその日の天候によりこの分配空気の運用を制御する。また、天気の変化により次々刻々変わる大気温度や直達日射強度に対応して、3方冷水流量調整弁にて空気冷却器への冷水通過流量を制御して圧縮機入口の空気温度の低下量を制御することで、間接的に、空気タービン入口高温空気温度を一定制御する。   By using a three-way air distribution device that distributes medium-pressure medium-temperature air at the compressor outlet to the solar heat receiver side and the side bypassing the solar heat receiver, the outlet of the compressor outlet air in response to changes in weather Distribute The operation of this distribution air is controlled by the time elapsed from sunrise and the weather of the day. In addition, in response to atmospheric temperature and direct solar radiation intensity that changes one after another due to changes in weather, the flow rate of cold water passing to the air cooler is controlled by a three-way cold water flow rate adjustment valve to reduce the amount of air temperature at the compressor inlet. By controlling, the air turbine inlet hot air temperature is indirectly controlled constant.

さらに、圧縮機出口の中温空気をさらに加熱して高温空気とするために、再生熱交換器を圧縮機出口に設け、空気タービンの排気空気により、圧縮機出口の中温空気を加熱する。   Furthermore, in order to further heat the intermediate temperature air at the compressor outlet to high temperature air, a regenerative heat exchanger is provided at the compressor outlet, and the intermediate temperature air at the compressor outlet is heated by the exhaust air of the air turbine.

空気タービンの排気空気は、再生熱交換器流入系統と再生熱交換器バイパス系統とに流入し、再生熱交換器バイパス系統に設けた3方バイパス空気流量調整弁により、バイパス空気流量を調整する。このことにより、天気の変化に影響されないで空気タービン入口温度を間接的に一定温度に制御して、空気タービンの電気出力と安全運転を達成する。   The exhaust air of the air turbine flows into the regenerative heat exchanger inflow system and the regenerative heat exchanger bypass system, and the bypass air flow rate is adjusted by a three-way bypass air flow rate adjustment valve provided in the regenerative heat exchanger bypass system. As a result, the air turbine inlet temperature is indirectly controlled to a constant temperature without being affected by changes in the weather, and the electric output and safe operation of the air turbine are achieved.

太陽集熱温度や集熱量が最大許容値を超えそうになったら、または、空気タービン入口温度が制御計画値を超過した場合は、集熱率調整制御装置を動かして太陽光反射装置の反射角度を変えて太陽熱受熱器への反射光をそらせることで、太陽熱集熱量を減らし、空気タービン入口温度を一定に保ち、空気タービンの許容出力超過運転を予防する。   If the solar heat collection temperature or the amount of heat collection is about to exceed the maximum allowable value, or if the air turbine inlet temperature exceeds the control plan value, move the heat collection rate adjustment control device to adjust the reflection angle of the solar reflector. By diverting the reflected light to the solar heat receiver, the amount of solar heat collection is reduced, the air turbine inlet temperature is kept constant, and the air turbine is prevented from operating excessively.

以下、図面を用いて詳細に説明する。   Hereinafter, it explains in detail using a drawing.

図1は本発明の太陽熱空気タービン発電システムの一実施の形態の構成を示す概念図である。図1において、太陽熱空気タービン発電システムは、ガスタービン発電・圧縮装置100と、空気タービン入口温度制御装置200と、太陽熱集熱装置300と、ターボ冷凍装置400と、所内電気系統500とを備えている。   FIG. 1 is a conceptual diagram showing a configuration of an embodiment of a solar air turbine power generation system of the present invention. In FIG. 1, the solar air-air turbine power generation system includes a gas turbine power generation / compression device 100, an air turbine inlet temperature control device 200, a solar heat collection device 300, a turbo refrigeration device 400, and an in-house electric system 500. Yes.

ガスタービン発電・圧縮装置100は、ターボ冷凍装置400から供給される空気を圧縮する圧縮機1と、太陽熱集熱装置300から供給される高温空気により駆動される空気タービン2と、空気タービン2により駆動される場合は発電を行い、系統からインバータ装置64を介して受電する場合には電動機として機能する発電機3とを備えている。圧縮機1と空気タービン2とは同一の回転軸で直結し、空気タービン2と発電機3とは、軸連結器28を介して回転軸の脱着を行う。軸連結器28としては、クラッチまたはトルクコンバータが用いられる。本実施の形態においては、例えばスリーエスクラッチを用いた例を説明する。   The gas turbine power generation / compression device 100 includes a compressor 1 that compresses air supplied from a turbo refrigeration device 400, an air turbine 2 that is driven by high-temperature air supplied from a solar heat collector 300, and an air turbine 2. When it is driven, it generates power, and when it receives power from the system via the inverter device 64, it includes a generator 3 that functions as an electric motor. The compressor 1 and the air turbine 2 are directly connected by the same rotating shaft, and the air turbine 2 and the generator 3 are attached to and detached from the rotating shaft via the shaft coupler 28. As the shaft coupler 28, a clutch or a torque converter is used. In the present embodiment, for example, an example using a three es clutch will be described.

空気タービン入口温度制御装置200は、圧縮機1の出口に一端を接続された圧縮機出口配管44と、圧縮機出口配管44の他端が接続され圧縮機からの圧縮空気を昇温する再生熱交換器45と、再生熱交換器45で昇温された圧縮空気を太陽熱集熱装置300へ送る再生熱交換器出口配管46と、空気タービン2の排気口に一端側を接続する空気タービン排気空気配管56と、空気タービン排気空気配管56の他端側に設けた分岐部の一方に接続され、再生熱交換器45をバイパスして排気を大気に放出する再生熱交換器バイパス配管57と、空気タービン排気空気配管56の他端側に設けた分岐部の他方に接続され、排気を加熱媒体として再生熱交換器45へ送る空気タービン排気側再生熱交換器入口配管58と、再生熱交換器バイパス配管57に設けられ、再生熱交換器45をバイパスする排気の流量を調節する再生熱交換器バイパス弁35とを備えている。   The air turbine inlet temperature control device 200 includes a compressor outlet pipe 44 having one end connected to the outlet of the compressor 1 and a regenerative heat that raises the temperature of the compressed air from the compressor by connecting the other end of the compressor outlet pipe 44. An exchanger 45, a regenerative heat exchanger outlet pipe 46 for sending the compressed air heated by the regenerative heat exchanger 45 to the solar heat collecting apparatus 300, and an air turbine exhaust air having one end connected to an exhaust port of the air turbine 2. A regenerative heat exchanger bypass pipe 57 connected to one of the pipe 56 and one of the branch portions provided on the other end side of the air turbine exhaust air pipe 56, bypassing the regenerative heat exchanger 45 and releasing exhaust gas to the atmosphere; An air turbine exhaust-side regenerative heat exchanger inlet pipe 58 connected to the other of the branch portions provided on the other end side of the turbine exhaust air pipe 56 and sending exhaust gas to the regenerative heat exchanger 45 as a heating medium, and a regenerative heat exchanger bypass Provided in the tube 57, and a regenerative heat exchanger bypass valve 35 for adjusting the flow rate of the exhaust gas to bypass the regenerative heat exchanger 45.

また、圧縮機出口配管44には、圧縮機出口空気温度を検出する温度センサ22が、再生熱交換器出口配管46には、再生熱交換器出口空気温度を検出する温度センサ23が、空気タービン排気空気配管56には、空気タービン出口空気温度を検出する温度センサ21がそれぞれ設けられている。温度センサ21乃至23が検出した温度信号は、それぞれ後述する再生熱交換器出口空気温度制御装置90へ入力される。   The compressor outlet pipe 44 has a temperature sensor 22 for detecting the compressor outlet air temperature, and the regenerative heat exchanger outlet pipe 46 has a temperature sensor 23 for detecting the regenerative heat exchanger outlet air temperature. The exhaust air pipe 56 is provided with a temperature sensor 21 for detecting the air turbine outlet air temperature. The temperature signals detected by the temperature sensors 21 to 23 are respectively input to a regenerative heat exchanger outlet air temperature control device 90 described later.

また、空気タービン入口温度制御装置200は、圧縮空気の流量を再生熱交換器45側とバイパス側である空気タービン側2とに分配制御する3方圧縮空気分配バタフライ弁38と、空気タービン2の入口に一端を接続した空気タービン入口高温空気配管55と、空気タービン入口高温空気配管55の他端にその一端側を接続し、その他端側を3方圧縮空気分配バタフライ弁38を介して圧縮機出口配管44に接続する太陽熱集熱装置バイパスバタフライ弁出口配管54とを備えている。   The air turbine inlet temperature control device 200 includes a three-way compressed air distribution butterfly valve 38 that controls the distribution of the flow rate of the compressed air between the regenerative heat exchanger 45 side and the air turbine side 2 that is the bypass side, An air turbine inlet hot air pipe 55 having one end connected to the inlet, one end side connected to the other end of the air turbine inlet hot air pipe 55, and the other end side through a three-way compressed air distribution butterfly valve 38. A solar heat collector bypass butterfly valve outlet pipe 54 connected to the outlet pipe 44.

また、空気タービン入口高温空気配管55には、空気タービン入口空気温度を検出する温度センサ18が、太陽熱集熱装置バイパスバタフライ弁出口配管54には、太陽熱集熱装置バイパス空気温度を検出する温度センサ20がそれぞれ設けられている。温度センサ20が検出した温度信号は、後述する圧縮空気分配制御装置37と太陽熱集熱量制御装置91へ入力され、温度センサ18が検出した温度信号は、後述する圧縮空気分配制御装置37、再生熱交換器出口空気温度制御装置90、太陽熱集熱量制御装置91、及び空気冷却器出口空気温度制御装置17へ入力される。   The air turbine inlet high temperature air pipe 55 has a temperature sensor 18 for detecting the air turbine inlet air temperature, and the solar heat collector bypass butterfly valve outlet pipe 54 has a temperature sensor for detecting the solar heat collector bypass air temperature. 20 are provided. The temperature signal detected by the temperature sensor 20 is input to a compressed air distribution control device 37 and a solar heat collection amount control device 91 which will be described later, and the temperature signal detected by the temperature sensor 18 is supplied to a compressed air distribution control device 37 and a regeneration heat which will be described later. It is input to the exchanger outlet air temperature control device 90, the solar heat collection amount control device 91, and the air cooler outlet air temperature control device 17.

また、空気タービン入口温度制御装置200は、3方圧縮空気分配バタフライ弁38を制御することで圧縮機1からの圧縮空気の太陽集熱装置側とバイパス側への分配量を調整する圧縮空気分配制御装置37と、再生熱交換器バイパス弁35の開度を制御することで空気タービン2の入口空気温度を一定温度に調整する再生熱交換器出口空気温度制御装置90とを備えている。   The air turbine inlet temperature control device 200 controls the three-way compressed air distribution butterfly valve 38 to adjust the distribution amount of the compressed air from the compressor 1 to the solar heat collector side and the bypass side. A control device 37 and a regenerative heat exchanger outlet air temperature control device 90 for adjusting the inlet air temperature of the air turbine 2 to a constant temperature by controlling the opening degree of the regenerative heat exchanger bypass valve 35 are provided.

太陽熱集熱装置300は、再生熱交換器出口配管46に設けられた太陽熱集熱装置入口バタフライ弁47と、タワー30の頂上部に設置した太陽熱受熱器29と、一端側を太陽熱集熱装置入口バタフライ弁47の出口側に接続し、他端側を太陽熱受熱器29の入口側に接続したタワー入口空気配管48と、太陽31から出る直達日射光33を反射鏡にて反射させ、直達日射光反射光34として太陽熱受熱器29に集光して空気を昇温する太陽熱反射装置32と、直射日光による日射量を測定する直達日射計39とを備えている。   The solar heat collector 300 includes a solar heat collector inlet butterfly valve 47 provided in the regenerative heat exchanger outlet pipe 46, a solar heat receiver 29 installed at the top of the tower 30, and one end side of the solar heat collector inlet. The tower inlet air piping 48 connected to the outlet side of the butterfly valve 47 and the other end side connected to the inlet side of the solar heat receiver 29, and the direct sunlight 33 emitted from the sun 31 are reflected by a reflecting mirror, and the direct sunlight is reflected. A solar heat reflecting device 32 that concentrates the reflected light 34 on the solar heat receiver 29 to raise the temperature of the air and a direct solarimeter 39 that measures the amount of solar radiation by direct sunlight are provided.

また、太陽熱集熱装置300は、一端側を太陽熱受熱器29の出口側に接続したタワー出口空気配管49と、タワー出口空気配管49の他端側に設けた分岐部の一方に一端側を接続し、他端側を太陽熱集熱装置バイパスバタフライ弁出口配管54に接続したタワー出口空気タービン側空気配管50と、タワー出口空気タービン側空気配管50に設けられた太陽熱集熱装置出口バタフライ弁52と、タワー出口空気配管49の他端側に設けた分岐部の他方に接続され、異常昇圧した空気を大気に放出する高圧タワー出口空気圧力逃がし配管51と、高圧タワー出口空気圧力逃がし配管51に設けられ、配管内の空気が異常昇圧したときの圧力逃がし装置である空気圧力逃がし調整弁27とを備えている。直達日射計39が測定した直射日光による日射量信号は、熱交換器出口空気温度制御装置90へ入力される。   The solar heat collecting apparatus 300 has one end connected to one of a tower outlet air pipe 49 having one end connected to the outlet of the solar heat receiver 29 and a branching section provided on the other end of the tower outlet air pipe 49. A tower outlet air turbine side air pipe 50 having the other end connected to the solar heat collector bypass butterfly valve outlet pipe 54, and a solar heat collector outlet butterfly valve 52 provided in the tower outlet air turbine side air pipe 50. The high pressure tower outlet air pressure relief pipe 51 and the high pressure tower outlet air pressure relief pipe 51 that are connected to the other of the branch portions provided on the other end of the tower outlet air pipe 49 and release abnormally pressurized air to the atmosphere. And an air pressure relief adjusting valve 27 which is a pressure relief device when the air in the pipe abnormally increases in pressure. The solar radiation amount signal by direct sunlight measured by the direct solar radiation meter 39 is input to the heat exchanger outlet air temperature control device 90.

また、タワー出口空気タービン側空気配管50には、太陽熱集熱装置出口空気温度を検出する温度センサ19と配管内の空気圧力を検出する圧力センサ25とが設けられている。圧力センサ25が検出した太陽集熱出口空気圧力信号は後述する空気圧力逃がし制御装置26へ入力される。温度センサ19が検出した温度信号は、圧縮空気分配制御装置37と後述する太陽熱集熱量制御装置91へ入力される。   Further, the tower outlet air turbine side air pipe 50 is provided with a temperature sensor 19 for detecting the solar heat collector outlet air temperature and a pressure sensor 25 for detecting the air pressure in the pipe. The solar heat collection outlet air pressure signal detected by the pressure sensor 25 is input to an air pressure relief control device 26 described later. The temperature signal detected by the temperature sensor 19 is input to the compressed air distribution control device 37 and a solar heat collection amount control device 91 described later.

また、太陽熱集熱装置300は、空気タービン2に入力する燃量を調整するために、太陽熱反射装置32の反射角度を制御する太陽熱集熱量制御装置91と、
タワー出口空気タービン側空気配管50の内部の空気が異常昇圧したときに空気圧力逃がし調整弁27を制御する空気圧力逃がし制御装置26とを備えている。
Further, the solar heat collector 300 is a solar heat collection controller 91 that controls the reflection angle of the solar reflector 32 in order to adjust the amount of fuel input to the air turbine 2;
An air pressure relief control device 26 is provided for controlling the air pressure relief regulating valve 27 when the air inside the tower outlet air turbine side air pipe 50 abnormally increases in pressure.

ターボ冷凍装置400は、コイル内を冷水が流れる冷却コイルと風洞とを備えた空気冷却器4と、空気冷却器4の空気入口に一端側を接続し、他端側に大気吸い込み口40を設けた空気冷却器入口風洞41と、空気冷却器4の空気出口に一端側を接続し、他端側を圧縮機1の出口に接続した空気冷却器出口風洞42と、空気冷却器出口風洞42に設けられ圧縮機1の起動時には絞り運転のために半開にされ、定格回転数到達後には全開にされる圧縮機入口バタフライ弁43とを備えている。   The turbo refrigeration apparatus 400 is provided with an air cooler 4 having a cooling coil through which cold water flows in the coil and a wind tunnel, one end connected to the air inlet of the air cooler 4, and an air suction port 40 on the other end. The air cooler inlet wind tunnel 41, one end side connected to the air outlet of the air cooler 4, and the other end side connected to the outlet of the compressor 1, and the air cooler outlet wind tunnel 42 A compressor inlet butterfly valve 43 is provided that is half-opened for throttle operation when the compressor 1 is started and fully opened after reaching the rated rotational speed.

また、空気冷却器入口風洞41には、空気冷却器入口空気温度を検出する温度センサ24が、空気冷却器出口風洞42には、空気冷却器出口空気温度を検出する温度センサ16がそれぞれ設けられている。温度センサ24と温度センサ16が検出した温度信号は、それぞれ後述する空気冷却器出口空気温度制御装置17へ入力される。   The air cooler inlet wind tunnel 41 is provided with a temperature sensor 24 for detecting the air cooler inlet air temperature, and the air cooler outlet wind tunnel 42 is provided with a temperature sensor 16 for detecting the air cooler outlet air temperature. ing. The temperature signals detected by the temperature sensor 24 and the temperature sensor 16 are respectively input to an air cooler outlet air temperature control device 17 described later.

また、ターボ冷凍装置400は、空気冷却器4の冷却コイルの冷水出口側に一端側を接続した冷水戻り配管10と、冷水戻り配管10に設けられた冷水循環ポンプ入口弁11と、冷水戻り配管10の他端側を入口に接続し冷水を循環する冷水循環ポンプ5と、一端側を冷水循環ポンプ5の出口に接続し、チェック弁12と出口弁13とを設けたターボ冷凍機戻り冷水配管14と、ターボ冷凍機戻り冷水配管14の他端側を入口に接続し、冷水を冷却するターボ冷凍機6と、ターボ冷凍機6の出口に一端側を接続するターボ冷凍機出口冷水配管15とを備えている。また、ターボ冷凍機戻り冷水配管14にはターボ冷凍機入口冷水温度を検出する温度センサ84が、ターボ冷凍機出口冷水配管15にはターボ冷凍機出口冷水温度を検出する温度センサ83が、それぞれ設けられている。温度センサ84と温度センサ83が検出した温度信号は、それぞれ後述する空気冷却器出口空気温度制御装置17へ入力される。   The turbo refrigeration apparatus 400 includes a chilled water return pipe 10 having one end connected to the chilled water outlet side of the cooling coil of the air cooler 4, a chilled water circulation pump inlet valve 11 provided in the chilled water return pipe 10, and a chilled water return pipe. 10 is connected to the inlet of the chilled water circulation pump 5 for circulating the chilled water, one end of the chilled water circulating pump 5 is connected to the outlet of the chilled water circulating pump 5, and provided with a check valve 12 and an outlet valve 13. 14, a turbo chiller 6 that connects the other end of the centrifugal chiller return chilled water pipe 14 to the inlet and cools the chilled water, and a turbo chiller outlet chilled water pipe 15 that connects one end to the outlet of the turbo chiller 6, It has. Further, the turbo chiller return chilled water pipe 14 is provided with a temperature sensor 84 for detecting the turbo chiller inlet cold water temperature, and the turbo chiller outlet chilled water pipe 15 is provided with a temperature sensor 83 for detecting the turbo chiller outlet cold water temperature. It has been. The temperature signals detected by the temperature sensor 84 and the temperature sensor 83 are respectively input to an air cooler outlet air temperature control device 17 described later.

また、ターボ冷凍装置400は、ターボ冷凍機出口冷水配管15の他端側に入口を接続した3方冷水流量調整弁7と、3方冷水流量調整弁7の一方の出口に一端側を接続し、他端側を空気冷却器4の冷却コイルの冷水入口側に接続した冷水供給配管8と、3方冷水流量調整弁7の他方の出口に一端側を接続し、他端側を冷水戻り配管10の他端側に接続した冷水バイパス配管9とを備えている。   The turbo refrigeration apparatus 400 has a three-way chilled water flow rate adjustment valve 7 having an inlet connected to the other end of the turbo chiller outlet chilled water pipe 15 and one end connected to one outlet of the three-way chilled water flow rate adjustment valve 7. The other end side is connected to the chilled water inlet side of the cooling coil of the air cooler 4, the one end side is connected to the other outlet of the three-way chilled water flow rate adjusting valve 7, and the other end side is connected to the chilled water return pipe 10 and a cold water bypass pipe 9 connected to the other end side.

また、ターボ冷凍装置400は、空気冷却器4の出口空気の温度を所定の温度に調整するために、3方冷水流量調整弁7の開度を制御する空気冷却器出口空気温度制御装置17を備えている。   In addition, the turbo refrigeration apparatus 400 includes an air cooler outlet air temperature control device 17 that controls the opening degree of the three-way cold water flow rate adjustment valve 7 in order to adjust the temperature of the outlet air of the air cooler 4 to a predetermined temperature. I have.

所内電気系統500は、発電機3の出力端に一端側を接続した発電機出口主回路70と、発電機出口主回路70の他端側を接続したインバータバイパス遮断器66と、発電機出口主回路70の他端側を接続したインバータ出口遮断器65と、インバータ出口遮断器65の上流側に配置され系統からの電力を可変周波数電源に変換して発電機3を空気タービン2の駆動電動機とするインバータ装置64と、インバータ装置64の上流側に配置され、系統からの電力とインバータ装置64との接続/遮断を行うインバータ入口遮断器63と、インバータ装置64をバイパスして通常運転時に系統と発電機3とを接続するインバータバイパス遮断器66と、一端側をインバータ入口遮断器63の上流側とインバータバイパス遮断器66の上流側とに接続し、他端側を主変圧器62の低圧側に接続する主変圧器低圧側回路71と、発電機3の出力電圧を系統電圧まで昇圧する主変圧器62と、主変圧器62の高圧側に配置され発電機3と外部系統75との接続/遮断を行う主回路遮断器61と、主回路遮断器61の上流側に配置され外部系統75との接続/遮断を行う系統連絡遮断器60とを備えている。   The in-house electrical system 500 includes a generator outlet main circuit 70 having one end connected to the output end of the generator 3, an inverter bypass circuit breaker 66 having the other end connected to the generator outlet main circuit 70, and a generator outlet main circuit. An inverter outlet circuit breaker 65 connected to the other end of the circuit 70, an electric power from the system arranged upstream of the inverter outlet circuit breaker 65 and converted into a variable frequency power source, and the generator 3 as a drive motor for the air turbine 2 The inverter device 64, the inverter inlet circuit breaker 63 that is arranged on the upstream side of the inverter device 64 and connects / cuts off the power from the system and the inverter device 64, and the system during normal operation by bypassing the inverter device 64. The inverter bypass circuit breaker 66 for connecting the generator 3 and one end side to the upstream side of the inverter inlet circuit breaker 63 and the upstream side of the inverter bypass circuit breaker 66 Subsequently, the main transformer low voltage side circuit 71 connecting the other end side to the low voltage side of the main transformer 62, the main transformer 62 that boosts the output voltage of the generator 3 to the system voltage, and the high voltage of the main transformer 62 Main circuit breaker 61 that is arranged on the side to connect / cut off the generator 3 and the external system 75, and a system communication circuit breaker that is arranged on the upstream side of the main circuit breaker 61 to connect / cut off to the external system 75 60.

また、所内電気系統500は、系統連絡遮断器60と主回路遮断器61との間の回路に接続され所内電力と外部系統75との接続/遮断を行う所内変圧器遮断器67と、一端側を所内変圧器遮断器67の下流側に接続し、他端側を所内変圧器69の高圧側に接続する所内変圧器高圧側回路68と、系統電圧を所内電源の電圧まで降圧する所内変圧器69と、所内変圧器69の低圧側に接続された所内補機回路80と、所内補機回路80からの電力とターボ冷凍装置400のターボ冷凍機6との接続/遮断を行うターボ冷凍機遮断器81とを備えている。   Further, the in-house electric system 500 is connected to a circuit between the system connection breaker 60 and the main circuit breaker 61, and is connected to the in-house transformer breaker 67 for connecting / cutting off the in-house power and the external system 75, and one end side. Is connected to the downstream side of the on-site transformer circuit breaker 67 and the other end side is connected to the high-voltage side of the on-site transformer 69, and the on-site transformer for stepping down the system voltage to the voltage of the on-site power source 69, the on-site auxiliary circuit 80 connected to the low-voltage side of the on-site transformer 69, and the turbo chiller shut-off for connecting / cutting off the electric power from the on-site auxiliary machine circuit 80 and the turbo chiller 6 of the turbo refrigeration apparatus 400 Instrument 81.

次に、太陽熱空気タービン発電システムにおける各熱媒体の流れと動作を図1を用いて説明する。
ターボ冷凍装置400において、大気吸い込み口40から取り入れた空気は、空気冷却器入口風洞41を通過して、空気冷却器4に流入して、冷却コイルを流れる流水により冷却される。空気冷却器入口空気温度は温度センサ24で検出し、冷却された空気の温度である空気冷却器出口空気温度は温度センサ16で検出する。
Next, the flow and operation of each heat medium in the solar air turbine power generation system will be described with reference to FIG.
In the turbo refrigeration apparatus 400, the air taken from the air suction port 40 passes through the air cooler inlet wind tunnel 41, flows into the air cooler 4, and is cooled by running water flowing through the cooling coil. The air cooler inlet air temperature is detected by the temperature sensor 24, and the air cooler outlet air temperature, which is the temperature of the cooled air, is detected by the temperature sensor 16.

ターボ冷凍機6には、外部系統75から所内変圧器69により降圧した所内補機回路80の電力がターボ冷凍機遮断器81を介して供給される。ターボ冷凍機6には、冷水循環ポンプ5により空気冷却器4の冷水戻り配管10から排出された暖められた冷水が供給される。ターボ冷凍機6は電気エネルギによりこの冷水を冷却し、ターボ冷凍機出口冷水配管15を介して3方冷水流量調整弁7へ送り出す。3方冷水流量調整弁7は、この冷水を冷水供給配管8側と冷水バイパス配管9側とに分配して、空気冷却器4に入る冷水流量とバイパスする冷水流量とを調整することで、温度センサ16が検出する空気冷却器出口空気温度を制御する。   The turbo chiller 6 is supplied with the electric power of the in-house auxiliary machine circuit 80 stepped down by the in-house transformer 69 from the external system 75 via the turbo chiller circuit breaker 81. The turbo chiller 6 is supplied with warm chilled water discharged from the chilled water return pipe 10 of the air cooler 4 by the chilled water circulation pump 5. The turbo chiller 6 cools this cold water with electric energy and sends it to the three-way cold water flow rate adjustment valve 7 via the turbo chiller outlet cold water pipe 15. The three-way chilled water flow rate adjusting valve 7 distributes this chilled water to the chilled water supply pipe 8 side and the chilled water bypass pipe 9 side, and adjusts the chilled water flow rate that enters the air cooler 4 and the chilled water flow rate that bypasses the temperature. The air cooler outlet air temperature detected by the sensor 16 is controlled.

空気冷却器出口空気温度制御装置17は、温度センサ24が検出した空気冷却器入口空気温度信号と、温度センサ18が検出した空気タービン入口空気温度信号と、温度センサ16が検出した空気冷却器出口空気温度信号と、温度センサ83が検出したターボ冷凍機出口冷水温度信号と、温度センサ84が検出したターボ冷凍機入口冷水温度信号とを読み込み、空気タービン2の入口空気温度が大気温度の変化に対応して、変動することなく一定値となるような、制御指令信号を算出する。この指定信号を3方冷水流量調整弁7へ出力することで、冷水流量の分配制御を行う。   The air cooler outlet air temperature control device 17 includes an air cooler inlet air temperature signal detected by the temperature sensor 24, an air turbine inlet air temperature signal detected by the temperature sensor 18, and an air cooler outlet detected by the temperature sensor 16. The air temperature signal, the turbo chiller outlet cold water temperature signal detected by the temperature sensor 83, and the turbo chiller inlet cold water temperature signal detected by the temperature sensor 84 are read, and the inlet air temperature of the air turbine 2 changes to the atmospheric temperature. Correspondingly, a control command signal is calculated so as to be a constant value without fluctuation. By outputting this designation signal to the three-way chilled water flow rate adjustment valve 7, the distribution control of the chilled water flow rate is performed.

ターボ冷凍装置400の空気冷却器4で冷却された空気は、空気冷却器出口風洞42と圧縮機入口バタフライ弁43を介して圧縮機1へ供給される。圧縮機1の起動時には、空気圧縮機入口バタフライ弁43を半閉し絞り運転することで圧縮機入口圧力を下げる。これは、図示しない制御装置により圧縮機1の入口圧力と出口圧力とを検出し、その圧力比が、圧縮機1のサージングラインに抵触しないように行う。圧縮機1の回転数が定格回転数に達した後には、空気圧縮機入口バタフライ弁43を全開する。   The air cooled by the air cooler 4 of the turbo refrigeration apparatus 400 is supplied to the compressor 1 through the air cooler outlet wind tunnel 42 and the compressor inlet butterfly valve 43. When the compressor 1 is started, the compressor inlet pressure is lowered by half-closing the air compressor inlet butterfly valve 43 and performing a throttle operation. This is performed by detecting the inlet pressure and the outlet pressure of the compressor 1 by a control device (not shown) so that the pressure ratio does not conflict with the surging line of the compressor 1. After the rotation speed of the compressor 1 reaches the rated rotation speed, the air compressor inlet butterfly valve 43 is fully opened.

空気タービン入口温度制御装置200において、空気圧縮機入口バタフライ弁43を出た冷却空気は圧縮機1に入り圧縮されて、中圧中温空気となり圧縮機出口配管44を流下し、3方圧縮空気分配バタフライ弁38により多くが再生熱交換器45に流入し、一部が太陽熱集熱装置バイパスバタフライ弁出口配管54
54側へ流入する。
In the air turbine inlet temperature control apparatus 200, the cooling air that has exited the air compressor inlet butterfly valve 43 enters the compressor 1 and is compressed to become medium-pressure medium-temperature air, and flows down the compressor outlet pipe 44 to distribute the three-way compressed air. Most of the butterfly valve 38 flows into the regenerative heat exchanger 45 and part of the solar heat collector bypass butterfly valve outlet pipe 54
It flows into the 54 side.

再生熱交換器45に流入した中圧中温の圧縮空気は、空気タービン2から排出された低圧高温空気を加熱媒体として熱交換して加熱される。再生熱交換器45で加熱された圧縮空気は再生熱交換器出口配管46を通って太陽熱集熱装置300へ送られる。   The medium-pressure and medium-temperature compressed air flowing into the regenerative heat exchanger 45 is heated by heat exchange using the low-pressure high-temperature air discharged from the air turbine 2 as a heating medium. The compressed air heated by the regenerative heat exchanger 45 is sent to the solar heat collector 300 through the regenerative heat exchanger outlet pipe 46.

空気タービン2から排出された低圧高温空気は、空気タービン排気空気配管56を介して空気タービン排気側再生熱交換器入口配管58と再生熱交換器バイパス配管57とに流入する。空気タービン排気側再生熱交換器入口配管58に流入した低圧高温空気は、再生熱交換器45に流入し、圧縮空気と熱交換した後に大気へ排出される。一方、再生熱交換器バイパス配管57に流入した低圧高温空気は、再生熱交換器バイパス弁35の開度に応じた流量が直接大気へ排出される。   The low-pressure high-temperature air discharged from the air turbine 2 flows into the air turbine exhaust-side regenerative heat exchanger inlet pipe 58 and the regenerative heat exchanger bypass pipe 57 via the air turbine exhaust air pipe 56. The low-pressure, high-temperature air that has flowed into the air turbine exhaust-side regenerative heat exchanger inlet pipe 58 flows into the regenerative heat exchanger 45, exchanges heat with compressed air, and is discharged to the atmosphere. On the other hand, the low-pressure high-temperature air that has flowed into the regenerative heat exchanger bypass pipe 57 is directly discharged into the atmosphere at a flow rate that corresponds to the opening degree of the regenerative heat exchanger bypass valve 35.

再生熱交換器バイパス弁35の開度を制御する再生熱交換器出口空気温度制御装置90は、直達日射計39で検出した直射日光による日射量信号と、温度センサ18で検出した空気タービン入口空気温度信号と、温度センサ21で検出した空気タービン出口空気温度信号と、温度センサ22が検出した圧縮機出口空気温度信号と、温度センサ23が検出した再生熱交換器出口空気温度信号とを読み込み、直達日射信号が変化した場合であっても、空気タービン入口空気温度が変動することなく一定の値で保持されるような再生熱交換器バイパス弁35の開度指令信号を算出する。算出した指令信号で再生熱交換器バイパス弁35を制御することで、直達日射信号が急変しても、空気タービン入口空気温度を一定値で制御することができる。   The regenerative heat exchanger outlet air temperature control device 90 that controls the opening degree of the regenerative heat exchanger bypass valve 35 is a solar radiation amount signal detected by direct sunlight detected by the direct solar radiation meter 39 and the air turbine inlet air detected by the temperature sensor 18. Read the temperature signal, the air turbine outlet air temperature signal detected by the temperature sensor 21, the compressor outlet air temperature signal detected by the temperature sensor 22, and the regenerative heat exchanger outlet air temperature signal detected by the temperature sensor 23, Even when the direct solar radiation signal changes, an opening degree command signal of the regenerative heat exchanger bypass valve 35 is calculated so that the air turbine inlet air temperature is maintained at a constant value without fluctuation. By controlling the regenerative heat exchanger bypass valve 35 with the calculated command signal, the air turbine inlet air temperature can be controlled at a constant value even if the direct solar radiation signal changes suddenly.

太陽熱集熱装置300において、再生熱交換器45で加熱された加熱空気は再生熱交換器出口配管46と太陽熱集熱装置入口バタフライ弁47を通過した後、タワー入口空気配管48を通ってタワー30の頂上に設置された太陽熱受熱器29に導かれる。太陽熱受熱器29には、太陽熱反射装置32の反射鏡が太陽31から出る直達日射光33を反射させて、直達日射光反射光34を集光させている。このことにより、太陽熱受熱器29の加熱空気が更に昇温する。   In the solar heat collecting apparatus 300, the heated air heated by the regenerative heat exchanger 45 passes through the regenerative heat exchanger outlet pipe 46 and the solar heat collector inlet butterfly valve 47, and then passes through the tower inlet air pipe 48 and the tower 30. It is led to a solar heat receiver 29 installed on the top. In the solar heat receiver 29, the reflecting mirror of the solar heat reflecting device 32 reflects the direct solar radiation 33 emitted from the sun 31, and condenses the direct solar light reflected light 34. Thereby, the heating air of the solar heat receiver 29 is further heated.

太陽熱反射装置32の反射角度を制御する太陽熱集熱量制御装置91は、温度センサ18で検出した空気タービン入口空気温度信号と、温度センサ19で検出した太陽熱集熱装置出口空気温度信号と、温度センサ20が検出した太陽熱集熱装置バイパス空気温度信号とを読み込み、空気タービン2に導入する熱量を加減するための指令信号を算出する。太陽熱集熱温度や周熱量が最大許容値を超えそうになった場合、または空気タービン入口空気温度が制御計画値を超過した場合には、太陽熱受熱器29への反射光をそらせて。太陽熱集光量を減らす。   The solar heat collection amount control device 91 that controls the reflection angle of the solar heat reflection device 32 includes an air turbine inlet air temperature signal detected by the temperature sensor 18, a solar heat collector outlet air temperature signal detected by the temperature sensor 19, and a temperature sensor. The solar heat collector bypass air temperature signal detected by 20 is read, and a command signal for adjusting the amount of heat introduced into the air turbine 2 is calculated. When the solar heat collection temperature and the amount of ambient heat are about to exceed the maximum allowable value, or when the air turbine inlet air temperature exceeds the control plan value, the reflected light to the solar heat receiver 29 is deflected. Reduce the amount of solar heat collection.

太陽熱受熱器29で昇温された中圧高温空気は、タワー出口空気配管49を介してタワー出口空気タービン側空気配管50と高圧タワー出口空気圧力逃がし配管51とに流入する。   The medium-pressure high-temperature air heated by the solar heat receiver 29 flows into the tower outlet air turbine side air pipe 50 and the high-pressure tower outlet air pressure relief pipe 51 through the tower outlet air pipe 49.

高圧タワー出口空気圧力逃がし配管51には、配管内の空気が異常昇圧したときに、大気へ放出する空気圧力逃がし調整弁27が設けられている。空気圧力逃がし調整弁27を制御する空気圧力逃がし制御装置26は、圧力センサ25が検出した太陽集熱出口空気圧力信号が、所定の運転可能設定圧力を超えた場合に、空気圧力逃がし調整弁27へ開指令を出力することで、圧力逃がし動作を行う。この結果、異常昇圧した空気は大気へ放出される。   The high-pressure tower outlet air pressure relief pipe 51 is provided with an air pressure relief regulating valve 27 that is released to the atmosphere when the air in the pipe is abnormally pressurized. The air pressure relief control device 26 that controls the air pressure relief adjustment valve 27 is configured such that when the solar heat collection outlet air pressure signal detected by the pressure sensor 25 exceeds a predetermined operable setting pressure, the air pressure relief adjustment valve 27. The pressure relief operation is performed by outputting an open command to As a result, the abnormally pressurized air is released to the atmosphere.

タワー出口空気タービン側空気配管50に流入した中圧高温空気は、太陽熱集熱装置出口バタフライ弁52を介して太陽熱集熱装置バイパスバタフライ弁出口配管54から流入した中圧中温空気と合流し、空気タービン入口高温空気配管55を介して空気タービン2に流入する。この結果、空気タービン2は圧縮機1と発電機3とを駆動する動力を発生させる。   The medium-pressure high-temperature air that has flowed into the tower outlet air turbine-side air pipe 50 merges with the medium-pressure medium-temperature air that has flowed from the solar heat collector bypass butterfly valve outlet pipe 54 via the solar heat collector outlet butterfly valve 52, and the air It flows into the air turbine 2 via the turbine inlet hot air pipe 55. As a result, the air turbine 2 generates power for driving the compressor 1 and the generator 3.

空気タービン入口温度制御装置200の3方圧縮空気分配バタフライ弁38を制御する圧縮空気分配制御装置37は、電力系統(中央給電所)からの負荷指令と発電機3の発電出力とを比較して偏差を算出する偏差演算装置36から偏差信号を入力し、この偏差信号と温度センサ18で検出した空気タービン入口空気温度信号と、温度センサ19で検出した太陽熱集熱装置出口空気温度信号と、温度センサ20が検出した太陽熱集熱装置バイパス空気温度信号とを読み込み、空気タービン2に導入する熱量を加減するために、太陽熱集熱装置側とバイパス側とへの圧縮機1からの出口空気の分配量を算出する。算出した分配量になるように3方圧縮空気分配バタフライ弁38へ指令信号を出力する。   The compressed air distribution control device 37 that controls the three-way compressed air distribution butterfly valve 38 of the air turbine inlet temperature control device 200 compares the load command from the power system (central power station) with the power generation output of the generator 3. A deviation signal is input from a deviation calculating device 36 for calculating a deviation, the deviation signal, an air turbine inlet air temperature signal detected by the temperature sensor 18, a solar heat collector outlet air temperature signal detected by the temperature sensor 19, and a temperature. Distribution of outlet air from the compressor 1 to the solar heat collector side and the bypass side in order to read the solar heat collector bypass air temperature signal detected by the sensor 20 and adjust the amount of heat introduced into the air turbine 2 Calculate the amount. A command signal is output to the three-way compressed air distribution butterfly valve 38 so that the calculated distribution amount is obtained.

例えば、負荷指令の方が発電出力より大きい場合には、太陽熱集熱装置側の分配量を増加し、バイパス側の分配量を減少させる。また、負荷降下の場合など、負荷指令より発電出力の方が大きい場合には、太陽熱集熱装置側の分配量を減少し、バイパス側の分配量を増加させる。このような制御が実行されることにより、系統負荷指令に対応して、発電機出力が安定的に追従し、高効率な発電運用が達成できる。   For example, when the load command is larger than the power generation output, the distribution amount on the solar heat collector side is increased and the distribution amount on the bypass side is decreased. In addition, when the power generation output is larger than the load command, such as in the case of a load drop, the distribution amount on the solar heat collector side is decreased and the distribution amount on the bypass side is increased. By executing such control, the generator output stably follows in response to the system load command, and a highly efficient power generation operation can be achieved.

太陽熱集熱装置300の太陽熱集熱装置入口バタフライ弁47と太陽熱集熱装置出口バタフライ弁52とは、夜間等、太陽熱発電ができないときに、全閉状態にする。このことにより、昼間に生成された中圧中温/高温の空気が、タワー入口空気配管48とタワー出口空気配管49とタワー出口空気タービン側空気配管50との内部に封入(ホットバンキング)される。そして、翌日の起動に際しては、まず、太陽熱集熱装置出口バタフライ弁52を開操作して、封入されていた中圧中温/高温の空気を空気タービン2に導入し、中圧高温空気配管系等の水分除去を目的に空気タービン2を低回転で回転させる暖機運転を行う。この暖気運転のときには、軸連結器28を非連結位置として、発電機3は回転させない。   The solar heat collector inlet butterfly valve 47 and the solar heat collector outlet butterfly valve 52 of the solar heat collector 300 are fully closed when solar power generation is not possible, such as at night. As a result, the medium-pressure intermediate / high-temperature air generated in the daytime is enclosed (hot banking) inside the tower inlet air pipe 48, the tower outlet air pipe 49, and the tower outlet air turbine side air pipe 50. When starting the next day, first, the solar heat collector outlet butterfly valve 52 is opened to introduce the medium-pressure medium-temperature / high-temperature air that has been enclosed into the air turbine 2, and the medium-pressure high-temperature air piping system, etc. A warm-up operation is performed in which the air turbine 2 is rotated at a low speed for the purpose of removing water. During this warm-up operation, the generator 3 is not rotated with the shaft coupler 28 in the unconnected position.

次に、本発明の太陽熱空気タービン発電システムの一実施の形態を構成する圧縮機の起動方法について図2Aと図2Bを用いて説明する。図2Aは、本発明の太陽熱空気タービン発電システムの一実施の形態を構成する圧縮機の起動の態様を説明するための特性図、図2Bは従来のガスタービンを構成する圧縮機の起動の態様を説明するための特性図である。   Next, the starting method of the compressor which comprises one Embodiment of the solar thermal air turbine power generation system of this invention is demonstrated using FIG. 2A and FIG. 2B. FIG. 2A is a characteristic diagram for explaining a starting aspect of a compressor constituting one embodiment of a solar air turbine power generation system of the present invention, and FIG. 2B is a starting aspect of a compressor constituting a conventional gas turbine. It is a characteristic view for demonstrating.

図2Aと図2Bにおいて、横軸は時間を、縦軸は圧縮機の回転数をそれぞれ示している。一般に、圧縮機の回転数を一般的な定格回転数である数千回転に上げるためには、大きな動力を必要とする。この動力を確保する方式により圧縮機の起動方法が異なる。   2A and 2B, the horizontal axis indicates time, and the vertical axis indicates the rotation speed of the compressor. In general, a large amount of power is required to increase the rotation speed of the compressor to several thousand rotations, which is a general rated rotation speed. The starting method of the compressor differs depending on the method for securing the power.

図2Bに示す従来のガスタービンを構成する圧縮機の場合、ガスタービン圧縮機軸に起動用電動機を設け、N1で示す約20%回転数まで、圧縮機の回転数を上げた後に、N2で示す数千回転になる100%定格回転数まで回転数を上げる。このときの必要な動力は大きい。   In the case of the compressor constituting the conventional gas turbine shown in FIG. 2B, a starter motor is provided on the gas turbine compressor shaft, and after increasing the number of revolutions of the compressor up to about 20% indicated by N1, it is indicated by N2. Increase the number of revolutions to a 100% rated number of revolutions of several thousand. The power required at this time is large.

一般的なガスタービンではガスタービン起動時の燃料パージ運転を行うために、起動電動機で圧縮機を約20%回転数程度まで上げて数分間運転する。その後、化石燃料を燃焼器又は補助燃焼器で焚いて高温ガスを作り、高温ガスと起動電動機(途中の例えば70%回転数で自動的に除外される)との協働で100%定格回転数まで圧縮機の回転数を上げる。図2Bにおいて、時刻t11は、起動電動機と高温ガスとの協働での回転数上昇開始時刻を、時刻t12は、100%定格回転数到着時刻をそれぞれ示す。したがって、起動開始から時刻t11までの間、圧縮機は起動用電動機のみにより回転駆動され、時刻t11からt12までの間は、高温ガスと起動電動機で圧縮機は回転駆動される。   In a general gas turbine, in order to perform a fuel purge operation when the gas turbine is started, the compressor is driven to about 20% rotation speed by a starter motor and operated for several minutes. After that, fossil fuel is sprinkled with a combustor or auxiliary combustor to create a high-temperature gas, and 100% rated speed is achieved in cooperation with the high-temperature gas and a starting motor (automatically excluded, for example, at 70% speed). Increase the compressor speed until. In FIG. 2B, time t11 indicates the rotation speed increase start time in cooperation with the starter motor and the high temperature gas, and time t12 indicates the 100% rated rotation speed arrival time. Therefore, the compressor is rotationally driven only by the starter motor from the start of start to time t11, and the compressor is rotationally driven by the high temperature gas and the starter motor from time t11 to t12.

一方、本発明の実施の形態においては、図2Aに示すように、圧縮機1の起動は、ホットバンキングした中圧高温空気を、太陽熱集熱装置出口バタフライ弁52を開操作することで、空気タービン2に流入させて行う。その後、時刻t1のときに、系統電力をインバータ装置64で周波数変換させて発電機3に送り、発電機を電動機として用いることで、圧縮機1を定格回転数N2まで昇速させる。図2Aにおいて、時刻t2は、100%定格回転数到着時刻を示す。   On the other hand, in the embodiment of the present invention, as shown in FIG. 2A, the compressor 1 is activated by opening the solar heat collector outlet butterfly valve 52 with hot-banked medium-pressure high-temperature air. It is performed by flowing into the turbine 2. After that, at time t1, the system power is frequency-converted by the inverter device 64 and sent to the generator 3, and the generator 1 is used as an electric motor, so that the compressor 1 is accelerated to the rated rotational speed N2. In FIG. 2A, time t2 indicates the 100% rated rotational speed arrival time.

図1に戻り、圧縮機1の起動をより詳細に説明する。
起動日の前日の夜間における状態は、太陽熱集熱装置300において、太陽熱集熱装置入口バタフライ弁47と太陽熱集熱装置出口バタフライ弁52とを全閉して、昼間に生成された中圧中温/高温の空気をホットバンキングしている。一方、所内電気系統500は、系統連絡遮断器60と所内変圧器遮断器67とが投入されて、所内変圧器69を介して所内補機回路80が充電されている。主回路遮断器61と、インバータ入口遮断器63と、インバータ出口遮断器65とインバータバイパス遮断器66とは、それぞれ遮断されている。
Returning to FIG. 1, the activation of the compressor 1 will be described in more detail.
In the solar heat collector 300, the solar heat collector inlet butterfly valve 47 and the solar heat collector outlet butterfly valve 52 are fully closed in the solar heat collector 300, and the medium pressure intermediate temperature / Hot banking with hot air. On the other hand, in the in-house electrical system 500, the in-house auxiliary circuit 80 is charged via the in-house transformer 69 by turning on the in-system circuit breaker 60 and the in-house transformer circuit breaker 67. The main circuit breaker 61, the inverter inlet breaker 63, the inverter outlet breaker 65, and the inverter bypass breaker 66 are blocked.

起動に際しては、まず、太陽熱集熱装置出口バタフライ弁52を開操作して、封入されていた中圧中温/高温の空気を空気タービン2に導入し、空気タービン2を低回転で回転させる。このときには、軸連結器28を非連結位置として、発電機3は回転させない。   When starting up, first, the solar heat collector outlet butterfly valve 52 is opened to introduce the medium-pressure medium-temperature / high-temperature air that has been enclosed into the air turbine 2, and the air turbine 2 is rotated at a low speed. At this time, the generator 3 is not rotated with the shaft coupler 28 in the unconnected position.

次に、所内電気系統500において、主回路遮断器61とインバータ入口遮断器63とを投入し、インバータ装置64に系統からの電力を供給し、周波数変換した電力を生成する。その後、インバータ出口遮断器65を投入し、周波数変換した電力は、発電機出口主回路70を介して発電機3に供給される。このことにより、発電機3は所定の低回転で駆動する。この後、発電機3の回転数と空気タービン2の回転数の差が小さくなったときに軸連結器28を連結位置として空気タービン軸と発電機軸とを連結させる。   Next, in the in-house electrical system 500, the main circuit breaker 61 and the inverter inlet circuit breaker 63 are turned on, the power from the system is supplied to the inverter device 64, and the frequency-converted power is generated. Thereafter, the inverter outlet breaker 65 is turned on, and the frequency-converted power is supplied to the generator 3 via the generator outlet main circuit 70. Thus, the generator 3 is driven at a predetermined low rotation. Thereafter, when the difference between the rotational speed of the generator 3 and the rotational speed of the air turbine 2 becomes small, the air turbine shaft and the generator shaft are connected with the shaft coupler 28 as a connection position.

インバータ装置64は、供給する電力を低速回転相当の周波数から徐々に上昇させることで、電動機として使用する発電機3の回転数すなわち、空気タービン2と圧縮機1の回転数を上昇させる。発電機回転軸と繋がった空気タービン軸を介して圧縮機1の回転数を上げて太陽熱集熱装置300へ圧縮空気を送る。即ち、化石燃料を燃焼して燃焼ガスエネルギを生み出す必要がなくなり、同時にタービン起動用補助燃焼器も必要なくなり、起動時の空気タービン排気系統のパージ運転も必要なくなる。また、空気タービン起動用電動機も必要なくなる。   The inverter device 64 increases the rotation speed of the generator 3 used as an electric motor, that is, the rotation speed of the air turbine 2 and the compressor 1 by gradually increasing the supplied power from a frequency corresponding to low-speed rotation. The rotation speed of the compressor 1 is increased through the air turbine shaft connected to the generator rotation shaft, and the compressed air is sent to the solar heat collecting apparatus 300. That is, it is not necessary to burn fossil fuel to generate combustion gas energy, and at the same time, an auxiliary combustor for starting the turbine is not required, and a purge operation of the air turbine exhaust system at the time of starting is not required. In addition, an electric motor for starting the air turbine is not necessary.

電力系統から電力エネルギを取り入れ定格回転数まで発電機3を電動機として活用し太陽熱集熱装置300に空気を送るが、太陽熱入熱の増加に伴い、太陽熱集熱装置300からの高温空気量と高温空気温度が上昇するにつれて、空気タービン2の出力が増加する。このことにより、太陽熱空気タービンの発電機3の運転が、受電運転(系統から発電機3へ)から、徐々に送電運転(発電機3から系統へ)に切り替わる。   Electric power is taken in from the power system and the generator 3 is used as an electric motor up to the rated rotational speed to send air to the solar heat collector 300. As the solar heat input increases, the amount of high-temperature air from the solar heat collector 300 and the high temperature As the air temperature rises, the output of the air turbine 2 increases. Thereby, the operation of the generator 3 of the solar hot air turbine is gradually switched from the power receiving operation (from the system to the generator 3) to the power transmission operation (from the generator 3 to the system).

ここで、所内電気系統500は、インバータ入口遮断器63とインバータ出口遮断器65と主回路遮断器61とを遮断し、インバータバイパス遮断器66を投入する。この後、発電機3の発電した電力と系統電力とを同期検定して、主回路遮断器61を投入することで、系統へ再並列して発電運転を継続する。   Here, the in-house electrical system 500 interrupts the inverter inlet circuit breaker 63, the inverter outlet circuit breaker 65, and the main circuit breaker 61, and turns on the inverter bypass circuit breaker 66. After that, the power generated by the generator 3 and the system power are verified synchronously, and the main circuit breaker 61 is turned on so that the power generation operation is continued again in parallel with the system.

次に、本発明の太陽熱空気タービン発電システムの一実施の形態における1日の天候変化に対する機器の動作を図3A乃至図3Cを用いて説明する。図3Aは本発明の太陽熱空気タービン発電システムの一実施の形態における1日の天候変化に対する機器の動作を説明するために、大気温度、タービン入口高温空気温度、及び直達日射強度の特性を示す特性概念図、図3Bは本発明の太陽熱空気タービン発電システムの一実施の形態における1日の天候変化に対する機器の動作を説明するために、冷水バイパス流量及び再生熱交バイパス空気量の特性を示す特性概念図、図3Cは本発明の太陽熱空気タービン発電システムの一実施の形態における1日の天候変化に対する機器の動作を説明するために、発電機出力、太陽熱集熱装置側空気量、及び太陽熱集熱装置バイパス側空気量の特性を示す特性概念図である。   Next, the operation | movement of the apparatus with respect to the weather change of the day in one embodiment of the solar thermal air turbine power generation system of this invention is demonstrated using FIG. 3A thru | or FIG. 3C. FIG. 3A is a characteristic showing the characteristics of the atmospheric temperature, the turbine inlet hot air temperature, and the direct solar radiation intensity in order to explain the operation of the device against the daily weather change in one embodiment of the solar air turbine power generation system of the present invention. FIG. 3B is a conceptual diagram showing characteristics of the cold water bypass flow rate and the regenerative heat exchange bypass air amount in order to explain the operation of the device against the daily weather change in one embodiment of the solar air turbine power generation system of the present invention. FIG. 3C is a conceptual diagram, in order to explain the operation of the device with respect to the daily weather change in one embodiment of the solar air turbine power generation system of the present invention, the generator output, the solar heat collector side air amount, and the solar heat collection It is a characteristic conceptual diagram which shows the characteristic of a heat apparatus bypass side air amount.

図3A乃至図3Cにおいて、横軸は時間を示している。図3Aの縦軸の(a)は実線で示す大気温度を、(b)は一点鎖線で示すタービン入口空気温度を、(c)は破線出示す直達日射強度をそれぞれ示している。また、図3Bの縦軸の(d)は実線で示す冷水バイパス流量を、(e)は破線で示す再生熱交換器バイパス空気流量をそれぞれ示している。また、図3Cの縦軸の(f)は実線で示す発電機出力を、(g)は破線で示す太陽熱集熱装置側空気流量を、(h)は一点鎖線で示す太陽熱集熱装置バイパス側空気流量をそれぞれ示している。   3A to 3C, the horizontal axis indicates time. 3A shows the atmospheric temperature indicated by the solid line, (b) the turbine inlet air temperature indicated by the alternate long and short dash line, and (c) the direct solar radiation intensity indicated by the broken line. Moreover, (d) of the vertical axis | shaft of FIG. 3B has shown the cold water bypass flow volume shown as a continuous line, (e) has each shown the regeneration heat exchanger bypass air flow volume shown with a broken line. Moreover, (f) of the vertical axis | shaft of FIG. 3C is the generator output shown as a continuous line, (g) is the solar thermal collector side air flow rate shown by a broken line, (h) is the solar thermal collector bypass side shown by a dashed-dotted line. Each air flow is shown.

図3A乃至図3Cは、ある1日の日の出から日没までに大気温度や直達日射強度が変化した場合に、発電機出力や、空気タービン入口温度が変化せず、発電機出力が一定して確保される運転例を示している。   3A to 3C show that when the atmospheric temperature and direct solar radiation intensity change from sunrise to sunset on a certain day, the generator output and the air turbine inlet temperature do not change, and the generator output is constant. An example of operation to be secured is shown.

図3Aの特性線(a)に示す大気温度は、午前9時から上昇して最高温度に到達するが、午前中に一旦低下しその後最高温度に復活している。この大気温度の挙動に際して、図3Bの特性線(d)に示す冷水バイパス流量が、ターボ冷凍装置400の空気冷却器出口空気温度制御装置17によって制御される3方冷水流量調整弁7により通常量から増加される。このことにより、空気冷却器4の出口空気の温度が増加して、大気温度の低下を補償している。この結果、図3Aの特性線(b)に示すタービン入口空気温度と図3Cの特性線(f)に示す発電機出力とを変化させずに、運転することができる。   The atmospheric temperature shown in the characteristic line (a) of FIG. 3A rises from 9:00 am to reach the maximum temperature, but once decreases in the morning and then returns to the maximum temperature. In the behavior of the atmospheric temperature, the chilled water bypass flow rate shown in the characteristic line (d) of FIG. 3B is a normal amount by the three-way chilled water flow rate adjustment valve 7 controlled by the air cooler outlet air temperature control device 17 of the turbo refrigeration device 400. Is increased from This increases the temperature of the outlet air of the air cooler 4 to compensate for the decrease in the atmospheric temperature. As a result, operation can be performed without changing the turbine inlet air temperature shown in the characteristic line (b) of FIG. 3A and the generator output shown in the characteristic line (f) of FIG. 3C.

図3Aの特性線(c)に示す直達日射強度は、午前6時すぎから上昇して午前9時に最高値に到達するが、午後に、例えば雲が通過した場合、一旦急激に低下しその後最高値に復活している。この直達日射強度の挙動に際して、図3Bの特性線(e)に示す再生熱交換器バイパス空気流量が、空気タービン入口温度制御装置200の熱交換器出口空気温度制御装置90によって制御される再生熱交換器バイパス弁35により通常量から急激に減少される。このことにより、再生熱交換器45の出口空気の温度が増加して、直達日射強度の低下を補償している。この結果、図3Aの特性線(b)に示すタービン入口空気温度と図3Cの特性線(f)に示す発電機出力とを変化させずに、運転することができる。   The direct solar radiation intensity shown in the characteristic line (c) of FIG. 3A rises after 6:00 am and reaches the maximum value at 9:00 am. Has revived to value. In the behavior of the direct solar radiation intensity, the regenerative heat in which the regenerative heat exchanger bypass air flow rate shown in the characteristic line (e) of FIG. 3B is controlled by the heat exchanger outlet air temperature control device 90 of the air turbine inlet temperature control device 200. The normal amount is rapidly reduced by the exchanger bypass valve 35. As a result, the temperature of the outlet air of the regenerative heat exchanger 45 increases to compensate for the decrease in direct solar radiation intensity. As a result, operation can be performed without changing the turbine inlet air temperature shown in the characteristic line (b) of FIG. 3A and the generator output shown in the characteristic line (f) of FIG. 3C.

図3Cの特性線(h)に示す太陽熱集熱装置バイパス側空気流量と、特性線(g)に示す太陽熱集熱装置側空気流量は、午前6時すぎの空気タービン2の起動から上昇して、図3Cの特性線(f)に示す発電機出力が最高値(定格)に到達する午前9時にそれぞれ最高値になる。その後、図3Cの特性線(h)に示す太陽熱集熱装置バイパス側空気流量は、空気タービン入口温度制御装置200の圧縮空気分配制御装置37によって制御される3方圧縮空気分配バタフライ弁38により最高値から徐々に減少し、最終的には0になり、全量が太陽熱集熱装置側空気流量となる。これは、図3Aの特性線(b)に示すタービン入口空気温度を発電機出力の上昇に応じたプログラム制御するためになされている。   The solar heat collector bypass air flow rate shown in the characteristic line (h) of FIG. 3C and the solar heat collector air flow rate shown in the characteristic line (g) rise from the start of the air turbine 2 after 6 am. The generator output shown in the characteristic line (f) of FIG. 3C reaches the maximum value at 9:00 am when the maximum value (rated) is reached. Thereafter, the solar heat collector bypass air flow rate shown in the characteristic line (h) of FIG. 3C is the highest by the three-way compressed air distribution butterfly valve 38 controlled by the compressed air distribution controller 37 of the air turbine inlet temperature controller 200. It gradually decreases from the value and finally becomes 0, and the entire amount becomes the solar heat collector air flow rate. This is done to program-control the turbine inlet air temperature shown in the characteristic line (b) of FIG. 3A according to the increase in the generator output.

一方、図3Cの特性線(g)に示す太陽熱集熱装置側空気流量は、午後15時前の図3Cの特性線(f)に示す発電機出力の降下に伴って減少していく。この発電機出力の降下の際、図3Cの特性線(h)に示す太陽熱集熱装置バイパス側空気流量は、空気タービン入口温度制御装置200の圧縮空気分配制御装置37によって制御される3方圧縮空気分配バタフライ弁38により0から徐々に増加し、一定値まで増加する。その後、一定値から徐々に減少し、最終的には0になる。これも、図3Aの特性線(b)に示すタービン入口空気温度を発電機出力の下降に応じたプログラム制御するためになされている。   On the other hand, the solar heat collector side air flow rate shown in the characteristic line (g) of FIG. 3C decreases as the generator output decreases as shown in the characteristic line (f) of FIG. When the generator output drops, the solar heat collector bypass air flow rate shown in the characteristic line (h) of FIG. 3C is controlled by the compressed air distribution control device 37 of the air turbine inlet temperature control device 200. The air distribution butterfly valve 38 gradually increases from 0 and increases to a constant value. After that, it gradually decreases from a certain value and finally becomes zero. This is also done for program control of the turbine inlet air temperature shown in the characteristic line (b) of FIG. 3A according to the decrease in the generator output.

上述した本発明の太陽熱空気タービン発電システムの一実施の形態によれば、
建設コストと発電コストを低減すると共に、化石燃料を使用しない太陽熱空気タービン発電システムを提供できる。
According to one embodiment of the solar air turbine power generation system of the present invention described above,
The construction cost and power generation cost can be reduced, and a solar air turbine power generation system that does not use fossil fuel can be provided.

また、上述した本発明の太陽熱空気タービン発電システムの一実施の形態によれば、毎日の日の出から日没までの天候状態により次々刻々変わる大気温度や直達日射強度に対応すると共に、系統からの負荷要求信号に追従するように圧縮空気の流量を制御する制御装置を設けたので、安定した運転のできる太陽熱空気タービン発電システムを提供できる。   In addition, according to one embodiment of the solar air turbine power generation system of the present invention described above, it corresponds to the atmospheric temperature and the direct solar radiation intensity that changes one after another according to the weather condition from daily sunrise to sunset, and the load from the system Since the control device for controlling the flow rate of the compressed air so as to follow the request signal is provided, a solar air turbine power generation system capable of stable operation can be provided.

また、上述した本発明の太陽熱空気タービン発電システムの一実施の形態によれば、発電用の化石燃料コストが不要となり、蒸気タービン発電設備も必要としないので発電設備が簡素化され、建設コストと発電コストを低減し経済性が向上する。   Moreover, according to one embodiment of the solar air turbine power generation system of the present invention described above, the fossil fuel cost for power generation is not required, and the steam turbine power generation facility is not required, so that the power generation facility is simplified and the construction cost is reduced. Reduces power generation costs and improves economy.

また、上述した本発明の太陽熱空気タービン発電システムの一実施の形態によれば、窒素酸化物ガスや二酸化炭素ガスを毎日の起動時に大気中に一切排出することがなく、天候の変化に関わらず、太陽熱から安価で安定した電力を提供することができる。   Moreover, according to one embodiment of the solar air turbine power generation system of the present invention described above, no nitrogen oxide gas or carbon dioxide gas is discharged into the atmosphere at the time of daily startup, regardless of changes in weather. It can provide cheap and stable power from solar heat.

また、上述した本発明の太陽熱空気タービン発電システムの一実施の形態によれば、タワー30の頂上部には、太陽熱受熱器29のみが設置され、それ以外の構成機器は、地上部に設置されるのでタワー30に大きな機器荷重が負荷されない。このことにより、タワー30とその基礎を簡略化することが可能となり、この結果、建設コストを低減することができる。   Moreover, according to one embodiment of the solar air turbine power generation system of the present invention described above, only the solar heat receiver 29 is installed at the top of the tower 30, and other components are installed on the ground. Therefore, a large equipment load is not applied to the tower 30. This makes it possible to simplify the tower 30 and its foundation, and as a result, the construction cost can be reduced.

また、上述した本発明の太陽熱空気タービン発電システムの一実施の形態によれば、圧縮機1と空気タービン2との起動方法として以下の手順を実行する。
(1)夜間、太陽熱集熱装置の系統内に中圧高温空気をホットバンキングする。
(2)翌日の起動に際して前日の残存高温空気を空気タービン2に導入して、低速回転数まで昇速する。
(3)インバータ装置64で発電機3を電動機として駆動し、空気タービン2の回転数の近傍まで昇速した後、軸連結器28で空気タービン軸と発電機軸とを連結する。
(4)インバータ装置64で周波数を上昇させることで、定格速度まで到達させる。
このような起動方法を採るので、圧縮機1と空気タービン2とを完全停止状態から回し始めるときの電力供給が不要になる。この結果、起動用の所内動力の消費量を下げることができる。
Moreover, according to one Embodiment of the solar thermal air turbine electric power generation system of this invention mentioned above, the following procedures are performed as a starting method of the compressor 1 and the air turbine 2. FIG.
(1) Hot banking medium-pressure hot air in the solar heat collector system at night.
(2) At the start of the next day, the remaining high temperature air of the previous day is introduced into the air turbine 2 and the speed is increased to a low speed.
(3) After the generator 3 is driven as an electric motor by the inverter device 64 and the speed is increased to the vicinity of the rotation speed of the air turbine 2, the air turbine shaft and the generator shaft are connected by the shaft coupler 28.
(4) The inverter device 64 increases the frequency to reach the rated speed.
Since such a starting method is adopted, it is not necessary to supply power when starting to turn the compressor 1 and the air turbine 2 from the completely stopped state. As a result, the consumption of in-house power for activation can be reduced.

なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。   In addition, this invention is not limited to the Example mentioned above, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.

1 空気圧縮機
2 空気タービン
3 発電機
4 空気冷却器
5 冷水循環ポンプ
6 ターボ冷凍機
7 3方冷水流量調整弁
16 温度センサ(空気冷却器出口空気温度)
17 空気冷却器出口空気温度制御装置
18 温度センサ(空気タービン入口空気温度)
19 温度センサ(太陽熱集熱装置出口空気温度)
20 温度センサ(太陽熱集熱装置バイパス空気温度)
21 温度センサ(空気タービン出口空気温度)
22 温度センサ(空気圧縮機出口空気温度)
23 温度センサ(再生熱交換器出口空気温度)
24 温度センサ(空気冷却器入口空気温度)
25 圧力センサ(太陽熱集熱装置出口空気圧力)
26 高温空気圧力逃がし制御装置
27 空気圧力逃がし調整弁
28 軸連結器
29 太陽熱受熱器
30 タワー
32 太陽熱反射装置
33 直達日射光
34 直達日射光反射光
35 再生熱交換器バイパス弁
36 偏差演算装置
37 圧縮空気分配制御装置
38 3方圧縮空気分配バタフライ弁
39 直達日射計
43 圧縮機入口バタフライ弁
45 再生熱交換器
47 太陽熱集熱装置入口バタフライ弁
52 太陽熱集熱装置出口バタフライ弁
60 系統連絡遮断器
61 主回路遮断器
62 主変圧器
64 インバータ装置
67 所内変圧器遮断器
68 所内変圧器高圧側回路
69 所内変圧器
70 発電機出口主回路
71 主変圧器低圧側回路
75 外部系統
80 所内補機回路
90 再生熱交出口空気温度制御装置
91 太陽熱集熱量制御装置
DESCRIPTION OF SYMBOLS 1 Air compressor 2 Air turbine 3 Generator 4 Air cooler 5 Chilled water circulation pump 6 Turbo refrigerator 7 Three-way chilled water flow control valve 16 Temperature sensor (air cooler outlet air temperature)
17 Air cooler outlet air temperature control device 18 Temperature sensor (air turbine inlet air temperature)
19 Temperature sensor (Temperature collector outlet air temperature)
20 Temperature sensor (solar heat collector bypass air temperature)
21 Temperature sensor (Air turbine outlet air temperature)
22 Temperature sensor (Air compressor outlet air temperature)
23 Temperature sensor (regenerative heat exchanger outlet air temperature)
24 Temperature sensor (Air cooler inlet air temperature)
25 Pressure sensor (solar heat collector outlet air pressure)
26 High-Temperature Air Pressure Relief Control Device 27 Air Pressure Relief Adjustment Valve 28 Shaft Coupler 29 Solar Heat Receiver 30 Tower 32 Solar Heat Reflector 33 Direct Sun Light 34 Direct Sun Light Reflection Light 35 Regenerative Heat Exchanger Bypass Valve 36 Deviation Calculation Device 37 Compression Air distribution control device 38 Three-way compressed air distribution butterfly valve 39 Direct solar radiation meter 43 Compressor inlet butterfly valve 45 Regenerative heat exchanger 47 Solar heat collector inlet butterfly valve 52 Solar heat collector outlet butterfly valve 60 System communication breaker 61 Main Circuit breaker 62 Main transformer 64 Inverter device 67 In-house transformer circuit breaker 68 In-house transformer high-voltage side circuit 69 In-house transformer 70 Generator outlet main circuit 71 Main transformer low-voltage side circuit 75 External system 80 In-house auxiliary machine circuit 90 Regeneration Heat exchange outlet air temperature control device 91 Solar heat collection amount control device

Claims (6)

空気を吸入して昇圧させる圧縮機と、集光器で集めた太陽光の熱により前記圧縮機で昇圧された圧縮空気を加熱して昇温させる受熱器と、前記受熱器で加熱された圧縮空気を導入して前記圧縮機と発電機とを駆動する空気タービンと、前記圧縮機の下流側かつ前記受熱器の上流側に設けられ、前記空気タービンからの排気を加熱媒体として前記圧縮機で昇圧された圧縮空気を加熱する再生熱交換器と、前記圧縮機の下流側かつ前記再生熱交換器の上流側に設けられ、前記圧縮機で昇圧された圧縮空気を前記再生熱交換器の側と前記空気タービンの入口側であるバイパス側とに分配する分配装置とを備えた太陽熱空気タービン発電システムにおいて、
加熱媒体として前記再生熱交換器へ流入する前記空気タービンからの排気流量を調節することで、前記空気タービンの入口の空気温度を一定値になるように制御する制御装置と、
前記空気タービンの排気を前記再生熱交換器に導く再生熱交換器流入系統と、
前記空気タービンの排気の前記再生熱交換器への流入をバイパスさせる再生熱交換器バイパス系統と、
前記再生熱交換器バイパス系統に流入する排気流量を調節する流量調節弁とを備え、
前記制御装置は、前記流量調節弁の開度を制御する制御装置であることを特徴とする太陽熱空気タービン発電システム。
A compressor that sucks air to increase the pressure, a heat receiver that heats the compressed air that has been pressurized by the compressor by the heat of sunlight collected by a condenser, and a compressor that is heated by the heat receiver An air turbine that introduces air to drive the compressor and the generator, and is provided on the downstream side of the compressor and the upstream side of the heat receiver, and the compressor uses the exhaust from the air turbine as a heating medium. A regenerative heat exchanger that heats the compressed air that has been pressurized, and a regenerative heat exchanger that is provided on the downstream side of the compressor and on the upstream side of the regenerative heat exchanger. And a solar air turbine power generation system including a distribution device that distributes to a bypass side that is an inlet side of the air turbine,
A control device for controlling the air temperature at the inlet of the air turbine to be a constant value by adjusting an exhaust flow rate from the air turbine flowing into the regenerative heat exchanger as a heating medium;
A regenerative heat exchanger inflow system for guiding the exhaust of the air turbine to the regenerative heat exchanger;
A regenerative heat exchanger bypass system for bypassing inflow of the exhaust of the air turbine into the regenerative heat exchanger;
A flow rate adjusting valve for adjusting an exhaust flow rate flowing into the regenerative heat exchanger bypass system,
The solar air turbine power generation system, wherein the control device is a control device that controls an opening degree of the flow control valve.
請求項に記載の太陽熱空気タービン発電システムにおいて、
前記圧縮機が吸入する前記空気を冷却する空気冷却器と、
前記空気冷却器に冷水を循環させる冷水循環ポンプと、
前記冷水を冷却するターボ冷凍機と、
前記空気冷却器に流れる前記冷水の流量を制御する調整弁と、
前記調整弁の開度を制御する空気冷却器出口空気温度制御装置と、
前記空気タービンの入口の空気温度を検出する第1温度センサと、
前記空気冷却器の出口空気温度を検出する第2温度センサと、
大気温度を検出する第3温度センサとを備え、
前記空気冷却器出口空気温度制御装置は、前記第1乃至第3温度センサが検出した前記空気タービンの入口の空気温度と前記空気冷却器の出口空気温度と大気温度とを読み込み、前記空気タービンの入口の空気温度が一定値となるように、前記空気冷却器の出口の空気温度を制御することを特徴とする太陽熱空気タービン発電システム。
In the solar air turbine power generation system according to claim 1 ,
An air cooler for cooling the air taken in by the compressor;
A cold water circulation pump for circulating cold water to the air cooler;
A turbo refrigerator for cooling the cold water;
A regulating valve for controlling the flow rate of the cold water flowing to the air cooler;
An air cooler outlet air temperature control device for controlling the opening of the regulating valve;
A first temperature sensor for detecting an air temperature at an inlet of the air turbine;
A second temperature sensor for detecting an outlet air temperature of the air cooler;
A third temperature sensor for detecting the atmospheric temperature,
The air cooler outlet air temperature control device reads the air temperature at the inlet of the air turbine, the outlet air temperature of the air cooler, and the atmospheric temperature detected by the first to third temperature sensors, and The solar air turbine power generation system, wherein the air temperature at the outlet of the air cooler is controlled so that the air temperature at the inlet becomes a constant value.
請求項に記載の太陽熱空気タービン発電システムにおいて、
前記分配装置は、前記圧縮機で昇圧された圧縮空気の流量を前記再生熱交換器の側と前記空気タービンの入口側であるバイパス側とに分配する3方空気流量切換え弁と、前記3方空気流量切換え弁の開度を制御する分配制御装置とを備え、
前記分配制御装置は、前記第1温度センサが検出した前記空気タービンの入口の空気温度と前記発電機の出力とを読み込み、前記空気タービンの入口の空気温度をプログラム制御するように、前記3方空気流量切換え弁の開度を制御することを特徴とする太陽熱空気タービン発電システム。
In the solar air turbine power generation system according to claim 2 ,
The distribution device includes a three-way air flow switching valve that distributes the flow rate of the compressed air boosted by the compressor to the regeneration heat exchanger side and a bypass side that is an inlet side of the air turbine; A distribution control device for controlling the opening of the air flow rate switching valve,
The distribution control device reads the air temperature at the inlet of the air turbine and the output of the generator detected by the first temperature sensor, and performs program control on the air temperature at the inlet of the air turbine. A solar air turbine power generation system that controls an opening degree of an air flow rate switching valve.
請求項に記載の太陽熱空気タービン発電システムにおいて、
タワーの頂上部に配置された前記受熱器と反射装置を有する前記集光器とからなる太陽熱集熱装置と、
前記太陽熱集熱装置の前記反射装置の反射位置を制御する太陽熱集熱制御装置と、
前記太陽熱集熱装置の出口の空気温度を検出する第4温度センサと、
前記空気タービンの入口側であるバイパス側の空気温度を検出する第5温度センサとを備え、
前記太陽熱集熱制御装置は、前記第1温度センサと前記第4温度センサと前記第5温度センサとが検出した前記空気タービンの入口の空気温度と前記太陽熱集熱装置の出口の空気温度と前記空気タービンの入口側であるバイパス側の空気温度とを読み込み、前記空気タービンに導入する熱量を加減するように、前記反射装置の反射位置を制御することを特徴とする太陽熱空気タービン発電システム。
In the solar air turbine power generation system according to claim 3 ,
A solar heat collector comprising the heat receiver disposed at the top of the tower and the collector having a reflector;
A solar heat collection control device for controlling the reflection position of the reflection device of the solar heat collection device;
A fourth temperature sensor for detecting an air temperature at the outlet of the solar heat collector;
A fifth temperature sensor that detects an air temperature on the bypass side that is the inlet side of the air turbine,
The solar heat collection control device includes: an air temperature at an inlet of the air turbine detected by the first temperature sensor, a fourth temperature sensor, and a fifth temperature sensor; an air temperature at an outlet of the solar heat collection device; The solar air turbine power generation system characterized by reading the air temperature on the bypass side, which is the inlet side of the air turbine, and controlling the reflection position of the reflector so as to adjust the amount of heat introduced into the air turbine.
請求項に記載の太陽熱空気タービン発電システムにおいて、
前記発電機を前記空気タービンの駆動用電動機とするために、所内電力系統に設けられ、前記所内電力系統からの電力を可変周波数電源に変換して前記発電機に供給するインバータ装置と、
前記太陽熱集熱装置の入口側に設けた太陽熱集熱装置入口バタフライ弁と、
前記太陽熱集熱装置の出口側に設けた太陽熱集熱装置出口バタフライ弁とを備え、
前日の運転終了後に前記太陽熱集熱装置入口バタフライ弁と前記太陽熱集熱装置出口バタフライ弁とを閉止することで太陽熱集熱装置の系統内にホットバンキングした高温空気を、前記空気タービンに導入して低速回転させ、
その後、前記インバータ装置で変換した所定の周波数電源を前記発電機に供給し、前記発電機を電動機として駆動させることを特徴とする太陽熱空気タービン発電システム。
In the solar air turbine power generation system according to claim 4 ,
In order to use the generator as an electric motor for driving the air turbine, an inverter device is provided in an in-house electric power system, and converts the electric power from the in-house electric power system into a variable frequency power source and supplies the electric power to the generator;
A solar heat collector inlet butterfly valve provided on the inlet side of the solar heat collector;
A solar heat collector outlet butterfly valve provided on the outlet side of the solar heat collector,
After the operation of the previous day is finished, the solar heat collector inlet butterfly valve and the solar heat collector outlet butterfly valve are closed to introduce hot banked hot air into the solar heat collector system into the air turbine. Rotate at low speed,
After that, a predetermined frequency power source converted by the inverter device is supplied to the generator, and the generator is driven as an electric motor.
請求項またはに記載の太陽熱空気タービン発電システムにおいて、
前記太陽熱集熱装置の出口側に一端側が接続され他端側が大気に開放された圧力逃がし調整弁と、
前記圧力逃がし調整弁の開度を制御する圧力逃がし制御装置と、
前記太陽熱集熱装置の出口側の空気圧力を検出する圧力センサとを備え、
前記圧力逃がし制御装置は、前記圧力センサが検出した前記太陽熱集熱装置の出口側の空気圧力を読み込み、前記空気圧力が予め設定した圧力以上に増加した場合に、前記圧力逃がし調整弁を開動作させて大気へ前記空気を放出することを特徴とする太陽熱空気タービン発電システム。
The solar air turbine power generation system according to claim 4 or 5 ,
A pressure relief regulating valve having one end connected to the outlet side of the solar heat collector and the other end opened to the atmosphere;
A pressure relief control device for controlling the opening of the pressure relief regulating valve;
A pressure sensor for detecting the air pressure on the outlet side of the solar heat collector,
The pressure relief control device reads the air pressure on the outlet side of the solar heat collecting device detected by the pressure sensor, and opens the pressure relief regulating valve when the air pressure increases above a preset pressure. And releasing the air to the atmosphere.
JP2014156841A 2014-07-31 2014-07-31 Solar air turbine power generation system Active JP6320228B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014156841A JP6320228B2 (en) 2014-07-31 2014-07-31 Solar air turbine power generation system
CA2894926A CA2894926C (en) 2014-07-31 2015-06-18 Solar/air turbine generator system
US14/808,568 US10001112B2 (en) 2014-07-31 2015-07-24 Solar/air turbine generator system
CN201510450868.6A CN105317553B (en) 2014-07-31 2015-07-28 Solar heat air turbine electricity generation system
EP15179074.8A EP2980383B1 (en) 2014-07-31 2015-07-30 Solar/air turbine generator system
ES15179074.8T ES2660992T3 (en) 2014-07-31 2015-07-30 Solar generator system / air turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014156841A JP6320228B2 (en) 2014-07-31 2014-07-31 Solar air turbine power generation system

Publications (3)

Publication Number Publication Date
JP2016033360A JP2016033360A (en) 2016-03-10
JP2016033360A5 JP2016033360A5 (en) 2017-02-16
JP6320228B2 true JP6320228B2 (en) 2018-05-09

Family

ID=53879322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014156841A Active JP6320228B2 (en) 2014-07-31 2014-07-31 Solar air turbine power generation system

Country Status (6)

Country Link
US (1) US10001112B2 (en)
EP (1) EP2980383B1 (en)
JP (1) JP6320228B2 (en)
CN (1) CN105317553B (en)
CA (1) CA2894926C (en)
ES (1) ES2660992T3 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11384939B2 (en) * 2014-04-21 2022-07-12 Southwest Research Institute Air-fuel micromix injector having multibank ports for adaptive cooling of high temperature combustor
JP6519839B2 (en) * 2014-09-18 2019-05-29 三菱日立パワーシステムズ株式会社 Cooling facility and combined cycle plant comprising the same
US11260749B2 (en) * 2016-09-26 2022-03-01 Transportation Ip Holdings, Llc Cooling control systems
DE102016120764A1 (en) * 2016-10-31 2018-05-03 Terex Mhps Gmbh A system with a secondary power generator for post-conversion of exhaust heat of a primary power generator
US10280844B2 (en) * 2016-11-17 2019-05-07 General Electric Company Control systems for controlling power systems based on fuel consumption and related program products
CN108730764A (en) * 2018-08-10 2018-11-02 大连民族大学 Open type heat pump hot water apparatus based on air circulation
JP7096109B2 (en) * 2018-09-07 2022-07-05 三菱重工業株式会社 Solar thermal power generation equipment
CN111156139A (en) * 2020-01-19 2020-05-15 至玥腾风科技集团有限公司 Solar gas turbine power generation system based on photo-thermal principle

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301000A (en) * 1965-02-15 1967-01-31 Borg Warner Combination vapor compression and absorption refrigeration system
DE2553283A1 (en) * 1975-11-27 1977-06-02 Messerschmitt Boelkow Blohm SOLAR THERMAL POWER PLANT
US4262484A (en) * 1977-10-18 1981-04-21 Rolls-Royce Limited Gas turbine engine power plant using solar energy as a heat source
GB2006878B (en) 1977-10-18 1982-03-24 Rolls Royce Gas turbine engine power plant using solar energy as a heat source
US4942736A (en) 1988-09-19 1990-07-24 Ormat Inc. Method of and apparatus for producing power from solar energy
US6349551B1 (en) * 1999-11-23 2002-02-26 Alexei Jirnov Thermodynamic power and cryogenic refrigeration system using low temperature heat source
JP3784616B2 (en) * 2000-06-23 2006-06-14 株式会社タクマ Thermoelectric ratio control method for small capacity gas turbine cogeneration system
DE60209936T2 (en) * 2001-12-03 2006-12-14 The Tokyo Electric Power Co., Inc. waste heat
US7325401B1 (en) 2004-04-13 2008-02-05 Brayton Energy, Llc Power conversion systems
DE102008051384B3 (en) 2008-10-11 2010-02-11 Technische Universität Dresden Solar-hybrid operated gas and steam power plant has solar plant, gas turbine system and steam turbine system, where heat-carrier circuit is provided for transmitting solar heat
JP2010275997A (en) 2009-06-01 2010-12-09 Mitsubishi Heavy Ind Ltd Solar heat gas turbine and solar heat gas turbine power generation device
JP5291541B2 (en) * 2009-06-01 2013-09-18 三菱重工業株式会社 Solar gas turbine and solar gas turbine power generator
JP2010281272A (en) * 2009-06-05 2010-12-16 Mitsubishi Heavy Ind Ltd Solar heat gas turbine and solar heat gas turbine generator
US20110252797A1 (en) 2009-06-29 2011-10-20 Mitsubishi Heavy Industries, Ltd. Gas turbine plant, heat receiver, power generating device, and sunlight collecting system associated with solar thermal electric generation system
JP2011007149A (en) 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Gas turbine plant
CN201916139U (en) 2011-01-21 2011-08-03 绍兴文理学院 Tower type solar circulation thermal generating system
ES2410329B1 (en) 2011-12-18 2014-04-30 Jonás VILLARRUBIA RUIZ SOLAR RECEIVER WITH SOLAR TURBINE OR WITH TURBOCOMPRESSOR
JP2013194715A (en) * 2012-03-22 2013-09-30 Mitsubishi Heavy Ind Ltd Solar thermal power generation facility and method of starting up the same

Also Published As

Publication number Publication date
ES2660992T3 (en) 2018-03-27
US20160032900A1 (en) 2016-02-04
CN105317553A (en) 2016-02-10
JP2016033360A (en) 2016-03-10
CA2894926A1 (en) 2016-01-31
CA2894926C (en) 2017-10-24
EP2980383B1 (en) 2017-12-13
CN105317553B (en) 2017-09-01
EP2980383A1 (en) 2016-02-03
US10001112B2 (en) 2018-06-19

Similar Documents

Publication Publication Date Title
JP6320228B2 (en) Solar air turbine power generation system
JP5232916B2 (en) Solar gas turbine and solar gas turbine power generator
US7500349B2 (en) Power plant and operating method
US9239007B2 (en) Gas turbine compressor inlet pressurization having a torque converter system
AU2015258171B2 (en) Solar thermal power generation system
US20110209479A1 (en) Systems and Methods for Prewarming Heat Recovery Steam Generator Piping
JP2016033360A5 (en)
US9482210B2 (en) Solar thermal power generation facility and method of starting up same
US20170058717A1 (en) Multi-shaft combined cycle plant, and control device and operation method thereof
EP2623751B1 (en) Method and apparatus to control part-load performance of a turbine
JP2007046577A (en) Reheat steam-turbine plant
US9976478B2 (en) Solar heat turbine system, and device and method for controlling said system
JP6965221B2 (en) Gas turbine system
JP3219186U (en) Solar air power generation equipment
JPH0231206B2 (en) FUKUGOHATSU DENPURANTO
JP2013224602A (en) Solar turbine system, controller for system thereof and control method therefor
JPH0443803A (en) Control method for combined cycle electric power plant
WO2012031897A1 (en) Single intermediate pressure operation mode for solar driven steam turbine plants

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180403

R150 Certificate of patent or registration of utility model

Ref document number: 6320228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350