JP6300568B2 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP6300568B2
JP6300568B2 JP2014033052A JP2014033052A JP6300568B2 JP 6300568 B2 JP6300568 B2 JP 6300568B2 JP 2014033052 A JP2014033052 A JP 2014033052A JP 2014033052 A JP2014033052 A JP 2014033052A JP 6300568 B2 JP6300568 B2 JP 6300568B2
Authority
JP
Japan
Prior art keywords
power
self
storage device
power storage
target frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014033052A
Other languages
Japanese (ja)
Other versions
JP2015159662A (en
Inventor
好司 八切
好司 八切
国広 仲尾
国広 仲尾
友之 平井
友之 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014033052A priority Critical patent/JP6300568B2/en
Publication of JP2015159662A publication Critical patent/JP2015159662A/en
Application granted granted Critical
Publication of JP6300568B2 publication Critical patent/JP6300568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、複数の電力需要者が接続されている交流線と、蓄電装置と、蓄電装置と交流線との間を自己接続線を用いて接続する自立インバータ装置とを有する自己システムを複数個備え、複数個の自己システムが電気的に直列接続されるように、一つの自己システムが有する蓄電装置と他の一つの自己システムが有する交流線との間を相互接続線を用いて接続する連繋インバータ装置を自己システム同士の間に備える電力供給システムに関する。   The present invention provides a plurality of self-systems having an AC line to which a plurality of power consumers are connected, a power storage device, and a self-supporting inverter device that connects the power storage device and the AC line using a self-connection line. And connecting the power storage device of one self-system and the AC line of the other self-system using interconnection lines so that a plurality of self-systems are electrically connected in series The present invention relates to a power supply system including an inverter device between self systems.

従来から、複数の電力需要者が接続されている交流線と、蓄電装置と、その蓄電装置と交流線とを接続する自立インバータ装置とを有する自己システムを複数個備えるような電力供給システムが提案されている。例えば、特許文献1(国際公開第2010/103650号)に記載の電力供給システムは、複数個の自己システムが電気的に直列接続されるように、一つの自己システムが有する蓄電装置と他の一つの自己システムが有する交流線とを接続する連繋インバータ装置を自己システム同士の間に備えている。更に、複数個の自己システムのそれぞれの自立インバータ装置を、交流線での電力の電圧が目標電圧となるように及び交流線での電力の周波数が蓄電装置の蓄電量に応じて決定する目標周波数となるように動作させ、及び、一つの連繋インバータ装置を介して電気的に接続されている二つの自己システムに関して、目標周波数の高い方の自己システムから目標周波数の低い方の自己システムへ電力を供給するように連繋インバータ装置の動作を制御している。つまり、各自己システムの交流線での電力の周波数は蓄電装置の蓄電量を反映した値となっているので、連繋インバータ装置は、電気的に接続されている二つの自己システムに関して、各交流線の周波数を検出するだけで、何れの自己システムの蓄電装置の蓄電量が多いのかを知ることができる。そして、その検出した周波数の値の大小に応じて、各自己システム間で電力の融通を行うことで、各自己システムの蓄電装置の蓄電量の均等化を図ることができる。   Conventionally, a power supply system has been proposed that includes a plurality of self-systems having an AC line to which a plurality of power consumers are connected, a power storage device, and a self-supporting inverter device that connects the power storage device and the AC line. Has been. For example, a power supply system described in Patent Document 1 (International Publication No. 2010/103650) includes a power storage device included in one self-system and another one so that a plurality of self-systems are electrically connected in series. The inverter system which connects the alternating current line which one self system has is provided between self systems. Furthermore, each of the self-supporting inverter devices of the plurality of self-systems has a target frequency at which the voltage of the power on the AC line becomes the target voltage and the frequency of the power on the AC line is determined according to the amount of power stored in the power storage device. For two self-systems that are electrically connected via a single inverter device, power is transferred from the self-system with the higher target frequency to the self-system with the lower target frequency. The operation of the connected inverter device is controlled so as to be supplied. That is, since the frequency of the power on the AC line of each self system is a value reflecting the amount of power stored in the power storage device, the connected inverter device is connected to each AC line with respect to the two electrically connected self systems. It is possible to know which power storage amount of the power storage device of the self system is large only by detecting the frequency of. And according to the magnitude of the detected frequency value, it is possible to equalize the amount of power stored in the power storage device of each self system by performing power interchange between the self systems.

国際公開第2010/103650号International Publication No. 2010/103650

特許文献1の図6には、蓄電装置の蓄電量と目標周波数との間の関係例が記載されている。しかし、特許文献1に記載されているのは、蓄電装置の蓄電量の変化と目標周波数の変化とが線形の関係にある場合の一般的な例であり、実際に電力供給システムを運用する場合において具体的にどのような観点から目標周波数を決定すれば良いのかまでは記載されていない。   FIG. 6 of Patent Document 1 describes an example of the relationship between the amount of power stored in the power storage device and the target frequency. However, Patent Document 1 describes a general example where the change in the amount of electricity stored in the power storage device and the change in the target frequency are in a linear relationship, and in the case of actually operating the power supply system However, it does not describe from what point of view the target frequency should be determined.

例えば、交流線に対して接続されている電力需要者の電力消費装置は、本来、商用電力系統から供給される電力によって動作することを前提としている。つまり、電力消費装置は、商用電力系統から供給される電力の周波数に応じて動作するように設計されている。そのため、供給される電力の周波数が変化すると、厳密には電力消費装置の動作状態も変化することとなる。従って、交流線に対して接続されている電力需要者の電力消費装置を正常に動作させるという観点で目標周波数を決定することが必要になる。   For example, it is assumed that the power consumer of the power consumer connected to the AC line is originally operated by the power supplied from the commercial power system. That is, the power consuming device is designed to operate according to the frequency of power supplied from the commercial power system. Therefore, strictly speaking, when the frequency of supplied power changes, the operating state of the power consuming device also changes. Therefore, it is necessary to determine the target frequency from the viewpoint of normally operating the power consumer of the power consumer connected to the AC line.

また、特許文献1では、電力融通制御を行うことで各自己システムの蓄電装置の蓄電量を均等化できるとしても、どのような値の蓄電量で各自己システムの蓄電装置の蓄電量を均等化できるかが不明である。そのため、ある二つの自己システム間では、非常に小さい値の蓄電量で各蓄電装置の蓄電量が均衡し、別の二つの自己システム間では非常に大きい値の蓄電量で各蓄電装置の蓄電量が均衡するといったことも起こり得る。   Further, in Patent Document 1, even if the power storage amount of each power storage device can be equalized by performing power interchange control, the power storage amount of each power storage device of each self system is equalized with any value. It is unknown whether it can be done. For this reason, the power storage amount of each power storage device is balanced with a very small amount of power storage between two self systems, and the power storage amount of each power storage device with a very large value of power storage between the other two self systems. It is possible that things will be balanced.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、交流線の目標周波数が、電力需要者にとって好ましい値に決定され、且つ、所定の蓄電量範囲で各蓄電装置の蓄電量を均等化できるような電力供給システムを提供する点にある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to determine the AC line target frequency to a value that is preferable for power consumers, and to store the power of each power storage device within a predetermined power storage range. It is in providing a power supply system that can equalize the amount.

上記目的を達成するための本発明に係る電力供給システムの特徴構成は、複数の電力需要者が接続されている交流線と、蓄電装置と、前記蓄電装置と前記交流線との間を自己接続線を用いて接続する自立インバータ装置とを有する自己システムを複数個備え、
複数個の前記自己システムが電気的に直列接続されるように、一つの前記自己システムが有する前記蓄電装置と他の一つの前記自己システムが有する前記交流線との間を相互接続線を用いて接続する連繋インバータ装置を前記自己システム同士の間に備える電力供給システムであって、
前記自立インバータ装置に対して電力品質制御を行わせ、前記連繋インバータ装置に対して電力融通制御を行わせる制御装置を備え、
前記制御装置は、
前記電力品質制御として、一つの前記自己システムが有する前記自立インバータ装置に対して、当該一つの自己システムにおいて、前記交流線での電力の電圧が目標電圧となるように及び前記交流線での電力の周波数が前記蓄電装置の蓄電量に応じて決定される目標周波数となるように前記交流線への電力供給を行わせ、並びに、
前記電力融通制御として、一つの前記自己システムに向けて他の前記自己システムから前記相互接続線を用いて電力を融通するとき、当該相互接続線を構成する第1相互接続線と第2相互接続線との間に設けられる前記連繋インバータ装置に対して、当該一つの自己システム及び当該他の自己システムのそれぞれにおける前記交流線での前記目標周波数に基づいて、前記蓄電装置の蓄電量が相対的に大きい自己システムから、前記蓄電装置の蓄電量が相対的に小さい自己システムへと電力を融通させ、
複数個の前記自己システムの夫々において、
前記自立インバータ装置は、前記蓄電装置の前記蓄電量と前記目標周波数との間の関係式に従って前記蓄電装置の前記蓄電量に応じた前記目標周波数を決定し、
前記蓄電装置の前記蓄電量と前記目標周波数との間の前記関係式において、
前記目標周波数が、前記交流線での電力の周波数品質の観点から設定される下限目標周波数以上であり且つ上限目標周波数以下の範囲内に制限され、
前記蓄電装置の前記蓄電量と前記目標周波数との間の前記関係式において、前記蓄電装置の前記蓄電量の変化に対する前記目標周波数の変化率の絶対値が相対的に大きく設定されている基準変化率領域が設定され、当該基準変化率領域に対応する前記蓄電装置の前記蓄電量の範囲よりも小蓄電量側及び大蓄電量側に、前記蓄電装置の前記蓄電量の変化に対する前記目標周波数の変化率の絶対値が、前記基準変化率領域での前記目標周波数の変化率の絶対値と比べて相対的に小さい第1の小変化率領域及び第2の小変化率領域が設定されている点にある。
In order to achieve the above object, the characteristic configuration of the power supply system according to the present invention includes an AC line to which a plurality of power consumers are connected, a power storage device, and a self-connection between the power storage device and the AC line. A plurality of self-systems having a self-supporting inverter device connected using wires,
An interconnection line is used between the power storage device of one self system and the AC line of the other self system so that a plurality of the self systems are electrically connected in series. A power supply system comprising a connected inverter device to be connected between the self systems,
Power control is performed on the self-supporting inverter device, and a control device is provided that performs power interchange control on the connected inverter device,
The controller is
As the power quality control, with respect to the independent inverter device included in one self-system, in the one self-system, the power voltage in the AC line becomes a target voltage and the power in the AC line. Power is supplied to the AC line so that the frequency becomes a target frequency determined according to the amount of power stored in the power storage device, and
As the power interchange control, when power is interchanged from one self system to another self system using the interconnect line, the first interconnect line and the second interconnect constituting the interconnect line are used. Relative to the connected inverter device provided between the power line and the power supply amount of the power storage device based on the target frequency on the AC line in each of the one self system and the other self system. Power from a large self-system to a self-system with a relatively small amount of electricity stored in the power storage device,
In each of the plurality of self-systems,
The self-supporting inverter device determines the target frequency according to the power storage amount of the power storage device according to a relational expression between the power storage amount of the power storage device and the target frequency,
In the relational expression between the power storage amount of the power storage device and the target frequency,
The target frequency is not less than a lower limit target frequency set from the viewpoint of frequency quality of power in the AC line and is limited to a range not more than an upper limit target frequency,
The reference change in which the absolute value of the rate of change of the target frequency with respect to the change of the storage amount of the power storage device is set relatively large in the relational expression between the storage amount of the power storage device and the target frequency A rate region is set, and the target frequency with respect to the change in the storage amount of the power storage device is set on the small storage amount side and the large storage amount side of the storage amount range of the power storage device corresponding to the reference change rate region. A first small change rate region and a second small change rate region are set in which the absolute value of the change rate is relatively smaller than the absolute value of the change rate of the target frequency in the reference change rate region. In the point.

上記特徴構成によれば、目標周波数を決定するとき、その範囲が、交流線での電力の周波数品質の観点から設定される下限目標周波数以上であり且つ上限目標周波数以下の範囲内に制限される。その結果、交流線に接続される電力需要者の装置の動作に支障が生じないようにできる。   According to the above characteristic configuration, when the target frequency is determined, the range is limited to a range that is equal to or higher than the lower limit target frequency set from the viewpoint of the frequency quality of the power on the AC line and lower than the upper limit target frequency. . As a result, it is possible to prevent the operation of the device of the power consumer connected to the AC line from being hindered.

また、電力融通制御が行われるとき、連繋インバータ装置は、二つの自己システムのそれぞれにおける交流線での目標周波数(実際の交流線での電力の周波数もそれぞれの目標周波数と同じと見なしてよい)に基づいて、蓄電装置の蓄電量が相対的に大きい自己システムから、蓄電装置の蓄電量が相対的に小さい自己システムへと電力を融通させる。つまり、双方の自己システムでの交流線での電力の周波数が対比された上で、電力を供給する側の自己システムになるのか、或いは、電力を受け取る側の自己システムになるのかが決定される。そのため、電力を供給する側の自己システムではその蓄電装置の蓄電量の減少が進み、電力を受け取る側の自己システムではその蓄電装置の蓄電量の減少は抑制される或いは蓄電量が増加する。   In addition, when power interchange control is performed, the linked inverter device has a target frequency on the AC line in each of the two self-systems (the frequency of power on the actual AC line may be regarded as the same as the target frequency). Based on the above, electric power is accommodated from the self system in which the power storage amount of the power storage device is relatively large to the self system in which the power storage amount of the power storage device is relatively small. In other words, the frequency of the power on the AC line in both self-systems is compared, and it is then decided whether to become the self-system that supplies power or the self-system that receives power. . For this reason, in the self system that supplies power, the amount of power stored in the power storage device decreases, and in the self system that receives power, the decrease in the power storage amount of the power storage device is suppressed or the power storage amount increases.

但し、本特徴構成では、蓄電装置の蓄電量と目標周波数との間の関係式において、蓄電装置の蓄電量の変化に対する目標周波数の変化率の絶対値が相対的に大きく設定されている基準変化率領域が設定され、当該基準変化率領域に対応する蓄電装置の蓄電量の範囲よりも小蓄電量側及び大蓄電量側に、蓄電装置の蓄電量の変化に対する目標周波数の変化率の絶対値が、基準変化率領域での目標周波数の変化率の絶対値と比べて相対的に小さい第1の小変化率領域及び第2の小変化率領域が設定されている。つまり、蓄電量が相対的に中間にある上記基準変化率領域では、蓄電量の大小変化があるとその変化が目標周波数の変化に大きく反映されるため、電力融通制御において電力の融通を受ける側になるのか或いは電力を供給する側になるのかが蓄電量の大小変化に応じて代わり易くなる。即ち、電力の融通を受ける側になるのか或いは電力を供給する側になるのかが入れ替わり易くなり、この基準変化率領域に対応する蓄電量の範囲内で蓄電量の均衡が図られるようになる。   However, in this characteristic configuration, in the relational expression between the storage amount of the power storage device and the target frequency, the reference change in which the absolute value of the change rate of the target frequency with respect to the change of the storage amount of the power storage device is set relatively large The absolute value of the change rate of the target frequency with respect to the change in the storage amount of the power storage device on the small storage amount side and the large storage amount side of the storage amount range of the storage device corresponding to the reference change rate region. However, a first small change rate region and a second small change rate region that are relatively smaller than the absolute value of the change rate of the target frequency in the reference change rate region are set. In other words, in the reference change rate region where the storage amount is relatively intermediate, if there is a change in the storage amount, the change is greatly reflected in the change in the target frequency. It becomes easy to change depending on the change in the amount of stored electricity. That is, it becomes easy to switch between the power receiving side and the power supplying side, and the storage amount balance is achieved within the storage amount range corresponding to the reference change rate region.

これに対して、蓄電量が相対的に小さい方の小変化率領域では、電力融通制御によって電力の供給を受けて蓄電装置の蓄電量が増加しても、その蓄電量の増加変化に対して目標周波数が大きくは変化しないため、そのまま電力の供給を受け続けることになる。そして、蓄電装置の蓄電量が相対的に中間にある上記基準変化率領域へと戻るように移行する。同様に、蓄電量が相対的に大きい方の小変化率領域では、電力融通制御によって他の自己システムへの電力の供給を行って蓄電装置の蓄電量が減少しても、その蓄電量の減少変化に対して目標周波数が大きく変化しないため、そのまま他の自己システムへの電力の供給を行い続けることになる。そして、蓄電装置の蓄電量が相対的に中間にある上記基準変化率領域へと戻るように移行する。   On the other hand, in the small change rate region where the storage amount is relatively small, even if the storage amount of the power storage device increases due to the supply of power by power interchange control, the increase in the storage amount Since the target frequency does not change greatly, power supply continues to be received. And it transfers so that it may return to the said reference | standard change rate area | region where the electrical storage amount of an electrical storage apparatus is in the middle relatively. Similarly, in the small change rate region where the storage amount is relatively large, even if the power storage control reduces the storage amount of the power storage device by supplying power to another self-system through power interchange control, the decrease in the storage amount Since the target frequency does not change greatly with respect to the change, power supply to other self-systems is continued. And it transfers so that it may return to the said reference | standard change rate area | region where the electrical storage amount of an electrical storage apparatus is in the middle relatively.

このように、第1の小変化率領域及び基準変化率領域及び第2の小変化率領域が、蓄電装置の蓄電量が増加するに伴って順に設定されていることで、各自己システムの蓄電装置の蓄電量が、基準変化率領域に対応する蓄電量の範囲内で均衡するようになる。   As described above, the first small change rate region, the reference change rate region, and the second small change rate region are sequentially set as the amount of power stored in the power storage device increases, so that The amount of electricity stored in the device is balanced within the range of the amount of electricity stored corresponding to the reference change rate region.

本発明に係る電力供給システムの別の特徴構成は、前記関係式は、前記目標周波数が、大蓄電量側で前記蓄電装置の前記蓄電量の増加に従って前記上限目標周波数に収束し、小蓄電量側で前記蓄電装置の前記蓄電量の減少に従って前記下限目標周波数に収束する関係式であるか、または、前記目標周波数が、大蓄電量側で前記蓄電装置の前記蓄電量の増加に従って前記下限目標周波数に収束し、小蓄電量側で前記蓄電装置の前記蓄電量の減少に従って前記上限目標周波数に収束する関係式である点にある。 Another characteristic feature of the power supply system according to the present invention, the relational expression, the target frequency, converges to the number of the upper limit target frequency with an increase of the storage amount of the electrical storage device with large storage amount side, the small power storage or a relational expression converges to the number of the lower limit target frequency with decreasing the storage amount of the electricity storage device in an amount side, or the target frequency, the with an increase in the storage amount of the electrical storage device with large storage amount side This is a relational expression that converges to the lower limit target frequency and converges to the upper limit target frequency in accordance with a decrease in the amount of electricity stored in the electricity storage device on the small electricity storage amount side .

上記特徴構成によれば、蓄電装置の蓄電量と目標周波数との間の関係式において、目標周波数は、大蓄電量側で上限目標周波数に収束し、小蓄電量側で下限目標周波数に収束するか、または、目標周波数は、大蓄電量側で下限目標周波数に収束し、小蓄電量側で上限目標周波数に収束する。つまり、この関係式を用いて目標周波数を決定することにより、上限目標周波数と下限目標周波数との間で目標周波数を最大限変化させることができる。 With the above construction, the relation between the storage amount and the target frequency of the power storage device, the target frequency is converged to the number of upper limit target frequency in a large storage amount side, the lower the target frequency in the small storage amount side or converge, or target frequency is converged to the lower limit target frequency in a large storage amount side, it converges to upper bound the target frequency with a small charged amount side. That is, by determining the target frequency using this relational expression, the target frequency can be changed to the maximum between the upper limit target frequency and the lower limit target frequency.

本発明に係る電力供給システムの更に別の特徴構成は、前記蓄電装置の寿命を考慮して決定される前記蓄電装置の前記蓄電量に関する目標運用領域が、目標下限蓄電量と、当該目標下限蓄電量よりも大きい目標上限蓄電量との間の領域に規定され、
前記蓄電装置の前記蓄電量に関する前記目標下限蓄電量と前記目標上限蓄電量との間の領域が前記基準変化率領域に対応する点にある。
Still another characteristic configuration of the power supply system according to the present invention is that the target operation area related to the storage amount of the power storage device determined in consideration of the life of the power storage device includes a target lower limit storage amount and the target lower limit storage amount Stipulated in the area between the target upper limit storage amount larger than the amount,
A region between the target lower limit charged amount and the target upper limit charged amount related to the charged amount of the power storage device corresponds to the reference change rate region.

交流線に対して接続されている蓄電装置は、充電と放電とを繰り返すことで劣化が進行するが、特定の蓄電量の範囲で充電と放電とを繰り返していれば、その劣化速度が遅くなる、即ち、寿命が長くなることが知られている。従って、蓄電装置が、できるだけその蓄電量の範囲で充電と放電とを繰り返しながら使用されるようにするという観点で目標周波数を決定できれば好ましい。
そこで、本特徴構成では、蓄電装置の寿命を考慮して決定される蓄電装置の蓄電量に関する目標運用領域が、目標下限蓄電量と、当該目標下限蓄電量よりも大きい目標上限蓄電量との間の領域に規定され、蓄電装置の蓄電量に関する目標下限蓄電量と目標上限蓄電量との間の領域が基準変化率領域に対応するようにしている。その結果、上述したように、蓄電装置の蓄電量が相対的に中間にある上記基準変化率領域(目標運用領域)へと戻るようになり、或いは、蓄電装置の蓄電量が目標運用領域から外れることが抑制されるようになる。つまり、蓄電装置が、その蓄電装置の寿命が長くなるような蓄電量の範囲内(目標運用領域内)で使用されるようになる。
The power storage device connected to the AC line is deteriorated by repeating charging and discharging. However, if charging and discharging are repeated within a specific amount of power storage, the deterioration rate is slow. That is, it is known that the lifetime is extended. Therefore, it is preferable that the power storage device can determine the target frequency from the viewpoint of using the power storage device while repeating charging and discharging within the range of the power storage amount as much as possible.
Therefore, in this feature configuration, the target operation area related to the storage amount of the power storage device determined in consideration of the life of the power storage device is between the target lower limit storage amount and a target upper limit storage amount larger than the target lower limit storage amount. The region between the target lower limit storage amount and the target upper limit storage amount related to the storage amount of the power storage device corresponds to the reference change rate region. As a result, as described above, the power storage amount of the power storage device returns to the reference change rate region (target operation region) that is relatively intermediate, or the power storage amount of the power storage device deviates from the target operation region. It will be suppressed. That is, the power storage device is used within the range of the power storage amount (within the target operation area) so that the life of the power storage device is extended.

本発明に係る電力供給システムの別の特徴構成は、前記蓄電装置の前記蓄電量と前記目標周波数との間の前記関係式において、前記目標周波数は、前記蓄電装置の前記蓄電量の関数で決定する周波数変動値を前記交流線の基準周波数に対して加算して導出される点にある。   Another characteristic configuration of the power supply system according to the present invention is that, in the relational expression between the power storage amount of the power storage device and the target frequency, the target frequency is determined by a function of the power storage amount of the power storage device. The frequency fluctuation value to be calculated is added to the reference frequency of the AC line.

上記特徴構成によれば、目標周波数を、蓄電装置の蓄電量の関数で決定する周波数変動値を交流線の基準周波数に対して加算して導出する場合において、目標周波数が、交流線での電力の周波数品質の観点から設定される下限目標周波数以上であり且つ上限目標周波数以下となるように、その周波数変動値が、下限変動値以上であり且つ上限変動値以下の範囲内に制限される。   According to the above characteristic configuration, when the target frequency is derived by adding a frequency fluctuation value determined by a function of the amount of power stored in the power storage device to the reference frequency of the AC line, the target frequency is the power on the AC line. The frequency fluctuation value is limited within a range that is not less than the lower limit fluctuation value and not more than the upper limit fluctuation value so as to be equal to or higher than the lower limit target frequency set from the viewpoint of frequency quality.

本発明に係る電力供給システムの更に別の特徴構成は、前記交流線での電力の周波数品質の観点から設定される前記上限目標周波数及び前記下限目標周波数の間の範囲は、前記交流線に接続されている装置を正常に動作させるために設定されている範囲である点にある。   Still another characteristic configuration of the power supply system according to the present invention is that the range between the upper limit target frequency and the lower limit target frequency set from the viewpoint of frequency quality of power in the AC line is connected to the AC line. This is in a range that is set in order for the device being operated to operate normally.

上記特徴構成によれば、交流線に接続される装置が正常に動作することが担保される。   According to the above characteristic configuration, it is ensured that the device connected to the AC line operates normally.

電力供給システムの構成を示す図である。It is a figure which shows the structure of an electric power supply system. 蓄電装置の蓄電量と目標周波数の周波数変動値との関係を示す図である。It is a figure which shows the relationship between the electrical storage amount of an electrical storage apparatus, and the frequency fluctuation value of a target frequency.

以下に、図面を参照して本発明に係る電力供給システムについて説明する。
図1は、電力供給システムの構成を示す図である。この電力供給システムは、複数の電力需要者Dが接続されている交流線1と、蓄電装置4と、蓄電装置4と交流線1との間を自己接続線2を用いて接続する自立インバータ装置5とを有する自己システム10を複数個備え、複数個の自己システム10が電気的に直列接続されるように、一つの自己システム10が有する蓄電装置4と他の一つの自己システム10が有する交流線1との間を相互接続線3を用いて接続する連繋インバータ装置9を自己システム10同士の間に備える。自己接続線2は、自立インバータ装置5と蓄電装置4とを接続するための第1自己接続線2a(2)と、自立インバータ装置5と交流線1とを接続するための第2自己接続線2b(2)とで構成される。相互接続線3は、連繋インバータ装置9と蓄電装置4とを接続するための第1相互接続線3a(3)と、連繋インバータ装置9と交流線1とを接続するための第2相互接続線3b(3)とで構成される。また、電力供給システムは、自立インバータ装置5に対して電力品質制御を行わせ、連繋インバータ装置9に対して電力融通制御を行わせる制御装置Cを備える。図1では、自己システム10A(10)と自己システム10B(10)という二つの自己システム10が連繋インバータ装置9を介して接続されている状態を例示しているが、電力供給システムが備える自己システム10の数に制限は無い。
The power supply system according to the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration of a power supply system. This power supply system includes an AC line 1 to which a plurality of power consumers D are connected, a power storage device 4, and a self-standing inverter device that connects the power storage device 4 and the AC line 1 using a self-connection line 2. The power storage device 4 of one self-system 10 and the alternating current of the other self-system 10 are provided so that the plurality of self-systems 10 are electrically connected in series. A connected inverter device 9 for connecting the line 1 with the interconnect line 3 is provided between the self systems 10. Self-connecting line 2 includes first self-connecting line 2 a (2) for connecting self-standing inverter device 5 and power storage device 4, and second self-connecting line for connecting self-standing inverter device 5 and AC line 1. 2b (2). The interconnection line 3 includes a first interconnection line 3 a (3) for connecting the linked inverter device 9 and the power storage device 4, and a second interconnection line for connecting the linked inverter device 9 and the AC line 1. 3b (3). In addition, the power supply system includes a control device C that causes the independent inverter device 5 to perform power quality control and causes the connected inverter device 9 to perform power interchange control. Although FIG. 1 illustrates a state in which two self systems 10, that is, the self system 10 </ b> A (10) and the self system 10 </ b> B (10) are connected via the linked inverter device 9, the self system provided in the power supply system There is no limit to the number of ten.

電力需要者Dは、交流線1から供給される電力を消費する電力消費装置6を有する。或いは、電力需要者Dは、電力消費装置6に加えて、発電装置7を有してもよい。電力消費装置6としては、例えば照明装置や空調装置などの一般的な装置だけでなく、その動作のために電力を消費する様々な装置を利用できる。発電装置7としては、太陽光や風力などの自然エネルギを利用して発電する太陽光発電装置や風力発電装置や、燃料を利用して発電する燃料電池などの様々な装置を利用できる。尚、図1に示すように、自己システム10において、交流線1に発電装置7が単体で接続される場合もある。また、交流線1に接続される電力需要者Dの数や、その電力需要者Dが備える電力消費装置6や発電装置7の数や組み合わせは図示した例に限定されない。   The power consumer D has a power consuming device 6 that consumes the power supplied from the AC line 1. Alternatively, the power consumer D may have the power generation device 7 in addition to the power consumption device 6. As the power consuming device 6, not only a general device such as a lighting device or an air conditioner, but also various devices that consume power for its operation can be used. As the power generation device 7, various devices such as a solar power generation device and a wind power generation device that generate power using natural energy such as sunlight and wind power, and a fuel cell that generates power using fuel can be used. As shown in FIG. 1, in the self system 10, the power generator 7 may be connected to the AC line 1 as a single unit. Further, the number of power consumers D connected to the AC line 1 and the numbers and combinations of the power consuming devices 6 and the power generators 7 included in the power consumers D are not limited to the illustrated example.

蓄電装置4は、リチウムイオン電池、ニッケル水素電池、鉛電池などの蓄電池(化学電池)を利用できる。   The power storage device 4 can use a storage battery (chemical battery) such as a lithium ion battery, a nickel metal hydride battery, or a lead battery.

自立インバータ装置5及び連繋インバータ装置9は、入力される電力を、所望の電圧、周波数、位相の電力に変換して出力できる電力変換装置である。例えば、自立インバータ装置5及び連繋インバータ装置9は、半導体スイッチング素子などを有する回路部(図示せず)、及び、その半導体スイッチング素子のスイッチング動作を制御する制御部(図示せず)などで構成される。そして、それらの半導体スイッチング素子のオン・オフが切り換えられることで、入力電力から出力電力への電力変換動作が行われる。   The self-supporting inverter device 5 and the linked inverter device 9 are power conversion devices that can convert input power into power having a desired voltage, frequency, and phase and output the converted power. For example, the self-supporting inverter device 5 and the linked inverter device 9 include a circuit unit (not shown) having a semiconductor switching element and a control unit (not shown) that controls the switching operation of the semiconductor switching element. The And the power conversion operation | movement from input electric power to output electric power is performed by switching on / off of those semiconductor switching elements.

制御装置Cは、上記自立インバータ装置5及び上記連繋インバータ装置9の動作を制御可能な装置である。例えば、制御装置Cは、情報の入出力機能及び記憶機能及び演算処理機能などを有する装置である。尚、制御装置Cの機能は、自立インバータ装置5及び連繋インバータ装置9の夫々が有する制御部(図示せず)の何れか一つがマスター制御部として機能し、他の制御部がマスター制御部と情報通信を行いながらスレーブ制御部として機能することにより実現することができる。或いは、制御装置Cの機能は、自立インバータ装置5及び連繋インバータ装置9の夫々が有する制御部(図示せず)とは別に設けられ、それらの制御部と情報通信可能に構成されるマスター制御部によって実現することができる。   The control device C is a device capable of controlling operations of the self-supporting inverter device 5 and the linked inverter device 9. For example, the control device C is a device having an information input / output function, a storage function, an arithmetic processing function, and the like. The function of the control device C is that any one of the control units (not shown) included in each of the self-supporting inverter device 5 and the linked inverter device 9 functions as a master control unit, and the other control unit is a master control unit. This can be realized by functioning as a slave control unit while performing information communication. Or the function of the control apparatus C is provided separately from the control part (not shown) which each of the independent inverter apparatus 5 and the connection inverter apparatus 9 has, and the master control part comprised so that information communication with those control parts is possible Can be realized.

そして、制御装置Cは、それぞれの自己システム10内での電力品質制御と、複数の自己システム10の間での電力融通制御とを行う。電力品質制御は、自己システム10の交流線1での電力の品質を一定に保つことを目的とする制御である。電力融通制御は、各自己システム10の蓄電装置4の蓄電量の均等化を目的とする制御である。   Then, the control device C performs power quality control in each self system 10 and power interchange control among the plurality of self systems 10. The power quality control is control for the purpose of keeping constant the quality of power on the AC line 1 of the own system 10. The power interchange control is control for the purpose of equalizing the amount of power stored in the power storage device 4 of each self system 10.

電力品質制御について補足すると、交流線1の電力は、電力需要者Dの電力消費装置6によって消費されるが、電力消費装置6は、通常、この電力供給システムとは別の外部の商用電力系統から供給される電力によって動作することを前提としている。つまり、電力消費装置6は、商用電力系統から供給される電力の周波数に応じて動作するように設計されている。そのため、電力消費装置6に対して供給される電力の周波数が異なれば、厳密にはそれらの装置の動作も異なってしまう。従って、それぞれの自己システム10の交流線1での電力の周波数を所定範囲内に保つという電力品質制御を行う必要がある。   Supplementing the power quality control, the power of the AC line 1 is consumed by the power consuming device 6 of the power consumer D. The power consuming device 6 is usually an external commercial power system separate from this power supply system. It is assumed that it operates with the electric power supplied from. That is, the power consuming apparatus 6 is designed to operate according to the frequency of power supplied from the commercial power system. Therefore, if the frequency of the power supplied to the power consuming device 6 is different, strictly speaking, the operation of these devices will also be different. Therefore, it is necessary to perform power quality control that keeps the frequency of power on the AC line 1 of each self system 10 within a predetermined range.

そこで、電力品質制御として、制御装置Cは、一つの自己システム10が有する自立インバータ装置5に対して、その一つの自己システム10において、交流線1での電力の電圧が目標電圧となるように及び交流線1での電力の周波数が蓄電装置4の蓄電量に応じて決定される目標周波数となるように交流線1への電力供給を行わせる。   Therefore, as the power quality control, the control device C is configured so that the voltage of the power on the AC line 1 becomes the target voltage in the one self-system 10 with respect to the self-supporting inverter device 5 included in one self-system 10. And the electric power supply to the AC line 1 is performed so that the frequency of the electric power in the AC line 1 becomes a target frequency determined according to the amount of power stored in the power storage device 4.

電力融通制御について補足すると、各自己システム10では、交流線1の電力品質を維持する機能は、蓄電装置4を利用した自立インバータの電力品質制御によって担われるが、その電力品質制御が実施されることで蓄電装置4の蓄電量がどの程度増減するのかは、複数の自己システム10の間で様々である。そのため、時間経過に伴って、各自己システム10の蓄電装置4の蓄電量に差異が生じることがある。このような場合、蓄電装置4の蓄電量が多い自己システム10から、蓄電装置4の蓄電量が少ない自己システム10へ、電力の融通を行うことができれば、各自己システム10間での蓄電装置4の蓄電量の均等化のために好ましい。   Supplementing the power interchange control, in each self system 10, the function of maintaining the power quality of the AC line 1 is carried out by the power quality control of the self-supporting inverter using the power storage device 4, but the power quality control is performed. Thus, how much the power storage amount of the power storage device 4 increases or decreases varies among the plurality of self systems 10. Therefore, with the passage of time, a difference may occur in the amount of power stored in the power storage device 4 of each self system 10. In such a case, if power can be exchanged from the self system 10 having a large amount of power stored in the power storage device 4 to the self system 10 having a small amount of power stored in the power storage device 4, the power storage devices 4 between the self systems 10. Is preferable for equalizing the amount of electricity stored.

そこで、電力融通制御として、制御装置Cは、一つの自己システム10に向けて他の自己システム10から相互接続線3を用いて電力を融通するとき、当該相互接続線3を構成する第1相互接続線3a(3)と第2相互接続線3b(3)との間に設けられる連繋インバータ装置9に対して、当該一つの自己システム10及び当該他の自己システム10のそれぞれにおける交流線1での目標周波数に基づいて、蓄電装置4の蓄電量が相対的に大きい自己システム10から、蓄電装置4の蓄電量が相対的に小さい自己システム10へと電力を融通させる。   Therefore, as power interchange control, when the control device C interchanges power from one self system 10 to another self system 10 using the interconnect line 3, the control device C configures the first interconnect line 3. With respect to the connected inverter device 9 provided between the connection line 3a (3) and the second interconnection line 3b (3), the AC line 1 in each of the one self system 10 and the other self system 10 On the basis of the target frequency, power is accommodated from the self system 10 in which the power storage amount of the power storage device 4 is relatively large to the self system 10 in which the power storage amount of the power storage device 4 is relatively small.

例えば、図1に示したように、一つの連繋インバータ装置9を介して電気的に接続されて互いに隣接している二つの自己システム10A、10Bに関して、その一つの連繋インバータ装置9は、それぞれの蓄電装置4の蓄電量に応じて決定されている目標周波数に基づいて、蓄電装置4の蓄電量が相対的に大きい自己システム10から、蓄電装置4の蓄電量が相対的に小さい自己システム10へと電力を融通する。具体的には、連繋インバータ装置9は、自己システム10Aの交流線1の周波数fAに関する情報と、自己システム10Bの交流線1の周波数fBに関する情報とを取得してそれらの値を比較し、蓄電装置4の蓄電量が相対的に大きい自己システム10から、蓄電装置4の蓄電量が相対的に小さい自己システム10へと電力を融通する。ここで、連繋インバータ装置9が取得する交流線1の周波数に関する情報は、各自己システム10A、10Bの交流線1での実際の電力の周波数(=目標周波数)を検出して得た値であってもよく、或いは、その目標周波数を決定する自立インバータ装置5から伝達される目標周波数値であってもよい。   For example, as shown in FIG. 1, with respect to two self-systems 10A and 10B that are electrically connected through one linked inverter device 9 and are adjacent to each other, the one linked inverter device 9 Based on the target frequency determined according to the amount of power stored in the power storage device 4, the self system 10 in which the power storage amount of the power storage device 4 is relatively large changes to the self system 10 in which the power storage amount of the power storage device 4 is relatively small. And power interchange. Specifically, the linked inverter device 9 acquires information on the frequency fA of the AC line 1 of the own system 10A and information on the frequency fB of the AC line 1 of the own system 10B, compares these values, and stores Power is accommodated from the self system 10 in which the power storage amount of the device 4 is relatively large to the self system 10 in which the power storage amount of the power storage device 4 is relatively small. Here, the information regarding the frequency of the AC line 1 acquired by the connected inverter device 9 is a value obtained by detecting the frequency (= target frequency) of the actual power in the AC line 1 of each of the own systems 10A and 10B. Alternatively, it may be a target frequency value transmitted from the self-supporting inverter device 5 that determines the target frequency.

次に、上述した電力品質制御において、目標周波数がどのようにして決定されるのかを説明する。
本実施形態では、自立インバータ装置5は、交流線1での電力の周波数が蓄電装置4の蓄電量が大きくなるにつれて高くなる関係で決定される目標周波数となるように制御する。この関係式の例としては、蓄電装置4の蓄電量の関数で決定する周波数変動値(例えば蓄電量が大きいほど周波数変動値が大きくなる関係など)を交流線1の基準周波数(例えば60Hz)に対して加算して得られる値を目標周波数とするようなものがある。この場合、目標周波数:fと、基準周波数:f0と、周波数変動値:Δfとの関係は以下の(数式1)で表すことができる。
Next, how the target frequency is determined in the power quality control described above will be described.
In the present embodiment, the self-supporting inverter device 5 performs control so that the frequency of power on the AC line 1 becomes a target frequency that is determined so as to increase as the amount of power stored in the power storage device 4 increases. As an example of this relational expression, a frequency fluctuation value determined by a function of the amount of power stored in the power storage device 4 (for example, a relationship in which the frequency fluctuation value increases as the power storage amount increases) is set to the reference frequency (for example, 60 Hz) of the AC line 1 In some cases, the target frequency is a value obtained by addition. In this case, the relationship between the target frequency: f, the reference frequency: f0, and the frequency fluctuation value: Δf can be expressed by the following (Formula 1).

f=f0+Δf ・・・・・・・・・・(数式1) f = f0 + Δf (Equation 1)

図2は、本実施形態での蓄電装置4の蓄電量:SOCと目標周波数の周波数変動値:Δfとの間の関係式を示す図である。目標周波数:fは、基準周波数:f0と周波数変動値:Δfとの和で決定されるので、図2に示す関係式は、蓄電装置4の蓄電量:SOCと目標周波数:fとの間の関係式を示しているとも言える。図2において、横軸は、蓄電装置4の蓄電量:SOC(%)であり、縦軸は、周波数変動値:Δf(Hz)である。本実施形態では、Δfは、図2からも分るように正の値及び負の値を取る。   FIG. 2 is a diagram illustrating a relational expression between the amount of power stored in the power storage device 4 in the present embodiment: SOC and the frequency fluctuation value of the target frequency: Δf. Since the target frequency: f is determined by the sum of the reference frequency: f0 and the frequency fluctuation value: Δf, the relational expression shown in FIG. 2 is the relationship between the storage amount: SOC of the power storage device 4 and the target frequency: f. It can be said that it shows a relational expression. In FIG. 2, the horizontal axis represents the amount of power stored in the power storage device 4: SOC (%), and the vertical axis represents the frequency fluctuation value: Δf (Hz). In the present embodiment, Δf takes a positive value and a negative value as can be seen from FIG.

図2に示すように、蓄電装置4の蓄電量:SOCと目標周波数の周波数変動値:Δfとの間の関係式において、自立インバータ装置5は、目標周波数の周波数変動値:Δfを、交流線1での電力の周波数品質の観点から設定される下限周波数変動値以上であり且つ上限周波数変動値以下の範囲内に制限する。目標周波数:fは、基準周波数:f0と周波数変動値:Δfとの和で決定されるので、図2に示す関係式は、目標周波数:fが、交流線1での電力の周波数品質の観点から設定される下限目標周波数以上であり且つ上限目標周波数以下の範囲内に制限されていることを表している。また、この関係式において、目標周波数は、大蓄電量側で蓄電装置4の蓄電量の増加に従って上限目標周波数に収束し、小蓄電量側で蓄電装置4の蓄電量の減少に従って下限目標周波数に収束する。つまり、この関係式を用いて目標周波数を決定することにより、上限目標周波数と下限目標周波数との間で目標周波数を最大限変化させることができる。   As shown in FIG. 2, in the relational expression between the storage amount of the power storage device 4: SOC and the frequency fluctuation value of the target frequency: Δf, the self-supporting inverter device 5 sets the frequency fluctuation value of the target frequency: Δf to the AC line. 1 is limited to a range that is greater than or equal to the lower limit frequency fluctuation value set from the viewpoint of the frequency quality of power and less than or equal to the upper limit frequency fluctuation value. Since the target frequency: f is determined by the sum of the reference frequency: f0 and the frequency fluctuation value: Δf, the relational expression shown in FIG. 2 indicates that the target frequency: f is the viewpoint of the frequency quality of power on the AC line 1. This indicates that the frequency is limited to a range that is equal to or higher than the lower limit target frequency set from (1) to the upper limit target frequency. In this relational expression, the target frequency converges to the upper limit target frequency as the amount of power stored in the power storage device 4 increases on the large power storage amount side, and reaches the lower limit target frequency as the power storage amount of the power storage device 4 decreases on the small power storage amount side. Converge. That is, by determining the target frequency using this relational expression, the target frequency can be changed to the maximum between the upper limit target frequency and the lower limit target frequency.

このように、自立インバータ装置5が交流線1での電力の周波数を意図的に変化させるとしても、その周波数の変化範囲は、交流線1での電力の周波数品質の観点から設定される下限目標周波数(=基準周波数と下限周波数変動値との和)以上であり且つ上限目標周波数(=基準周波数と上限周波数変動値との和)以下の範囲内に制限される。その結果、交流線1に接続される装置の動作にその品質面から支障が生じないようにできる。
例えば、交流線1の電力を消費して動作する電力消費装置6は、本来、商用電力系統から供給される電力によって動作することを前提としているため、供給される電力の周波数が変化すると、厳密にはその電力消費装置の動作状態も変化してしまう。ところが、本実施形態のように、自立インバータ装置5が変化させる交流線1の電力の周波数範囲を下限目標周波数以上であり且つ上限目標周波数以下の範囲内に制限しておくことで、交流線1に接続される電力消費装置6が正常に動作することが担保される。
また、交流線1に電力を供給する発電装置7が、交流線1での電力の周波数が正常ではないと判定するとその発電装置7自身を交流線1から解列させる又は交流線1への電力供給を停止させる保護制御を行うように構成されている場合がある。つまり、発電装置7が正常に交流線1への電力供給を行わなくなる場合がある。そのような場合であっても、自立インバータ装置5が変化させる交流線1の電力の周波数範囲を、発電装置7が交流線1での電力の周波数を正常であると判定する範囲(即ち、上述した下限目標周波数以上であり且つ上限目標周波数以下の範囲)に制限しておくことで、上述した発電装置7の保護制御が実行されることがないようにできる。
Thus, even if the self-supporting inverter device 5 intentionally changes the frequency of the power on the AC line 1, the frequency change range is the lower limit target set from the viewpoint of the frequency quality of the power on the AC line 1. The frequency is limited to be equal to or higher than the frequency (= the sum of the reference frequency and the lower limit frequency fluctuation value) and lower than the upper limit target frequency (= the sum of the reference frequency and the upper limit frequency fluctuation value). As a result, the operation of the device connected to the AC line 1 can be prevented from being hindered in terms of quality.
For example, since the power consuming apparatus 6 that operates by consuming the power of the AC line 1 is supposed to operate by the power supplied from the commercial power system, if the frequency of the supplied power changes, The operating state of the power consuming device will also change. However, as in this embodiment, by limiting the frequency range of the power of the AC line 1 that is changed by the independent inverter device 5 to a range that is equal to or higher than the lower limit target frequency and lower than the upper limit target frequency, the AC line 1 It is ensured that the power consuming device 6 connected to the device operates normally.
When the power generation device 7 that supplies power to the AC line 1 determines that the frequency of the power on the AC line 1 is not normal, the power generation device 7 itself is disconnected from the AC line 1 or power to the AC line 1 is reached. There is a case where protection control for stopping the supply is performed. That is, the power generation device 7 may not normally supply power to the AC line 1 in some cases. Even in such a case, the frequency range of the power of the AC line 1 that is changed by the independent inverter device 5 is the range in which the power generation device 7 determines that the frequency of the power of the AC line 1 is normal (that is, the above-described range). The above-described protection control of the power generation device 7 can be prevented from being executed by limiting to the lower limit target frequency and the upper limit target frequency.

加えて、図2に示す、蓄電装置4の蓄電量と周波数変動値との間の関係式(即ち、蓄電装置4の蓄電量と目標周波数との間の関係式)において、蓄電装置4の蓄電量の変化に対する目標周波数の変化率の絶対値が相対的に大きく設定されている基準変化率領域が設定され、その基準変化率領域に対応する蓄電装置4の蓄電量の範囲よりも小蓄電量側及び大蓄電量側に、蓄電装置4の蓄電量の変化に対する目標周波数の変化率の絶対値が、基準変化率領域での目標周波数の変化率の絶対値と比べて相対的に小さい第1の小変化率領域及び第2の小変化率領域が設定されている。但し、蓄電装置4の蓄電量と目標周波数との間の関係式において、目標周波数は、蓄電装置4の蓄電量の変化に対して単調に変化する。   In addition, in the relational expression between the power storage amount of the power storage device 4 and the frequency fluctuation value (that is, the relational expression between the power storage amount of the power storage device 4 and the target frequency) shown in FIG. A reference change rate region in which the absolute value of the change rate of the target frequency with respect to the change in amount is set to be relatively large is set, and the storage amount is smaller than the range of the storage amount of the power storage device 4 corresponding to the reference change rate region The absolute value of the change rate of the target frequency with respect to the change of the storage amount of the power storage device 4 is relatively smaller than the absolute value of the change rate of the target frequency in the reference change rate region. The small change rate region and the second small change rate region are set. However, in the relational expression between the power storage amount of the power storage device 4 and the target frequency, the target frequency changes monotonously with respect to the change in the power storage amount of the power storage device 4.

蓄電装置4の蓄電量と目標周波数との間の関係式において上述のような第1の小変化領域及び大変化領域及び第2の小変化領域の設定を行った場合、以下のような利点がある。
先ず、電力融通制御が行われるとき、連繋インバータ装置9は、二つの自己システム10のそれぞれにおける交流線1での目標周波数(実際の交流線1での電力の周波数もそれぞれの目標周波数と同じと見なしてよい)に基づいて、蓄電装置4の蓄電量が相対的に大きい自己システム10から、蓄電装置4の蓄電量が相対的に小さい自己システム10へと電力を融通させる。つまり、双方の自己システム10での交流線1での電力の周波数が対比された上で、電力を供給する側の自己システム10になるのか、或いは、電力を受け取る側の自己システム10になるのかが決定される。
When the first small change region, the large change region, and the second small change region as described above are set in the relational expression between the power storage amount of the power storage device 4 and the target frequency, the following advantages are obtained. is there.
First, when power interchange control is performed, the linked inverter device 9 determines that the target frequency on the AC line 1 in each of the two self-systems 10 (the frequency of power on the actual AC line 1 is also the same as the target frequency). Power may be accommodated from the self system 10 in which the power storage amount of the power storage device 4 is relatively large to the self system 10 in which the power storage amount of the power storage device 4 is relatively small. In other words, the frequency of the power on the AC line 1 in both self systems 10 is compared, and then the self system 10 on the power supply side or the self system 10 on the power receiving side is obtained. Is determined.

そのため、電力を供給する側の自己システム10ではその蓄電装置4の蓄電量の減少が更に進み、電力を受け取る側の自己システム10ではその蓄電装置4の蓄電量の減少は抑制される或いは蓄電量が増加する。
但し、本実施形態では、上述したように、蓄電装置4の蓄電量と目標周波数との間の関係式において、第1の小変化率領域及び基準変化率領域及び第2の小変化率領域が、蓄電装置4の蓄電量が増加するに伴って順に設定されている。つまり、蓄電量が相対的に中間にある上記基準変化率領域では、蓄電装置4の蓄電量の大小変化があるとその変化に伴って目標周波数も大きく変化する。このように、目標周波数が大きく変化するということは、目標周波数の比較結果に基づく電力融通制御において、電力の融通を受ける側になるのか或いは電力を供給する側になるのかが代わり易くなるということである。即ち、電力の融通を受ける側になるのか或いは電力を供給する側になるのかが入れ替わり易くなり、隣接する自己システム10間で各蓄電装置4の蓄電量の均衡が図られるようになる。
For this reason, the self-system 10 on the power supply side further reduces the amount of power stored in the power storage device 4, and the self-system 10 on the side receiving power suppresses the decrease in the power storage amount of the power storage device 4. Will increase.
However, in the present embodiment, as described above, in the relational expression between the storage amount of the power storage device 4 and the target frequency, the first small change rate region, the reference change rate region, and the second small change rate region are These are set in order as the amount of power stored in the power storage device 4 increases. That is, in the reference change rate region in which the amount of power storage is relatively intermediate, if there is a change in the amount of power stored in the power storage device 4, the target frequency also changes greatly with the change. Thus, the fact that the target frequency changes greatly means that in the power accommodation control based on the comparison result of the target frequency, it is easier to switch between the power receiving side and the power supplying side. It is. That is, it becomes easy to switch between the power receiving side and the power supplying side, and the power storage amount of each power storage device 4 is balanced between the adjacent self-systems 10.

これに対して、蓄電装置4の蓄電量が上記基準変化率領域と比べて相対的に小さい又は大きい小変化率領域(第1の小変化率領域又は第2の小変化率領域)では、蓄電装置4の蓄電量の増減変化が目標周波数の変化には大きく反映されない。例えば、蓄電量が相対的に小さい側の小変化率領域では、電力融通制御において他の自己システム10から電力の供給を受けて自身の蓄電装置4の蓄電量が増加しても、目標周波数は大きく変化しない。その結果、電力融通制御において他の自己システム10から電力の供給を受け続けることになり、その後、蓄電装置4の蓄電量が相対的に中間にある上記基準変化率領域へと戻る。
同様に、蓄電量が相対的に大きい側の小変化率領域では、電力融通制御において他の自己システム10への電力の供給を行って自身の蓄電装置4の蓄電量が減少しても、目標周波数が大きく変化しない。その結果、電力融通制御において他の自己システム10へ電力の供給を行い続けることになり、その後、蓄電装置4の蓄電量が相対的に中間にある上記基準変化率領域へと戻る。
On the other hand, in the small change rate region (the first small change rate region or the second small change rate region) in which the power storage amount of the power storage device 4 is relatively smaller or larger than the reference change rate region, Changes in the amount of power stored in the device 4 are not greatly reflected in changes in the target frequency. For example, in the small change rate region where the amount of stored electricity is relatively small, even if the amount of stored power of its own power storage device 4 increases due to the supply of power from another self system 10 in the power interchange control, the target frequency is Does not change significantly. As a result, in the power interchange control, the supply of power from the other own system 10 is continued, and thereafter, the power storage amount of the power storage device 4 returns to the reference change rate region in the middle.
Similarly, in the small change rate region on the side where the amount of stored electricity is relatively large, even if the amount of stored power of its own power storage device 4 is reduced by supplying power to another self-system 10 in the power interchange control, the target The frequency does not change greatly. As a result, power supply control continues to supply power to other self-systems 10 and then returns to the reference change rate region in which the power storage amount of the power storage device 4 is relatively intermediate.

以上のように、蓄電装置4の蓄電量が小変化率領域にある場合には、電力融通制御によって蓄電量が相対的に中間にある上記基準変化率領域へと戻り易くなる。また、蓄電装置4の蓄電量が基準変化率領域にある場合には、電力融通制御によって電力の融通を受ける側になるのか或いは電力を供給する側になるのかが代わり易くなる(即ち、蓄電装置4の蓄電量が基準変化率領域内に留まるようになる)。従って、第1の小変化率領域及び基準変化率領域及び第2の小変化率領域が、蓄電装置4の蓄電量が増加するに伴って順に設定されていることで、各自己システム10の蓄電装置4の蓄電量が、基準変化率領域に対応する蓄電量の範囲内で均衡するようになる。   As described above, when the power storage amount of the power storage device 4 is in the small change rate region, it is easy to return to the reference change rate region in which the power storage amount is relatively intermediate by power interchange control. Further, when the power storage amount of the power storage device 4 is in the reference change rate region, it becomes easier to switch to the power receiving side or the power supply side by the power interchange control (that is, the power storage device). No. 4 power storage amount remains in the reference change rate region). Accordingly, the first small change rate region, the reference change rate region, and the second small change rate region are sequentially set as the amount of power stored in the power storage device 4 increases, so that The storage amount of the device 4 is balanced within the storage amount range corresponding to the reference change rate region.

更に、図2に示すように、蓄電装置4の蓄電量と目標周波数との間の関係式において、蓄電装置4の蓄電量に関する目標下限蓄電量と目標上限蓄電量との間の領域が上記基準変化率領域に対応するように設定されている。ここで、蓄電装置4の寿命を考慮して決定される蓄電装置4の蓄電量に関する目標運用領域が、目標下限蓄電量と、当該目標下限蓄電量よりも大きい目標上限蓄電量との間の領域に規定される。本実施形態では、上述したように、蓄電装置4の蓄電量が小変化率領域にある場合には、電力融通制御によって蓄電量が相対的に中間にある上記基準変化率領域へと戻り易くなり、蓄電装置4の蓄電量が基準変化率領域にある場合には、電力融通制御によって蓄電量が基準変化率領域内に留まるようになる。そして、この基準変化率領域は、蓄電装置4の寿命を考慮して決定される蓄電装置4の蓄電量に関する目標運用領域に対応する。つまり、蓄電装置4の蓄電量が目標運用領域から外れることが抑制され、或いは、蓄電装置4の蓄電量が目標運用領域内へと引き戻され易くなる。その結果、蓄電装置4の寿命が長くなるような蓄電量の範囲内(目標運用領域内)で使用されるようになる。   Further, as shown in FIG. 2, in the relational expression between the power storage amount of the power storage device 4 and the target frequency, the region between the target lower limit power storage amount and the target upper limit power storage amount with respect to the power storage amount of the power storage device 4 is the above reference. It is set to correspond to the change rate region. Here, an area between the target lower limit power storage amount and the target upper limit power storage amount that is larger than the target lower limit power storage amount is the target operation region related to the power storage amount of the power storage device 4 determined in consideration of the life of the power storage device 4 Stipulated in In the present embodiment, as described above, when the power storage amount of the power storage device 4 is in the small change rate region, it is easy to return to the reference change rate region in which the power storage amount is relatively intermediate by power interchange control. When the power storage amount of the power storage device 4 is in the reference change rate region, the power storage amount remains in the reference change rate region by the power interchange control. The reference change rate area corresponds to a target operation area related to the amount of power stored in power storage device 4 determined in consideration of the life of power storage device 4. That is, it is possible to prevent the amount of power stored in the power storage device 4 from deviating from the target operation area, or to easily return the amount of power stored in the power storage device 4 to the target operation area. As a result, the power storage device 4 is used within the range of the power storage amount (within the target operation area) so that the life of the power storage device 4 is prolonged.

この目標運用領域は、蓄電装置4の種類毎に設定される。例えば、蓄電装置4は、特定の蓄電量の範囲で充電と放電とを繰り返していれば、その劣化速度が遅くなる、即ち、寿命が長くなることが知られている。そして、そのような長寿命化を達成できる蓄電量の範囲は、リチウムイオン電池、ニッケル水素電池、鉛電池など、蓄電装置4の種類毎に異なる。従って、蓄電装置4の種類毎に、その長寿命化を達成できる蓄電量の範囲を目標運用領域に設定すればよい。   This target operation area is set for each type of power storage device 4. For example, it is known that if the power storage device 4 is repeatedly charged and discharged within a specific power storage range, its deterioration rate is slow, that is, the life is long. And the range of the electrical storage amount which can achieve such a lifetime improvement differs for every kind of electrical storage apparatuses 4, such as a lithium ion battery, a nickel hydride battery, and a lead battery. Therefore, for each type of power storage device 4, the range of the power storage amount that can achieve a longer life may be set as the target operation area.

<別実施形態>
上記実施形態では、図2に示したような蓄電装置4の蓄電量と目標周波数(周波数変動値)との間の関係式を例示したが、図2は単に例示目的で示した関係式であり、適宜変更可能である。
例えば、図2に示した関係式は、蓄電装置4の蓄電量が大きくなるにつれて目標周波数が単調に高くなる関係であったが、これとは逆に、蓄電装置4の蓄電量が大きくなるにつれて目標周波数が単調に低くなる関係であってもよい。このような関係の場合、図2に示した関係式は、目標周波数が、大蓄電量側で蓄電装置4の蓄電量の増加に従って下限目標周波数に収束し、小蓄電量側で蓄電装置4の蓄電量の減少に従って上限目標周波数に収束する関係式となる。
また、図2では、蓄電装置4の蓄電量と目標周波数(周波数変動値)との間の関係式を、基準変化率領域を中心とした点対称の曲線で規定したが、非対称な曲線で蓄電装置4の蓄電量と目標周波数(周波数変動値)との間の関係式を規定してもよい。更に、図2に示した関係式において、蓄電装置4の蓄電量変化に対する目標周波数(周波数変動値)の変化率の大きさも、適宜変更可能である。
<Another embodiment>
In the above-described embodiment, the relational expression between the power storage amount of the power storage device 4 and the target frequency (frequency fluctuation value) as illustrated in FIG. 2 is illustrated, but FIG. 2 is merely a relational expression illustrated for illustrative purposes. These can be changed as appropriate.
For example, the relational expression shown in FIG. 2 is a relationship in which the target frequency monotonously increases as the amount of power stored in the power storage device 4 increases. Conversely, as the amount of power stored in the power storage device 4 increases. The target frequency may be monotonously lowered. In the case of such a relationship, the relational expression shown in FIG. 2 indicates that the target frequency converges to the lower limit target frequency as the amount of power stored in the power storage device 4 increases on the large power storage amount side, and The relational expression converges to the upper limit target frequency as the amount of stored electricity decreases.
In FIG. 2, the relational expression between the power storage amount of the power storage device 4 and the target frequency (frequency fluctuation value) is defined by a point-symmetric curve with the reference change rate region as the center. You may prescribe | regulate the relational expression between the electrical storage amount of the apparatus 4, and a target frequency (frequency fluctuation value). Further, in the relational expression shown in FIG. 2, the magnitude of the rate of change of the target frequency (frequency fluctuation value) with respect to the change in the amount of power stored in the power storage device 4 can be changed as appropriate.

本発明は、交流線1の目標周波数が、電力需要者Dにとって好ましい値に決定され、且つ、所定の蓄電量範囲で各蓄電装置4の蓄電量を均等化できるような電力供給システムに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used in a power supply system in which the target frequency of the AC line 1 is determined to be a preferable value for the power consumer D and the power storage amount of each power storage device 4 can be equalized within a predetermined power storage amount range. .

1 :交流線
2 :自己接続線
2a :第1自己接続線
2b :第2自己接続線
3 :相互接続線
4 :蓄電装置
5 :自立インバータ装置
6 :電力消費装置
7 :発電装置
9 :連繋インバータ装置
10 :自己システム
10A :自己システム
10B :自己システム
C :制御装置
D :電力需要者
fA :周波数
fB :周波数
1: AC line 2: Self-connection line 2a: 1st self-connection line 2b: 2nd self-connection line 3: Interconnection line 4: Power storage device 5: Self-supporting inverter device 6: Power consumption device 7: Power generation device 9: Linked inverter Device 10: Self-system 10A: Self-system 10B: Self-system C: Control device D: Power consumer fA: Frequency fB: Frequency

Claims (5)

複数の電力需要者が接続されている交流線と、蓄電装置と、前記蓄電装置と前記交流線との間を自己接続線を用いて接続する自立インバータ装置とを有する自己システムを複数個備え、
複数個の前記自己システムが電気的に直列接続されるように、一つの前記自己システムが有する前記蓄電装置と他の一つの前記自己システムが有する前記交流線との間を相互接続線を用いて接続する連繋インバータ装置を前記自己システム同士の間に備える電力供給システムであって、
前記自立インバータ装置に対して電力品質制御を行わせ、前記連繋インバータ装置に対して電力融通制御を行わせる制御装置を備え、
前記制御装置は、
前記電力品質制御として、一つの前記自己システムが有する前記自立インバータ装置に対して、当該一つの自己システムにおいて、前記交流線での電力の電圧が目標電圧となるように及び前記交流線での電力の周波数が前記蓄電装置の蓄電量に応じて決定される目標周波数となるように前記交流線への電力供給を行わせ、並びに、
前記電力融通制御として、一つの前記自己システムに向けて他の前記自己システムから前記相互接続線を用いて電力を融通するとき、当該相互接続線を構成する第1相互接続線と第2相互接続線との間に設けられる前記連繋インバータ装置に対して、当該一つの自己システム及び当該他の自己システムのそれぞれにおける前記交流線での前記目標周波数に基づいて、前記蓄電装置の蓄電量が相対的に大きい自己システムから、前記蓄電装置の蓄電量が相対的に小さい自己システムへと電力を融通させ、
複数個の前記自己システムの夫々において、
前記自立インバータ装置は、前記蓄電装置の前記蓄電量と前記目標周波数との間の関係式に従って前記蓄電装置の前記蓄電量に応じた前記目標周波数を決定し、
前記蓄電装置の前記蓄電量と前記目標周波数との間の前記関係式において、前記目標周波数が、前記交流線での電力の周波数品質の観点から設定される下限目標周波数以上であり且つ上限目標周波数以下の範囲内に制限され、
前記蓄電装置の前記蓄電量と前記目標周波数との間の前記関係式において、前記蓄電装置の前記蓄電量の変化に対する前記目標周波数の変化率の絶対値が相対的に大きく設定されている基準変化率領域が設定され、当該基準変化率領域に対応する前記蓄電装置の前記蓄電量の範囲よりも小蓄電量側及び大蓄電量側に、前記蓄電装置の前記蓄電量の変化に対する前記目標周波数の変化率の絶対値が、前記基準変化率領域での前記目標周波数の変化率の絶対値と比べて相対的に小さい第1の小変化率領域及び第2の小変化率領域が設定されている電力供給システム。
A plurality of self-systems including an AC line to which a plurality of power consumers are connected, a power storage device, and a self-standing inverter device that connects the power storage device and the AC line using a self-connection line,
An interconnection line is used between the power storage device of one self system and the AC line of the other self system so that a plurality of the self systems are electrically connected in series. A power supply system comprising a connected inverter device to be connected between the self systems,
Power control is performed on the self-supporting inverter device, and a control device is provided that performs power interchange control on the connected inverter device,
The controller is
As the power quality control, with respect to the independent inverter device included in one self-system, in the one self-system, the power voltage in the AC line becomes a target voltage and the power in the AC line. Power is supplied to the AC line so that the frequency becomes a target frequency determined according to the amount of power stored in the power storage device, and
As the power interchange control, when power is interchanged from one self system to another self system using the interconnect line, the first interconnect line and the second interconnect constituting the interconnect line are used. Relative to the connected inverter device provided between the power line and the power supply amount of the power storage device based on the target frequency on the AC line in each of the one self system and the other self system. Power from a large self-system to a self-system with a relatively small amount of electricity stored in the power storage device,
In each of the plurality of self-systems,
The self-supporting inverter device determines the target frequency according to the power storage amount of the power storage device according to a relational expression between the power storage amount of the power storage device and the target frequency,
In the relational expression between the power storage amount of the power storage device and the target frequency, the target frequency is equal to or higher than a lower limit target frequency set from the viewpoint of frequency quality of power on the AC line, and an upper limit target frequency. Limited to
The reference change in which the absolute value of the rate of change of the target frequency with respect to the change of the storage amount of the power storage device is set relatively large in the relational expression between the storage amount of the power storage device and the target frequency A rate region is set, and the target frequency with respect to the change in the storage amount of the power storage device is set on the small storage amount side and the large storage amount side of the storage amount range of the power storage device corresponding to the reference change rate region. A first small change rate region and a second small change rate region are set in which the absolute value of the change rate is relatively smaller than the absolute value of the change rate of the target frequency in the reference change rate region. Power supply system.
前記関係式は、前記目標周波数が、大蓄電量側で前記蓄電装置の前記蓄電量の増加に従って前記上限目標周波数に収束し、小蓄電量側で前記蓄電装置の前記蓄電量の減少に従って前記下限目標周波数に収束する関係式であるか、または、前記目標周波数が、大蓄電量側で前記蓄電装置の前記蓄電量の増加に従って前記下限目標周波数に収束し、小蓄電量側で前記蓄電装置の前記蓄電量の減少に従って前記上限目標周波数に収束する関係式である請求項1に記載の電力供給システム。 The relational expression, the target frequency, converges to the upper limit target frequency with an increase of the storage amount of the electrical storage device with large storage amount side, the following decrease of the storage amount of the electrical storage device with a small storage amount side or a relational expression converges to the lower limit target frequency, or the target frequency, converges to the lower limit target frequency with an increase of the storage amount of the electrical storage device with large storage amount side, the electric storage a small storage amount side The power supply system according to claim 1, wherein the power supply system is a relational expression that converges to the upper limit target frequency according to a decrease in the amount of electricity stored in the apparatus . 前記蓄電装置の寿命を考慮して決定される前記蓄電装置の前記蓄電量に関する目標運用領域が、目標下限蓄電量と、当該目標下限蓄電量よりも大きい目標上限蓄電量との間の領域に規定され、
前記蓄電装置の前記蓄電量に関する前記目標下限蓄電量と前記目標上限蓄電量との間の領域が前記基準変化率領域に対応する請求項1又は2に記載の電力供給システム。
The target operation area related to the storage amount of the power storage device determined in consideration of the life of the power storage device is defined as a region between the target lower limit storage amount and a target upper limit storage amount larger than the target lower limit storage amount And
The power supply system according to claim 1 or 2, wherein a region between the target lower limit charged amount and the target upper limit charged amount related to the charged amount of the power storage device corresponds to the reference change rate region.
前記蓄電装置の前記蓄電量と前記目標周波数との間の前記関係式において、前記目標周波数は、前記蓄電装置の前記蓄電量の関数で決定する周波数変動値を前記交流線の基準周波数に対して加算して導出される請求項1〜3の何れか一項に記載の電力供給システム。   In the relational expression between the power storage amount of the power storage device and the target frequency, the target frequency is a frequency fluctuation value determined by a function of the power storage amount of the power storage device with respect to a reference frequency of the AC line. The power supply system according to any one of claims 1 to 3, which is derived by addition. 前記交流線での電力の周波数品質の観点から設定される前記上限目標周波数及び前記下限目標周波数の間の範囲は、前記交流線に接続されている装置を正常に動作させるために設定されている範囲である請求項1〜4の何れか一項に記載の電力供給システム。   The range between the upper limit target frequency and the lower limit target frequency set from the viewpoint of the frequency quality of the power on the AC line is set for normal operation of the device connected to the AC line. It is a range, The electric power supply system as described in any one of Claims 1-4.
JP2014033052A 2014-02-24 2014-02-24 Power supply system Expired - Fee Related JP6300568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014033052A JP6300568B2 (en) 2014-02-24 2014-02-24 Power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014033052A JP6300568B2 (en) 2014-02-24 2014-02-24 Power supply system

Publications (2)

Publication Number Publication Date
JP2015159662A JP2015159662A (en) 2015-09-03
JP6300568B2 true JP6300568B2 (en) 2018-03-28

Family

ID=54183256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014033052A Expired - Fee Related JP6300568B2 (en) 2014-02-24 2014-02-24 Power supply system

Country Status (1)

Country Link
JP (1) JP6300568B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2408083B1 (en) * 2009-03-12 2017-05-10 Vpec, Inc. Autonomous distributed ac power system
US9705326B2 (en) * 2012-03-23 2017-07-11 Osaka Gas Co., Ltd. Power consumption mode guiding device and system
EP2858200B1 (en) * 2012-05-24 2018-08-08 Osaka Gas Co., Ltd. Power supply system

Also Published As

Publication number Publication date
JP2015159662A (en) 2015-09-03

Similar Documents

Publication Publication Date Title
US10263428B2 (en) Power conversion apparatus, method for controlling power conversion apparatus, and power conversion system
JP5945594B2 (en) Power supply system
JP6170258B2 (en) Power control apparatus, power supply system, and control method for power supply system
JP6112463B2 (en) Frequency control method, frequency control apparatus and system
JP6781637B2 (en) Control method of the cooperation system of storage battery and power converter, and power conditioning system
WO2012176868A1 (en) Power supply system
WO2016121273A1 (en) Power control device, power control method, and power control system
US10211635B2 (en) Power control system and control method of power control system
US9608449B2 (en) Power system and control method of the power system
JP5480343B2 (en) DC power supply system
JP2015126564A (en) Power transfer system
JP6252927B2 (en) Power distribution system and wiring apparatus used therefor
JP2015233384A (en) Power demand and supply system
JP6216066B2 (en) Power control system control method, power control system, and power control apparatus
JP6478032B2 (en) Control device and power distribution system using the same
JP6300568B2 (en) Power supply system
WO2016006257A1 (en) Power generation device, power generation system and power generation method
JP2017028883A (en) Power storage system and control method for power storage battery
JP6257388B2 (en) Power supply system
JP2016025797A (en) Power controller and power storage device
JP6479516B2 (en) Input control power storage system
JP6257387B2 (en) Power supply system
JP6257425B2 (en) Power supply system
JP2015186390A (en) Control device and control method for multi-source pcs group
JP2018133905A (en) Electric power conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180227

R150 Certificate of patent or registration of utility model

Ref document number: 6300568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees