JP6229333B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6229333B2
JP6229333B2 JP2013141824A JP2013141824A JP6229333B2 JP 6229333 B2 JP6229333 B2 JP 6229333B2 JP 2013141824 A JP2013141824 A JP 2013141824A JP 2013141824 A JP2013141824 A JP 2013141824A JP 6229333 B2 JP6229333 B2 JP 6229333B2
Authority
JP
Japan
Prior art keywords
positive electrode
mixture layer
electrode mixture
composite oxide
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013141824A
Other languages
Japanese (ja)
Other versions
JP2015015182A (en
Inventor
勇人 山川
勇人 山川
洋平 柴田
洋平 柴田
信也 上松
信也 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2013141824A priority Critical patent/JP6229333B2/en
Publication of JP2015015182A publication Critical patent/JP2015015182A/en
Application granted granted Critical
Publication of JP6229333B2 publication Critical patent/JP6229333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はリチウムイオン二次電池などの非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.

非水電解質二次電池において、特定のリチウム複合酸化物を含む正極合剤層の上に、正極活物質を含む別の正極合剤層を備えた多層構造をもつ正極が知られており、このような構成は過充電時に下の正極合剤層が抵抗上昇して安全化することが知られている(例えば、特許文献1,2)。このような技術において、正極における下の正極合剤層は、リチウム複合酸化物およびバインダー樹脂を有機溶媒に分散または溶解させたペーストを集電体に塗布し、乾燥させ、プレスすることにより形成されている。   In a nonaqueous electrolyte secondary battery, a positive electrode having a multilayer structure in which another positive electrode mixture layer containing a positive electrode active material is provided on a positive electrode mixture layer containing a specific lithium composite oxide is known. It is known that such a configuration makes the lower positive electrode mixture layer resistant to safety when overcharged (for example, Patent Documents 1 and 2). In such a technique, the lower positive electrode mixture layer in the positive electrode is formed by applying a paste in which a lithium composite oxide and a binder resin are dispersed or dissolved in an organic solvent to a current collector, drying, and pressing. ing.

特に特許文献1では、正極に下の正極合剤層を備え、さらに正極と負極との間に多孔質絶縁層を備えることで、安全性に優れた電池を提供することを目的としている。特許文献1の具体例では、下の正極合剤層に導電助剤を備えていない。   In particular, Patent Document 1 has an object of providing a battery having excellent safety by including a lower positive electrode mixture layer on a positive electrode and further including a porous insulating layer between the positive electrode and the negative electrode. In the specific example of Patent Document 1, the lower positive electrode mixture layer is not provided with a conductive additive.

特開2009−4289号公報JP 2009-4289 A 特開2007−26676号公報JP 2007-26676 A

下の正極合剤層による過充電時の抵抗上昇の効果を得るために、下の正極合剤層に含まれる導電助剤量を低減することがある。導電助剤量を低減することで導電助剤を介した電気伝導の寄与を少なくして、特定のリチウム複合酸化物粒子による抵抗上昇を反映させやすくすることができる。   In order to obtain the effect of increasing the resistance at the time of overcharging by the lower positive electrode mixture layer, the amount of the conductive additive contained in the lower positive electrode mixture layer may be reduced. By reducing the amount of the conductive auxiliary agent, the contribution of electric conduction through the conductive auxiliary agent can be reduced, and the increase in resistance due to the specific lithium composite oxide particles can be easily reflected.

しかしながら、過充電に対する安全性に向上させるために、下の正極合剤層に含まれる導電助剤量を低減した正極を用いると、非水電解質二次電池の高率放電特性が低下してしまう。下の正極合剤層に含まれる導電助剤量を制御することで、過充電に対する安全性と高率放電特性とを両立することは困難であった。   However, in order to improve the safety against overcharge, if a positive electrode with a reduced amount of conductive additive contained in the lower positive electrode mixture layer is used, the high rate discharge characteristics of the nonaqueous electrolyte secondary battery will be reduced. . It was difficult to achieve both safety against overcharge and high rate discharge characteristics by controlling the amount of the conductive additive contained in the lower positive electrode mixture layer.

本発明は、過充電に対する安全性に優れるとともに、高率放電特性の低下が防止される非水電解質二次電池を提供することを目的とする。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery that is excellent in safety against overcharging and prevents deterioration in high-rate discharge characteristics.

本発明は、正極集電体、第一の正極合剤層、および前記正極集電体と前記第一の正極合剤層との間に形成される第二の正極合剤層を含む正極を有し、前記第二の正極合剤層がリチウム複合酸化物粒子を含み、前記正極集電体に対する前記第二の正極合剤層の被覆率が60〜95%である非水電解質二次電池である。   The present invention includes a positive electrode including a positive electrode current collector, a first positive electrode mixture layer, and a second positive electrode mixture layer formed between the positive electrode current collector and the first positive electrode mixture layer. A non-aqueous electrolyte secondary battery in which the second positive electrode mixture layer includes lithium composite oxide particles and the coverage of the second positive electrode mixture layer with respect to the positive electrode current collector is 60 to 95% It is.

第二の正極合剤層の被覆率が60%未満であると、過充電時に第二の正極合剤層の抵抗上昇が十分に起こらないため、過充電に対する安全性が低下する。被覆率が95%を超えると、非水電解質二次電池の高率放電特性が著しく低下する。   When the coverage of the second positive electrode mixture layer is less than 60%, the resistance of the second positive electrode mixture layer is not sufficiently increased during overcharge, and safety against overcharge is reduced. If the coverage exceeds 95%, the high rate discharge characteristics of the nonaqueous electrolyte secondary battery will be significantly reduced.

所定の被覆率である本発明において、リチウム複合酸化物粒子の平均粒径dと活物質粒子の平均粒径dとの比率(d/d)が0.1〜6であることが好ましい。 In the present invention having a predetermined coverage, the ratio (d A / d L ) between the average particle diameter d L of the lithium composite oxide particles and the average particle diameter d A of the active material particles is 0.1-6. Is preferred.

所定の被覆率である本発明において、正極集電体上のリチウム複合酸化物粒子間のすき間の長さの最大値gが、5μmから45μmの範囲であることが好ましい。 In the present invention having a predetermined coverage, the maximum value g M of the gap length between the lithium composite oxide particles on the positive electrode current collector is preferably in the range of 5 μm to 45 μm.

所定の被覆率である本発明において、正極集電体上のリチウム複合酸化物粒子間のすき間の長さの最大値と前記活物質粒子の平均粒径dとの比率(d/g)が0.07から4の範囲であることが好ましい。 In the present invention having a predetermined coverage, the ratio (d A / g M) between the maximum value of the gap length between the lithium composite oxide particles on the positive electrode current collector and the average particle diameter d A of the active material particles ) Is preferably in the range of 0.07 to 4.

本発明において、リチウム複合酸化物粒子はスピネル型マンガン酸リチウムを含むことが好ましい。   In the present invention, the lithium composite oxide particles preferably contain spinel type lithium manganate.

本発明の非水電解質二次電池は、正極集電体に対する第二の正極合剤層の被覆率が60〜95%としたので、過充電に対する安全性に優れるとともに、高率放電特性の低下が防止される。   In the nonaqueous electrolyte secondary battery of the present invention, the coverage of the second positive electrode mixture layer with respect to the positive electrode current collector is 60 to 95%, so that it is excellent in safety against overcharge and the high rate discharge characteristic is deteriorated. Is prevented.

本発明の正極の一実施態様を説明するための概略拡大断面を示す概念図である。It is a conceptual diagram which shows the general | schematic expanded cross section for demonstrating one embodiment of the positive electrode of this invention. 第二の正極合剤層の正極集電体に対する被覆率の測定方法を説明するための正極の概略拡大断面を示す概念図であって、第一の正極合剤層を省略した図である。It is a conceptual diagram which shows the general | schematic expanded cross section of the positive electrode for demonstrating the measuring method of the coverage with respect to the positive electrode electrical power collector of a 2nd positive mix layer, Comprising: It is the figure which abbreviate | omitted the 1st positive mix layer. 本発明の正極の他の実施態様を説明するための概略拡大断面を示す概念図である。It is a conceptual diagram which shows the general | schematic expanded cross section for demonstrating the other embodiment of the positive electrode of this invention. 本発明の一実施態様である角型の非水電解質二次電池の概略断面図である。It is a schematic sectional drawing of the square-shaped nonaqueous electrolyte secondary battery which is one embodiment of this invention.

以下に本発明の非水電解質二次電池の一実施態様について説明するが、本発明は以下の記載に限定されるものではない。   Although one embodiment of the nonaqueous electrolyte secondary battery of the present invention is described below, the present invention is not limited to the following description.

(正極)
本発明の非水電解質二次電池が有する正極は正極集電体と第一の正極合剤層との間に形成される第二の正極合剤層を含むものである。本発明の正極の一実施態様を示す概略断面図を図1に示す。図1は正極集電体に対して垂直な概略断面図であり、図1において、1は正極集電体、2は第二の正極合剤層、3は第一の正極合剤層を示す。
(Positive electrode)
The positive electrode included in the nonaqueous electrolyte secondary battery of the present invention includes a second positive electrode mixture layer formed between the positive electrode current collector and the first positive electrode mixture layer. A schematic cross-sectional view showing one embodiment of the positive electrode of the present invention is shown in FIG. FIG. 1 is a schematic sectional view perpendicular to the positive electrode current collector. In FIG. 1, 1 is a positive electrode current collector, 2 is a second positive electrode mixture layer, and 3 is a first positive electrode mixture layer. .

本発明において、正極集電体1に対する第二の正極合剤層2の被覆率は60〜95%であり、好ましくは80〜95%である。このように第二の正極合剤層2により正極集電体1の表面全体を完全に被覆することなく、正極集電体表面の一部を適度に露出させて被覆することにより、過充電時の安全性が優れるとともに、高率放電特性の低下が防止される。このような効果が得られるメカニズムの詳細は明らかではないが、以下のメカニズムに基づくものと考えられる。
従来、正極集電体1を被覆しない領域(リチウム複合酸化物粒子間のすき間)が存在すると、当該リチウム複合酸化物粒子間のすき間において正極集電体1と第一の正極合剤層3の活物質粒子30とが接触することがあり、過充電時に電流が流れるため、上記抵抗上昇は全体として有効に起こらないものと考えられていた。
しかしながら、本発明においては、第二の正極合剤層2の被覆率を上記特定範囲内にすることにより、過充電時に電流がリチウム複合酸化物粒子間のすき間へ集中するようになる。リチウム複合酸化物粒子間のすき間における電流集中により電圧上昇が起こるため、過充電に対する安全性が優れると考えられる。また、リチウム複合酸化物粒子間のすき間において正極集電体1と第一の正極合剤層3の活物質粒子30とが接触して電流が流れるために、高率放電特性の低下が防止されるものと考えられる。
In this invention, the coverage of the 2nd positive mix layer 2 with respect to the positive electrode electrical power collector 1 is 60 to 95%, Preferably it is 80 to 95%. In this way, the second positive electrode mixture layer 2 does not completely cover the entire surface of the positive electrode current collector 1 but covers a part of the surface of the positive electrode current collector so as to be appropriately exposed. The safety of the battery is excellent and the deterioration of the high rate discharge characteristic is prevented. Although the details of the mechanism for obtaining such an effect are not clear, it is considered to be based on the following mechanism.
Conventionally, when there is a region that does not cover the positive electrode current collector 1 (a gap between the lithium composite oxide particles), the positive electrode current collector 1 and the first positive electrode mixture layer 3 are formed between the lithium composite oxide particles. Since the active material particles 30 may come into contact with each other and a current flows during overcharging, it has been considered that the above resistance increase does not occur effectively as a whole.
However, in the present invention, by setting the coverage of the second positive electrode mixture layer 2 within the above specific range, current is concentrated in the gaps between the lithium composite oxide particles during overcharge. Since the voltage rises due to current concentration in the gaps between the lithium composite oxide particles, it is considered that the safety against overcharge is excellent. Moreover, since the positive electrode current collector 1 and the active material particles 30 of the first positive electrode mixture layer 3 are in contact with each other in the gap between the lithium composite oxide particles, the current flows, so that the high rate discharge characteristics are prevented from being deteriorated. It is thought that.

本発明において正極は、第一の正極合剤層3の活物質粒子30が正極集電体1と接触する部分を有することが好ましい。これにより、高率放電特性を向上させることができる。   In the present invention, the positive electrode preferably has a portion where the active material particles 30 of the first positive electrode mixture layer 3 are in contact with the positive electrode current collector 1. Thereby, a high rate discharge characteristic can be improved.

図1において、第二の正極合剤層2および第一の正極合剤層3は正極集電体1の片面のみに形成されているが、これに限定されるものではなく、正極集電体1の両面に形成されていてもよい。第二の正極合剤層2および第一の正極合剤層3が正極集電体1の両面に形成される場合、少なくとも一方の面における第二の正極合剤層2の被覆率が上記範囲内であればよく、好ましくは両面における第二の正極合剤層2の被覆率がそれぞれ独立して上記範囲内である。   In FIG. 1, the second positive electrode mixture layer 2 and the first positive electrode mixture layer 3 are formed only on one side of the positive electrode current collector 1, but the present invention is not limited to this. 1 may be formed on both sides. When the second positive electrode mixture layer 2 and the first positive electrode mixture layer 3 are formed on both surfaces of the positive electrode current collector 1, the coverage of the second positive electrode mixture layer 2 on at least one surface is in the above range. Preferably, the coverage of the second positive electrode mixture layer 2 on both sides is independently within the above range.

第二の正極合剤層2の被覆率は、以下の方法により測定することができる。
正極集電体1に対して垂直な正極断面が見られるように、SEM(走査型電子顕微鏡)写真を撮影する。得られた写真において、まず、図2に示すように、正極集電体1に対して垂直な直線(破線)により、第二の正極合剤層2を構成するリチウム複合酸化物粒子20による被覆領域21を規定する。次に、当該写真上において、各粒子20における被覆領域21の合計長さを算出する。そして、上に第一の活物質合剤層3が塗布された正極集電体1表面の全長40に対する被覆領域21の合計長さの割合を被覆率として算出する。図2は、正極集電体1に対して垂直な正極の概略断面図であって、第一の正極合剤層3を省略した図である。
The coverage of the second positive electrode mixture layer 2 can be measured by the following method.
An SEM (scanning electron microscope) photograph is taken so that a positive electrode cross section perpendicular to the positive electrode current collector 1 can be seen. In the obtained photograph, first, as shown in FIG. 2, coating with lithium composite oxide particles 20 constituting the second positive electrode mixture layer 2 is performed by a straight line (broken line) perpendicular to the positive electrode current collector 1. Region 21 is defined. Next, the total length of the covering region 21 in each particle 20 is calculated on the photograph. And the ratio of the total length of the coating area | region 21 with respect to the full length 40 of the positive electrode collector 1 surface on which the 1st active material mixture layer 3 was apply | coated is calculated as a coverage. FIG. 2 is a schematic cross-sectional view of the positive electrode perpendicular to the positive electrode current collector 1, in which the first positive electrode mixture layer 3 is omitted.

第二の正極合剤層2は正極集電体1表面上に形成されたリチウム複合酸化物粒子20を含む層であり、第一の正極合剤層3は第二の正極合剤層2表面に形成された活物質粒子30を含む層である。第二の正極合剤層2における正極集電体1表面のリチウム複合酸化物粒子間のすき間には、図1に示すように、第一の正極合剤層3の活物質粒子30が存在することがあるので、第二の正極合剤層2と第一の正極合剤層3との境界は厳密には規定できるものではない。第二の正極合剤層2とは正極集電体1に対して垂直な断面においてリチウム複合酸化物粒子20が主として存在する正極集電体表面上の領域を意味し、第一の正極合剤層3とは同断面において活物質粒子30が主として存在する第二の正極合剤層2上の領域を意味するものとする。   The second positive electrode mixture layer 2 is a layer containing lithium composite oxide particles 20 formed on the surface of the positive electrode current collector 1, and the first positive electrode mixture layer 3 is the surface of the second positive electrode mixture layer 2. It is a layer containing the active material particles 30 formed in the. In the gap between the lithium composite oxide particles on the surface of the positive electrode current collector 1 in the second positive electrode mixture layer 2, the active material particles 30 of the first positive electrode mixture layer 3 are present as shown in FIG. Therefore, the boundary between the second positive electrode mixture layer 2 and the first positive electrode mixture layer 3 cannot be strictly defined. The second positive electrode mixture layer 2 means a region on the surface of the positive electrode current collector where the lithium composite oxide particles 20 are mainly present in a cross section perpendicular to the positive electrode current collector 1. The layer 3 means a region on the second positive electrode mixture layer 2 where the active material particles 30 mainly exist in the same cross section.

第二の正極合剤層2においてリチウム複合酸化物粒子20の平均粒径dは特に限定されるものではなく、通常、1〜60μmであり、好ましくは1〜40μmである。 In the second positive electrode mixture layer 2, the average particle diameter d L of the lithium composite oxide particles 20 is not particularly limited, and is usually 1 to 60 μm, preferably 1 to 40 μm.

第一の正極合剤層3において活物質粒子30の平均粒径dもまた特に限定されるものではなく、通常、0.5〜60μmであり、好ましくは1〜20μmである。 The average particle diameter d A of the active material particles 30 in the first positive electrode mixture layer 3 is also not particularly limited, and is usually 0.5 to 60 μm, preferably 1 to 20 μm.

第二の正極合剤層2に含まれるリチウム複合酸化物粒子20および第一の正極合剤層3に含まれる活物質粒子30の粒子の大きさについて、一次粒子が凝集して二次粒子を形成している場合には、粒径は二次粒子の粒径をいう。一次粒子が二次粒子を形成していない場合には、粒径は一次粒子の粒径をいう。   Regarding the size of the lithium composite oxide particles 20 included in the second positive electrode mixture layer 2 and the active material particles 30 included in the first positive electrode mixture layer 3, the primary particles aggregate to form secondary particles. When formed, the particle size refers to the particle size of the secondary particles. When the primary particles do not form secondary particles, the particle size refers to the particle size of the primary particles.

第一の正極合剤層3の活物質粒子30の平均粒径dおよび第二の正極合剤層2のリチウム複合酸化物粒子20の平均粒径dは、エネルギー分散型X線分光法(EDX)の元素組成分析によりリチウム複合酸化物粒子20と活物質粒子30とを判別しながら、断面SEM観察することにより測定することができる。平均粒径は各粒子の粒径の平均値を求めた値であり、粒径は最長粒径と最短粒径との平均値である。リチウム複合酸化物粒子20は、第一の正極合剤層3の活物質粒子30に比べて、マンガンもしくはリンの元素のモル比の含有割合が大きい粒子であることが好ましい。 The average particle diameter d A of the active material particles 30 of the first positive electrode mixture layer 3 and the average particle diameter d L of the lithium composite oxide particles 20 of the second positive electrode mixture layer 2 are energy dispersive X-ray spectroscopy. It can be measured by observing a cross section SEM while discriminating between the lithium composite oxide particles 20 and the active material particles 30 by elemental composition analysis of (EDX). The average particle diameter is a value obtained by calculating an average value of the particle diameters of the respective particles, and the particle diameter is an average value of the longest particle diameter and the shortest particle diameter. The lithium composite oxide particles 20 are preferably particles having a larger content ratio of the molar ratio of manganese or phosphorus than the active material particles 30 of the first positive electrode mixture layer 3.

本発明においてリチウム複合酸化物粒子20の平均粒径dと活物質粒子30の平均粒径dとの比率(d/d)は0.1〜6が好ましい。(d/d)はより好ましくは0.2〜3であり、さらに好ましくは0.25〜1である。
リチウム複合酸化物粒子20の平均粒径dに対する活物質粒子30の平均粒径dが6以下の範囲が好ましい。この範囲であれば、活物質粒子30が第二の正極合剤層2に入り込みやすく、活物質粒子30が正極集電体1と接触することができると考えられる。より好ましくは、(d/d)は3以下の範囲である。(d/d)が3以下の範囲では、正極集電体1にリチウム複合酸化物粒子20間のすき間で、正極集電体1と接触する活物質粒子30が増えると考えられるので、さらに高率放電特性を良好にすることができる。
また、リチウム複合酸化物粒子20の平均粒径dと活物質粒子30の平均粒径dとの比率(d/d)は好ましくは0.1以上の範囲である。(d/d)は0.1以上の範囲であると、リチウム複合酸化物粒子20と正極集電体1との間に活物質粒子30が入りこむことが抑制されると考えられるので、第二の正極合剤層2における正極集電体1と接した活物質粒子30への電流集中による電圧上昇が起こり、過充電に対する安全性がさらに良好である。
The ratio between the average particle diameter d A of the mean particle diameter d L and the active material particles 30 of the lithium composite oxide particles 20 in the present invention (d A / d L) is preferably from 0.1 to 6. (D A / d L ) is more preferably 0.2 to 3, and further preferably 0.25 to 1.
The average particle diameter d A of the active material particles 30 with respect to the average particle diameter d L of the lithium composite oxide particles 20 is preferably in the range of 6 or less. Within this range, it is considered that the active material particles 30 can easily enter the second positive electrode mixture layer 2 and the active material particles 30 can come into contact with the positive electrode current collector 1. More preferably, (d A / d L ) is in the range of 3 or less. In the range where (d A / d L ) is 3 or less, the active material particles 30 in contact with the positive electrode current collector 1 are considered to increase in the gap between the lithium composite oxide particles 20 on the positive electrode current collector 1. Furthermore, high rate discharge characteristics can be improved.
Further, the ratio (d A / d L ) between the average particle diameter d A of the lithium composite oxide particles 20 and the average particle diameter d L of the active material particles 30 is preferably in the range of 0.1 or more. Since (d A / d L ) is in the range of 0.1 or more, it is considered that the active material particles 30 are prevented from entering between the lithium composite oxide particles 20 and the positive electrode current collector 1. In the second positive electrode mixture layer 2, a voltage increase occurs due to current concentration on the active material particles 30 in contact with the positive electrode current collector 1, and safety against overcharging is further improved.

本発明において、正極集電体1上のリチウム複合酸化物粒子間のすき間の長さの最大値gは5μmから45μmの範囲であることが好ましい。さらに好ましくは、すき間の長さの最大値gは9μm以上30μm以下である範囲である。リチウム複合酸化物粒子間のすき間の長さの最大値gを5μm以上の範囲とすることで、活物質粒子30がすき間に入り込むことができると考えられるので、高率放電特性の観点から有利である。すき間の長さの最大値gが9μm以上である範囲が、すき間に入り込むことができる活物質粒子30が適度に増えると考えられるので、さらに好ましい。また、リチウム複合酸化物粒子間のすき間の長さgを45μm以下の範囲とすることで、電流集中が起きるすき間の面積が狭いため、電圧上昇が十分起こると考えられるので、過充電に対する安全性が優れる点で好ましい。 In the present invention, the maximum value g M of the gap length between the lithium composite oxide particles on the positive electrode current collector 1 is preferably in the range of 5 μm to 45 μm. More preferably, the maximum value g M of the length of the gap is in the range is 9μm or more 30μm or less. By the maximum value g M of the gap length between the lithium complex oxide particles and at over 5 [mu] m, since the active material particles 30 can be considered to be able to enter the gap, advantageous in view of high rate discharge property It is. Range Maximum value g M of the length of the gap is 9μm or, since the active material particles 30 that can enter the gap is considered moderately increases, further preferred. Further, by setting the length g M of the gap between the lithium composite oxide particles and the range of 45 [mu] m, narrower area of the gap current concentration occurs, it is considered that the voltage rise is sufficiently occur, safety against overcharge It is preferable in terms of excellent properties.

正極集電体1上のリチウム複合酸化物粒子間のすき間の長さの最大値gと活物質粒子30の平均粒径dとの比率(d/g)は0.07から4の範囲であることが好ましい。(d/g)はより好ましくは0.1以上1以下であり、さらに好ましくは0.2以上0.4以下である。正極集電体1上のリチウム複合酸化物粒子間のすき間の長さの最大値gと活物質粒子30の平均粒径dとの比率(d/g)を4以下の範囲とすることで、活物質粒子30の平均粒径が小さいと、正極集電体1と活物質粒子30が接触できると考えられるので、高率放電特性の観点から有利である。(d/g)の値が1以下であることで、正極集電体1と接触できる活物質粒子30が顕著に増加すると考えられるので、さらに好ましい。また、正極集電体1上のリチウム複合酸化物粒子間のすき間の長さの最大値gと活物質粒子30の平均粒径dとの比率(d/g)を0.07以上の範囲とすることで、活物質粒子30が正極集電体1と接することを抑制すると考えられるので、過充電に対する安全性が優れる点で好ましい。 The ratio (d A / g M ) between the maximum value g M of the gap length between the lithium composite oxide particles on the positive electrode current collector 1 and the average particle diameter d A of the active material particles 30 is 0.07 to 4 It is preferable that it is the range of these. (D A / g M ) is more preferably 0.1 or more and 1 or less, and further preferably 0.2 or more and 0.4 or less. The ratio (d A / g M ) between the maximum value g M of the gap length between the lithium composite oxide particles on the positive electrode current collector 1 and the average particle diameter d A of the active material particles 30 is 4 or less. Thus, if the average particle diameter of the active material particles 30 is small, it is considered that the positive electrode current collector 1 and the active material particles 30 can contact each other, which is advantageous from the viewpoint of high rate discharge characteristics. It is further preferable that the value of (d A / g M ) is 1 or less because the active material particles 30 that can be brought into contact with the positive electrode current collector 1 are remarkably increased. Further, the ratio (d A / g M ) between the maximum value g M of the gap length between the lithium composite oxide particles on the positive electrode current collector 1 and the average particle diameter d A of the active material particles 30 is 0.07. By setting it as the above range, since it is thought that the active material particle 30 suppresses contacting with the positive electrode collector 1, it is preferable at the point which is excellent in the safety | security with respect to an overcharge.

本発明において、正極集電体1上のリチウム複合酸化物粒子間のすき間の長さの平均値gLは3μmから30μmの範囲であることが好ましい。リチウム複合酸化物粒子間のすき間の長さの平均値gLを3μm以上の範囲とすることで、入り込む活物質粒子30をより多くすることができると考えられるので、高率放電特性の観点から有利である。また、リチウム複合酸化物粒子間のすき間の長さgLを30μm以下の範囲とすることで、リチウム複合酸化物粒子間のすき間の活物質粒子30において、すき間の面積が平均的に狭いので、入り込む活物質粒子30をより少なくし電流集中による電圧上昇が効果的に起こると考えられるため、過充電に対する安全性が優れる点で好ましい。 In the present invention, the average value g L of the gap length between the lithium composite oxide particles on the positive electrode current collector 1 is preferably in the range of 3 μm to 30 μm. From the viewpoint of high rate discharge characteristics, it is considered that the active material particles 30 can enter more by setting the average value g L of the gaps between the lithium composite oxide particles in the range of 3 μm or more. It is advantageous. In addition, by setting the gap length g L between the lithium composite oxide particles in a range of 30 μm or less, the active material particle 30 between the lithium composite oxide particles has an average narrow gap area. Since it is considered that the increase in voltage due to current concentration occurs effectively with fewer active material particles 30 entering, it is preferable in terms of excellent safety against overcharging.

本発明において、リチウム複合酸化物粒子間のすき間の長さの平均値gLと活物質粒子30の平均粒径dとの比率(d/gL)は0.1から8の範囲であることが好ましい。リチウム複合酸化物粒子間のすき間の長さの平均値と活物質粒子30の平均粒径dとの比率(d/gL)が8以下の範囲とすることで、正極集電体1と接触する活物質粒子30が多くなると考えられるので、高率放電特性の観点から有利である。また、リチウム複合酸化物粒子間のすき間の長さの平均値と活物質粒子30の平均粒径dとの比率(d/gL)が0.1以上の範囲とすることで、正極集電体1と接触する活物質粒子30の入り込みが抑制されると考えられ、過充電に対する安全性が優れる点で好ましい。 In the present invention, the ratio (d A / g L ) between the average value g L of the gap length between the lithium composite oxide particles and the average particle diameter d A of the active material particles 30 is in the range of 0.1 to 8. Preferably there is. By setting the ratio (d A / g L ) between the average value of the gap length between the lithium composite oxide particles and the average particle diameter d A of the active material particles 30 to 8 or less, the positive electrode current collector 1 This is advantageous from the viewpoint of high-rate discharge characteristics. Further, the ratio (d A / g L ) between the average value of the length of the gap between the lithium composite oxide particles and the average particle diameter d A of the active material particles 30 is in the range of 0.1 or more, so that the positive electrode It is considered that the entrance of the active material particles 30 that come into contact with the current collector 1 is suppressed, which is preferable in terms of excellent safety against overcharging.

正極集電体上のリチウム複合酸化物粒子間のすき間の長さの平均値gLおよび最大値gは、以下の方法で測定される。
上述の方法で断面のSEM顕微鏡写真を撮影する。得られた写真において、まず、リチウム複合酸化物粒子30と隣のリチウム複合酸化物粒子30との間の距離をリチウム複合酸化物粒子間のすき間の長さと規定する。隣のリチウム複合酸化物粒子30と接している場合には、リチウム複合酸化物粒子間のすき間とは考えない。リチウム複合酸化物粒子間のすき間の長さの平均値gLは、各リチウム複合酸化物粒子間のすき間の長さの平均値である。リチウム複合酸化物粒子間のすき間の長さの最大値gは、特定の範囲におけるリチウム複合酸化物粒子間のすき間の最大の長さの平均値である。
The average value g L and the maximum value g M of the gap length between the lithium composite oxide particles on the positive electrode current collector are measured by the following method.
A cross-sectional SEM micrograph is taken by the method described above. In the obtained photograph, first, the distance between the lithium composite oxide particles 30 and the adjacent lithium composite oxide particles 30 is defined as the gap length between the lithium composite oxide particles. When it is in contact with the adjacent lithium composite oxide particles 30, it is not considered as a gap between the lithium composite oxide particles. The average value g L of the gaps between the lithium composite oxide particles is the average value of the gap lengths between the lithium composite oxide particles. Maximum value g M of the length of the gap between the lithium composite oxide particles is the average value of the maximum length of the gap between the lithium composite oxide particles in a particular range.

第二の正極合剤層2は、特定の第二の正極合剤層用ペーストを正極用集電体1の表面に特定の厚みで塗布し、乾燥することにより作製することができる。   The second positive electrode mixture layer 2 can be produced by applying a specific second positive electrode mixture layer paste to the surface of the positive electrode current collector 1 with a specific thickness and drying.

第二の正極合剤層用ペーストは少なくともリチウム複合酸化物粒子20およびバインダーを水に分散させてなり、必要に応じて、増粘剤および導電助剤等を含んでもよい。アルミ箔への塗工において,水の代わりに有機溶媒を用いる場合、または水とともに有機溶媒を用いる場合、アルミ箔がペーストをはじく効果が抑制されるため、当該粒子は正極集電体表面に並びやすくなり、被覆率が大きくなり過ぎるおそれがある。   The second paste for the positive electrode mixture layer is formed by dispersing at least the lithium composite oxide particles 20 and the binder in water, and may contain a thickener and a conductive aid, if necessary. When coating an aluminum foil with an organic solvent instead of water, or using an organic solvent with water, the effect of the aluminum foil repelling the paste is suppressed, so the particles are aligned on the surface of the positive electrode current collector. It becomes easy and there is a possibility that the coverage becomes too large.

リチウム複合酸化物粒子20は、過充電時に酸化物内部からリチウムが引き抜かれることによって、抵抗増加するという電気化学挙動を示す。当該抵抗増加が後述する第一の正極合剤層3に主として含まれる活物質粒子30よりも大きい。   The lithium composite oxide particles 20 exhibit an electrochemical behavior in which resistance is increased by extracting lithium from the inside of the oxide during overcharge. The resistance increase is larger than that of the active material particles 30 mainly contained in the first positive electrode mixture layer 3 described later.

リチウム複合酸化物粒子20が、好ましくはスピネル構造またはオリビン構造を有する。   The lithium composite oxide particles 20 preferably have a spinel structure or an olivine structure.

スピネル型リチウム複合酸化物粒子の具体例として、一般式:
Li 4−q
で表される化合物粒子が挙げられる。
式中、Mは1種以上の遷移金属を含む1種以上の金属であり、好ましくは長周期型周期表における原子番号が21から29までの遷移金属からなる群から選択される1種以上の金属であり、より好ましくはMn、Niからなる群から選択される1種以上の金属である。
xは0<x≦2であり、好ましくは0.8≦x≦1.2である。
pは1.8≦p≦2.2である。
qは0≦q≦0.5である。
As a specific example of the spinel type lithium composite oxide particles, the general formula:
Li x M 1 p O 4-q
The compound particle | grains represented by these are mentioned.
In the formula, M 1 is one or more metals including one or more transition metals, and preferably one or more selected from the group consisting of transition metals having an atomic number of 21 to 29 in the long-period periodic table More preferably, it is one or more metals selected from the group consisting of Mn and Ni.
x is 0 <x ≦ 2, preferably 0.8 ≦ x ≦ 1.2.
p is 1.8 ≦ p ≦ 2.2.
q is 0 ≦ q ≦ 0.5.

オリビン型リチウム複合酸化物粒子の具体例として、一般式:
Li PO4−q
で表される化合物粒子が挙げられる。
式中、Mは1種以上の遷移金属を含む1種以上の金属であり、好ましくは長周期型周期表における原子番号が21から29までの遷移金属からなる群から選択される1種以上の金属であり、より好ましくはFe、Co、Mn、Niからなる群から選択される1種以上の金属である。
xは0<x≦2であり、好ましくは0.8≦x≦1.2である。
rは0.8≦r≦1.2である。
qは0≦q≦0.5である。
As a specific example of the olivine-type lithium composite oxide particles, a general formula:
Li x M 2 r PO 4-q
The compound particle | grains represented by these are mentioned.
In the formula, M 2 is one or more metals including one or more transition metals, and preferably one or more selected from the group consisting of transition metals having an atomic number of 21 to 29 in the long-period periodic table More preferably, it is at least one metal selected from the group consisting of Fe, Co, Mn, and Ni.
x is 0 <x ≦ 2, preferably 0.8 ≦ x ≦ 1.2.
r is 0.8 ≦ r ≦ 1.2.
q is 0 ≦ q ≦ 0.5.

リチウム複合酸化物粒子はAl、Zn、Cr、Ti、P、Bなどの元素を本願の効果を奏しうる範囲の量で含んでもよい。第二の正極合剤層2は組成の異なる2種以上のリチウム複合酸化物粒子20を含んでもよい。   The lithium composite oxide particles may contain elements such as Al, Zn, Cr, Ti, P, and B in an amount within a range in which the effects of the present application can be achieved. The second positive electrode mixture layer 2 may include two or more lithium composite oxide particles 20 having different compositions.

本発明においては、リチウム複合酸化物粒子は、上記したリチウム複合酸化物粒子の中でも、ペーストの塗工性の観点から、スピネル型リチウム複合酸化物粒子を含むことが好ましく、特にスピネル型マンガン酸リチウム粒子を含むことがより好ましい。オリビン型リン酸鉄リチウムのようなオリビン型リチウム複合酸化物粒子に比べ、スピネル型リチウム複合酸化物粒子は比表面積が小さく、特にスピネル型マンガン酸リチウム粒子は比表面積が小さいので、ペーストの溶媒の蒸発を抑制することができる。   In the present invention, the lithium composite oxide particles preferably include spinel type lithium composite oxide particles from the viewpoint of paste coatability among the lithium composite oxide particles described above, and in particular, spinel type lithium manganate. More preferably, it contains particles. Compared to olivine-type lithium composite oxide particles such as olivine-type lithium iron phosphate, spinel-type lithium composite oxide particles have a small specific surface area, and in particular, spinel-type lithium manganate particles have a small specific surface area. Evaporation can be suppressed.

スピネル型マンガン酸リチウム粒子の具体例として、一般式:
LiMn 4−q
で表される化合物粒子が挙げられる。
式中、Mは1種以上の遷移金属を含む1種以上の金属(Mn以外)であり、好ましくは長周期型周期表における原子番号が21から29までの遷移金属からなる群から選択される1種以上の金属であり、より好ましくはNiである。
xは0<x≦2であり、好ましくは0.8≦x≦1.2である。
tは0≦t≦0.5であり、好ましくは0である。
sは1.8−t≦s≦2.2−tである。
qは0≦q≦0.5である。
As a specific example of spinel type lithium manganate particles, a general formula:
Li x Mn s M 3 t O 4-q
The compound particle | grains represented by these are mentioned.
In the formula, M 3 is one or more metals (other than Mn) including one or more transition metals, preferably selected from the group consisting of transition metals having an atomic number of 21 to 29 in the long-period periodic table. One or more metals, more preferably Ni.
x is 0 <x ≦ 2, preferably 0.8 ≦ x ≦ 1.2.
t is 0 ≦ t ≦ 0.5, preferably 0.
s is 1.8−t ≦ s ≦ 2.2−t.
q is 0 ≦ q ≦ 0.5.

第二の正極合剤層用バインダーとしては、アクリル系ポリマー、スチレンブタジエンゴム、オレフィン系ポリマー(例えば、ポリエチレン(PE))、ビニル系ポリマー、フッ素系ポリマーなどの水分散体を用いることができる。耐高電圧性の観点からはアクリル系ポリマーの分散体が好ましい。ポリマーの水分散体とは、ポリマー粒子が水に乳化分散されたものであり、必要に応じて乳化剤として界面活性剤を含有してもよい。また有機溶媒を用いた場合に、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレンなどを用いることができる。   As the binder for the second positive electrode mixture layer, an aqueous dispersion such as an acrylic polymer, a styrene butadiene rubber, an olefin polymer (for example, polyethylene (PE)), a vinyl polymer, and a fluorine polymer can be used. From the viewpoint of high voltage resistance, an acrylic polymer dispersion is preferred. The polymer aqueous dispersion is obtained by emulsifying and dispersing polymer particles in water, and may contain a surfactant as an emulsifier, if necessary. When an organic solvent is used, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene, or the like can be used.

第二の正極合剤層用増粘剤としては、アクリル系やセルロース系などの水溶性高分子を用いることができる。分散性と増粘性の観点からはセルロース系増粘剤が好ましい。セルロース系増粘剤の具体例としては、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、ヒドロキシプロピルメチルセルロース(HPMC)等を挙げることができるが、その中でも特にCMCが好ましい。   As the second thickener for the positive electrode mixture layer, water-soluble polymers such as acrylic and cellulose can be used. From the viewpoint of dispersibility and thickening, a cellulosic thickener is preferred. Specific examples of the cellulose-based thickener include carboxymethylcellulose (CMC), methylcellulose (MC), hydroxypropylmethylcellulose (HPMC), etc. Among them, CMC is particularly preferable.

第二の正極合剤層用導電助剤としては、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック、グラファイト、炭素繊維や金属繊維などの導電性繊維、金属粉末などを用いることができる。導電助剤は、第二の正極合剤層中、粒状もしくは繊維状で存在するが、粒径がリチウム複合酸化物粒子20に比べ極めて小さいので、第二の正極合剤層中のリチウム複合酸化物粒子20および、第一の正極合剤層中の活物質粒子30と、明確に区別できるものである。   As the second conductive additive for the positive electrode mixture layer, carbon black such as acetylene black, ketjen black and furnace black, graphite, conductive fibers such as carbon fiber and metal fiber, metal powder, and the like can be used. The conductive auxiliary agent is present in the second positive electrode mixture layer in the form of particles or fibers, but the particle size is extremely smaller than that of the lithium composite oxide particle 20, so that the lithium composite oxidation in the second positive electrode mixture layer is performed. The material particles 20 and the active material particles 30 in the first positive electrode mixture layer can be clearly distinguished.

第二の正極合剤層2は導電助剤を含有することが、高率放電特性の観点から好ましい。
第二の正極合剤層用導電助剤の添加量は、過充電に対する安全性および高率放電特性のさらなる向上の観点から、通常、リチウム複合酸化物粒子100重量部に対して、0.1〜4質量部であり、好ましくは0.6〜2質量部である。第二の正極合剤層中の導電助剤の割合が0.6質量部以上の範囲であると、より一層十分な高率放電特性が得られる。第二の正極合剤層中の導電助剤の割合が2質量部以下の範囲では、過充電時の安全性の点でより一層有利である。
The second positive electrode mixture layer 2 preferably contains a conductive additive from the viewpoint of high rate discharge characteristics.
The addition amount of the second conductive additive for the positive electrode mixture layer is usually 0.1% with respect to 100 parts by weight of the lithium composite oxide particles, from the viewpoint of further improvement of safety against overcharge and high rate discharge characteristics. It is -4 mass parts, Preferably it is 0.6-2 mass parts. When the ratio of the conductive additive in the second positive electrode mixture layer is in the range of 0.6 parts by mass or more, more sufficient high rate discharge characteristics can be obtained. When the proportion of the conductive additive in the second positive electrode mixture layer is 2 parts by mass or less, it is further advantageous in terms of safety during overcharge.

第二の正極合剤層2の被覆率は、上記したリチウム複合酸化物粒子20、バインダー、増粘剤および導電助剤などの固形分が添加される水の量を調整することにより制御することができる。当該固形分濃度が低すぎると、第二の正極合剤層2の被覆率が小さくなり過ぎる。   The coverage of the second positive electrode mixture layer 2 is controlled by adjusting the amount of water to which solid components such as the lithium composite oxide particles 20, the binder, the thickener, and the conductive additive are added. Can do. When the solid content concentration is too low, the coverage of the second positive electrode mixture layer 2 becomes too small.

第二の正極合剤層2の被覆率は、アプリケータを用いて塗布する場合、当該アプリケータの隙間を選択または調整することにより制御することができる。アプリケータのすき間が大きすぎると、第二の正極合剤層2の被覆率が大きくなり過ぎる。   The coverage of the second positive electrode material mixture layer 2 can be controlled by selecting or adjusting the gap between the applicators when the applicator is used. When the gap of the applicator is too large, the coverage of the second positive electrode mixture layer 2 becomes too large.

正極集電体1は例えば、アルミニウムまたはアルミニウム合金からなる箔などを用いることができる。正極集電体1の厚みは通常、5〜30μmである。   As the positive electrode current collector 1, for example, a foil made of aluminum or an aluminum alloy can be used. The thickness of the positive electrode current collector 1 is usually 5 to 30 μm.

第一の正極合剤層3は、第一の正極合剤層用ペーストを、第二の正極合剤層2上に塗布し、乾燥することにより作製することができる。その後、プレスして所定の密度にすることができる。第二の正極合剤層2のみを先にプレスしてから、第一の正極合剤層用ペーストを第二の正極合剤層2上に塗布してもよい。   The 1st positive mix layer 3 can be produced by apply | coating the 1st positive mix layer paste on the 2nd positive mix layer 2, and drying. Thereafter, it can be pressed to a predetermined density. Only the second positive electrode mixture layer 2 may be pressed first, and then the first positive electrode mixture layer paste may be applied onto the second positive electrode mixture layer 2.

第一の正極合剤層用ペーストは少なくとも活物質粒子30およびバインダーを溶媒に分散または溶解させてなり、必要に応じて、増粘剤および導電助剤等を含んでもよい。   The first paste for the positive electrode mixture layer is formed by dispersing or dissolving at least the active material particles 30 and the binder in a solvent, and may contain a thickener and a conductive auxiliary agent as necessary.

第一の正極合剤層の活物質粒子30としては、例えば、LiCoO2、LiNiO2、LiMnO2、LiCoNiO2、LiCoMO2、LiNiMO2(本段落においてMは共通してNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBのうち少なくとも1つ)が含まれる。さらに,これら正極活物質の一部元素が異種金属で置換されたものであってもよい。エネルギー密度の観点から、Co、NiおよびMnを含む三成分系の層状酸化物が好ましい。 As the active material particles 30 of the first positive electrode mixture layer, for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiCoNiO 2 , LiCoMO 2 , LiNiMO 2 (in this paragraph, M is commonly Na, Mg, Sc, Y). , Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B). Furthermore, a part of elements of these positive electrode active materials may be replaced with a different metal. From the viewpoint of energy density, a ternary layered oxide containing Co, Ni and Mn is preferable.

活物質粒子30はアスペクト比(最長粒径d/最短粒径dの平均値)が1〜1.4であることが好ましい。アスペクト比がこの範囲であることにより、活物質粒子30がリチウム複合酸化物粒子のすき間を容易に通ることができるので、高率放電特性の観点から有利である。より好ましくは、活物質粒子30のアスペクト比は1以上1.25以下である。この範囲であれば、高率放電特性の観点からさらに有利である。 Active material particles 30 is preferably an aspect ratio (average value of the longest diameter d M / shortest diameter d m) is 1 to 1.4. When the aspect ratio is within this range, the active material particles 30 can easily pass through the gaps of the lithium composite oxide particles, which is advantageous from the viewpoint of high rate discharge characteristics. More preferably, the aspect ratio of the active material particles 30 is 1 or more and 1.25 or less. This range is further advantageous from the viewpoint of high rate discharge characteristics.

第一の正極合剤層3の活物質粒子30のアスペクト比は、断面のSEM顕微鏡写真を用いて、活物質粒子30の最長粒径dと最短粒径dを測定することで、算出することができる。最長粒径dは、粒子の輪郭上で最も離れた2点間の長さである。粒子の輪郭上で最も離れた2点の中点を、中心点とする。最短粒径dは、当該中心点を通る最短粒径である。 The aspect ratio of the first active material particles 30 of the positive electrode mixture layer 3, by using a SEM micrograph of a cross-section, measuring the longest particle diameter d M and the shortest diameter d m of the active material particles 30, calculates can do. Maximum grain size d M is the length between the most distant two points on the outline of the particle. The midpoint of the two points that are farthest apart from each other on the particle outline is taken as the center point. Shortest diameter d m is the shortest diameter passing through the center point.

第一の正極合剤層用バインダーとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン,アクリル系ポリマー、スチレンブタジレンゴム,ポリエチレン(PE),カルボキシメチルセルロース(CMC)などを用いることができる。   As the binder for the first positive electrode mixture layer, polyvinylidene fluoride, polytetrafluoroethylene, acrylic polymer, styrene butadiene rubber, polyethylene (PE), carboxymethyl cellulose (CMC), or the like can be used.

第一の正極合剤層用増粘剤としては、第二の正極合剤層用ペーストに含まれる増粘剤と同様の化合物を水系のバインダーを用いた場合に用いることができる。   As the first thickener for the positive electrode mixture layer, the same compound as the thickener contained in the second positive electrode mixture layer paste can be used when an aqueous binder is used.

第一の正極合剤層用導電助剤としては、第二の正極合剤層用ペーストに含まれる導電助剤と同様の材料を用いることができる。第一の正極合剤層用導電助剤の添加量は、充放電効率の観点から、通常、正極活物質粒子100重量部に対して、0.5〜10質量部であり、好ましくは1〜5質量部である。   As the first conductive additive for the positive electrode mixture layer, the same material as the conductive additive contained in the second positive electrode mixture layer paste can be used. The addition amount of the first conductive additive for the positive electrode mixture layer is usually 0.5 to 10 parts by mass, preferably 1 to 100 parts by weight with respect to 100 parts by weight of the positive electrode active material particles, from the viewpoint of charge / discharge efficiency. 5 parts by mass.

第一の正極合剤層用ペーストの溶媒は特に制限されず、例えば、N−メチル−2−ピロリドンなどの有機溶媒、水、およびそれらの混合物が挙げられる。   The solvent of the first positive electrode mixture layer paste is not particularly limited, and examples thereof include organic solvents such as N-methyl-2-pyrrolidone, water, and mixtures thereof.

第二の正極合剤層2の厚みtに対する第一の正極合剤層3の厚みtの比率(t/t)は、過充電に対する安全性および電池のエネルギー密度向上の観点から、3〜20が好ましい。第一の正極合剤層3の厚みとは、第二の正極合剤層2の厚みを含まない厚みである。
第二の正極合剤層2の厚みtは、前記したSEM画像において、当該層の最大厚みの平均値である。
第一の正極合剤層3の厚みtは、第二の正極合剤層2の最大厚みの直上の第一の正極合剤層3の厚みの平均値である。
The ratio (t A / t L ) of the thickness t A of the first positive electrode mixture layer 3 to the thickness t L of the second positive electrode mixture layer 2 is from the viewpoint of safety against overcharge and improvement of the energy density of the battery. 3 to 20 are preferable. The thickness of the first positive electrode mixture layer 3 is a thickness that does not include the thickness of the second positive electrode mixture layer 2.
The thickness t L of the second positive electrode mixture layer 2 is an average value of the maximum thicknesses of the layers in the SEM image described above.
The thickness t A of the first positive electrode mixture layer 3 is an average value of the thicknesses of the first positive electrode mixture layer 3 immediately above the maximum thickness of the second positive electrode mixture layer 2.

本発明において正極は、第一の正極合剤層3の活物質粒子30の平均粒径dが第二の正極合剤層2のリチウム複合酸化物粒子20の平均粒径dよりも小さい実施態様を示す図1を用いて説明したが、これに限定されるものではない。本発明の正極は、例えば、図3に示されるように、第一の正極合剤層3の活物質粒子30の平均粒径dが第二の正極合剤層2のリチウム複合酸化物粒子20の平均粒径dより大きくてもよい。図3に示す実施態様は、リチウム複合酸化物粒子20と活物質粒子30との粒径の大小関係が異なっていること以外、図1に示す実施態様と同様であるため、図3に示す実施態様の説明を省略する。なお、図3においては、活物質粒子30の平均粒径dがリチウム複合酸化物粒子20の平均粒径dより大きい場合でも、活物質粒子30と正極集電体1が接触することが分かる。第一の正極合剤層3の活物質粒子30の平均粒径dと第二の正極合剤層2のリチウム複合酸化物粒子20の平均粒径dとは等しくてもよい。 In the present invention, in the positive electrode, the average particle diameter d A of the active material particles 30 of the first positive electrode mixture layer 3 is smaller than the average particle diameter d L of the lithium composite oxide particles 20 of the second positive electrode mixture layer 2. Although it demonstrated using FIG. 1 which shows an embodiment, it is not limited to this. For example, as shown in FIG. 3, the positive electrode of the present invention has an average particle diameter d A of active material particles 30 of the first positive electrode mixture layer 3, and lithium composite oxide particles of the second positive electrode mixture layer 2. it may be larger than the average particle diameter d L of 20. The embodiment shown in FIG. 3 is the same as the embodiment shown in FIG. 1 except that the size relationship between the lithium composite oxide particles 20 and the active material particles 30 is different. Description of the aspect is omitted. In FIG. 3, even when the average particle diameter d A of the active material particles 30 is larger than the average particle diameter d L of the lithium composite oxide particles 20, the active material particles 30 and the positive electrode current collector 1 may be in contact with each other. I understand. The average particle diameter d A of the active material particles 30 of the first positive electrode mixture layer 3 and the average particle diameter d L of the lithium composite oxide particles 20 of the second positive electrode mixture layer 2 may be equal.

(負極)
負極は負極集電体およびその片面または両面に形成された負極合剤層を含むものである。負極は、負極用ペーストを、銅または銅合金からなる負極集電体の表面に塗布し、乾燥させた後、形成した負極合剤層をプレスして所定の密度にすることにより作製することができる。負極用ペーストは、負極活物質およびバインダーを含み、さらに必要に応じて増粘剤、導電助剤等を含んでもよい。負極活物質としては、例えば、黒鉛(グラファイト)、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、非晶質カーボン等の炭素質材料、金属酸化物、リチウム金属酸化物(LiTi12等)、ポリリン酸化合物等を、単独または複数組み合わせて用いることができる。バインダーとしては、ポリフッ化ビニリデンやスチレンブタジエンゴム(SBR)を用いることができる。増粘剤としては、正極の第二の正極合剤層用ペーストに用いる増粘剤と同様の化合物を用いることができる。
(Negative electrode)
The negative electrode includes a negative electrode current collector and a negative electrode mixture layer formed on one side or both sides thereof. The negative electrode can be prepared by applying a negative electrode paste to the surface of a negative electrode current collector made of copper or a copper alloy and drying, and then pressing the formed negative electrode mixture layer to a predetermined density. it can. The negative electrode paste includes a negative electrode active material and a binder, and may further include a thickener, a conductive aid, and the like as necessary. Examples of the negative electrode active material include graphite (graphite), non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, amorphous carbon, and other carbonaceous materials, metal oxides, and lithium metal oxides (Li 4 Ti 6 O 12 etc.), polyphosphoric acid compounds and the like can be used alone or in combination. As the binder, polyvinylidene fluoride or styrene butadiene rubber (SBR) can be used. As the thickener, the same compound as the thickener used for the second positive electrode mixture layer paste of the positive electrode can be used.

(非水電解質)
非水電解質は有機溶媒に電解質塩を溶解してなる溶液である。非水電解質を構成する有機溶媒としては、非水電解質二次電池に使用されるものであれば特に限定されない。具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネートの単独あるいはそれらの2種以上の混合物を挙げることができる。
(Nonaqueous electrolyte)
The non-aqueous electrolyte is a solution obtained by dissolving an electrolyte salt in an organic solvent. The organic solvent constituting the nonaqueous electrolyte is not particularly limited as long as it is used for a nonaqueous electrolyte secondary battery. Specific examples include cyclic carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, or a mixture of two or more thereof.

非水電解質を構成する電解質塩としては、非水電解質二次電池に使用されるものであれば特に限定されない。具体例としては、LiBF、LiPF、LiClO、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)、(CSO)、LiC(CFSO、LiC(CSO等を単独あるいは2種以上混合して用いてもよい。 The electrolyte salt constituting the non-aqueous electrolyte is not particularly limited as long as it is used for a non-aqueous electrolyte secondary battery. Specific examples include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ), (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 or the like may be used alone or in admixture of two or more.

(セパレータ)
セパレータとしては、微多孔性膜や不織布等を、単独あるいは併用して用いることができる。具体例としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体等を挙げることができるが、オレフィン系樹脂が好ましい。
(Separator)
As the separator, a microporous film, a nonwoven fabric, or the like can be used alone or in combination. Specific examples include olefin-based resins such as polyethylene and polypropylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, and the like, and olefin-based resins are preferred.

(非水電解質二次電池)
本発明の非水電解質二次電池が有する構成は、前記した正極を有する限り特に制限されるものではなく、通常は前記正極とともに、上記のような負極、非水電解質およびセパレータをさらに備えている。
(Non-aqueous electrolyte secondary battery)
The configuration of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited as long as it has the above-described positive electrode, and usually further includes the above-described negative electrode, non-aqueous electrolyte, and separator together with the positive electrode. .

以下、本発明の一実施形態である角型の非水電解質二次電池について図4を用いて簡単に説明する。
非水電解質二次電池50は、ケース蓋57で密閉された電池ケース56内に、電極群52及び非水電解質を収容して構成されている。ケース蓋57は、安全弁58及び負極端子59を有しており、電池ケース56の開口部にレーザー溶接により接合されている。電極群52は、負極53と正極54とセパレータ55とを有しており、詳しくは負極53と正極54を、セパレータ55を介して積層および巻回することで作製される。この場合、正極54は正極集電体1の両面に第二の正極合剤層2および第一の正極合剤層3が形成された本発明の前記正極であり、また負極53は集電体の両面に負極合剤層が形成された前記負極である。負極端子59は負極リード60を介して負極53と接続されており、正極54は、電池ケース56の内面と接続されている。
Hereinafter, a rectangular nonaqueous electrolyte secondary battery according to an embodiment of the present invention will be briefly described with reference to FIG.
The nonaqueous electrolyte secondary battery 50 is configured by accommodating an electrode group 52 and a nonaqueous electrolyte in a battery case 56 sealed with a case lid 57. The case lid 57 has a safety valve 58 and a negative electrode terminal 59, and is joined to the opening of the battery case 56 by laser welding. The electrode group 52 includes a negative electrode 53, a positive electrode 54, and a separator 55. Specifically, the electrode group 52 is produced by laminating and winding the negative electrode 53 and the positive electrode 54 via the separator 55. In this case, the positive electrode 54 is the positive electrode of the present invention in which the second positive electrode mixture layer 2 and the first positive electrode mixture layer 3 are formed on both surfaces of the positive electrode current collector 1, and the negative electrode 53 is the current collector. It is the said negative electrode by which the negative mix layer was formed in both surfaces. The negative electrode terminal 59 is connected to the negative electrode 53 via the negative electrode lead 60, and the positive electrode 54 is connected to the inner surface of the battery case 56.

(1)正極板の作製方法
(実施例1)
正極板は次のようにして製作した。
リチウム複合酸化物としてLiMn100質量部に、1.1質量部のアセチレンブラック(AB)、2.6質量部(固形分換算)のアクリル系バインダーの水分散体および1.6質量部のカルボキシメチルセルロース(CMC)を純水中で分散させることにより、固形分濃度50質量%のペーストIを製作した。このペーストIを、隙間30μmのアプリケータにより、正極集電体1である厚さ20μmのアルミニウム(Al)箔上に塗布した。つぎに、塗布されたAl箔を100℃で乾燥することにより純水を蒸発させ、第二の正極合剤層2を備えたAl箔を作製した。
正極活物質として三成分系の層状酸化物(LiNi1/3Mn1/3Co1/3)100質量部、4.3質量部のAB、および4.3質量部のポリフッ化ビニリデン(PVdF)を、N−メチル−2−ピロリドン(NMP)中で溶解させることにより、固形分濃度70質量%のペーストIIを製作した。このペーストIIを、前記Al箔の第二の正極合剤層2上に塗布し、120℃で乾燥することによりNMPを蒸発させ、第一の正極合剤層3を形成した。
以上の操作をAl箔の片面に行った後、ロールプレスで圧縮成型し、正極板A1を得た。後述する方法により、第二の正極合剤層2の被覆率を測定したところ、95%であった。第一の正極合剤層3における正極活物質30の平均粒径dは3.2μmであった。第一の正極合剤層3における活物質粒子30のアスペクト比は、1.18であった。リチウム複合酸化物粒子間のすき間の長さの最大値gが9.8μm、リチウム複合酸化物粒子間のすき間の長さの平均値gLが7.2μmであった。断面SEM写真より、第二の正極合剤層2の厚みに対する第一の正極合剤層3の厚みの比率を計算したところ,4.5程度であった。
(1) Method for producing positive electrode plate (Example 1)
The positive electrode plate was manufactured as follows.
Lithium composite oxide, LiMn 2 O 4 100 parts by mass, 1.1 parts by mass of acetylene black (AB), 2.6 parts by mass (in terms of solid content) of an acrylic binder aqueous dispersion and 1.6 parts by mass Of carboxymethylcellulose (CMC) was dispersed in pure water to prepare paste I having a solid content of 50% by mass. This paste I was applied onto an aluminum (Al) foil having a thickness of 20 μm, which is the positive electrode current collector 1, using an applicator having a gap of 30 μm. Next, the applied Al foil was dried at 100 ° C. to evaporate pure water, and an Al foil provided with the second positive electrode mixture layer 2 was produced.
As a positive electrode active material, a ternary layered oxide (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) 100 parts by mass, 4.3 parts by mass AB, and 4.3 parts by mass polyvinylidene fluoride ( PVdF) was dissolved in N-methyl-2-pyrrolidone (NMP) to prepare paste II having a solid content of 70% by mass. This paste II was applied onto the second positive electrode mixture layer 2 of the Al foil and dried at 120 ° C. to evaporate NMP, thereby forming a first positive electrode mixture layer 3.
After performing the above operation on one side of the Al foil, compression molding was performed with a roll press to obtain a positive electrode plate A1. It was 95% when the coverage of the 2nd positive mix layer 2 was measured by the method mentioned later. The average particle diameter d A of the positive electrode active material 30 in the first positive electrode mixture layer 3 was 3.2 μm. The aspect ratio of the active material particles 30 in the first positive electrode mixture layer 3 was 1.18. The maximum value g M of the gaps between the lithium composite oxide particles was 9.8 μm, and the average value g L of the gaps between the lithium composite oxide particles was 7.2 μm. From the cross-sectional SEM photograph, the ratio of the thickness of the first positive electrode mixture layer 3 to the thickness of the second positive electrode mixture layer 2 was calculated to be about 4.5.

本発明の実施例および比較例において、第二の正極合剤層2におけるリチウム複合酸化物粒子20の平均粒径dLは10.4μmであった。リチウム複合酸化物粒子20の平均粒径dLを表1に示した。 In the examples and comparative examples of the present invention, the average particle diameter d L of the lithium composite oxide particles 20 in the second positive electrode mixture layer 2 was 10.4 μm. Table 1 shows the average particle diameter d L of the lithium composite oxide particles 20.

Figure 0006229333
Figure 0006229333

(実施例2)
第二の正極合剤層2の形成に際し、隙間24μmのアプリケータを用いたこと以外、実施例1と同様の方法により、正極板A2を得た。第二の正極合剤層2の被覆率を測定したところ、80%であった。第一の正極合剤層3における活物質粒子30の平均粒径dは3.1μmであった。第一の正極合剤層3における活物質粒子30のアスペクト比は、1.23であった。リチウム複合酸化物粒子間のすき間の長さの最大値gが15μm、リチウム複合酸化物粒子間のすき間の長さの平均値gLが11μmであった。
(Example 2)
A positive electrode plate A2 was obtained in the same manner as in Example 1 except that an applicator with a gap of 24 μm was used when forming the second positive electrode mixture layer 2. When the coverage of the second positive electrode mixture layer 2 was measured, it was 80%. The average particle diameter d A of the active material particles 30 in the first positive electrode mixture layer 3 was 3.1 μm. The aspect ratio of the active material particles 30 in the first positive electrode mixture layer 3 was 1.23. The maximum value g M of the gap length between the lithium composite oxide particles was 15 μm, and the average value g L of the gap length between the lithium composite oxide particles was 11 μm.

(実施例3)
第二の正極合剤層2の形成に際し、隙間15μmのアプリケータを用いたこと以外、実施例1と同様の方法により、正極板A3を得た。第二の正極合剤層2の被覆率を測定したところ、60%であった。第一の正極合剤層3における活物質粒子30の平均粒径dは3.0μmであった。第一の正極合剤層3における活物質粒子30のアスペクト比は、1.23であった。リチウム複合酸化物粒子間のすき間の長さの最大値gが23μm、リチウム複合酸化物粒子間のすき間の長さの平均値gLが16μmであった。
(Example 3)
A positive electrode plate A3 was obtained in the same manner as in Example 1 except that an applicator with a gap of 15 μm was used when forming the second positive electrode mixture layer 2. The coverage of the second positive electrode mixture layer 2 was measured and found to be 60%. The average particle diameter d A of the active material particles 30 in the first positive electrode mixture layer 3 was 3.0 μm. The aspect ratio of the active material particles 30 in the first positive electrode mixture layer 3 was 1.23. The maximum value g M of the gaps between the lithium composite oxide particles was 23 μm, and the average value g L of the gaps between the lithium composite oxide particles was 16 μm.

(実施例4)
第二の正極合剤層2の形成に際し、ペーストIの固形分濃度を質量60%と高い値に制御したこと,および隙間25μmのアプリケータをもちいたこと以外、実施例1と同様の方法で、正極板A4を得た。
Example 4
In the formation of the second positive electrode mixture layer 2, the solid content concentration of the paste I was controlled to a high value of 60%, and an applicator with a gap of 25 μm was used. A positive electrode plate A4 was obtained.

(実施例5)
第二の正極合剤層2の形成に際し、実施例1と同様のペーストIをアプリケータではなく隙間46μmのコンマリバースをもちいて、実施例1と同様の方法で塗布して、正極板A5を得た。
(Example 5)
In forming the second positive electrode mixture layer 2, the same paste I as in Example 1 was applied by the same method as in Example 1 using a comma reverse with a gap of 46 μm instead of an applicator, and the positive electrode plate A 5 was applied. Obtained.

(実施例6)
第二の正極合剤層2の形成に際し、実施例1と同様のペーストIをアプリケータではなく隙間30μmのコンマダイレクトをもちいて、実施例1と同様の方法で塗布して、正極板A6を得た。
(Example 6)
When forming the second positive electrode mixture layer 2, the same paste I as in Example 1 was applied by a method similar to Example 1 using a comma direct with a gap of 30 μm instead of an applicator, and the positive electrode plate A 6 was applied. Obtained.

(実施例7)
ペーストIが100質量部のLiMn、3.2質量部のAB、2.7質量部のアクリル系バインダーおよび1.7質量部のCMCである点以外は,実施例1と同様の方法で塗布して、正極板A7を得た。第二の正極合剤層2の被覆率を測定したところ、95%であった。
(Example 7)
The same method as in Example 1 except that the paste I is 100 parts by mass of LiMn 2 O 4 , 3.2 parts by mass of AB, 2.7 parts by mass of an acrylic binder and 1.7 parts by mass of CMC. Was applied to obtain a positive electrode plate A7. The coverage of the second positive electrode mixture layer 2 was measured and found to be 95%.

(実施例8)
ペーストIが100質量部のLiMn、0.5質量部のABである点以外は,実施例1と同様の方法で塗布して、正極板A8を得た。第二の正極合剤層2の被覆率を測定したところ、95%であった。
(Example 8)
Except that the paste I was 100 parts by mass of LiMn 2 O 4 and 0.5 parts by mass of AB, it was applied in the same manner as in Example 1 to obtain a positive electrode plate A8. The coverage of the second positive electrode mixture layer 2 was measured and found to be 95%.

(比較例1)
第二の正極合剤層2の形成に際し、純水量を調整することによりペーストIの固形分濃度を60質量%に制御したこと、および隙間58μmのアプリケータを用いたこと以外、実施例1と同様の方法により、正極板B1を得た。第二の正極合剤層2の被覆率を測定したところ、100%であった。第一の正極合剤層3における活物質粒子30の平均粒径dは3.0μmであった。第一の正極合剤層3における活物質粒子30のアスペクト比は、1.22であった。
(Comparative Example 1)
In the formation of the second positive electrode mixture layer 2, the solid content concentration of the paste I was controlled to 60 mass% by adjusting the amount of pure water, and an applicator with a gap of 58 μm was used. A positive electrode plate B1 was obtained by the same method. When the coverage of the second positive electrode mixture layer 2 was measured, it was 100%. The average particle diameter d A of the active material particles 30 in the first positive electrode mixture layer 3 was 3.0 μm. The aspect ratio of the active material particles 30 in the first positive electrode mixture layer 3 was 1.22.

(比較例2)
第二の正極合剤層2の形成に際し、純水量を調整することによりペーストIの固形分濃度を40質量%に制御したこと、および隙間40μmのアプリケータを用いたこと以外、実施例1と同様の方法により、正極板B2を得た。第二の正極合剤層2の被覆率を測定したところ、55%であった。第一の正極合剤層3における活物質粒子30の平均粒径dは3.0μmであった。第一の正極合剤層3における活物質粒子30のアスペクト比は、1.24であった。リチウム複合酸化物粒子間のすき間の長さの最大値gが47μm、リチウム複合酸化物粒子間のすき間の長さの平均値gLが37μmであった。
(Comparative Example 2)
In the formation of the second positive electrode mixture layer 2, the solid content concentration of the paste I was controlled to 40 mass% by adjusting the amount of pure water, and an applicator with a gap of 40 μm was used. A positive electrode plate B2 was obtained by the same method. The coverage of the second positive electrode mixture layer 2 was measured and found to be 55%. The average particle diameter d A of the active material particles 30 in the first positive electrode mixture layer 3 was 3.0 μm. The aspect ratio of the active material particles 30 in the first positive electrode mixture layer 3 was 1.24. The maximum value g M of the gap between the lithium composite oxide particles was 47 μm, and the average value g L of the gap between the lithium composite oxide particles was 37 μm.

(2)負極板の作製方法
負極板は次のようにして製作した。
グラファイト、SBR、およびCMCを純水中で分散させることにより、ペーストを製作した。このペーストを厚さ15μmの銅箔上に塗布し、次に100℃で乾燥することにより純水を蒸発させ、負極合剤層を形成した。
以上の操作を銅箔の片面に行った後、ロールプレスで圧縮成型し、負極板を得た。
(2) Manufacturing method of negative electrode plate The negative electrode plate was manufactured as follows.
A paste was made by dispersing graphite, SBR, and CMC in pure water. This paste was applied on a copper foil having a thickness of 15 μm, and then dried at 100 ° C. to evaporate pure water, thereby forming a negative electrode mixture layer.
After performing the above operation on one side of the copper foil, it was compression molded with a roll press to obtain a negative electrode plate.

(3)試験電池の作製方法
トムセル(有限会社日本トムセル社製)、上記した正極版および負極版、ならびに下蓋、セパレータ、円盤、板ばねおよび上蓋を用いて試験電池を作製した。セパレータには厚さ30μmポリエチレン製微多孔膜を用いた。非水電解質は、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)およびジエチルカーボネート(DEC)を体積比30:35:35の割合で混合した1M LiPF塩を使用した。
電池の詳しい作製方法を次に示す。
Al製の下蓋の上のパッキンの内側に、事前に電解液に浸漬した正極板(直径約1.4 cmの円形)、セパレータ(直径1.6cmの円形)および負極板(直径1.5cmの円形)を、正極板と負極板の各活物質塗布面が向き合うようにのせた。その後、正極板と負極板を均一に圧迫するためにSUS製の円盤と板ばねをのせ、最後にSUS製の上蓋をのせたのちにナットをもちいて均等に締めた。
(3) Test Battery Production Method A test battery was produced using Tom Cell (manufactured by Nippon Tom Cell Co., Ltd.), the positive electrode plate and the negative electrode plate, and the lower lid, separator, disk, leaf spring and upper lid. A microporous film made of polyethylene having a thickness of 30 μm was used as the separator. As the non-aqueous electrolyte, 1M LiPF 6 salt in which ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) were mixed at a volume ratio of 30:35:35 was used.
The detailed manufacturing method of the battery is as follows.
Inside the packing on the bottom lid made of Al, a positive electrode plate (circular with a diameter of about 1.4 cm), a separator (circular with a diameter of 1.6 cm), and a negative electrode plate (with a diameter of 1.5 cm) previously immersed in an electrolyte solution Of the positive electrode plate and the negative electrode plate so that the active material coated surfaces of the positive electrode plate and the negative electrode plate face each other. Thereafter, in order to uniformly press the positive electrode plate and the negative electrode plate, a SUS disk and a leaf spring were placed, and finally, a SUS upper lid was placed, and then a nut was used to tighten evenly.

(4)測定方法
得られた正極および電池をそれぞれ以下の方法により測定した。
(4) Measuring method Each of the obtained positive electrode and battery was measured by the following method.

(被覆率の測定方法)
第二の正極合剤層2の被覆率は、以下の方法により測定した。
正極にエポキシ樹脂を含浸させ、1日間乾燥させて固化させた後、正極集電体1に対して垂直な正極断面が見られるように、正極断面を研磨した。研磨した断面のSEM(走査型電子顕微鏡)写真を測定倍率500倍で撮影した。EDXの元素組成分析により各粒子の種類・組成を判別しながら、得られた写真において、まず、図2に示すように、正極集電体1に対して垂直な直線(破線)により、第二の正極合剤層2を構成するリチウム複合酸化物粒子20による被覆領域21を規定した。次に、当該写真上において、各粒子20における被覆領域21の合計長さを算出した。そして、正極集電体1表面の全長40に対する被覆領域21の合計長さの割合を被覆率として算出した。正極集電体1表面の全長は、上に第一の活物質合剤層3が塗布された領域を対象とした。測定はSEM顕微鏡写真において全長40が500μmになる領域で隣り合う全てのリチウム複合酸化物粒子20を対象とするものであり、正極集電体表面の全長40は両端のリチウム複合酸化物粒子20a、20bにおける被覆領域21a、21bを両端に含む当該表面上の長さとした。上記垂直な直線は、正極集電体1の表面に凹凸がある場合は、当該凹凸を均した面に対して垂直な直線であり、正極集電体1の表面が全体として湾曲している場合は、断面における当該湾曲表面の接線に対して垂直な直線である。図2は、正極集電体1に対して垂直な正極の概略断面図であって、第一の正極合剤層3を省略した図である。
(Measurement method of coverage)
The coverage of the second positive electrode mixture layer 2 was measured by the following method.
The positive electrode was impregnated with an epoxy resin, dried for one day and solidified, and then the positive electrode cross section was polished so that a positive electrode cross section perpendicular to the positive electrode current collector 1 could be seen. An SEM (scanning electron microscope) photograph of the polished cross section was taken at a measurement magnification of 500 times. In the photograph obtained while discriminating the type and composition of each particle by elemental composition analysis of EDX, first, as shown in FIG. 2, a second line is shown by a straight line (broken line) perpendicular to the positive electrode current collector 1. The covering region 21 by the lithium composite oxide particles 20 constituting the positive electrode mixture layer 2 was defined. Next, the total length of the covering region 21 in each particle 20 was calculated on the photograph. And the ratio of the total length of the coating area | region 21 with respect to the full length 40 of the positive electrode collector 1 surface was computed as a coverage. The total length of the surface of the positive electrode current collector 1 was an area where the first active material mixture layer 3 was applied. The measurement is intended for all lithium composite oxide particles 20 adjacent to each other in a region where the total length 40 is 500 μm in the SEM micrograph, and the total length 40 on the surface of the positive electrode current collector is the lithium composite oxide particles 20a at both ends. It was set as the length on the said surface including the coating | coated area | regions 21a and 21b in 20b at both ends. When the surface of the positive electrode current collector 1 has irregularities, the vertical straight line is a straight line that is perpendicular to the uneven surface, and the surface of the positive electrode current collector 1 is curved as a whole. Is a straight line perpendicular to the tangent of the curved surface in cross section. FIG. 2 is a schematic cross-sectional view of the positive electrode perpendicular to the positive electrode current collector 1, in which the first positive electrode mixture layer 3 is omitted.

(粒径の測定方法)
第二の正極合剤層2に含まれるリチウム複合酸化物粒子20の平均粒径dおよび第一の正極合剤層3に含まれる活物質粒子30の平均粒径dは、EDXの元素組成分析により各粒子の種類・組成を判別しながら、SEM画像において以下の方法により測定した。
リチウム複合酸化物粒子20の平均粒径dは、上記のSEM写真において、図1,2に示すように、作為的な選択を防ぐために、第二の正極合剤層2における互いに隣接する100個のリチウム複合酸化物粒子20について、各粒子の粒径の平均値を求めた。粒径は、最長粒径dと最短粒径dとの平均値である。SEM写真において粒子の輪郭上で最も離れた2点の中点を中心点Mとした。その輪郭上の最も離れた2点を結んだ直線における2点間の長さを最長粒径dとした。中心点Mを通る直線であって、当該直線と粒子の輪郭とが交わる2点間の長さが最も短い直線における当該2点間の長さを最短粒径dとした。なお、平均粒径dは、各粒子の粒径の値を大きさの順に最大値から最小値まで並べたとき、これらの値のうち、最大値から20個の値および最小値から20個の値を除外した合計60個の値の平均値を用いた。
活物質粒子30の平均粒径dは、測定対象を活物質粒子とすること以外、リチウム複合酸化物粒子20の平均粒径dと同様の方法により、断面SEM顕微鏡写真を用いて測定した。
(Measuring method of particle size)
The average particle diameter d L of the lithium composite oxide particles 20 contained in the second positive electrode mixture layer 2 and the average particle diameter d A of the active material particles 30 contained in the first positive electrode mixture layer 3 are elements of EDX While discriminating the type and composition of each particle by composition analysis, the SEM image was measured by the following method.
In the above SEM photograph, the average particle diameter d L of the lithium composite oxide particles 20 is 100 adjacent to each other in the second positive electrode mixture layer 2 in order to prevent artificial selection, as shown in FIGS. For each lithium composite oxide particle 20, the average value of the particle size of each particle was determined. Particle size is the average value of the longest diameter d 1 and the shortest diameter d 2. The center point M was defined as the midpoint between the two most distant points on the particle outline in the SEM photograph. The length between two points at its farthest straight line connecting two points on the contour and the longest diameter d 1. A straight line passing through the center point M, and the length between the two points in the shortest straight line distance between two points and the contour of the straight line and the particle crosses the shortest diameter d 2. The average particle diameter d L is a value obtained by arranging the particle diameter values of each particle from the maximum value to the minimum value in order of size, and among these values, 20 values from the maximum value and 20 values from the minimum value. The average value of a total of 60 values excluding the value of was used.
The average particle diameter d A of the active material particles 30 was measured using a cross-sectional SEM micrograph in the same manner as the average particle diameter d L of the lithium composite oxide particles 20, except that the measurement target was active material particles. .

(すき間の測定方法)
正極集電体上のリチウム複合酸化物粒子間のすき間の長さの平均値gLおよび最大値gは、以下の方法で測定した。
上述の方法でSEM顕微鏡写真を測定倍率500倍で撮影した。得られた写真において、まず、リチウム複合酸化物粒子20と隣のリチウム複合酸化物粒子20との間の正極集電体表面上の距離(図2中のg)をリチウム複合酸化物粒子間のすき間の長さと規定した。リチウム複合酸化物粒子間のすき間の長さの最大値は、得られた写真において隣接するリチウム複合酸化物粒子間のすき間の長さのうちの最大の長さである。すき間の長さの最大値gは、正極集電体の長さが100μmの範囲においてすき間の最大の長さを測定し、各範囲の最大の長さを平均した。
リチウム複合酸化物粒子間のすき間の長さの平均値は、得られた写真において隣接するリチウム複合酸化物粒子間のすき間の長さのうちの平均の長さである。すき間の長さの平均値gは、正極集電体の長さが100μmの範囲においてすき間の平均の長さを測定し、各範囲の平均の長さを平均した。
(Gap measurement method)
The average value g L and the maximum value g M of the gap length between the lithium composite oxide particles on the positive electrode current collector were measured by the following methods.
SEM micrographs were taken at a measurement magnification of 500 times by the method described above. In the obtained photograph, first, the distance (g in FIG. 2) on the surface of the positive electrode current collector between the lithium composite oxide particles 20 and the adjacent lithium composite oxide particles 20 is determined between the lithium composite oxide particles. It was defined as the gap length. The maximum value of the gap length between the lithium composite oxide particles is the maximum length among the gap lengths between the adjacent lithium composite oxide particles in the obtained photograph. Maximum value g M of the length of the gap is determined by measuring the maximum length of a gap in the range length of the positive electrode current collector is 100 [mu] m, and the average maximum length of each of the ranges.
The average value of the gap length between the lithium composite oxide particles is an average length of the gap lengths between the adjacent lithium composite oxide particles in the obtained photograph. The average length g L of the gaps was obtained by measuring the average length of the gaps in the range where the length of the positive electrode current collector was 100 μm and averaging the average lengths of the respective ranges.

(アスペクト比の測定方法)
第一の正極合剤層3の活物質粒子30のアスペクト比は、断面のSEM顕微鏡写真を用いて、活物質粒子30の最長粒径dと最短粒径dを測定することで、算出した。活物質粒子30の最長粒径dおよび最短粒径dは、測定対象を活物質粒子とすること以外、リチウム複合酸化物粒子20の最長粒径dおよび最短粒径dと同様の方法により、測定した。アスペクト比は、互いに隣接する10個の活物質粒子30について、最短粒径dに対する最長粒径dの比率(d/d)の平均値とした。
(Aspect ratio measurement method)
The aspect ratio of the first active material particles 30 of the positive electrode mixture layer 3, by using a SEM micrograph of a cross-section, measuring the longest particle diameter d M and the shortest diameter d m of the active material particles 30, calculates did. Maximum grain size d M and the minimum diameter d m of the active material particles 30, except that the measurement target and the active material particles, similar to the maximum diameter d 1 and the shortest diameter d 2 of the lithium composite oxide particles 20 It was measured by the method. Aspect ratio, and ten active material particles 30 adjacent to each other, and the average value of the ratio of the longest diameter d M to the shortest diameter d m (d M / d m ).

(5)充放電試験
充放電試験は以下の方法により行った。
電池の設計容量の0.2倍量の充電電流値(電流密度約0.5mA/cm)で、電源電圧4.2Vの定電流定電圧充電を室温下で8時間行った。その後、設計容量の0.2倍量の電流値で2.75Vまで放電し、0.2C容量を測定した。つぎに同様の方法で充電し、設計容量の1倍量の電流値で2.75Vまで放電し、1C容量を測定した。
各電池の放電レート特性を1C容量/0.2C容量として算出した。当該比率が大きいほど高率放電特性が良好であることを意味する。
(5) Charge / Discharge Test The charge / discharge test was performed by the following method.
A constant current / constant voltage charge with a power supply voltage of 4.2 V was performed at room temperature for 8 hours at a charge current value (current density of about 0.5 mA / cm 2 ) that was 0.2 times the design capacity of the battery. Thereafter, the battery was discharged to 2.75 V with a current value 0.2 times the design capacity, and the 0.2 C capacity was measured. Next, the battery was charged in the same manner, discharged to 2.75 V at a current value that was one time the design capacity, and the 1C capacity was measured.
The discharge rate characteristic of each battery was calculated as 1 C capacity / 0.2 C capacity. The larger the ratio, the better the high rate discharge characteristics.

(6)過充電試験
過充電試験は以下の方法により行った。
電池の設計容量の2倍量の充電電流値(電流密度約5mA/cm)で、上限電圧8.4Vの定電流定電圧充電を室温下で1.25時間行った。その際の7Vに到達したときのSOC(充電状態)(%)を算出した。過充電時に電圧が7Vに到達した電池は,第二の正極合剤層2が高抵抗化していることを示しており,過充電時の電流を遮断することができる。本試験では放熱性が高い電池を用いたため,セパレータのシャットダウンによる電圧上昇はおこらない。
(6) Overcharge test The overcharge test was conducted by the following method.
A constant current and constant voltage charge with an upper limit voltage of 8.4 V was performed at room temperature for 1.25 hours at a charge current value (current density of about 5 mA / cm 2 ) twice the design capacity of the battery. The SOC (state of charge) (%) when the voltage reached 7V was calculated. A battery whose voltage has reached 7 V during overcharge indicates that the second positive electrode mixture layer 2 has increased resistance, and can interrupt the current during overcharge. In this test, a battery with high heat dissipation was used, so the voltage did not increase due to the shutdown of the separator.

(評価)
A1からA3、A7、A8、B1およびB2の放電容量比率、過充電試験の7V到達時のSOCおよび安全性を表2に示す。放電容量比率1C/0.2Cを算出した。当該比率が大きいほど、高率放電特性が良好であることを意味する。7V到達時のSOCが小さいほど、安全性が高いことを意味する。7Vに到達していない電池は安全性を×と表記した.SOCが230%以下で7V到達した電池は安全性がより良好であるので〇と表記した。SOCが230%を超えて7V到達した電池は△と表記した。
(Evaluation)
Table 2 shows the discharge capacity ratios from A1 to A3, A7, A8, B1 and B2, the SOC when the overcharge test reaches 7V, and the safety. A discharge capacity ratio of 1 C / 0.2 C was calculated. The larger the ratio, the better the high rate discharge characteristics. The smaller the SOC when 7V is reached, the higher the safety. The battery that has not reached 7V is indicated by safety. A battery having an SOC of 230% or less and having reached 7 V is indicated as “◯” because the safety is better. A battery having an SOC exceeding 230% and reaching 7 V is indicated by Δ.

Figure 0006229333
Figure 0006229333

第二の正極合剤層2の被覆率が60〜95%である実施例の正極板A1からA3では、良好な高率放電特性が得られ、電圧が7Vに到達し過充電に対する安全性が確保できていることが分かる。   In the positive electrode plates A1 to A3 of the example in which the coverage of the second positive electrode mixture layer 2 is 60 to 95%, good high rate discharge characteristics are obtained, the voltage reaches 7V, and the safety against overcharge is high. It can be seen that it is secured.

A4は塗布時のペーストの固形分およびアプリケータの隙間が異なるもののA1と同様の被覆率の正極板を作製することができる。その極板をもちいた過充電試験の結果はA1のものと同様であり,塗布時の固形分濃度のみで被覆率が決まるものではない。   A4 can produce a positive electrode plate having the same coverage as A1, although the solid content of the paste at the time of application and the gap between the applicators are different. The result of the overcharge test using the electrode plate is the same as that of A1, and the coverage is not determined only by the solid content concentration at the time of application.

A5およびA6は塗布時にもちいた装置がアプリケータではないものの,A1と同様の被覆率の極板を作製することができる。その極板をもちいた過充電試験の結果はA1のものと同様であり,塗布時にもちいた装置によらない。   In A5 and A6, although the apparatus used at the time of application is not an applicator, an electrode plate having the same coverage as A1 can be produced. The result of the overcharge test using the electrode plate is the same as that of A1, and does not depend on the device used at the time of application.

1:正極集電体
2:第二の正極合剤層
3:第一の正極合剤層
20:リチウム複合酸化物粒子
21:被覆領域
30:活物質粒子
40:測定領域の全長
50:非水電解質二次電池
52:電極群
53:負極
54:正極
55:セパレータ
56:電池ケース
57:ケース蓋
58:安全弁
59:負極端子
60:負極リード
1: Positive current collector 2: Second positive electrode mixture layer 3: First positive electrode mixture layer 20: Lithium composite oxide particles 21: Covering region 30: Active material particles 40: Full length of measurement region 50: Non-aqueous Electrolyte secondary battery 52: Electrode group 53: Negative electrode 54: Positive electrode 55: Separator 56: Battery case 57: Case lid 58: Safety valve 59: Negative electrode terminal 60: Negative electrode lead

Claims (4)

正極集電体、第一の正極合剤層、および前記正極集電体と前記第一の正極合剤層との間に形成される第二の正極合剤層を含む正極を有し、
前記第一の正極合剤層が、LiCoO、LiNiO、LiMnO、LiCoNiO、LiCoMOおよびLiNiMO(Mは共通してNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBのうち少なくとも1つ)、およびこれら正極活物質の一部元素が異種元素で置換されたもの、ならびにCo、NiおよびMnを含む三成分系の層状酸化物からなる群から選択される活物質粒子を含み、
前記活物質粒子の平均粒径が0.5〜60μmであり、
前記第二の正極合剤層がリチウム複合酸化物粒子と導電助剤を含み、
前記リチウム複合酸化物粒子がスピネル型またはオリビン型リチウム複合酸化物粒子であり、
前記第二の正極合剤層に含まれる導電助剤の量はリチウム複合酸化物粒子100質量部に対して0.1〜4質量部であり、
前記第二の正極合剤層に含まれるリチウム複合酸化物粒子が前記正極集電体を被覆する領域が正極合剤塗布領域に占める被覆率が60〜95%であり、
前記正極集電体上の前記リチウム複合酸化物粒子間のすき間の長さの最大値g と前記活物質粒子の平均粒径d との比率(d /g )が0.1以上1以下の範囲である、非水電解質二次電池。
A positive electrode including a positive electrode current collector, a first positive electrode mixture layer, and a second positive electrode mixture layer formed between the positive electrode current collector and the first positive electrode mixture layer;
The first positive electrode mixture layer is LiCoO 2 , LiNiO 2 , LiMnO 2 , LiCoNiO 2 , LiCoMO 2 and LiNiMO 2 (M is commonly Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu , Zn, Al, Cr, Pb, Sb and B), and those in which some elements of these positive electrode active materials are substituted with different elements, and ternary layered layers containing Co, Ni and Mn Including active material particles selected from the group consisting of oxides,
The active material particles have an average particle size of 0.5 to 60 μm,
The second positive electrode mixture layer includes lithium composite oxide particles and a conductive additive,
The lithium composite oxide particles are spinel type or olivine type lithium composite oxide particles,
The amount of the conductive auxiliary agent contained in the second positive electrode mixture layer is 0.1 to 4 parts by mass with respect to 100 parts by mass of the lithium composite oxide particles,
The second positive-electrode mixture lithium composite oxide particles contained in the adhesive layer is the cathode current region covering the conductor occupies the positive electrode mixture application area coverage Ri 60% to 95% der,
A ratio (d A / g M ) between a maximum value g M of a gap length between the lithium composite oxide particles on the positive electrode current collector and an average particle diameter d A of the active material particles is 0.1 or more A nonaqueous electrolyte secondary battery having a range of 1 or less .
前記リチウム複合酸化物粒子の平均粒径dと前記活物質粒子の平均粒径dとの比率(d/d)が0.1〜6である請求項1に記載の非水電解質二次電池。 The nonaqueous electrolyte according to claim 1, wherein a ratio (d A / d L ) between an average particle diameter d L of the lithium composite oxide particles and an average particle diameter d A of the active material particles is 0.1 to 6. Secondary battery. 前記正極集電体上の前記リチウム複合酸化物粒子間のすき間の長さの最大値gが5μmから45μmの範囲である請求項1または2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery of lithium described maximum value g M of the length of the gap between the composite oxide particles is from 5μm to claim 1 or 2 in the range of 45μm on the positive electrode current collector. 前記リチウム複合酸化物粒子がスピネル型マンガン酸リチウムを含む請求項1〜のいずれかに記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the lithium composite oxide particles comprising spinel-type lithium manganate.
JP2013141824A 2013-07-05 2013-07-05 Nonaqueous electrolyte secondary battery Active JP6229333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013141824A JP6229333B2 (en) 2013-07-05 2013-07-05 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013141824A JP6229333B2 (en) 2013-07-05 2013-07-05 Nonaqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017150951A Division JP6380630B2 (en) 2017-08-03 2017-08-03 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015015182A JP2015015182A (en) 2015-01-22
JP6229333B2 true JP6229333B2 (en) 2017-11-15

Family

ID=52436779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013141824A Active JP6229333B2 (en) 2013-07-05 2013-07-05 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6229333B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699087B2 (en) * 2015-03-27 2020-05-27 日本電気株式会社 Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
CN110603668A (en) * 2017-05-31 2019-12-20 松下知识产权经营株式会社 Positive electrode for secondary battery and secondary battery
KR102223721B1 (en) * 2017-07-28 2021-03-05 주식회사 엘지화학 Positive electorde for secondary battery and lithium secondary battery including the same
CN117673245A (en) * 2022-08-29 2024-03-08 比亚迪股份有限公司 Positive electrode sheet and secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626105B2 (en) * 2000-08-28 2011-02-02 日産自動車株式会社 Lithium ion secondary battery
JP5032800B2 (en) * 2005-07-14 2012-09-26 パナソニック株式会社 Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5103857B2 (en) * 2005-11-10 2012-12-19 日産自動車株式会社 Secondary battery electrode and secondary battery using the same
JP5810479B2 (en) * 2009-05-26 2015-11-11 日産自動車株式会社 ELECTRODE STRUCTURE FOR LITHIUM ION SECONDARY BATTERY, LITHIUM ION SECONDARY BATTERY, AND METHOD FOR PRODUCING ELECTRODE FOR LITHIUM ION SECONDARY BATTERY
KR101754800B1 (en) * 2010-08-19 2017-07-06 삼성전자주식회사 Cathode, preparation method thereof, and lithium battery containing the same
JP5910875B2 (en) * 2012-04-16 2016-04-27 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2015015182A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
US10263252B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US8178238B2 (en) Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
US8486566B2 (en) Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
WO2018179817A1 (en) Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR101739642B1 (en) Non-aqueous electrolyte secondary battery
WO2010090028A1 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP6115361B2 (en) Nonaqueous electrolyte secondary battery
WO2010131401A1 (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6274526B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2014053193A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JPWO2019167581A1 (en) Non-aqueous electrolyte secondary battery
US10680279B2 (en) Lithium ion secondary battery electrode and lithium ion secondary battery
JP2013114848A (en) Lithium ion secondary battery and method for manufacturing the same
US20160285103A1 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery using same
CN109273771A (en) Secondary battery
JP2015170542A (en) Nonaqueous electrolyte secondary battery
JP2016184484A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US20130212875A1 (en) Method for producing lithium ion secondary battery
JP6229333B2 (en) Nonaqueous electrolyte secondary battery
JP6217981B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2011070802A (en) Nonaqueous electrolyte secondary battery
JP5556554B2 (en) Nonaqueous electrolyte secondary battery
JP6380630B2 (en) Nonaqueous electrolyte secondary battery
JP6493766B2 (en) Lithium ion secondary battery
JP6607388B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R150 Certificate of patent or registration of utility model

Ref document number: 6229333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150