JP6293457B2 - Polyimide and heat resistant film - Google Patents

Polyimide and heat resistant film Download PDF

Info

Publication number
JP6293457B2
JP6293457B2 JP2013233646A JP2013233646A JP6293457B2 JP 6293457 B2 JP6293457 B2 JP 6293457B2 JP 2013233646 A JP2013233646 A JP 2013233646A JP 2013233646 A JP2013233646 A JP 2013233646A JP 6293457 B2 JP6293457 B2 JP 6293457B2
Authority
JP
Japan
Prior art keywords
formula
polyimide
group
following formula
repeating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013233646A
Other languages
Japanese (ja)
Other versions
JP2015093915A (en
Inventor
長谷川 匡俊
匡俊 長谷川
淳一 石井
淳一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Toho University
Original Assignee
Nissan Chemical Corp
Toho University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp, Toho University filed Critical Nissan Chemical Corp
Priority to JP2013233646A priority Critical patent/JP6293457B2/en
Publication of JP2015093915A publication Critical patent/JP2015093915A/en
Application granted granted Critical
Publication of JP6293457B2 publication Critical patent/JP6293457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、ポリイミドに関し、更に詳述すると、例えば有機EL素子といったデバイスの基板材料に適した、低い線熱膨張係数、高いガラス転移温度、高い耐熱性及び高い膜靱性を有するポリイミド、当該ポリイミドからなる耐熱性フィルム、当該耐熱性フィルムを与える耐熱性フィルム形成用ワニスに関する。   The present invention relates to a polyimide, and more specifically, a polyimide having a low linear thermal expansion coefficient, a high glass transition temperature, a high heat resistance and a high film toughness suitable for a substrate material of a device such as an organic EL element. The heat resistant film which becomes, and the varnish for heat resistant film formation which gives the said heat resistant film.

現在、各種画像表示装置や太陽電池の軽量化や脆弱性改善を主な目的として、無機ガラス基板をプラスチック基板に置き換えようとする検討が行われている。しかしながら、ガラス並みの特性即ち無色透明性、高度な低熱膨張特性および超耐熱性を有し且つガラスの欠点である脆弱性を大幅に改善した、理想的なプラスチック基板材料を得ることは、現行の技術では極めて困難である。   At present, studies are being made to replace inorganic glass substrates with plastic substrates mainly for the purpose of reducing the weight and improving the vulnerability of various image display devices and solar cells. However, it is possible to obtain an ideal plastic substrate material that has glass-like properties, ie, colorless transparency, advanced low thermal expansion properties and super heat resistance, and greatly improves the weakness that is a drawback of glass. It is extremely difficult with technology.

全芳香族ポリイミドは現存する樹脂の中では最高の耐熱性(ハンダ耐熱性)を有するため、エレクトロニクス分野を中心に様々な用途の部材に適用されている。しかしながら、従来のポリイミドフィルムは、分子構造由来の電荷移動相互作用により強く着色しており、例えば非特許文献1参照)、また、各種プロセス適合性のために求められる高度な低熱膨張特性は必ずしも十分ではない。
そのため、現行のポリイミドフィルムをなんら特性改善することなくそのままプラスチック基板等の光学部材に適用することは困難である。
Since the wholly aromatic polyimide has the highest heat resistance (solder heat resistance) among the existing resins, it is applied to members for various uses mainly in the electronics field. However, the conventional polyimide film is strongly colored due to the charge transfer interaction derived from the molecular structure. For example, see Non-Patent Document 1), and the advanced low thermal expansion characteristics required for various process compatibility are not always sufficient. is not.
Therefore, it is difficult to apply the current polyimide film as it is to an optical member such as a plastic substrate without improving the characteristics.

これに対して、ポリイミドのモノマーであるジアミンかテトラカルボン酸二無水物のどちらか一方、あるいは両方に脂環式モノマーを使用することで電荷移動相互作用を著しく妨害してポリイミドを完全に無色透明化する技術が開示されている(例えば非特許文献2〜4参照)。
しかしながら、この場合、ポリイミド骨格中に耐熱性に劣る脂環構造単位が導入されるため、従来の全芳香族ポリイミドに比べると、熱安定性の大幅な低下は避けられない。また、脂環構造の導入はポリイミド主鎖の直線性の低下も招くため、無色透明ポリイミドはしばしば低熱膨張特性を示さない。
このように、プラスチック基板として全ての要求特性を完璧に満たすことは材料設計上容易なことではない。
In contrast, the use of alicyclic monomers in either or both of the polyimide monomers diamine and tetracarboxylic dianhydride significantly disturbs the charge transfer interaction and makes the polyimide completely colorless and transparent. Have been disclosed (for example, see Non-Patent Documents 2 to 4).
However, in this case, since an alicyclic structural unit having poor heat resistance is introduced into the polyimide skeleton, a significant decrease in thermal stability is inevitable as compared with conventional wholly aromatic polyimides. In addition, since the introduction of the alicyclic structure also causes a decrease in the linearity of the polyimide main chain, colorless and transparent polyimides often do not exhibit low thermal expansion characteristics.
As described above, it is not easy in material design to completely satisfy all the required characteristics as a plastic substrate.

一方、用途によっては、上記特性の内のいくつかの限られた要求特性に特化したプラスチック基板材料が求められる場合がある。1つの例として、トップ・エミッション方式の有機発光ダイオード(OLED)ディスプレーで用いられるプラスチック基板が挙げられる。   On the other hand, depending on the application, there may be a demand for a plastic substrate material specialized for some of the above required characteristics. One example is a plastic substrate used in top emission organic light emitting diode (OLED) displays.

現行のボトム・エミッション方式OLEDディスプレー用途では、プラスチック基板上に発光素子を形成していく過程で300℃以上場合によっては400℃以上の高温プロセスがあり、その工程中に基板材料自身から揮発性有機化合物(VOC)が発生すると素子に深刻な悪影響を及ぼすおそれがある。
そのため、ボトム・エミッション方式OLED用プラスチック基板材料には、できるだけ高温域までVOCの発生を抑制するための極めて高い熱安定性、高度な熱寸法安定性即ち低熱膨張特性、ガラス並みの無色透明性および優れた膜形成能(膜靱性)を併せ持つ、従来にないプラスチック基板材料が求められているが、これをターゲットとする樹脂材料開発のハードルは極めて高い。
In the current bottom emission type OLED display application, there is a high temperature process of 300 ° C. or higher and in some cases 400 ° C. or higher in the process of forming a light emitting element on a plastic substrate. If the compound (VOC) is generated, the device may be seriously adversely affected.
Therefore, the plastic substrate material for the bottom emission type OLED has extremely high thermal stability for suppressing the generation of VOC to the highest possible temperature range, high thermal dimensional stability, that is, low thermal expansion characteristics, colorless transparency similar to glass, and There is a demand for an unprecedented plastic substrate material that has excellent film forming ability (film toughness), but the hurdles for developing resin materials targeting this are extremely high.

一方、高精細化等の有利性から、最近、トップ・エミッション方式のOLEDディスプレーが検討されている。この方式では発光層から放出された光がプラスチック基板とは反対方向に取り出されるので放出光がプラスチック基板を通過しないため、プラスチック基板自身の着色は重大な問題ではない。
そのため、トップ・エミッション方式のOLEDディスプレー用プラスチック基板では、極めて高いVOC抑制能(基板材料自身からVOCが発生しない性質のことである。以下同じ。)、極めて低い線熱膨張係数(以下CTEと称する)および優れた膜形成能(膜靱性)が求められる。
On the other hand, recently, a top emission type OLED display has been studied due to the advantage of high definition and the like. In this method, since the light emitted from the light emitting layer is extracted in the opposite direction to the plastic substrate, the emitted light does not pass through the plastic substrate, so that the coloring of the plastic substrate itself is not a serious problem.
For this reason, plastic substrates for OLED displays of the top emission type have an extremely high VOC suppression capability (the property that VOC is not generated from the substrate material itself; the same shall apply hereinafter) and an extremely low linear thermal expansion coefficient (hereinafter referred to as CTE). ) And excellent film forming ability (film toughness).

しかしながら、トップ・エミッション方式のOLEDディスプレー用プラスチック基板に求められる上記の要求特性でさえも、全てを同時に達成する実用的な材料は知られていないのが現状である。   However, there is currently no known practical material that can achieve all of the above-mentioned required characteristics required for the plastic substrate for OLED display of the top emission type.

VOC抑制能を極限まで高めるためには、脂肪族炭化水素基、チオエーテル基、スルホン基、アミン基、カーボネート基、ウレア基、ウレタン基、アミド基、エステル基、アルキレン基、イソプロピリデン基、シクロヘキシレン基等といった耐熱性に劣る置換基や連結基を完全に排除することが望ましい。   In order to increase the VOC suppression ability to the maximum, aliphatic hydrocarbon group, thioether group, sulfone group, amine group, carbonate group, urea group, urethane group, amide group, ester group, alkylene group, isopropylidene group, cyclohexylene It is desirable to completely eliminate substituents and linking groups having poor heat resistance such as groups.

一方、高度な低熱膨張特性発現の観点からは、極めて剛直で直線的な主鎖構造とすることが望ましい。   On the other hand, from the viewpoint of developing a high level of low thermal expansion characteristics, it is desirable to have a very rigid and linear main chain structure.

よって、VOC抑制と低熱膨張特性の観点から、理想的な分子構造として式(X1)で示されるパラフェニレン基からなるポリパラフェニレンが挙げられる。しかし、ポリパラフェニレンは有機溶媒溶解性を全く有していないため、これを重合して得ようとすると分子量が増加する前に沈殿が生じ、重合反応そのものが極めて困難である。   Therefore, from the viewpoint of VOC suppression and low thermal expansion characteristics, an ideal molecular structure includes polyparaphenylene composed of a paraphenylene group represented by the formula (X1). However, since polyparaphenylene does not have organic solvent solubility at all, when it is obtained by polymerization, precipitation occurs before the molecular weight increases, and the polymerization reaction itself is extremely difficult.

Figure 0006293457
Figure 0006293457

これに対し、剛直で直線的な主鎖構造を有する下記式(X2)で表されるポリイミドは、それ自身は一般の有機溶媒に全く不溶であるが、下記式(X3)で表されるアミド系溶媒可溶性の前駆体(ポリアミド酸)の段階で溶液キャスト法によりフィルム状に成形しておき、これを高温で加熱脱水環化反応(イミド化反応)処理することで容易にポリイミドフィルムを得ることができ、そのフィルムが極めて低いCTEを示すことが報告されている(例えば非特許文献5参照)。   On the other hand, the polyimide represented by the following formula (X2) having a rigid and linear main chain structure is completely insoluble in a general organic solvent, but the amide represented by the following formula (X3). A polyimide film can be easily obtained by forming into a film by a solution cast method at the stage of a solvent-soluble precursor (polyamic acid) and subjecting it to a heat dehydration cyclization reaction (imidation reaction) at a high temperature. It has been reported that the film exhibits extremely low CTE (see, for example, Non-Patent Document 5).

Figure 0006293457
Figure 0006293457

ポリアミド酸の優れたアミド系溶媒溶解性は、上記式(X3)における置換基であるCOOH基の強い溶媒和能によるものである(例えば非特許文献6参照)。   The excellent amide solvent solubility of the polyamic acid is due to the strong solvating ability of the COOH group which is a substituent in the above formula (X3) (see, for example, Non-Patent Document 6).

しかしながら、下記式(X2)で表される系では、高分子鎖同士の絡み合いが殆どないために、ポリイミドフィルムがしばしば著しく脆弱化して膜形成能を完全に失うという重大な問題があった(例えば非特許文献5参照)。   However, in the system represented by the following formula (X2), since there is almost no entanglement between the polymer chains, there is a serious problem that the polyimide film is often significantly weakened to completely lose the film forming ability (for example, Non-patent document 5).

一方、耐熱性の観点から、ポリイミドに匹敵する超耐熱性を有するポリベンゾオキサゾールも上記トップ・エミッション方式のOLEDディスプレー用プラスチック基板材料の候補となり得る。
例えば、下記式(X4)で表されるポリベンゾオキサゾールは、上記用途に適用するのに理想的な分子構造即ち置換基や連結基を一切含まず、剛直で直線状の主鎖構造を有している。
On the other hand, from the viewpoint of heat resistance, polybenzoxazole having super heat resistance comparable to polyimide can also be a candidate for the above-mentioned top emission type plastic substrate material for OLED display.
For example, polybenzoxazole represented by the following formula (X4) has a rigid and linear main chain structure that does not contain any molecular structure, that is, a substituent or a linking group, which is ideal for application to the above application. ing.

Figure 0006293457
Figure 0006293457

ポリイミドと同様にポリベンゾオキサゾールそれ自身は一般の有機溶媒に通常全く不溶であるので、ポリベンゾオキサゾール前駆体が溶媒に可溶であるならばこれを経由してポリベンゾオキサゾールフィルムを製造することが原理的には可能である。   Like polyimide, polybenzoxazole itself is usually completely insoluble in common organic solvents, so if the polybenzoxazole precursor is soluble in the solvent, a polybenzoxazole film can be produced via this. In principle it is possible.

しかしながら、ポリベンゾオキサゾール前駆体を得るためには、モノマーを活性誘導体にあらかじめ変換しておく工程が必要であり、そのような工程を一切必要としないポリイミド前駆体の重合工程に比べると、ポリベンゾオキサゾール前駆体の重合工程は相当煩雑である。
この点に加え、VOC抑制能と低熱膨張特性の発現を目指して、上記式(X4)に例示したように、ポリベンゾオキサゾールから連結基を完全に排除した上で、剛直で直線性の高い主鎖構造となるように分子設計すると、ポリベンゾオキサゾールの前駆体であるポリヒドロキシアミドの段階でさえも有機溶媒溶解性が乏しいという重大な問題があった(例えば非特許文献7参照)。
However, in order to obtain a polybenzoxazole precursor, it is necessary to convert the monomer into an active derivative in advance. Compared to a polymerization process of a polyimide precursor that does not require any such process, polybenzoxazole precursor is required. The polymerization process of the oxazole precursor is considerably complicated.
In addition to this point, with the aim of developing VOC suppression ability and low thermal expansion characteristics, as exemplified in the above formula (X4), after eliminating the linking group from polybenzoxazole, the main component is rigid and highly linear. When the molecular design is made to have a chain structure, there is a serious problem that the solubility of the organic solvent is poor even at the stage of polyhydroxyamide, which is a precursor of polybenzoxazole (see, for example, Non-Patent Document 7).

これは、例えば、下記式(X5)で表されるポリヒドロキシアミドの置換基であるフェノール性OH基の溶媒和能が弱いためである。   This is because, for example, the solvating ability of the phenolic OH group that is a substituent of the polyhydroxyamide represented by the following formula (X5) is weak.

Figure 0006293457
Figure 0006293457

このような事情により、ポリイミドフィルムを製造する際に通常用いられる簡便な2段階製膜工程、即ち、前駆体ワニスの塗布・乾燥後、加熱脱水環化反応を行う工程をそのまま適用して、ポリベンゾオキサゾールフィルムを製造することは困難である。   Under such circumstances, a simple two-step film-forming process that is usually used when manufacturing a polyimide film, that is, a process of performing a heat-dehydration cyclization reaction after applying and drying a precursor varnish, is applied as it is. It is difficult to produce benzoxazole films.

ポリイミド系のように簡便な製造工程(容易な前駆体重合工程と引き続く2段階製膜工程)に適合し、且つ耐熱性に乏しい置換基や連結基を含まず剛直で直線性の高い主鎖構造を有する新規なポリベンゾオキサゾール系を得ることができれば、該技術分野において特に上記プラスチック基板材料として従来にない極めて有益な材料を提供しうるが、そのような材料は知られていない。   Rigid and highly linear main chain structure that does not contain substituents or linking groups with poor heat resistance, and is compatible with simple manufacturing processes (easily precursor polymerization process and subsequent two-stage film-forming process) like polyimide If a novel polybenzoxazole system having the above can be obtained, it is possible to provide an extremely useful material that is not conventionally used as the plastic substrate material in the technical field, but such a material is not known.

Prog. Polym. Sci., 26, 259-335 (2001).Prog. Polym. Sci., 26, 259-335 (2001). React. Funct. Polym., 30, 61-69 (1996).React. Funct. Polym., 30, 61-69 (1996). Macromolecules, 32, 4933-4939 (1999).Macromolecules, 32, 4933-4939 (1999). Macromol. Res., 15, 114-128 (2007).Macromol. Res., 15, 114-128 (2007). High Perform. Polym., 21, 709-728 (2009).High Perform. Polym., 21, 709-728 (2009). J. Polym. Sci., Part A, 25, 2479-2491 (1987).J. Polym. Sci., Part A, 25, 2479-2491 (1987). J. Photopolym. Sci. Technol., 17, 253-258 (2004).J. Photopolym. Sci. Technol., 17, 253-258 (2004).

本発明は、上記事情に鑑みてなされたものであって、低い線熱膨張係数、高いガラス転移温度、高い耐熱性及び高い膜靱性を有し、特に、OLEDの基板材料に適用することで、デバイスの軽量化や脆弱性改善に寄与し得る、ポリイミドを提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a low linear thermal expansion coefficient, a high glass transition temperature, a high heat resistance and a high film toughness. It aims at providing the polyimide which can contribute to the weight reduction of a device, and a weak improvement.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、ベンゾオキサゾール基(以下、ベンゾオキサゾール基を「BO基」と略記する)を含むジアミン化合物と、芳香族テトラカルボン酸二無水物とから誘導され、分子内に耐熱性に劣る置換基や連結基を有しない下記式(1)で示されるポリイミドが、トップ・エミッション方式のOLEDディスプレー用プラスチック基板材料に要求される特性、即ち、極めて高いVOC抑制能、高度な低熱膨張特性および優れた膜形成能を示すことを見出し、本発明を完成するに至った。   As a result of intensive investigations to achieve the above object, the present inventors have found that a diamine compound containing a benzoxazole group (hereinafter, the benzoxazole group is abbreviated as “BO group”) and an aromatic tetracarboxylic acid diester. Polyimide represented by the following formula (1), which is derived from an anhydride and does not have a substituent or a linking group inferior in heat resistance in the molecule, is a characteristic required for a plastic substrate material for OLED display of the top emission method, That is, it has been found that it exhibits extremely high VOC suppressing ability, advanced low thermal expansion characteristics, and excellent film forming ability, and has completed the present invention.

即ち、本発明は以下に示すものである。
<1> 下記式(1)(式中、Xは下記式(2)〜(4)から選ばれる少なくとも1種の4価の芳香族基である)で表される繰り返し単位を有するポリイミド。
That is, the present invention is as follows.
<1> A polyimide having a repeating unit represented by the following formula (1) (wherein X 1 is at least one tetravalent aromatic group selected from the following formulas (2) to (4)).

Figure 0006293457
Figure 0006293457

<2> 下記式(1)(式中、Xは下記式(2)〜(4)から選ばれる少なくとも1種の4価の芳香族基である)で表される繰り返し単位、及び下記式(5)(式中、Xは下記式(6)〜(10)(式(9)中、ZはO又はNHを表す)より選ばれる少なくとも1種の2価の芳香族基を表す)で表される繰り返し単位を有するポリイミド共重合体。 <2> A repeating unit represented by the following formula (1) (wherein X 1 is at least one tetravalent aromatic group selected from the following formulas (2) to (4)), and the following formula (5) (wherein X 2 represents at least one divalent aromatic group selected from the following formulas (6) to (10) (wherein Z represents O or NH in formula (9)) The polyimide copolymer which has a repeating unit represented by these.

Figure 0006293457
Figure 0006293457

<3> 式(1)で表される繰り返し単位と式(5)で表される繰り返し単位のmol比率(式(1):式(5))が40:60〜99.9:0.01である<2>記載のポリイミド共重合体。
<4> <1>記載のポリイミド、もしくは<2>又は<3>記載のポリイミド共重合体を有して成る耐熱性フィルム。
<5> 厚さが1〜200μmである<4>記載の耐熱性フィルム。
<3> The molar ratio of the repeating unit represented by formula (1) to the repeating unit represented by formula (5) (formula (1): formula (5)) is 40:60 to 99.9: 0.01. <2> The polyimide copolymer according to the above.
<4> A heat-resistant film comprising the polyimide according to <1> or the polyimide copolymer according to <2> or <3>.
<5> The heat resistant film according to <4>, wherein the thickness is 1 to 200 μm.

<6> i)線熱膨張係数が15ppm/K以下であり、
ii)ガラス転移温度が370℃以上であるか、又は動的粘弾性測定によりガラス転移が不検出であり、
iii)窒素雰囲気下での加熱における5%重量減少温度が570℃以上であり、且つ
iv)破断伸びが10%以上である、<4>又は<5>記載の耐熱性フィルム。
<7> 光電変換素子、発光素子又は電子回路の電気絶縁基板材料用である<4>〜<6>のいずれかに記載の耐熱性フィルム。
<6> i) The linear thermal expansion coefficient is 15 ppm / K or less,
ii) the glass transition temperature is 370 ° C. or higher, or the glass transition is not detected by dynamic viscoelasticity measurement,
iii) The heat resistant film according to <4> or <5>, wherein the 5% weight loss temperature in heating under a nitrogen atmosphere is 570 ° C. or higher, and iv) the elongation at break is 10% or higher.
<7> The heat-resistant film according to any one of <4> to <6>, which is for an electrically insulating substrate material for a photoelectric conversion element, a light-emitting element, or an electronic circuit.

<8> 下記式(11)(式中、Xは下記式(2)〜(4)から選ばれる少なくとも1種の4価の芳香族基である)で表される繰り返し単位を有するポリイミド前駆体。 <8> A polyimide precursor having a repeating unit represented by the following formula (11) (wherein X 1 is at least one tetravalent aromatic group selected from the following formulas (2) to (4)): body.

Figure 0006293457
Figure 0006293457

<9> 下記式(11)(式中、Xは下記式(2)〜(4)から選ばれる少なくとも1種の4価の芳香族基である)で表される繰り返し単位、及び下記式(12)(式中、Xは下記式(6)〜(10)(式(9)中、ZはO又はNHを表す)より選ばれる少なくとも1種の2価の芳香族基を表す)で表される繰り返し単位を有するポリイミド前駆体の共重合体。 <9> A repeating unit represented by the following formula (11) (wherein X 1 is at least one tetravalent aromatic group selected from the following formulas (2) to (4)), and the following formula (12) (wherein X 2 represents at least one divalent aromatic group selected from the following formulas (6) to (10) (wherein Z represents O or NH in formula (9)) A polyimide precursor copolymer having a repeating unit represented by the formula:

Figure 0006293457
Figure 0006293457

<10> 式(11)で表される繰り返し単位と式(12)で表される繰り返し単位のmol比率(式(11):式(12))が40:60〜99.9:0.01である<9>記載のポリイミド前駆体の共重合体。
<11> 固有粘度が0.3dL/g以上である<8>記載のポリイミド前駆体、もしくは<9>又は<10>記載のポリイミド前駆体の共重合体。
<12> <8>又は<11>記載のポリイミド前駆体、もしくは<9>〜<11>のいずれかに記載のポリイミド前駆体の共重合体を有する耐熱性フィルム形成用ワニス。
<10> The molar ratio of the repeating unit represented by formula (11) and the repeating unit represented by formula (12) (formula (11): formula (12)) is 40:60 to 99.9: 0.01. <9> The polyimide precursor copolymer described in the above.
<11> The polyimide precursor according to <8>, wherein the intrinsic viscosity is 0.3 dL / g or more, or the copolymer of the polyimide precursor according to <9> or <10>.
<12> A varnish for forming a heat resistant film, comprising the polyimide precursor according to <8> or <11>, or the copolymer of the polyimide precursor according to any one of <9> to <11>.

<13> <12>記載の耐熱性フィルム形成用ワニスを用いる耐熱性フィルムの製造方法。
<14> <12>記載の耐熱性フィルム形成用ワニスを基板上に塗布し、これを375〜450℃の最終熱処理温度で加熱脱水環化反応する、耐熱性フィルムの製造方法。
<13> A method for producing a heat resistant film using the varnish for forming a heat resistant film according to <12>.
<14> A method for producing a heat resistant film, wherein the varnish for forming a heat resistant film described in <12> is applied onto a substrate and subjected to a heat dehydration cyclization reaction at a final heat treatment temperature of 375 to 450 ° C.

本発明により、低い線熱膨張係数、高いガラス転移温度、高い耐熱性及び高い膜靱性を有するポリイミドを提供することができる。特に、OLEDの基板材料に適用することで、デバイスの軽量化や脆弱性改善に寄与し得る、ポリイミドを提供することができる。   According to the present invention, a polyimide having a low linear thermal expansion coefficient, a high glass transition temperature, high heat resistance, and high film toughness can be provided. In particular, when applied to a substrate material for an OLED, it is possible to provide a polyimide that can contribute to reducing the weight of the device and improving vulnerability.

実施例1に記載のポリイミド前駆体薄膜の赤外線吸収スペクトルである。2 is an infrared absorption spectrum of the polyimide precursor thin film described in Example 1. FIG. 実施例1に記載のポリイミド薄膜の赤外線吸収スペクトルである。2 is an infrared absorption spectrum of the polyimide thin film described in Example 1.

以下、本発明について詳細に説明する。
<ポリイミド>
本発明は、式(1)で表される繰り返し単位を有するポリイミドを提供する。式(1)中、Xが下記式(2)〜(4)から選ばれる少なくとも1種の4価の芳香族基、好ましくは下記式(3)又は(4)で表される芳香族基、より好ましくは下記式(3)で表される芳香族基である。
Hereinafter, the present invention will be described in detail.
<Polyimide>
The present invention provides a polyimide having a repeating unit represented by the formula (1). In formula (1), X 1 is at least one tetravalent aromatic group selected from the following formulas (2) to (4), preferably an aromatic group represented by the following formula (3) or (4) More preferably, it is an aromatic group represented by the following formula (3).

Figure 0006293457
Figure 0006293457

本発明のポリイミドは、上記式(1)で表される繰り返し単位のみからなる単独重合体であっても、その他の繰り返し単位を有する重合体であってもよい。耐熱性、低線膨張特性、膜靱性の観点から、下記式(5)で表される繰り返し単位をさらに有する重合体であるのがよい。式(5)中、Xは下記式(6)〜(10)(式(9)中、ZはO又はNHを表す)より選ばれる少なくとも1種の2価の芳香族基、好ましくは下記式(6)、(8)、(9)又は(10)で表される2価の芳香族基、より好ましくは下記式(9)又は(10)で表される2価の芳香族基を表す。 The polyimide of the present invention may be a homopolymer consisting only of the repeating unit represented by the above formula (1) or a polymer having other repeating units. From the viewpoint of heat resistance, low linear expansion characteristics, and film toughness, the polymer may further have a repeating unit represented by the following formula (5). In the formula (5), X 2 is at least one divalent aromatic group selected from the following formulas (6) to (10) (in the formula (9), Z represents O or NH), preferably A divalent aromatic group represented by formula (6), (8), (9) or (10), more preferably a divalent aromatic group represented by formula (9) or (10) below. Represent.

Figure 0006293457
Figure 0006293457

本発明のポリイミドが、上記式(5)で表される繰り返し単位を有する場合、上記式(1)で表される繰り返し単位と上記式(5)で表される繰り返し単位のmol比率(式(1):式(5))が50:50〜99.9:0.01、好ましくは50:50〜90:10、より好ましくは50:50〜70:30であるのがよい。
本発明のポリイミドの繰り返し単位は、上記式(1)で表される繰り返し単位のみからなるか、又は上記式(1)及び式(5)で表される繰り返し単位のみからなるのがより好ましい。なお、本願において「Xのみからなる」とは、Xだけから構成され、その他の構成を含まないことを意味する。
When the polyimide of the present invention has a repeating unit represented by the above formula (5), the molar ratio of the repeating unit represented by the above formula (1) and the repeating unit represented by the above formula (5) (formula ( 1): Formula (5)) is 50:50 to 99.9: 0.01, preferably 50:50 to 90:10, and more preferably 50:50 to 70:30.
It is more preferable that the repeating unit of the polyimide of the present invention consists only of the repeating unit represented by the above formula (1), or consists only of the repeating units represented by the above formula (1) and formula (5). In the present application, “consisting only of X” means that only X is included, and no other configuration is included.

<ポリイミド前駆体>
本発明のポリイミド(以下、BO基含有ポリイミドともいう。)は、下記式(11)で表されるポリイミド前駆体、又は下記式(11)及び(12)で表されるポリイミド前駆体の共重合体(以下、BO基含有ポリイミド前駆体ともいう。)から製造することができる。なお、XおよびXは、上記と同じ定義である。
<Polyimide precursor>
The polyimide of the present invention (hereinafter also referred to as BO group-containing polyimide) is a polyimide precursor represented by the following formula (11), or a co-weight of polyimide precursors represented by the following formulas (11) and (12). It can be produced from a coalescence (hereinafter also referred to as BO group-containing polyimide precursor). X 1 and X 2 have the same definition as above.

Figure 0006293457
Figure 0006293457

上記式(11)又は(12)で表されるBO基含有ポリイミド前駆体を製造する方法は特に限定されず、公知の方法を適用することができる。より具体的には、例えば、以下の方法により得られる。
まず、下記式(13)で表されるジアミンを合成する。
The method for producing the BO group-containing polyimide precursor represented by the above formula (11) or (12) is not particularly limited, and a known method can be applied. More specifically, for example, it can be obtained by the following method.
First, a diamine represented by the following formula (13) is synthesized.

<BO基含有ジアミンの合成>
本発明のポリイミド前駆体およびポリイミドはそのモノマーであるテトラカルボン酸二無水物とBO基を含むジアミン(以下、BO基含有ジアミンという。)より得られる。
本発明で用いるBO基含有ジアミンは、下記式(13)で表される。
<Synthesis of BO group-containing diamine>
The polyimide precursor and polyimide of the present invention are obtained from a tetracarboxylic dianhydride as a monomer and a diamine containing a BO group (hereinafter referred to as a BO group-containing diamine).
The BO group-containing diamine used in the present invention is represented by the following formula (13).

Figure 0006293457
Figure 0006293457

上記式(13)で表されるBO基含有ジアミンは、例えば、出発原料として下記式(16)で表されるビス(o−アミノフェノール)またはその二塩酸塩を用いて合成される。以下、出発原料として式(16)で表される化合物の二塩酸塩を用いる方法について述べる。   The BO group-containing diamine represented by the above formula (13) is synthesized using, for example, bis (o-aminophenol) represented by the following formula (16) or a dihydrochloride thereof as a starting material. Hereinafter, a method using the dihydrochloride of the compound represented by the formula (16) as a starting material will be described.

Figure 0006293457
Figure 0006293457

以下、ビス(o−アミノフェノール)として4,6−ジアミノレソルシノール二塩酸塩(以下、DARという。)を用いた場合のBO基含有ジアミンの合成方法について例示するが、合成方法は特に限定されず、公知の方法を適用することができる。   Hereinafter, a method for synthesizing a BO group-containing diamine when 4,6-diaminoresorcinol dihydrochloride (hereinafter referred to as DAR) is used as bis (o-aminophenol) will be exemplified, but the synthesis method is particularly limited. First, a known method can be applied.

まず、3つ口フラスコ中、DARをよく脱水したアミド系溶媒に溶解し、これに脱酸剤としてピリジンを添加し、セプタムキャップでシールしてA液とする。
次に、ナス型フラスコ中、DARの2〜5倍モル量の4−ニトロ安息香酸クロリドをA液と同様の溶媒に溶解し、セプタムキャップでシールしてB液とする。
そして、A液を氷浴中で冷却し、回転子で撹拌しながらシリンジにてB液をA液に少しずつ加え、添加終了後撹拌を続け、ジアミド体を合成する。
First, in a three-necked flask, DAR is dissolved in a well-dehydrated amide solvent, and pyridine is added thereto as a deoxidizer, which is then sealed with a septum cap to obtain liquid A.
Next, in a recovery flask, 2-nitrobenzoic acid chloride of 2 to 5 times the amount of DAR is dissolved in the same solvent as the liquid A and sealed with a septum cap to obtain a liquid B.
Then, liquid A is cooled in an ice bath, liquid B is gradually added to liquid A with a syringe while stirring with a rotor, and stirring is continued after the addition is completed to synthesize a diamide body.

次に、氷浴を外し、室温で12時間撹拌した後、脱水環化反応を完結させるためこの反応溶液に適当量のp−トルエンスルホン酸一水和物を加え、数時間還流を行う。
生成した沈殿物を濾別して水で繰り返し洗浄した後、真空乾燥して下記式(17)で表されるBO基含有ジニトロ体を得る。
Next, after removing the ice bath and stirring at room temperature for 12 hours, an appropriate amount of p-toluenesulfonic acid monohydrate is added to the reaction solution and refluxed for several hours in order to complete the dehydration cyclization reaction.
The produced precipitate is separated by filtration, washed repeatedly with water, and then dried under vacuum to obtain a BO group-containing dinitro compound represented by the following formula (17).

Figure 0006293457
Figure 0006293457

次に3つ口フラスコ中、上記ジニトロ体をアミド系溶媒に溶解し、触媒として適当量のPd/Cを加え、水素雰囲気中還元反応を行う。反応の進行は薄層クロマトグラフィーによって追跡することができる。
反応終了後、濾過によりPd/Cを分離・除去した後、濾液を大量に水にゆっくりと滴下して生成物を析出させる。沈殿物を濾別して水で繰り返し洗浄した後、真空乾燥する。必要に応じて適当な溶媒から再結晶して高純度化することもできる。
このようにして本発明のBO基含有ポリイミド前駆体の重合に供することのできる上記式(13)で表されるBO基含有ジアミンを得ることができる。
Next, the dinitro compound is dissolved in an amide solvent in a three-necked flask, an appropriate amount of Pd / C is added as a catalyst, and a reduction reaction is performed in a hydrogen atmosphere. The progress of the reaction can be followed by thin layer chromatography.
After completion of the reaction, Pd / C is separated and removed by filtration, and then a large amount of the filtrate is slowly dropped into water to precipitate the product. The precipitate is filtered off, washed repeatedly with water and dried in vacuo. If necessary, it can be highly purified by recrystallization from an appropriate solvent.
Thus, the BO group-containing diamine represented by the above formula (13) that can be used for the polymerization of the BO group-containing polyimide precursor of the present invention can be obtained.

次に、このBO基含有ジアミンを溶媒に溶解し、これに式(14)で表されるテトラカルボン酸二無水物粉末を徐々に添加し、メカニカルスターラーを用い、0〜100℃、好ましくは20〜60℃で0.5〜100時間、好ましくは1〜72時間攪拌する。   Next, this BO group-containing diamine is dissolved in a solvent, tetracarboxylic dianhydride powder represented by the formula (14) is gradually added thereto, and a mechanical stirrer is used to 0 to 100 ° C., preferably 20 The mixture is stirred at -60 ° C for 0.5-100 hours, preferably 1-72 hours.

Figure 0006293457
Figure 0006293457

この際、式(13)で示されるジアミンと式(14)で示されるテトラカルボン酸二無水物との物質量(mol)比は、ジアミン1に対して、0.8〜1.1とすることができるが、好ましくは0.9〜1.1であり、より好ましくは0.95〜1.05である。   At this time, the substance amount (mol) ratio of the diamine represented by the formula (13) and the tetracarboxylic dianhydride represented by the formula (14) is 0.8 to 1.1 with respect to the diamine 1. However, it is preferably 0.9 to 1.1, more preferably 0.95 to 1.05.

また、モノマー濃度は、5〜50重量%、好ましくは10〜40重量%である。このモノマー濃度範囲で重合を行うことにより、モノマー及びポリマーの溶解性を十分確保することができ、均一で高重合度のポリイミド前駆体溶液を得ることができる。
本発明のBO基含有ポリイミドフィルムの靭性の観点から、BO基含有ポリイミド前駆体の重合度はできるだけ高いことが望ましく、それゆえ、モノマー濃度を5〜50重量%、好ましくは10〜40重量%に調整してポリイミド前駆体を重合することが好ましい。
The monomer concentration is 5 to 50% by weight, preferably 10 to 40% by weight. By carrying out the polymerization in this monomer concentration range, sufficient solubility of the monomer and polymer can be ensured, and a uniform and highly polymerized polyimide precursor solution can be obtained.
From the viewpoint of the toughness of the BO group-containing polyimide film of the present invention, the degree of polymerization of the BO group-containing polyimide precursor is desirably as high as possible. Therefore, the monomer concentration is 5 to 50% by weight, preferably 10 to 40% by weight. It is preferable to adjust and polymerize the polyimide precursor.

なお、BO基含有ポリイミド前駆体の重合度が増加しすぎて、重合溶液が攪拌しにくくなった場合は、適宜同一溶媒で希釈することもできる。   When the polymerization degree of the BO group-containing polyimide precursor is excessively increased and the polymerization solution becomes difficult to stir, it can be appropriately diluted with the same solvent.

また、BO基含有ポリイミドフィルムの靭性およびその前駆体ワニスのハンドリングの観点から、BO基含有ポリイミド前駆体の固有粘度は、0.3dL/g以上、好ましくは0.3〜5.0dL/g、より好ましくは0.5〜5.0dL/gであるのがよい。   From the viewpoint of the toughness of the BO group-containing polyimide film and the handling of the precursor varnish, the intrinsic viscosity of the BO group-containing polyimide precursor is 0.3 dL / g or more, preferably 0.3 to 5.0 dL / g, More preferably, it is 0.5 to 5.0 dL / g.

本発明のBO基含有ポリイミドの要求特性、即ち、極めて高い熱安定性の発現という観点から、BO基含有ポリイミドを重合する際に、フェニル基以外の置換基やエーテル基以外の連結基を一切含まない芳香族テトラカルボン酸二無水物が用いられる。また、脂環式テトラカルボン酸の使用は例え少量であっても熱安定性を著しく損なうおそれがあり好ましくない。   From the viewpoint of the required characteristics of the BO group-containing polyimide of the present invention, that is, the development of extremely high thermal stability, when the BO group-containing polyimide is polymerized, it contains no substituents other than phenyl groups or linking groups other than ether groups. Not aromatic tetracarboxylic dianhydrides are used. Also, the use of alicyclic tetracarboxylic acid is not preferred because even if it is in a small amount, the thermal stability may be significantly impaired.

本発明のBO基含有ポリイミド前駆体を重合する際、テトラカルボン酸二無水物成分として、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物が用いられる。またこれらを2種類以上用いてもよい。   When polymerizing the BO group-containing polyimide precursor of the present invention, as a tetracarboxylic dianhydride component, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2, 3,6,7-Naphthalenetetracarboxylic dianhydride is used. Two or more of these may be used.

本発明のBO基含有ポリイミドの要求特性を損なわない範囲で、上記以外のテトラカルボン酸二無水物を部分的に使用することができる。その際併用可能なテトラカルボン酸二無水物として、4,4’−オキシジフタリックアンハイドライド、ハイドロキノン−ジフタリックアンハイドライド、4,4’−ビフェノール−ジフタリックアンハイドライド、3,3’ ,4,4’−ベンゾフェノンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−アントラセンテトラカルボン酸二無水物等が例として挙げられる。またこれらを2種類以上用いてもよい。この際、これらのテトラカルボン酸二無水物の使用量は、全テトラカルボン酸二無水物量に対して0〜30mol%、好ましくは0〜10mol%である。   Tetracarboxylic dianhydrides other than those described above can be partially used as long as the required properties of the BO group-containing polyimide of the present invention are not impaired. As tetracarboxylic dianhydrides which can be used in combination, 4,4′-oxydiphthalic anhydride, hydroquinone-diphthalic anhydride, 4,4′-biphenol-diphthalic anhydride, 3,3 ′, 4, Examples include 4′-benzophenone tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-anthracene tetracarboxylic dianhydride, and the like. Two or more of these may be used. Under the present circumstances, the usage-amount of these tetracarboxylic dianhydrides is 0-30 mol% with respect to the total tetracarboxylic dianhydride amount, Preferably it is 0-10 mol%.

本発明のBO基含有ポリイミド前駆体を重合する際、ジアミン成分として、上記式(13)で表されるBO基含有ジアミン以外に、p−フェニレンジアミン、ベンジジン、4,4”−p−ターフェニレンジアミンおよび下記式(15)で表されるジアミンを併用することができる。この際、式(13)で表されるBO基含有ジアミン以外の上記ジアミンの使用量は全ジアミン成分量に対して0〜50mol%である。   When polymerizing the BO group-containing polyimide precursor of the present invention, as a diamine component, in addition to the BO group-containing diamine represented by the above formula (13), p-phenylenediamine, benzidine, 4,4 "-p-terphenylene A diamine and a diamine represented by the following formula (15) can be used in combination, and the amount of the diamine other than the BO group-containing diamine represented by the formula (13) is 0 with respect to the total amount of diamine components. -50 mol%.

Figure 0006293457
Figure 0006293457

また、本発明のBO基含有ポリイミドの要求特性を損なわない範囲で、上記以外のジアミンを部分的に使用することができる。その際使用可能なジアミンとして、m−フェニレンジアミン、o−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、2,4’−ジアミノジフェニルエーテル、2,2’−ジアミノジフェニルエーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル等が例として挙げられる。またこれらを2種類以上併用することもできる。これらの使用量は全ジアミン量に対して0〜30mol%、好ましくは0〜10mol%である。   In addition, diamines other than those described above can be partially used as long as the required characteristics of the BO group-containing polyimide of the present invention are not impaired. Examples of diamines that can be used in this case include m-phenylenediamine, o-phenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 2,4′-diaminodiphenyl ether, 2,2′-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4 Examples include '-bis (4-aminophenoxy) biphenyl and the like. Two or more of these may be used in combination. The amount of these used is 0 to 30 mol%, preferably 0 to 10 mol%, based on the total diamine amount.

本発明のBO基含有ポリイミド前駆体を重合する際に使用される溶媒としてはN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホオキシド、3−メトキシN,N−ジメチルプロパンアミド、3−n-ブトキシN,N−ジメチルプロパンアミド、3−sec-ブトキシN,N−ジメチルプロパンアミド、3−t-ブトキシN,N−ジメチルプロパンアミド等の非プロトン性溶媒が好ましいが、原料モノマーと生成するポリイミド前駆体が溶解すれば問題はなく特にその構造には限定されない。例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド溶媒、γ−プチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、α−メチル−γ−プチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m−クレゾール、p−クレゾール、3−クロロフェノール、4−クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3−ジメチル−2−イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが使用可能である。更にフェノール、o−クレゾール、酢酸ブチル、酢酸エチル、酢酸イソプチル、プロピレングリコールメチルアセテート、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン等の一般的な溶媒も部分的に使用してもよい。   Solvents used in polymerizing the BO group-containing polyimide precursor of the present invention include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, and 3-methoxyN. , N-dimethylpropanamide, 3-n-butoxy N, N-dimethylpropanamide, 3-sec-butoxy N, N-dimethylpropanamide, 3-t-butoxy N, N-dimethylpropanamide and the like Although a solvent is preferable, there is no problem as long as the raw material monomer and the polyimide precursor to be generated are dissolved, and the structure is not particularly limited. For example, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, γ-ptyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl- Cyclic ester solvents such as γ-ptyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, phenol solvents such as m-cresol, p-cresol, 3-chlorophenol and 4-chlorophenol Acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like can be used. Furthermore, phenol, o-cresol, butyl acetate, ethyl acetate, isoptyl acetate, propylene glycol methyl acetate, tetrahydrofuran, diethylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, methyl ethyl ketone, acetone, butanol, ethanol, xylene, toluene, chloro A general solvent such as benzene may be partially used.

本発明の耐熱性フィルムを製造するために、本発明のBO基含有ポリイミド前駆体の重合溶液(ワニス)をそのまま用いてもよく、大量の水やメタノール等の貧溶媒中に滴下・濾過・乾燥し、粉末として単離し、これを再度溶媒に溶解させたものを用いてもよい。   In order to produce the heat resistant film of the present invention, the polymerization solution (varnish) of the BO group-containing polyimide precursor of the present invention may be used as it is, and it is dropped, filtered and dried in a large amount of poor solvent such as water or methanol. Alternatively, it may be isolated as a powder and again dissolved in a solvent.

<耐熱性フィルム(BO基含有ポリイミドフィルム)>
本発明のBO基含有ポリイミドフィルムは、上記の方法で得られたBO基含有ポリイミド前駆体をフィルム化し、該フィルムを加熱脱水環化反応(イミド化反応)することで製造することができる。
<Heat resistant film (BO group-containing polyimide film)>
The BO group-containing polyimide film of the present invention can be produced by converting the BO group-containing polyimide precursor obtained by the above method into a film and subjecting the film to a heat dehydration cyclization reaction (imidation reaction).

すなわち、BO基含有ポリイミドフィルムは以下のようにして製造する。
BO基含有ポリイミド前駆体のワニスをガラス、銅、アルミニウム、ステンレス、シリコン等の基板上に流延し、オーブン中40〜180℃、好ましくは50〜150℃で乾燥する。
得られたBO基含有ポリイミド前駆体フィルムを基板上で真空中、窒素等の不活性ガス中、あるいは空気中、360℃未満で一度イミド化を行い、最終熱処理温度を360〜450℃、好ましくは375〜450℃、より好ましくは380〜450℃で加熱することで本発明のBO基含有ポリイミドフィルムが得られる。
この際、イミド化温度はイミド化反応を完結するという観点から300℃以上、最終熱処理温度は生成したBO基含有ポリイミドフィルムの熱分解を抑制するという観点から450℃以下が好ましい。また、イミド化および熱処理は真空中あるいは不活性ガス中で行うことが望ましいが、処理温度が高すぎなければ空気中で行ってもよい。
That is, the BO group-containing polyimide film is produced as follows.
A BO group-containing polyimide precursor varnish is cast on a substrate such as glass, copper, aluminum, stainless steel, or silicon, and dried in an oven at 40 to 180 ° C, preferably 50 to 150 ° C.
The obtained BO group-containing polyimide precursor film is imidized once in vacuum, in an inert gas such as nitrogen, or in air at less than 360 ° C., and the final heat treatment temperature is 360 to 450 ° C., preferably The BO group-containing polyimide film of the present invention is obtained by heating at 375 to 450 ° C., more preferably 380 to 450 ° C.
At this time, the imidization temperature is preferably 300 ° C. or higher from the viewpoint of completing the imidation reaction, and the final heat treatment temperature is preferably 450 ° C. or lower from the viewpoint of suppressing thermal decomposition of the generated BO group-containing polyimide film. Further, imidization and heat treatment are desirably performed in a vacuum or in an inert gas, but may be performed in air if the treatment temperature is not too high.

イミド化反応は、加熱工程に代えて、BO基含有ポリイミド前駆体フィルムをピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を用いること;及びその後の加熱工程;によって行うことも可能である。
なお、脱水環化試薬を用いる場合、該試薬を含有する溶液に浸漬する手法、又は該試薬をあらかじめBO基含有ポリイミド前駆体ワニス中に室温で投入・攪拌し、それを上記基板上に流延・乾燥する手法を用いることができる。これらの手法を用いて部分的にイミド化したBO基含有ポリイミド前駆体フィルムを作製することもできる。この場合、これを更に上記のように加熱処理することでBO基含有ポリイミドフィルムが得られる。
Instead of the heating step, the imidation reaction is performed by using a BO group-containing polyimide precursor film in the presence of a tertiary amine such as pyridine or triethylamine using a dehydrating cyclization reagent such as acetic anhydride; and a subsequent heating step. It is also possible.
In the case of using a dehydrating cyclization reagent, a method of immersing in a solution containing the reagent, or the reagent is charged and stirred in a BO group-containing polyimide precursor varnish at room temperature in advance and cast on the substrate. -A drying method can be used. Using these techniques, a partially imidized BO group-containing polyimide precursor film can also be produced. In this case, a BO group-containing polyimide film is obtained by further heat-treating it as described above.

本発明のBO基含有ポリイミド前駆体ワニスを金属箔例えば銅箔上に塗付・乾燥後、上記の条件によりイミド化することで、金属層とBO基含有ポリイミド樹脂層の積層体を得ることができる。更に塩化第二鉄水溶液等のエッチング液を用いて金属層を所望する回路状にエッチングすることで、無接着剤型フレキシブルプリント配線基板を製造することができる。   The BO group-containing polyimide precursor varnish of the present invention is applied to a metal foil, for example, a copper foil, dried, and then imidized under the above conditions to obtain a laminate of a metal layer and a BO group-containing polyimide resin layer. it can. Furthermore, an adhesiveless flexible printed wiring board can be manufactured by etching the metal layer into a desired circuit shape using an etching solution such as an aqueous ferric chloride solution.

本発明のBO基含有ポリイミドフィルムの厚さは、特に限定されるものではなく、使用目的に応じて適宜厚さを決定すればよいが、有機太陽電池やシリコン太陽電池といった光電変換素子、有機EL素子といった発光素子、回路基板として用いる場合であれば、1〜200μm程度、好ましくは5〜150μm、より好ましくは5〜100μmが好適である。   The thickness of the BO group-containing polyimide film of the present invention is not particularly limited, and the thickness may be appropriately determined according to the purpose of use, but a photoelectric conversion element such as an organic solar cell or a silicon solar cell, organic EL In the case of using as a light emitting element such as an element or a circuit board, about 1 to 200 μm, preferably 5 to 150 μm, more preferably 5 to 100 μm is suitable.

上記で得られた本発明のBO基含有ポリイミドフィルムは、次の特性i)〜iv)を有する:
i)線熱膨張係数が15ppm/K以下、好ましくは14ppm/K以下、より好ましくは13ppm/K以下であり、
ii)ガラス転移温度が370℃以上であるか、又は動的粘弾性測定によりガラス転移が不検出であり、
iii)窒素雰囲気中の5%重量減少温度が570℃以上、好ましくは590℃以上であり、且つ
iv)破断伸びが10%以上である。
The BO group-containing polyimide film of the present invention obtained above has the following characteristics i) to iv):
i) The coefficient of linear thermal expansion is 15 ppm / K or less, preferably 14 ppm / K or less, more preferably 13 ppm / K or less,
ii) the glass transition temperature is 370 ° C. or higher, or the glass transition is not detected by dynamic viscoelasticity measurement,
iii) 5% weight loss temperature in nitrogen atmosphere is 570 ° C. or higher, preferably 590 ° C. or higher, and iv) Elongation at break is 10% or higher.

上記特性i)〜iv)は、以下により測定した。
i)線熱膨張係数は、熱機械分析により測定することができる。
ii)ガラス転移温度は、動的粘弾性測定により得られる。
iii)5%重量減少温度は熱重量分析により得られる。
iv)破断伸びは、引張試験により得られる。
The characteristics i) to iv) were measured as follows.
i) The linear thermal expansion coefficient can be measured by thermomechanical analysis.
ii) The glass transition temperature is obtained by dynamic viscoelasticity measurement.
iii) 5% weight loss temperature is obtained by thermogravimetric analysis.
iv) The elongation at break is obtained by a tensile test.

本発明のBO基含有ポリイミドフィルムは、上記特性i)〜iv)を有する、即ち高度な低熱膨張特性および優れた膜形成能を有する。また、特に上記特性ii)及びiii)を有するため、極めて高いVOC抑制能も兼備している。したがって、本発明のBO基含有ポリイミドフィルムは、光電変換素子、発光素子、画像表示装置などといった電子デバイスの基板材料、有機EL素子、液晶表示素子や有機太陽電池等の基板として好適に用いることができる。   The BO group-containing polyimide film of the present invention has the above characteristics i) to iv), that is, has high low thermal expansion characteristics and excellent film forming ability. In addition, since it has the above characteristics ii) and iii), it also has an extremely high VOC suppression capability. Therefore, the BO group-containing polyimide film of the present invention is suitably used as a substrate material for electronic devices such as photoelectric conversion elements, light emitting elements, and image display devices, and substrates for organic EL elements, liquid crystal display elements, organic solar cells, and the like. it can.

以下、本発明を実施例により具体的に説明するが、これら実施例に限定されるものではない。なお、以下の例における物性値は、次の方法により測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, it is not limited to these Examples. The physical property values in the following examples were measured by the following methods.

<赤外線吸収スペクトル>
フーリエ変換赤外分光光度計(日本分光社製FT−IR4100)を用い、KBrプレート法にてBO基含有ジアミンの赤外線吸収スペクトルを測定した。また透過法にてBO基含有ポリイミド前駆体およびBO基含有ポリイミド薄膜(約5μm厚)の赤外線吸収スペクトルを測定した。
H−NMRスペクトル>
日本電子社製NMR分光光度計(ECP400)を用い、重水素化ジメチルスルホキシド中でBO基含有ジアミンのH−NMRスペクトルを測定した。
<Infrared absorption spectrum>
Using a Fourier transform infrared spectrophotometer (FT-IR4100 manufactured by JASCO Corporation), the infrared absorption spectrum of the BO group-containing diamine was measured by the KBr plate method. Infrared absorption spectra of the BO group-containing polyimide precursor and the BO group-containing polyimide thin film (about 5 μm thick) were measured by a transmission method.
<1 H-NMR spectrum>
Using an NMR spectrophotometer (ECP400) manufactured by JEOL Ltd., a 1 H-NMR spectrum of a BO group-containing diamine was measured in deuterated dimethyl sulfoxide.

<示差走査熱量分析(融点および融解曲線)>
BO基含有ジアミンの融点および融解曲線は、ブルカーエイエックス社製示差走査熱量分析装置(DSC3100)を用いて、窒素雰囲気中、昇温速度5℃/分で測定した。融点が高く融解ピークがシャープであるほど、高純度であることを示す。
<固有粘度>
0.5重量%のBO基含有ポリイミド前駆体溶液を、オストワルド粘度計を用いて30℃で測定した。
<Differential scanning calorimetry (melting point and melting curve)>
The melting point and melting curve of the BO group-containing diamine were measured at 5 ° C./min in a nitrogen atmosphere using a differential scanning calorimeter (DSC3100) manufactured by Bruker Ax. The higher the melting point and the sharper the melting peak, the higher the purity.
<Intrinsic viscosity>
A 0.5 wt% BO group-containing polyimide precursor solution was measured at 30 ° C. using an Ostwald viscometer.

<ガラス転移温度(T)>
ブルカーエイエックス社製熱機械分析装置(TMA4000)を用いて動的粘弾性測定により、室温〜500℃の温度範囲で周波数0.1Hz、昇温速度5℃/分における損失エネルギー曲線のピーク温度からBO基含有ポリイミドフィルム(20μm厚)のガラス転移温度を求めた。尚、明瞭なガラス転移が観測されない場合は未検出(ND)と表記する。Tが高い程、より高温まで急激な軟化が抑制されていることを表し、本測定によりTが未検出の場合、フィルム試料の軟化は測定温度範囲内では全く起こらないことを表す。
<Glass transition temperature (T g )>
From the peak temperature of the loss energy curve at a frequency of 0.1 Hz and a heating rate of 5 ° C./min in a temperature range of room temperature to 500 ° C. by dynamic viscoelasticity measurement using a thermomechanical analyzer (TMA4000) manufactured by Bruker Ax. The glass transition temperature of the BO group-containing polyimide film (20 μm thickness) was determined. In addition, when clear glass transition is not observed, it describes as undetected (ND). As high T g represents that it is hotter until suppression rapid softening, if T g by this measurement is undetected, softening of the film sample indicates that does not occur at all within the measurement temperature range.

<線熱膨張係数:CTE>
ブルカーエイエックス社製熱機械分析装置(TMA4000)を用いて、熱機械分析により、荷重0.5g/膜厚1μm当たり、昇温速度5℃/分における試験片の伸びより、100〜200℃の範囲での平均値としてBO基含有ポリイミドフィルム(膜厚約20μm)のCTEを求めた。CTE値が0に近いほど熱工程に対する寸法安定性にすぐれていることを表す。
<Linear thermal expansion coefficient: CTE>
By using a thermomechanical analyzer (TMA4000) manufactured by Bruker Ax, the elongation of the test piece at a heating rate of 5 ° C / min per load of 0.5g / film thickness of 1µm is 100-200 ° C. CTE of the BO group-containing polyimide film (film thickness of about 20 μm) was determined as an average value in the range. The closer the CTE value is to 0, the better the dimensional stability against the thermal process.

<5%重量減少温度(T )>
ブルカーエイエックス社製熱重量分析装置(TG−DTA2000)を用いて、窒素中または空気中、昇温速度10℃/分での昇温過程において、BO基含有ポリイミドフィルム(20μm厚)の初期重量が5%減少した時の温度を測定した。これらの値が高いほど熱安定性が高く、より高温までVOCの発生が抑制されていることを表す。
<5% weight loss temperature (T d 5 )>
The initial weight of the BO group-containing polyimide film (thickness: 20 μm) in the temperature rising process at a heating rate of 10 ° C./min in nitrogen or air using a thermogravimetric analyzer (TG-DTA2000) manufactured by Bruker Ax The temperature was measured when the value decreased by 5%. The higher these values, the higher the thermal stability, indicating that the occurrence of VOC is suppressed to a higher temperature.

<弾性率、破断伸び、破断強度>
東洋ボールドウィン社製引張試験機(テンシロンUTM−2)を用いて、BO基含有ポリイミド試験片(3mm×30mm×20μm厚)について引張試験(延伸速度:8mm/分)を実施し、応力―歪曲線の初期の勾配から弾性率を、フィルムが破断した時の伸び率から破断伸び(%)を求めた。破断伸びが高いほどフィルムの靭性が高いことを意味する。
<Elastic modulus, elongation at break, strength at break>
Using a tensile tester (Tensilon UTM-2) manufactured by Toyo Baldwin, a tensile test (stretching speed: 8 mm / min) was performed on a BO group-containing polyimide test piece (3 mm × 30 mm × 20 μm thickness), and a stress-strain curve The elastic modulus was determined from the initial slope of the film, and the elongation at break (%) was determined from the elongation when the film was broken. Higher elongation at break means higher film toughness.

[合成例1]
3つ口フラスコ中、DAR二塩酸塩(東京化成社製、2.14g、10mmol)をよく脱水したN−メチル−2−ピロリドン(NMP、40mL)に溶解し、これに脱酸剤としてピリジン(3.2mL、40mmol)を添加し、セプタムキャップでシールしてA液とした。次に別のナス型フラスコ中、4−ニトロ安息香酸クロリド(4.57g、30mmol)をNMP(10mL)に溶解し、セプタムキャップでシールしてB液とした。A液を氷浴中で冷却し、回転子で撹拌しながらシリンジにてB液をA液に少しずつ加え、添加終了後3時間撹拌を続け、ジアミド体を合成した。
[Synthesis Example 1]
In a three-necked flask, DAR dihydrochloride (Tokyo Kasei Co., Ltd., 2.14 g, 10 mmol) was dissolved in well-dehydrated N-methyl-2-pyrrolidone (NMP, 40 mL), and pyridine ( 3.2 mL, 40 mmol) was added and sealed with a septum cap to give solution A. Next, 4-nitrobenzoic acid chloride (4.57 g, 30 mmol) was dissolved in NMP (10 mL) in another eggplant-shaped flask, and sealed with a septum cap to obtain a liquid B. Liquid A was cooled in an ice bath, liquid B was gradually added to liquid A with a syringe while stirring with a rotor, and stirring was continued for 3 hours after the addition was completed to synthesize a diamide.

次に氷浴を外し、室温で12時間撹拌した後、脱水環化反応を完結させるためこの反応溶液にp−トルエンスルホン酸一水和物(3.42g、18mmol)を加え、200℃のオイルバスにて6時間還流を行った。室温で静置し生成した沈殿物を濾別して水で洗浄した。この際、洗液に1%硝酸銀水溶液を適宜添加して白色沈殿が見られなくなるまで洗浄を繰り返し、塩化物イオンを完全に除去した。更にエタノールで洗浄後、120℃で12時間真空乾燥して収率74%で緑色針状晶を得た。この生成物はDMSO−dやCDClに殆ど不溶であったため、H−NMR測定は実施できなかった。この生成物の赤外線吸収スペクトルは、3095cm−1に芳香族C−H伸縮振動バンド、1602cm−1にBO基C=N伸縮振動バンド、1516/1350cm−1にニトロ基伸縮振動バンドを示し、アミドC=O伸縮振動バンドやフェノール性O−H伸縮振動バンドは見られなかった。これらの結果から生成物は目的とする下記式(17)で表されるBO基含有ジニトロ体であると考えられる。 Next, after removing the ice bath and stirring at room temperature for 12 hours, p-toluenesulfonic acid monohydrate (3.42 g, 18 mmol) was added to the reaction solution to complete the dehydration cyclization reaction, and an oil at 200 ° C. Reflux was performed for 6 hours in a bath. The precipitate formed upon standing at room temperature was filtered off and washed with water. At this time, 1% silver nitrate aqueous solution was appropriately added to the washing solution, and washing was repeated until no white precipitate was observed, and chloride ions were completely removed. Further, after washing with ethanol, vacuum drying was performed at 120 ° C. for 12 hours to obtain green needle crystals with a yield of 74%. Since this product was almost insoluble in DMSO-d 6 and CDCl 3 , 1 H-NMR measurement could not be performed. Infrared absorption spectrum of the product showed an aromatic C-H stretching vibration band at 3095cm -1, BO group C = N stretching vibration band at 1602 cm -1, a nitro group stretching vibration band 1516/1350 cm -1, amide C = O stretching vibration band and phenolic OH stretching vibration band were not observed. From these results, the product is considered to be a BO group-containing dinitro compound represented by the following formula (17).

Figure 0006293457
Figure 0006293457

次に3つ口フラスコ中、上記のジニトロ体(1.00g、2.48mmol)をNMP(50mL)に溶解し、触媒としてPd/C(0.10g)を加え、水素雰囲気中120℃で7時間還元反応を行った。反応の進行は薄層クロマトグラフィーによって追跡した。反応終了後、熱濾過によりPd/Cを分離した後、濾液を室温まで冷却し、大量の水にゆっくりと滴下して生成物を析出させた。沈殿物を濾別し、水で繰り返し洗浄した後、120℃で12時間真空乾燥して収率66%で融点414℃の紺色粉末を得た。
この生成物の赤外線吸収スペクトルは3469/3316/3197cm−1にアミノ基N−H伸縮振動バンド、1620cm−1にBO基C=N伸縮振動バンド、1503cm−1に1,4−フェニレン基伸縮振動バンドを示し、ニトロ基伸縮振動バンドやアミドC=O伸縮振動バンドは見られなかった、H−NMRスペクトル(400MHz,DMSO−d,δ,ppm):8.07(s,1H)、7.88−7.86(m,5H)、6.70(d,4H,J=8.64Hz)、6.00(s,4H,NH)および元素分析:推定値C;70.17%、H;4.12%、N;16.37%、分析値C;69.68%、H;4.29%、N;16.15%より、この生成物は目的とする上記式(13)で表されるBO基含有ジアミンであることが確認された。
Next, the above dinitro compound (1.00 g, 2.48 mmol) was dissolved in NMP (50 mL) in a three-necked flask, and Pd / C (0.10 g) was added as a catalyst. A time reduction reaction was performed. The progress of the reaction was followed by thin layer chromatography. After completion of the reaction, Pd / C was separated by hot filtration, and then the filtrate was cooled to room temperature and slowly dropped into a large amount of water to precipitate the product. The precipitate was filtered off, washed repeatedly with water, and then vacuum dried at 120 ° C. for 12 hours to obtain an amber powder having a yield of 66% and a melting point of 414 ° C.
Infrared absorption spectrum 3469/3316 / 3197cm amino group N-H stretching vibration band at -1, BO group C = N stretching vibration band at 1620 cm -1, 1,4-phenylene group stretching vibration 1503cm -1 of this product 1 H-NMR spectrum (400 MHz, DMSO-d 6 , δ, ppm): 8.07 (s, 1H), showing a band, and no nitro group stretching vibration band or amide C═O stretching vibration band was observed. 7.88-7.86 (m, 5H), 6.70 (d, 4H, J = 8.64Hz), 6.00 (s, 4H, NH 2) and elemental analysis: estimate C; 70.17 %, H; 4.12%, N; 16.37%, analytical value C; 69.68%, H; 4.29%, N; 16.15%. 13) BO group-containing dia It was confirmed that the emissions.

[合成例2]
3つ口フラスコ中、p−HAB(和歌山精化社製、2.61g、12mmol)をよく脱水したN−メチル−2−ピロリドン(NMP、81mL)に溶解し、これに脱酸剤としてピリジン(2.9mL、36mmol)を添加し、セプタムキャップでシールしてA液とした。次に別のナス型フラスコ中、4−ニトロ安息香酸クロリド(4.49g、24mmol)をNMP(17mL)に溶解し、セプタムキャップでシールしてB液とした。A液を氷浴中で冷却し、回転子で撹拌しながらシリンジにてB液をA液に少しずつ加え、添加終了後3時間撹拌を続け、ジアミド体を合成した。
次に氷浴を外し、室温で数時間撹拌した後、脱水環化反応を完結させるためこの反応溶液に適当量のp−トルエンスルホン酸(1.90g、11mmol)を加え、200℃のオイルバスにて3時間還流を行った。生成した沈殿物を濾過により回収して水で洗浄した。この際、洗液に1%硝酸銀水溶液を適宜添加して白色沈殿が見られなくなるまで洗浄を繰り返し、塩化物イオンを完全に除去した。更にエタノールで洗浄後、100℃で12時間真空乾燥して収率81%で融点401℃の黄色針状晶を得た。
この生成物はDMSO−dやCDClに殆ど不溶であったため、H−NMR測定は実施しなかった。この生成物の赤外線吸収スペクトルは1605cm−1にBO基C=N伸縮振動バンド、1518/1348cm−1にニトロ基伸縮振動バンドを示し、アミドC=O伸縮振動バンドやフェノール性O−H伸縮振動バンドは見られなかった。これらの結果から生成物は目的とする下記式(18)で表されるBO基含有ジニトロ体であると考えられる。
[Synthesis Example 2]
In a three-necked flask, p-HAB (manufactured by Wakayama Seika Co., Ltd., 2.61 g, 12 mmol) was dissolved in well-dehydrated N-methyl-2-pyrrolidone (NMP, 81 mL), and pyridine ( 2.9 mL, 36 mmol) was added and sealed with a septum cap to give solution A. Next, 4-nitrobenzoic acid chloride (4.49 g, 24 mmol) was dissolved in NMP (17 mL) in another eggplant-shaped flask, and sealed with a septum cap to obtain solution B. Liquid A was cooled in an ice bath, liquid B was gradually added to liquid A with a syringe while stirring with a rotor, and stirring was continued for 3 hours after the addition was completed to synthesize a diamide.
Next, after removing the ice bath and stirring at room temperature for several hours, an appropriate amount of p-toluenesulfonic acid (1.90 g, 11 mmol) was added to the reaction solution to complete the dehydration cyclization reaction, and an oil bath at 200 ° C. was added. At reflux for 3 hours. The resulting precipitate was collected by filtration and washed with water. At this time, 1% silver nitrate aqueous solution was appropriately added to the washing solution, and washing was repeated until no white precipitate was observed, and chloride ions were completely removed. Further, after washing with ethanol, vacuum drying was performed at 100 ° C. for 12 hours to obtain yellow needles having a yield of 81% and a melting point of 401 ° C.
The product because it was almost insoluble in DMSO-d 6 or CDCl 3, 1 H-NMR measurement was not performed. The infrared absorption spectrum of this product shows a BO group C═N stretching vibration band at 1605 cm −1 , a nitro group stretching vibration band at 1518/1348 cm −1 , an amide C═O stretching vibration band and a phenolic OH stretching vibration band. The band was not seen. From these results, the product is considered to be a BO group-containing dinitro compound represented by the following formula (18).

Figure 0006293457
Figure 0006293457

次に3つ口フラスコ中、上記ジニトロ体(6.13g、11.9mmol)をNMP(250mL)に溶解し、触媒としてPd/C(0.63g)を加え、水素雰囲気中100℃で15時間還元反応を行った。反応の進行は薄層クロマトグラフィーによって追跡した。反応終了後、濾過によりPd/Cを分離した後、濾液を大量の水にゆっくりと滴下して生成物を析出させた。沈殿物を濾過により回収し、水で繰り返し洗浄した後、100℃で12時間真空乾燥して粗生成物収率82%で茶色粉末を得た。更に純度を高めるため、γ−ブチロラクトンから再結晶を行い、最後に100℃で12時間真空乾燥して融点354℃の茶色板状晶を得た。この生成物の赤外線吸収スペクトルは3454/3380/3210cm−1にアミノ基N−H伸縮振動バンド、1621/1607cm−1にBO基C=N伸縮振動バンド、1499cm−1に1,4−フェニレン基伸縮振動バンドを示し、ニトロ基伸縮振動バンドやアミドC=O伸縮振動バンドは見られなかった、H−NMRスペクトル(400MHz,DMSO−d,δ,ppm):8.06(s,2H)、7.90−7.88(d,4H)、7.75−7.71(m,4H)、6.72−6.70(d,4H)、6.04(s,4H)および元素分析:推定値C;74.63%、H;4.34%、N;13.39%、分析値C;74.41%、H;4.47%、N;13.26%より、この生成物は目的とする下記式(19)で表されるBO基含有ジアミンであることが確認された。 Next, the above dinitro compound (6.13 g, 11.9 mmol) is dissolved in NMP (250 mL) in a three-necked flask, Pd / C (0.63 g) is added as a catalyst, and the mixture is heated at 100 ° C. for 15 hours in a hydrogen atmosphere. A reduction reaction was performed. The progress of the reaction was followed by thin layer chromatography. After completion of the reaction, Pd / C was separated by filtration, and then the filtrate was slowly dropped into a large amount of water to precipitate the product. The precipitate was collected by filtration, washed repeatedly with water and then vacuum dried at 100 ° C. for 12 hours to obtain a brown powder with a crude product yield of 82%. In order to further increase the purity, recrystallization was performed from γ-butyrolactone, and finally, vacuum drying was performed at 100 ° C. for 12 hours to obtain brown plate crystals having a melting point of 354 ° C. Infrared absorption spectrum of the product 3454/3380 / 3210cm -1 in an amino group N-H stretching vibration band, 1621/1607 cm BO group C = N stretching vibration band at -1, 1,4-phenylene group in 1499Cm -1 1 H-NMR spectrum (400 MHz, DMSO-d 6 , δ, ppm): 8.06 (s, 2H) showing a stretching vibration band, and no nitro group stretching vibration band or amide C═O stretching vibration band was observed. ), 7.90-7.88 (d, 4H), 7.75-7.71 (m, 4H), 6.72-6.70 (d, 4H), 6.04 (s, 4H) and Elemental analysis: estimated value C; 74.63%, H; 4.34%, N; 13.39%, analytical value C; 74.41%, H; 4.47%, N; 13.26%, This product has the following formula (19 It was confirmed in a BO group-containing diamine represented.

Figure 0006293457
Figure 0006293457

<ポリイミド前駆体の重合、イミド化およびポリイミドフィルムの特性評価>
[実施例1]
よく乾燥した攪拌機付密閉反応容器中に上記式(13)で表されるBO基含有ジアミン1mmolを入れ、モレキュラーシーブス4Aで十分に脱水したNMP2.5mLを加えて撹拌した。この溶液に3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、(和光純薬社製、以下BPDAと称する)粉末1mmolを加えた。溶質濃度20重量%から重合を開始し、徐々に溶媒を追加して最終的には13重量%まで希釈し、室温で11日攪拌して均一で粘稠なBO基含有ポリイミド前駆体溶液を得た。NMP中におけるポリイミド前駆体の固有粘度は0.77dL/gであった。
図1に得られたポリイミド前駆体の薄膜の赤外線吸収スペクトルを示す。3325cm−1にアミド基N−H伸縮振動バンド、3100/3044cm−1に芳香族C−H伸縮振動バンド、2624/2539cm−1にブロードな吸収帯(水素結合性COOH基O−H伸縮振動バンド)、1702cm−1に水素結合性COOH基C=O伸縮振動バンド、1672cm−1/1533cm−1にアミド基C=O伸縮振動バンド、1503cm−1に1,4−フェニレン基伸縮振動バンドが観測されることから、目的とするポリイミド前駆体の生成が確認された。
<Polymerization of polyimide precursor, imidization and evaluation of characteristics of polyimide film>
[Example 1]
A well-dried sealed reaction vessel with a stirrer was charged with 1 mmol of a BO group-containing diamine represented by the above formula (13), and 2.5 mL of NMP sufficiently dehydrated with Molecular Sieves 4A was added and stirred. To this solution, 1 mmol of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder (manufactured by Wako Pure Chemical Industries, Ltd., hereinafter referred to as BPDA) was added. Polymerization is started from a solute concentration of 20% by weight, a solvent is gradually added and finally diluted to 13% by weight, and stirred at room temperature for 11 days to obtain a uniform and viscous BO group-containing polyimide precursor solution. It was. The intrinsic viscosity of the polyimide precursor in NMP was 0.77 dL / g.
FIG. 1 shows an infrared absorption spectrum of the thin film of the polyimide precursor obtained. 3325Cm -1 in the amide group N-H stretching vibration band, 3100 / 3044cm aromatic C-H stretching vibration band at -1, 2624 / 2539cm broad absorption band at -1 (hydrogen bonding COOH group O-H stretching vibration band ), hydrogen bonding COOH group C = O stretching vibration band at 1702cm -1, 1672cm -1 / 1533cm -1 in the amide group C = O stretching vibration band, 1,4-phenylene group stretching vibration band at 1503cm -1 observation Therefore, the production of the target polyimide precursor was confirmed.

このポリイミド前駆体溶液をガラス基板に塗布し、熱風乾燥器中80℃で3時間乾燥してポリイミド前駆体フィルムを作製した。これをガラス基板ごと250℃で1時間、更に350℃で1時間真空中で熱イミド化を行った後、残留応力を除去するために基板から剥がして更に真空中、最終熱処理温度:400℃で1時間熱処理を行い、膜厚20μmの柔軟なBO基含有ポリイミドフィルムを得た。
図2に同一条件で別途作製されたポリイミド薄膜の赤外線吸収スペクトルを示す。3098/3068cm−1に芳香族C−H伸縮振動バンド、1775/1719cm−1にイミド基C=O伸縮振動バンド、1618cm−1にBO基C=N伸縮振動バンド、1504cm−1に1,4−フェニレン基伸縮振動バンド、1358cm−1にイミド基N−C(芳香族)伸縮振動バンドが観測され、COOH基やアミド基に由来する吸収帯が見られないことから、イミド化反応は完結しており、目的とするポリイミドの生成が確認された。
This polyimide precursor solution was applied to a glass substrate and dried in a hot air dryer at 80 ° C. for 3 hours to prepare a polyimide precursor film. This was subjected to thermal imidization with a glass substrate at 250 ° C. for 1 hour and further at 350 ° C. for 1 hour in a vacuum, and then peeled off from the substrate to remove residual stress, and further in vacuum, at a final heat treatment temperature: 400 ° C. Heat treatment was performed for 1 hour to obtain a flexible BO group-containing polyimide film having a thickness of 20 μm.
FIG. 2 shows an infrared absorption spectrum of a polyimide thin film separately prepared under the same conditions. 3098 / 3068cm aromatic C-H stretching vibration band at -1, 1775 / 1719cm -1 to imide groups C = O stretching vibration band, BO group C = N stretching vibration band at 1618cm -1, to 1504cm -1 1,4 -The phenylene group stretching vibration band, the imide group N-C (aromatic) stretching vibration band is observed at 1358 cm -1 , and the absorption band derived from the COOH group or the amide group is not observed. The production of the target polyimide was confirmed.

BO基含有ポリイミドフィルム(膜厚20μm)について動的粘弾性測定(室温〜500℃)を行った結果、明瞭なガラス転移点は観測されなかった。また、線熱膨張係数は12.4ppm/Kと非常に低い値を示した。これは本発明のBO基含有ポリイミドの主鎖構造が極めて剛直で直線性が高いことに由来して、熱イミド化工程においてポリイミド主鎖がフィルム面に対して平行な方向に著しく配向したことによるものと考えられる。
また、5%重量減少温度は窒素中で594℃であり、極めて高い熱安定性を有していることがわかった。
更に、破断伸び15%であり、フィルムをハゼ折りしても破断せず。十分な膜靱性も保持していた。
As a result of dynamic viscoelasticity measurement (room temperature to 500 ° C.) for the BO group-containing polyimide film (film thickness 20 μm), a clear glass transition point was not observed. Moreover, the linear thermal expansion coefficient showed a very low value of 12.4 ppm / K. This is because the main chain structure of the BO group-containing polyimide of the present invention is extremely rigid and has high linearity, and in the thermal imidization process, the polyimide main chain is remarkably oriented in a direction parallel to the film surface. It is considered a thing.
The 5% weight loss temperature was 594 ° C. in nitrogen, and it was found to have extremely high thermal stability.
Furthermore, the elongation at break is 15%, and it does not break even if the film is folded. Sufficient film toughness was also maintained.

[実施例2]
ジアミン成分として上記式(13)で表されるBO基含有ジアミン(0.5mmol)と下記式(20)で表されるジアミン(0.5mmol)を併用し、テトラカルボン酸二無水物成分としてBPDAの代わりに2,3,6,7−ナフタレンテトラカルボン酸二無水物(1mmol、JFEケミカル社製、以下NTDAと称する)を用い、溶質濃度20重量%から重合を開始し、徐々に溶媒を追加して最終的には15重量%まで希釈し、室温で72時間撹拌して均一で粘稠なBO基含有ポリイミド前駆体溶液を得た。NMP中におけるポリイミド前駆体の固有粘度は1.29dL/gであった。
得られたポリイミド前駆体ワニスを実施例1に記載した方法に従って製膜、熱イミド化、膜物性評価を行った。
動的粘弾性測定(室温〜500℃)を行った結果、極めて高いT(407℃)が観測された。
線熱膨張係数(CTE)は、3.3ppm/Kとシリコンウエハに匹敵する極めて低い値を示した。
5%重量減少温度は、窒素中609℃、空気中で543℃であり、極めて高い熱安定性を有していることがわかった。
さらに機械的特性を評価した結果、引張弾性率(ヤング率)6.80GPa、破断伸び15%であり、フィルムをハゼ折りしても破断せず。十分な膜靱性も保持していた。
[Example 2]
A BO group-containing diamine (0.5 mmol) represented by the above formula (13) as a diamine component and a diamine (0.5 mmol) represented by the following formula (20) are used in combination, and BPDA as a tetracarboxylic dianhydride component. Instead of 2,3,6,7-naphthalenetetracarboxylic dianhydride (1 mmol, manufactured by JFE Chemical Co., Ltd., hereinafter referred to as NTDA), polymerization was started from a solute concentration of 20% by weight, and a solvent was gradually added. Finally, the solution was diluted to 15% by weight and stirred at room temperature for 72 hours to obtain a uniform and viscous BO group-containing polyimide precursor solution. The intrinsic viscosity of the polyimide precursor in NMP was 1.29 dL / g.
The obtained polyimide precursor varnish was subjected to film formation, thermal imidization, and film property evaluation according to the methods described in Example 1.
As a result of dynamic viscoelasticity measurement (room temperature to 500 ° C.), extremely high T g (407 ° C.) was observed.
The coefficient of linear thermal expansion (CTE) was 3.3 ppm / K, an extremely low value comparable to that of silicon wafers.
The 5% weight loss temperature was 609 ° C. in nitrogen and 543 ° C. in air, and was found to have extremely high thermal stability.
Furthermore, as a result of evaluating the mechanical properties, the tensile modulus (Young's modulus) was 6.80 GPa, the elongation at break was 15%, and the film did not break even when the film was folded. Sufficient film toughness was also maintained.

Figure 0006293457
Figure 0006293457

[実施例3]
ジアミン成分として上記式(13)で表されるBO基含有ジアミン(1.5mmol)と上記式(19)で表されるジアミン(1.5mmol)を併用し、テトラカルボン酸二無水物成分としてBPDAの代わりにNTDA(3mmol)を用い、溶質濃度20重量%から重合を開始し、徐々に溶媒を追加して最終的には14重量%まで希釈し、室温で72時間撹拌して均一で粘稠なBO基含有ポリイミド前駆体溶液を得た。NMP中、30℃、0.5重量%の濃度でオストワルド粘度計にて測定したポリイミド前駆体の還元粘度は0.94dL/gであった。
得られたポリイミド前駆体ワニスを実施例1に記載した方法に従って製膜、熱イミド化、膜物性評価を行った。動的粘弾性測定(室温〜500℃)を行った結果、極めて高いT(412℃)が観測された。線熱膨張係数(CTE)は、5.4ppm/Kと極めて低い値を示した。5%重量減少温度は窒素中600℃、空気中で542℃であり、極めて高い熱安定性を有していることがわかった。
[Example 3]
A BO group-containing diamine (1.5 mmol) represented by the above formula (13) and a diamine (1.5 mmol) represented by the above formula (19) are used in combination as a diamine component, and BPDA is used as a tetracarboxylic dianhydride component. Instead of using NTDA (3 mmol), the polymerization was started from a solute concentration of 20% by weight, gradually adding a solvent and finally diluting to 14% by weight, and stirring at room temperature for 72 hours to make it uniform and viscous A BO group-containing polyimide precursor solution was obtained. The reduced viscosity of the polyimide precursor measured with an Ostwald viscometer at 30 ° C. and a concentration of 0.5% by weight in NMP was 0.94 dL / g.
The obtained polyimide precursor varnish was subjected to film formation, thermal imidization, and film property evaluation according to the methods described in Example 1. As a result of dynamic viscoelasticity measurement (room temperature to 500 ° C.), extremely high T g (412 ° C.) was observed. The coefficient of linear thermal expansion (CTE) was a very low value of 5.4 ppm / K. The 5% weight loss temperature was 600 ° C. in nitrogen and 542 ° C. in air, and it was found to have extremely high thermal stability.

[比較例1]
テトラカルボン酸二無水物成分としてピロメリット酸二無水物(PMDA)、ジアミン成分としてp−フェニレンジアミン(PDA)を用い、実施例1に記載した方法に準じて重合、製膜、熱イミド化してポリイミドフィルムを作製した。このポリイミドフィルムは極めて低いCTE(2.8ppm/K)を示したが、非常に脆弱であり破断伸びは0%であった。また、このフィルムはハゼ折りすると容易に破断した。これは、このポリイミド系の棒状主鎖構造に由来するもので、ポリマー鎖間の絡み合いが殆どないためである。
[Comparative Example 1]
Using pyromellitic dianhydride (PMDA) as the tetracarboxylic dianhydride component and p-phenylenediamine (PDA) as the diamine component, polymerization, film formation, and thermal imidization were conducted according to the method described in Example 1. A polyimide film was prepared. This polyimide film showed very low CTE (2.8 ppm / K), but was very brittle and had an elongation at break of 0%. Further, this film was easily broken when it was folded. This is because it is derived from this polyimide-based rod-like main chain structure and there is almost no entanglement between polymer chains.

[比較例2]
テトラカルボン酸二無水物成分としてPMDA、ジアミン成分として4,4’−オキシジアニリンを用い、実施例1に記載した方法に準じて重合、製膜、熱イミド化、膜物性評価を行った。このポリイミドフィルムは極めて高いガラス転移温度(408℃)を示し、破断伸び85%と優れた靱性を有していたが、CTEは42.8ppm/Kであり、低熱膨張特性を示さなかった。
[Comparative Example 2]
Using PMDA as the tetracarboxylic dianhydride component and 4,4′-oxydianiline as the diamine component, polymerization, film formation, thermal imidization, and film physical properties were evaluated according to the method described in Example 1. This polyimide film exhibited an extremely high glass transition temperature (408 ° C.) and had excellent toughness of 85% elongation at break, but CTE was 42.8 ppm / K and did not exhibit low thermal expansion characteristics.

[比較例3]
テトラカルボン酸二無水物成分としてBPDA、ジアミン成分として上記式(20)で表されるジアミンを用い、実施例1に記載した方法に準じて重合、製膜、熱イミド化してポリイミドフィルムを作製した。このポリイミドフィルムのCTEは23.0ppm/Kとなり、CTEの増加が見られた。
[Comparative Example 3]
Using BPDA as the tetracarboxylic dianhydride component and diamine represented by the above formula (20) as the diamine component, polymerization, film formation, and thermal imidization were performed according to the method described in Example 1 to prepare a polyimide film. . The CTE of this polyimide film was 23.0 ppm / K, and an increase in CTE was observed.

[比較例4]
テトラカルボン酸二無水物成分としてBPDA、ジアミン成分としてPDAを用い、実施例1に記載した方法に準じて重合、製膜、熱イミド化してポリイミドフィルムを作製した。このポリイミドフィルムのCTEは12.0ppm/K、5%重量減少温度は窒素中で588℃であった。
[Comparative Example 4]
Using BPDA as the tetracarboxylic dianhydride component and PDA as the diamine component, polymerization, film formation, and thermal imidization were performed according to the method described in Example 1 to prepare a polyimide film. The CTE of this polyimide film was 12.0 ppm / K, and the 5% weight loss temperature was 588 ° C. in nitrogen.

Claims (13)

下記式(1)(式中、Xは下記式(4)で表される4価の芳香族基である)で表される繰り返し単位を有するポリイミド。
Figure 0006293457
A polyimide having a repeating unit represented by the following formula (1) (wherein X 1 is a tetravalent aromatic group represented by the following formula (4)) .
Figure 0006293457
下記式(1)(式中、Xは下記式(4)で表される4価の芳香族基である)で表される繰り返し単位、及び下記式(5)(式中、Xは下記式(6)〜(10)(式(9)中、ZはO又はNHを表す)より選ばれる少なくとも1種の2価の芳香族基を表し、X は下記式(2)〜(4)から選ばれる少なくとも1種の4価の芳香族基を表す)で表される繰り返し単位を有するポリイミド共重合体。
Figure 0006293457
The repeating unit represented by the following formula (1) (wherein X 1 is a tetravalent aromatic group represented by the following formula (4)) , and the following formula (5) (where X 2 is (in the formula (9), Z represents O or NH) formula (6) to (10) to display the at least one divalent aromatic group selected from, X 1 is the following formula (2) to A polyimide copolymer having a repeating unit represented by (4) represents at least one tetravalent aromatic group selected from (4) .
Figure 0006293457
式(1)で表される繰り返し単位と式(5)で表される繰り返し単位のmol比率(式(1):式(5))が40:60〜99.9:0.01である請求項2記載のポリイミド共重合体。   The molar ratio of the repeating unit represented by formula (1) to the repeating unit represented by formula (5) (formula (1): formula (5)) is 40:60 to 99.9: 0.01 Item 3. A polyimide copolymer according to Item 2. 請求項1記載のポリイミド又は請求項2又は3記載のポリイミド共重合体を有して成る耐熱性フィルム。   A heat-resistant film comprising the polyimide according to claim 1 or the polyimide copolymer according to claim 2 or 3. 厚さが1〜200μmである請求項4記載の耐熱性フィルム。   The heat-resistant film according to claim 4, wherein the thickness is 1 to 200 µm. i)線熱膨張係数が15ppm/K以下であり、
ii)ガラス転移温度が370℃以上であるか、又は動的粘弾性測定によりガラス転移が不検出であり、
iii)窒素雰囲気下での加熱における5%重量減少温度が570℃以上であり、且つ
iv)破断伸びが10%以上である、
請求項4又は5記載の耐熱性フィルム。
i) The coefficient of linear thermal expansion is 15 ppm / K or less,
ii) the glass transition temperature is 370 ° C. or higher, or the glass transition is not detected by dynamic viscoelasticity measurement,
iii) 5% weight loss temperature in heating under nitrogen atmosphere is 570 ° C. or higher, and iv) elongation at break is 10% or higher,
The heat resistant film according to claim 4 or 5.
光電変換素子、発光素子又は電子回路の電気絶縁基板材料用である請求項4〜6のいずれか1項記載の耐熱性フィルム。   The heat resistant film according to any one of claims 4 to 6, which is used for a material for an electrically insulating substrate of a photoelectric conversion element, a light emitting element or an electronic circuit. 下記式(11)(式中、Xは下記式(4)で表される4価の芳香族基である)で表される繰り返し単位を有するポリイミド前駆体。
Figure 0006293457
A polyimide precursor having a repeating unit represented by the following formula (11) (wherein X 1 is a tetravalent aromatic group represented by the following formula (4)) .
Figure 0006293457
下記式(11)(式中、Xは下記式(4)で表される4価の芳香族基である)で表される繰り返し単位、及び下記式(12)(式中、Xは下記式(6)〜(10)(式(9)中、ZはO又はNHを表す)より選ばれる少なくとも1種の2価の芳香族基を表し、X は下記式(2)〜(4)から選ばれる少なくとも1種の4価の芳香族基を表す)で表される繰り返し単位を有するポリイミド前駆体の共重合体。
Figure 0006293457
The repeating unit represented by the following formula (11) (wherein X 1 is a tetravalent aromatic group represented by the following formula (4)) , and the following formula (12) (where X 2 is (in the formula (9), Z represents O or NH) formula (6) to (10) to display the at least one divalent aromatic group selected from, X 1 is the following formula (2) to A copolymer of a polyimide precursor having a repeating unit represented by (4) representing at least one tetravalent aromatic group selected from (4) .
Figure 0006293457
式(11)で表される繰り返し単位と式(12)で表される繰り返し単位のmol比率(式(11):式(12))が40:60〜99.9:0.01である請求項9記載のポリイミド前駆体の共重合体。   The molar ratio of the repeating unit represented by formula (11) to the repeating unit represented by formula (12) (formula (11): formula (12)) is 40:60 to 99.9: 0.01 Item 10. A polyimide precursor copolymer according to Item 9. 固有粘度が0.3dL/g以上である請求項8記載のポリイミド前駆体、もしくは請求項9又は10記載のポリイミド前駆体の共重合体。   The polyimide precursor according to claim 8 or a copolymer of the polyimide precursor according to claim 9 or 10, which has an intrinsic viscosity of 0.3 dL / g or more. 請求項8又は請求項11記載のポリイミド前駆体、もしくは請求項9〜11のいずれか1項記載のポリイミド前駆体の共重合体を有する耐熱性フィルム形成用ワニス。   A varnish for forming a heat resistant film, comprising the polyimide precursor according to claim 8 or 11, or the copolymer of the polyimide precursor according to any one of claims 9 to 11. 請求項12記載の耐熱性フィルム形成用ワニスを基板上に塗布し、これを375〜450℃の最終熱処理温度で加熱脱水環化反応する、耐熱性フィルムの製造方法。   The manufacturing method of a heat resistant film which apply | coats the varnish for heat resistant film formation of Claim 12 on a board | substrate, and heat-dehydrates and cyclizes this at the final heat processing temperature of 375-450 degreeC.
JP2013233646A 2013-11-12 2013-11-12 Polyimide and heat resistant film Active JP6293457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233646A JP6293457B2 (en) 2013-11-12 2013-11-12 Polyimide and heat resistant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233646A JP6293457B2 (en) 2013-11-12 2013-11-12 Polyimide and heat resistant film

Publications (2)

Publication Number Publication Date
JP2015093915A JP2015093915A (en) 2015-05-18
JP6293457B2 true JP6293457B2 (en) 2018-03-14

Family

ID=53196552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233646A Active JP6293457B2 (en) 2013-11-12 2013-11-12 Polyimide and heat resistant film

Country Status (1)

Country Link
JP (1) JP6293457B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069200A (en) 2015-09-30 2017-04-06 新日鉄住金化学株式会社 Manufacturing method of functional layer-attached polyimide film
JP7079076B2 (en) * 2016-08-10 2022-06-01 日鉄ケミカル&マテリアル株式会社 Polyimide precursor and the polyimide resulting from it
CN111133033B (en) 2017-09-29 2022-06-28 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film
WO2019065522A1 (en) 2017-09-29 2019-04-04 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish and polyimide film
CN107629755B (en) * 2017-10-16 2020-04-17 黑龙江省科学院石油化学研究院 Preparation method of high-temperature-resistant polyimide adhesive film for bonding polyimide honeycomb and composite material wall plate
CN111465634B (en) 2017-12-15 2023-03-10 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film
CN110387041B (en) * 2019-07-18 2022-04-12 深圳先进技术研究院 Polyimide composite film and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251584A (en) * 1988-11-16 1990-10-09 Asahi Chem Ind Co Ltd Heterocyclic ring-containing polyimide composite
US5919892A (en) * 1994-10-31 1999-07-06 The Dow Chemical Company Polyamic acids and methods to convert polyamic acids into polyimidebenzoxazole films
US5670262A (en) * 1995-05-09 1997-09-23 The Dow Chemical Company Printing wiring board(s) having polyimidebenzoxazole dielectric layer(s) and the manufacture thereof

Also Published As

Publication number Publication date
JP2015093915A (en) 2015-05-18

Similar Documents

Publication Publication Date Title
JP6293457B2 (en) Polyimide and heat resistant film
JP6304494B2 (en) Polyimide and heat-resistant material
JP5727795B2 (en) Ester group-containing tetracarboxylic dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing them
CN111133033B (en) Polyimide resin, polyimide varnish, and polyimide film
CN112041371B (en) Polyimide resin, polyimide varnish and polyimide film
JP2009286854A (en) Polyesterimide precursor and polyesterimide
JP7549099B2 (en) Polyimide and polyimide film
JP4699321B2 (en) Ester group-containing polyimide, precursor thereof, and production method thereof
JP3061051B2 (en) Soluble polyimide resin containing aliphatic polycyclic structure
JP6768234B2 (en) Polyimide and polyimide film
JP3012903B2 (en) New soluble polyimide resin
JP4957077B2 (en) Tetracarboxylic acids or polyesterimides derived therefrom and method for producing the same
JP2011148901A (en) Phosphorus-containing diamine and phosphorus-containing polyimide obtained therefrom
JP6765093B2 (en) Polyimide
KR102692868B1 (en) Polyimide resin, polyimide varnish and polyimide film
JP6462236B2 (en) Polyimide and heat resistant film
JP2024082217A (en) Tetracarboxylic dianhydride, polyesterimide, and polyesterimide film
JP2022103036A (en) Polyimide and film formed therefrom
CN118891307A (en) Polymer production method, varnish, and varnish production method
KR20230134405A (en) Novel diamine compound and polyimide polymer formed from the same
KR20220134534A (en) Polyimide resins, polyimide varnishes and polyimide films
JP2020121934A (en) Novel diamine, novel polyimide derived therefrom and molded body thereof
JP2019052099A (en) Diamine, polyamide acid, polyimide and polyimide solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180214

R150 Certificate of patent or registration of utility model

Ref document number: 6293457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250