JP6192342B2 - Liquid-filled vibration isolator - Google Patents

Liquid-filled vibration isolator Download PDF

Info

Publication number
JP6192342B2
JP6192342B2 JP2013080916A JP2013080916A JP6192342B2 JP 6192342 B2 JP6192342 B2 JP 6192342B2 JP 2013080916 A JP2013080916 A JP 2013080916A JP 2013080916 A JP2013080916 A JP 2013080916A JP 6192342 B2 JP6192342 B2 JP 6192342B2
Authority
JP
Japan
Prior art keywords
liquid
convex
elastic
diaphragm
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013080916A
Other languages
Japanese (ja)
Other versions
JP2014202327A (en
Inventor
紀光 古澤
紀光 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2013080916A priority Critical patent/JP6192342B2/en
Publication of JP2014202327A publication Critical patent/JP2014202327A/en
Application granted granted Critical
Publication of JP6192342B2 publication Critical patent/JP6192342B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

本発明は液封入式防振装置に関し、特に弾性膜の状態が切り換わるときのショック感を抑制できる液封入式防振装置に関するものである。   The present invention relates to a liquid-filled vibration isolator, and more particularly to a liquid-filled vibration isolator that can suppress a feeling of shock when the state of an elastic film is switched.

自動車等の車両では、エンジン等の振動発生源と振動を受ける車体との間に、車体側への振動の伝達を抑制する防振装置が設けられる。このような防振装置として、例えば特許文献1に開示される制御型の液封入式防振装置が知られている。特許文献1に開示される技術によれば、液室内に配設された弾性膜と変位規制部材との間に空気室が形成される。空気室を大気開放することで弾性膜を可動状態にし、空気室に負圧を導入することで弾性膜を拘束状態にする。弾性膜の状態を切り換えることで液封入式防振装置の特性を切り換えられるので、エンジン等のシェイク振動やアイドリング振動等の異なる振動数の振動を効果的に減衰させることができる。   In a vehicle such as an automobile, a vibration isolator that suppresses transmission of vibration to the vehicle body side is provided between a vibration generation source such as an engine and a vehicle body that receives vibration. As such a vibration isolator, for example, a control-type liquid-filled vibration isolator disclosed in Patent Document 1 is known. According to the technique disclosed in Patent Document 1, an air chamber is formed between the elastic film disposed in the liquid chamber and the displacement regulating member. The elastic film is moved to the movable state by opening the air chamber to the atmosphere, and the elastic film is brought into a restrained state by introducing a negative pressure into the air chamber. Since the characteristics of the liquid-filled vibration isolator can be switched by switching the state of the elastic membrane, vibrations having different frequencies such as shake vibrations and idling vibrations of the engine can be effectively attenuated.

特開平6−264956号公報Japanese Patent Laid-Open No. 6-264958

しかしながら上述した技術では、弾性膜が可動状態から拘束状態へ切り換わるとき又は拘束状態から可動状態に切り換わるときに、弾性膜と変位規制部材との接触面積が急激に変化するので、急激な液圧変動が生じ、ショック感が生じるという問題点がある。   However, in the above-described technique, when the elastic film switches from the movable state to the restrained state or when the elastic film switches from the restrained state to the movable state, the contact area between the elastic film and the displacement regulating member changes abruptly. There is a problem that pressure fluctuation occurs and a shock is generated.

本発明は上述した問題点を解決するためになされたものであり、弾性膜の状態が切り換わるときのショック感を抑制できる液封入式防振装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a liquid-filled vibration isolator capable of suppressing a shock feeling when the state of an elastic film is switched.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

この目的を達成するために請求項1記載の液封入式防振装置によれば、第1取付部材と筒状の第2取付部材とがゴム状弾性体から構成される防振基体によって連結される。第2取付部に固着されるダイヤフラムにより防振基体との間に液体封入室が形成される。液体封入室内の圧力変動によって変形可能とされる弾性膜がゴム状弾性体から構成され、液体封入室に配置される。弾性膜は、弾性膜と対向して配置される変位規制部材に外周部が固着され、変位規制部材によって変位が規制される。   In order to achieve this object, according to the liquid-filled vibration isolator of claim 1, the first mounting member and the cylindrical second mounting member are connected by the vibration isolating base composed of a rubber-like elastic body. The A liquid sealing chamber is formed between the diaphragm and the anti-vibration substrate fixed to the second mounting portion. An elastic film that can be deformed by pressure fluctuation in the liquid enclosure chamber is made of a rubber-like elastic body and is disposed in the liquid enclosure chamber. The elastic film has an outer peripheral portion fixed to a displacement restricting member disposed to face the elastic film, and displacement is restricted by the displacement restricting member.

弾性膜および変位規制部材が互いに対向する対向面の一方は、複数の凸状部と、凸状部の周方向に隣接する複数の凹状部とを備えている。凸状部は、弾性膜または変位規制部材の他方の対向面との対向間隔が、外周部から径方向中心部に向かうにつれて次第に大きくなるように形成される。よって、弾性膜および変位規制部材が離れた状態から対向面同士が近づくように弾性膜が変形すると、弾性膜は、外周部から凸状部に沿って径方向中心部に向かって少しずつ接触面を拡げる。   One of the opposing surfaces where the elastic film and the displacement regulating member face each other includes a plurality of convex portions and a plurality of concave portions adjacent to each other in the circumferential direction of the convex portions. The convex portion is formed such that the facing distance between the elastic membrane or the other facing surface of the displacement regulating member gradually increases from the outer peripheral portion toward the radial center portion. Therefore, when the elastic membrane is deformed so that the opposing surfaces approach each other from a state where the elastic membrane and the displacement regulating member are separated from each other, the elastic membrane is gradually contacted from the outer peripheral portion along the convex portion toward the radial center portion. Expand.

また、凹状部は、弾性膜または変位規制部材の他方の対向面との対向間隔が、凸状部から周方向に沿って離れるにつれて次第に大きくなるように形成される。さらに、凸状部と凹状部とは互いに滑らかな曲面で連続して形成される。よって、対向面同士が近づくように弾性膜が変形すると、弾性膜は、凸状部から周方向に向かい凹状部に沿って少しずつ接触面を拡げる。 Further, the concave portion is formed such that the facing distance from the other facing surface of the elastic film or the displacement regulating member gradually increases as the distance from the convex portion increases along the circumferential direction. Furthermore, the convex portion and the concave portion are continuously formed with smooth curved surfaces. Therefore, when the elastic film is deformed so that the opposing surfaces approach each other, the elastic film expands the contact surface little by little along the concave portion from the convex portion toward the circumferential direction.

これとは逆に、弾性膜および変位規制部材の対向面が接触した状態(拘束状態)から対向面同士が離れるように弾性膜が変形すると、弾性膜は、凹状部に沿って周方向の凸状部に向かって少しずつ接触面を狭める。次いで、凸状部に沿って外周部に向かって少しずつ接触面を狭め、最後に弾性膜および変位規制部材の対向面が離れた状態(可動状態)となる。   On the other hand, when the elastic film is deformed so that the opposed surfaces are separated from the state in which the opposed surfaces of the elastic film and the displacement regulating member are in contact (restrained state), the elastic film is protruded in the circumferential direction along the concave portion. Narrow the contact surface gradually toward the shape. Next, the contact surface is gradually narrowed along the convex portion toward the outer peripheral portion, and finally, the opposing surfaces of the elastic film and the displacement regulating member are separated (movable state).

以上のように弾性膜は、状態(拘束状態または可動状態)が切り換わるときに凸状部および凹状部に沿って少しずつ接触面積を変化させるので、急激な液圧変動が生じることを抑制できる。よって、ショック感を抑制できる効果がある。   As described above, since the elastic film changes the contact area little by little along the convex part and the concave part when the state (restrained state or movable state) is switched, it is possible to suppress the occurrence of sudden fluid pressure fluctuations. . Therefore, there is an effect that a feeling of shock can be suppressed.

請求項2記載の液封入式防振装置によれば、各凹状部は、球面の一部により構成される凹球面状に少なくとも一部が形成される。弾性膜または変位規制部材の軸中心を通る軸線上とは異なる位置であってその軸線と直交する同一平面上に球面の中心が位置するので、凹球面状に形成された複数の凹状部が周方向に配置される。凹球面状の凹状部に沿って連続的に弾性膜を変形させることができるので、請求項1の効果に加え、液圧変動をさらに抑制することができ、ショック感をさらに抑制できる効果がある。
さらに、球面の半径が同一であるので、各凹状部の曲率を同一にでき、繰り返し変形する弾性膜に部分的な劣化や弾性低下を生じ難くできる効果がある。
According to the liquid-filled vibration isolator according to claim 2, at least a part of each concave part is formed in a concave spherical shape constituted by a part of the spherical surface. Since the center of the spherical surface is located on the same plane that is different from the axis passing through the axis of the elastic membrane or the displacement regulating member and is orthogonal to the axis, the plurality of concave portions formed in the concave spherical shape are Arranged in the direction. Since the elastic membrane can be continuously deformed along the concave spherical concave portion, in addition to the effect of claim 1, the hydraulic pressure fluctuation can be further suppressed, and the shock feeling can be further suppressed. .
Furthermore, since the radius of the spherical surface is the same, the curvature of each concave-shaped portion can be made the same, and there is an effect that it is difficult to cause partial deterioration and elastic reduction in the elastic film that repeatedly deforms.

請求項3記載の液封入式防振装置によれば、周方向における断面視において、凸状部が対向面の他方へ向かって凸の円弧状に形成され、凹状部が対向面の他方の反対側へ向かって凸の円弧状に形成される。これにより、弾性膜と変位規制部材との接触面積の変化をより緩やかにできる。その結果、急激な液圧変動が生じることをより抑制できるので、請求項1又は2の効果に加え、急激な液圧変動に起因するショック感をより抑制できる効果がある。 According to the liquid-filled vibration isolator according to claim 3, in the cross-sectional view in the circumferential direction, the convex portion is formed in a convex arc shape toward the other of the opposing surfaces, and the concave portion is opposite to the other of the opposing surfaces. It is formed in a convex arc shape toward the side. Thereby, the change of the contact area of an elastic film and a displacement control member can be made looser. As a result, it is possible to further suppress the occurrence of sudden fluid pressure fluctuations, so that in addition to the effect of claim 1 or 2, there is an effect of further suppressing the feeling of shock caused by the sudden fluid pressure fluctuations.

本発明の第1実施の形態における液封入式防振装置の軸方向断面図である。It is an axial sectional view of the liquid filled type vibration isolator in the first embodiment of the present invention. 液封入式防振装置の拡大断面図である。It is an expanded sectional view of a liquid enclosure type vibration isolator. 仕切体の斜視図である。It is a perspective view of a partition. 仕切体の平面図である。It is a top view of a partition. 仕切体の平面図である。It is a top view of a partition. 図4のVI−VI線における仕切体の断面図である。It is sectional drawing of the partition body in the VI-VI line of FIG. 図4のVII−VII線における仕切体の断面図である。It is sectional drawing of the partition in the VII-VII line of FIG. 仕切体の部分断面図である。It is a fragmentary sectional view of a partition. 第2実施の形態における液封入式防振装置の軸方向断面図である。It is an axial sectional view of the liquid filled type vibration isolator in the second embodiment. 受側の保持部材の平面図である。It is a top view of the holding member of a receiving side. 蓋側の保持部材の平面図である。It is a top view of the holding member by the side of a lid.

以下、本発明の好ましい実施の形態について、添付図面を参照して説明する。図1は本発明の第1実施の形態における液封入式防振装置1の軸方向断面図である。図1に示すように液封入式防振装置1は、自動車のエンジン等のパワーユニット(図示せず)に取り付けられる第1取付部材2と、ブラケット(図示せず)を介してパワーユニットの下方の車体フレーム(図示せず)に取り付けられる筒状の第2取付部材3と、第1取付部材2及び第2取付部材3とを連結すると共にゴム状弾性体から構成される防振基体4とを備えている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. FIG. 1 is an axial sectional view of a liquid filled type vibration damping device 1 according to a first embodiment of the present invention. As shown in FIG. 1, a liquid-filled vibration isolator 1 includes a first attachment member 2 attached to a power unit (not shown) such as an automobile engine, and a vehicle body below the power unit via a bracket (not shown). A cylindrical second mounting member 3 mounted on a frame (not shown), and a vibration-proof base 4 that connects the first mounting member 2 and the second mounting member 3 and is made of a rubber-like elastic body are provided. ing.

なお、本実施の形態では、パワーユニットの分担支持荷重が、軸心を通る軸線O方向(図1上下方向)に入力される。従って、装着状態では、防振基体4の弾性変形によって第1取付部材2と第2取付部材3とが軸方向で互いに近接する方向に変位する。以下の説明では、特に断りのない限り、上下方向は図1における軸線Oの上下方向をいう。なお、この上下方向は第2実施の形態(図9)においても同様である。   In the present embodiment, the shared support load of the power unit is input in the direction of the axis O passing through the axis (the vertical direction in FIG. 1). Accordingly, in the mounted state, the first mounting member 2 and the second mounting member 3 are displaced in the axial direction toward each other due to elastic deformation of the vibration-proof base 4. In the following description, the vertical direction means the vertical direction of the axis O in FIG. 1 unless otherwise specified. This vertical direction is the same as in the second embodiment (FIG. 9).

図1に示すように、第1取付部材2は主に金属材料等の剛性材料により形成され、上面にボルト孔2aが設けられる。ボルト孔2aに、パワーユニットのブラケットに取り付けられたボルト(図示せず)が締結固定されることで、第1取付部材2が振動発生源に取り付けられる。第2取付部材3は、主に金属材料等の剛性材料により筒状に形成され、ブラケット等を介して車体フレーム側(図示せず)に取り付けられる。   As shown in FIG. 1, the first mounting member 2 is mainly formed of a rigid material such as a metal material, and a bolt hole 2a is provided on the upper surface. A bolt (not shown) attached to the bracket of the power unit is fastened and fixed to the bolt hole 2a, whereby the first attachment member 2 is attached to the vibration source. The second attachment member 3 is formed in a cylindrical shape mainly from a rigid material such as a metal material, and is attached to the vehicle body frame side (not shown) via a bracket or the like.

防振基体4は円錐台状に形成され、上端部が第1取付部材2の外周面に、下端部が第2取付部材3の上側内周面にそれぞれ加硫接着される。防振基体4の下面側には上窄まりの中空部が形成され、防振基体4の下端部には、第2取付部材3の内周面を覆うゴム膜5が段部4aに連設される。第2取付部材3は、上端部に筒状のブラケット部材6が外嵌され、ブラケット部材6の上端部にストッパゴム7が被着される。   The anti-vibration base 4 is formed in a truncated cone shape, and its upper end is vulcanized and bonded to the outer peripheral surface of the first mounting member 2 and its lower end is bonded to the upper inner peripheral surface of the second mounting member 3. An upper constricted hollow portion is formed on the lower surface side of the vibration isolating base 4, and a rubber film 5 covering the inner peripheral surface of the second mounting member 3 is continuously provided on the stepped portion 4 a at the lower end of the vibration isolating base 4. Is done. As for the 2nd attachment member 3, the cylindrical bracket member 6 is externally fitted by the upper end part, and the stopper rubber 7 is adhere | attached on the upper end part of the bracket member 6. FIG.

第2取付部材3の内側には、液室形成部材10及び仕切体20と、液室形成部材10と仕切体20との間に配置される第2ダイヤフラム30と、第1ダイヤフラム40とが固着され、仕切体20に管路形成部材50が固着される。図2を参照して、液室形成部材10、仕切体20、第2ダイヤフラム30、第1ダイヤフラム40及び管路形成部材50について説明する。図2は液封入式防振装置1の拡大断面図である。なお、図2では液封入式防振装置1の上部側(第1取付部材2等)の図示を省略している。   Inside the second mounting member 3, the liquid chamber forming member 10 and the partition 20, the second diaphragm 30 disposed between the liquid chamber forming member 10 and the partition 20, and the first diaphragm 40 are fixed. Then, the pipe line forming member 50 is fixed to the partition body 20. With reference to FIG. 2, the liquid chamber forming member 10, the partition 20, the second diaphragm 30, the first diaphragm 40 and the pipe line forming member 50 will be described. FIG. 2 is an enlarged cross-sectional view of the liquid-filled vibration isolator 1. In FIG. 2, illustration of the upper side (first mounting member 2 and the like) of the liquid-filled vibration isolator 1 is omitted.

図2に示すように、液室形成部材10は、軸方向視(軸線O方向視)して円形状に形成される部材であり、円盤状に形成される本体部11と、本体部11の全周に亘って本体部11の径方向に向かって鍔状に突設される鍔部12と、本体部11の周縁から軸方向に向かって突設される円筒状の円筒部13を備えている。本体部11の径方向中央部には、厚さ方向に貫通する第2オリフィス(貫通孔)10aが形成され、第2オリフィス10aの周囲に円筒状の筒壁部14が突設される。   As shown in FIG. 2, the liquid chamber forming member 10 is a member formed in a circular shape when viewed in the axial direction (viewed in the direction of the axis O), and the main body portion 11 formed in a disk shape, A collar portion 12 projecting in a bowl shape toward the radial direction of the main body portion 11 over the entire circumference, and a cylindrical cylindrical portion 13 projecting from the peripheral edge of the main body portion 11 toward the axial direction are provided. Yes. A second orifice (through hole) 10a penetrating in the thickness direction is formed in the central portion in the radial direction of the main body 11, and a cylindrical tube wall portion 14 is provided around the second orifice 10a.

仕切体20は、液体封入室Lを第1液室L1(図1参照)及び第2液室L2に仕切るための部材であり、液室形成部材10が積重され、軸方向視(軸線O方向視)して円形状に形成される。仕切体20は、液室形成部材10との対向面が凹面状に形成される本体部21と、本体部21の全周に亘って本体部21の径方向に向かって鍔状に形成される円環部22とを備えている。また、仕切体20は、円環部22の全周に亘って軸方向に段差状に形成される段差部23と、段差部23の径方向外側の全周に亘って軸方向に延びる円筒状の外周壁部24と、外周壁部24の軸方向両端から径方向外側に向けてフランジ状に延設されるオリフィス形成壁25,26とを備えている。さらに、液室形成部材10と対向する本体部11の凹面状の面の反対面から軸方向に向かって円筒状の壁部27が突設される。   The partition 20 is a member for partitioning the liquid enclosure chamber L into a first liquid chamber L1 (see FIG. 1) and a second liquid chamber L2, and the liquid chamber forming members 10 are stacked, and viewed in the axial direction (axis O It is formed in a circular shape when viewed from the direction. The partition 20 is formed in a bowl shape toward the radial direction of the main body 21 over the entire periphery of the main body 21 and the main body 21 having a concave surface facing the liquid chamber forming member 10. And an annular portion 22. Further, the partition 20 is a stepped portion 23 formed in a step shape in the axial direction over the entire circumference of the annular portion 22, and a cylindrical shape extending in the axial direction over the entire outer circumference in the radial direction of the stepped portion 23. The outer peripheral wall portion 24 and orifice forming walls 25 and 26 extending in a flange shape from both axial ends of the outer peripheral wall portion 24 outward in the radial direction. Further, a cylindrical wall portion 27 projects from the opposite surface of the main body 11 facing the liquid chamber forming member 10 in the axial direction.

外周壁部24、オリフィス形成壁25,26は、第1液室L1と第2液室L2とを連通する第1オリフィス20bを形成するための部位であり、オリフィス形成壁25,26に、それぞれ切欠き25a,26a(図3参照)が形成される。それら切欠き25a,26a及び外周壁部24の外周(第1オリフィス20b)を通って第1液室L1及び第2液室L2との間を液体が流通する。また、本体部21は、径方向中央部に厚さ方向(軸方向)に貫通する貫通孔20a(空気管路)が形成される。   The outer peripheral wall portion 24 and the orifice forming walls 25 and 26 are portions for forming the first orifice 20b that communicates the first liquid chamber L1 and the second liquid chamber L2, respectively. Notches 25a and 26a (see FIG. 3) are formed. The liquid flows between the first liquid chamber L1 and the second liquid chamber L2 through the notches 25a and 26a and the outer periphery (first orifice 20b) of the outer peripheral wall portion 24. Further, the main body portion 21 is formed with a through hole 20a (air pipe line) penetrating in the thickness direction (axial direction) in the central portion in the radial direction.

第2ダイヤフラム30は、ゴム状弾性体から構成される部材(ゴム膜)であり軸方向視して円形状に形成される。第2ダイヤフラム30は、軸方向上側(図2上側)に凸の凸球面状に形成される凸面部31と、凸面部31の外周縁に連設されると共に軸方向上側に凹の凹曲面により円環状に形成される凹面部32と、凹面部32の外周縁に連設されると共に径方向外側に向かって延設される延設部33と、延設部33の全周に連設されると共に延設部33より軸方向寸法が大きく設定される外周縁部34とを備えている。   The second diaphragm 30 is a member (rubber film) made of a rubber-like elastic body, and is formed in a circular shape when viewed in the axial direction. The second diaphragm 30 includes a convex surface portion 31 that is formed in a convex spherical shape that is convex upward in the axial direction (upper side in FIG. 2), and a concave curved surface that is connected to the outer peripheral edge of the convex surface portion 31 and concave in the axial direction. A concave surface portion 32 formed in an annular shape, an extended portion 33 that is continuous with the outer peripheral edge of the concave surface portion 32 and extends outward in the radial direction, and continuous with the entire circumference of the extended portion 33. And an outer peripheral edge portion 34 whose axial dimension is set larger than that of the extending portion 33.

第2ダイヤフラム30を介在させた状態で仕切体20に液室形成部材10は圧入され、第2ダイヤフラム30は、仕切体20及び液室形成部材10に気密に固着される。具体的には、仕切体20の円環部22及び段差部23に第2ダイヤフラム30の延設部33及び外周縁部34を重ね合わせ、仕切体20のオリフィス形成壁25と液室形成部材10の鍔部12とを当接させた状態で、円筒部13によって延設部33が押圧される。仕切体20及び液室形成部材10に第2ダイヤフラム30を気密に挟持(固着)させることで、仕切体20と第2ダイヤフラム30との間に空気室Rが形成される。   The liquid chamber forming member 10 is press-fitted into the partition 20 with the second diaphragm 30 interposed, and the second diaphragm 30 is airtightly fixed to the partition 20 and the liquid chamber forming member 10. Specifically, the extension part 33 and the outer peripheral edge part 34 of the second diaphragm 30 are overlapped with the annular part 22 and the step part 23 of the partition 20, and the orifice forming wall 25 and the liquid chamber forming member 10 of the partition 20 are overlapped. The extending portion 33 is pressed by the cylindrical portion 13 in a state where the flange portion 12 is in contact with the cylindrical portion 13. An air chamber R is formed between the partition 20 and the second diaphragm 30 by airtightly holding (adhering) the second diaphragm 30 to the partition 20 and the liquid chamber forming member 10.

第1ダイヤフラム40は、外部に対して密封された液体封入室L(図1参照)を形成するためにゴム状弾性体から構成される部材(ゴム膜)であり、第2ダイヤフラム30より薄肉かつ大径の円環状に形成される。液体封入室Lは水やエチレングリコール等の非圧縮性液体(以下「液体」と称す)が封入される。第1ダイヤフラム40は、軸線O方向視において径方向中心部(内周縁部45)の周囲に同心円状の凸部41,42及び凹部43を有する蛇腹状に形成される。円筒状の支持金具47に外周縁部が加硫接着され、内周縁部45は管路形成部材50に固着される。第1ダイヤフラム40は、内周縁部45の軸方向寸法(図2上下方向寸法)が凸部41,42、凹部43及びネック部44の軸方向寸法(厚さ)より大きく設定され、凸部41と内周縁部45とがネック部44に連設される。また、内周縁部45の内周面の2箇所に断面三角状の液封部46が径方向内側に向かって全周に亘り突設される。   The first diaphragm 40 is a member (rubber film) made of a rubber-like elastic body so as to form a liquid sealing chamber L (see FIG. 1) sealed to the outside, and is thinner than the second diaphragm 30. It is formed in a large-diameter annular shape. The liquid enclosure L is filled with incompressible liquid (hereinafter referred to as “liquid”) such as water or ethylene glycol. The first diaphragm 40 is formed in a bellows shape having concentric convex portions 41 and 42 and a concave portion 43 around the radial center portion (inner peripheral edge portion 45) when viewed in the direction of the axis O. The outer peripheral edge portion is vulcanized and bonded to the cylindrical support fitting 47, and the inner peripheral edge portion 45 is fixed to the pipe line forming member 50. In the first diaphragm 40, the axial dimension (the vertical dimension in FIG. 2) of the inner peripheral edge 45 is set to be larger than the axial dimension (thickness) of the convex parts 41, 42, the concave part 43 and the neck part 44. And the inner peripheral edge 45 are connected to the neck 44. In addition, liquid sealing portions 46 having a triangular cross section are provided at two locations on the inner peripheral surface of the inner peripheral edge portion 45 so as to protrude radially inward over the entire circumference.

管路形成部材50は、第2ダイヤフラム30の内周縁部45を固着すると共に軸方向に貫通する空気管路50aが形成される部材である。管路形成部材50は、円柱状に形成される軸部52と、軸部52の一端部から径方向外側に向かって鍔状に突設される円盤状の円盤部51と、円盤部51の外周縁から軸部52側の軸方向に向かって突設される円筒状の周壁部53と、軸部52と同心状に形成される負圧導入管54とを備えている。空気管路50aは軸部52及び負圧導入管54に貫通形成される。   The duct forming member 50 is a member that fixes the inner peripheral edge 45 of the second diaphragm 30 and is formed with an air duct 50a penetrating in the axial direction. The pipe line forming member 50 includes a shaft portion 52 formed in a columnar shape, a disk-shaped disk portion 51 projecting in a bowl shape from one end portion of the shaft portion 52 toward the radially outer side, and the disk portion 51 A cylindrical peripheral wall portion 53 projecting from the outer peripheral edge in the axial direction on the shaft portion 52 side, and a negative pressure introduction pipe 54 formed concentrically with the shaft portion 52 are provided. The air duct 50 a is formed through the shaft portion 52 and the negative pressure introduction pipe 54.

管路形成部材50は、螺着、溶着、嵌着等の各種手段により仕切体20に固着される。仕切体20に管路形成部材50が固着されることで、貫通孔20aを介して空気管路50aが空気室Rに連通される。また、管路形成部材50が仕切体20に固着されることで、第1ダイヤフラム40の内周縁部45が気密に固着される。   The pipe line forming member 50 is fixed to the partition 20 by various means such as screwing, welding, and fitting. By fixing the duct forming member 50 to the partition body 20, the air duct 50a communicates with the air chamber R through the through hole 20a. In addition, the pipe forming member 50 is fixed to the partition body 20, whereby the inner peripheral edge 45 of the first diaphragm 40 is fixed in an airtight manner.

液封入式防振装置1は、例えば、以下のようにして製造される。まず、仕切体20に液室形成部材10を圧入して、液室形成部材10と仕切体20との間に第2ダイヤフラム30を挟持する。支持金具47が加硫接着された第1ダイヤフラム40の内周縁部45を管路形成部材50に保持させ、その管路形成部材50を仕切体20に固着する。第1取付部材2に防振基体4が加硫接着された第2取付部材3に液体を満たした後、液体形成部材10、仕切体20及び支持金具47を第2取付部材3に挿入しつつ第2取付部材3に絞り加工を施し、液室形成部材10、仕切体20及び支持金具47を防振基体4及びゴム膜5との間で液密にする。   The liquid-filled vibration isolator 1 is manufactured as follows, for example. First, the liquid chamber forming member 10 is press-fitted into the partition body 20, and the second diaphragm 30 is sandwiched between the liquid chamber forming member 10 and the partition body 20. The inner peripheral edge 45 of the first diaphragm 40 to which the support metal fitting 47 is vulcanized and bonded is held by the pipe line forming member 50, and the pipe line forming member 50 is fixed to the partition body 20. After the liquid is filled in the second mounting member 3 in which the anti-vibration base 4 is vulcanized and bonded to the first mounting member 2, the liquid forming member 10, the partition 20 and the support fitting 47 are inserted into the second mounting member 3. The second mounting member 3 is subjected to a drawing process so that the liquid chamber forming member 10, the partition 20, and the support fitting 47 are liquid-tight between the vibration isolating base 4 and the rubber film 5.

液封入式防振装置1の液体封入室Lは、防振基体4と液室形成部材10との間の第1液室L1、仕切体20と第1ダイヤフラム40との間の第2液室L2、液室形成部材10と第2ダイヤフラム30との間の第3液室L3に仕切られる。また、第2ダイヤフラム30と仕切体20との間に空気室Rが形成される。その空気室Rと連通する空気管路50aには空気圧調整装置60が接続される。   The liquid enclosure chamber L of the liquid enclosure type vibration isolator 1 includes a first liquid chamber L1 between the vibration isolation base 4 and the liquid chamber forming member 10, and a second liquid chamber between the partition body 20 and the first diaphragm 40. L2 is partitioned into a third liquid chamber L3 between the liquid chamber forming member 10 and the second diaphragm 30. An air chamber R is formed between the second diaphragm 30 and the partition body 20. An air pressure adjusting device 60 is connected to the air pipe 50 a communicating with the air chamber R.

空気圧調整装置60は、空気室Rに負圧または大気圧を導入するための装置であり、管路形成部材50(空気管路50a)に接続される車体側の外部管路63と、外部管路63に接続される負圧源61及び切換弁62とを有している。切換弁62は、電磁弁等により構成され、負圧源61又は大気中と空気室Rとの連通を択一的に切り換えられる。負圧源61は、例えば自動車のインテーク側の吸圧器系統やアキュームレータ等が採用される。   The air pressure adjusting device 60 is a device for introducing a negative pressure or an atmospheric pressure into the air chamber R, and includes an external pipe 63 on the vehicle body side connected to the pipe forming member 50 (the air pipe 50a), and an external pipe. A negative pressure source 61 and a switching valve 62 connected to the path 63 are included. The switching valve 62 is configured by an electromagnetic valve or the like, and can selectively switch communication between the negative pressure source 61 or the atmosphere and the air chamber R. As the negative pressure source 61, for example, a pressure absorber system or an accumulator on the intake side of an automobile is employed.

切換弁62は、制御装置(図示せず)と接続される。制御装置は、自動車に備え付けの各種センサから自動車の走行速度やエンジン回転数、変速段の選択位置、スロットル開度など、自動車の状態を表す各種情報が入力される。制御装置は、入力された各種情報に基づいて切換弁62を作動させる。   The switching valve 62 is connected to a control device (not shown). The control device receives various types of information representing the state of the vehicle, such as the traveling speed of the vehicle, the engine speed, the shift position selection position, and the throttle opening, from various sensors provided in the vehicle. The control device operates the switching valve 62 based on the various information input.

液封入式防振装置1によれば、切換弁62により空気室Rを大気開放した場合には、第2ダイヤフラム30を可動状態にできる。一方、切換弁62により空気室Rに負圧を導入した場合には、第2ダイヤフラム30を仕切体20の本体部21に接触させて拘束状態にすることで、第2ダイヤフラム30の剛性を上げることができる。このように第2ダイヤフラム30の剛性を変化させることで、パワーユニットのシェイク振動やアイドリング振動等の異なる振動数の振動を効果的に減衰させることができる。   According to the liquid-filled vibration isolator 1, when the air chamber R is opened to the atmosphere by the switching valve 62, the second diaphragm 30 can be moved. On the other hand, when negative pressure is introduced into the air chamber R by the switching valve 62, the rigidity of the second diaphragm 30 is increased by bringing the second diaphragm 30 into contact with the main body portion 21 of the partition body 20 to be in a restrained state. be able to. By changing the rigidity of the second diaphragm 30 in this manner, vibrations with different frequencies such as shake vibration and idling vibration of the power unit can be effectively attenuated.

次に図3から図8を参照して仕切体20について説明する。まず、図3から図5を参照して、仕切体20の概略構成について説明する。図3は仕切体20の斜視図であり、図4及び図5は仕切体20の平面図である。   Next, the partition 20 will be described with reference to FIGS. First, a schematic configuration of the partition 20 will be described with reference to FIGS. 3 to 5. FIG. 3 is a perspective view of the partition 20, and FIGS. 4 and 5 are plan views of the partition 20.

仕切体20は、図3から図5に示すように、アルミニウム合金などの金属材料や合成樹脂材料から軸心Oを有する有底の略円筒状に形成される。仕切体20の外周壁部24の軸方向上下端には、フランジ状のオリフィス形成壁25,26がそれぞれ突設される。オリフィス形成壁25,26にはそれぞれ切欠き25a,26aが形成され、縦壁25bによりオリフィス形成壁25,26が接続される。外周壁部24及びオリフィス形成壁25,26によって形成される第1オリフィス20b(図2参照)は、縦壁25bによって周方向に分断される。   As shown in FIGS. 3 to 5, the partition 20 is formed in a substantially cylindrical shape with a bottom having an axis O from a metal material such as an aluminum alloy or a synthetic resin material. At the upper and lower ends in the axial direction of the outer peripheral wall portion 24 of the partition 20, flange-shaped orifice forming walls 25 and 26 are respectively projected. Cutouts 25a and 26a are formed in the orifice forming walls 25 and 26, respectively, and the orifice forming walls 25 and 26 are connected by the vertical wall 25b. The first orifice 20b (see FIG. 2) formed by the outer peripheral wall portion 24 and the orifice forming walls 25 and 26 is divided in the circumferential direction by the vertical wall 25b.

仕切体20は、外周壁部24の内周面側に略円盤状の本体部21(図2参照)を有し、平坦面を有する円環部22及び段差部23が本体部21の外周部に一体に形成される。本体部21の上面は凹面状に形成される。円環部22は、第2ダイヤフラム30(図2参照)の外周部が気密に固着される部位であり、本体部21は、空気室Rに負圧が導入された場合に第2ダイヤフラム30の変位を規制し拘束状態にするための部位である。   The partition 20 has a substantially disc-shaped main body 21 (see FIG. 2) on the inner peripheral surface side of the outer peripheral wall portion 24, and the annular portion 22 and the stepped portion 23 having a flat surface are the outer peripheral portions of the main body 21. Are integrally formed. The upper surface of the main body 21 is formed in a concave shape. The annular portion 22 is a portion to which the outer peripheral portion of the second diaphragm 30 (see FIG. 2) is airtightly fixed, and the main body portion 21 is configured so that the negative pressure is introduced into the air chamber R. This is a part for restricting the displacement and bringing it into a restrained state.

本体部21は、第2ダイヤフラム30との対向面に、複数の内凸状部21b及び外凸状部21dと、内凸状部21b及び外凸状部21dの周方向にそれぞれ隣接する複数の内凹状部21a及び外凹状部21cとを備えている。内凸状部21b、外凸状部21d、内凹状部21a及び外凹状部21cは、空気室R(図2参照)に負圧を導入して第2ダイヤフラム30の変位を規制するときに第2ダイヤフラム30が連続的に接触する部位である。   The main body 21 has a plurality of inner convex portions 21b and outer convex portions 21d on the surface facing the second diaphragm 30, and a plurality of adjacent inner circumferential portions 21b and outer convex portions 21d in the circumferential direction. An inner concave portion 21a and an outer concave portion 21c are provided. The inner convex portion 21b, the outer convex portion 21d, the inner concave portion 21a, and the outer concave portion 21c are the first when the negative pressure is introduced into the air chamber R (see FIG. 2) to restrict the displacement of the second diaphragm 30. This is a portion where the two diaphragms 30 are in continuous contact.

本実施の形態では、径方向中央部に位置し貫通孔20aが形成された孔形成部21eを中心に、放射状に4つの内凸状部21bが形成され、その径方向外側に外凸状部21dが形成される。内凸状部21b間に4つの内凹状部21aが形成され、その径方向外側に外凹状部21cが位置する。内凹状部21a及び外凹状部21cは平面視してそれぞれ略扇状に形成され、内凸状部21bに対して外周側に位置する外凸状部21dの周方向長さ(平面視における)は、内凹状部21aに対して外周側に位置する外凹状部21cの周方向長さより小さく設定される。   In the present embodiment, four inner convex portions 21b are formed radially around the hole forming portion 21e that is located in the radial central portion and in which the through hole 20a is formed, and the outer convex portion is formed radially outward. 21d is formed. Four inner concave portions 21a are formed between the inner convex portions 21b, and the outer concave portion 21c is located on the radially outer side. The inner concave portion 21a and the outer concave portion 21c are each formed in a substantially fan shape in plan view, and the circumferential length (in plan view) of the outer convex portion 21d located on the outer peripheral side with respect to the inner convex portion 21b is The inner concave portion 21a is set to be smaller than the circumferential length of the outer concave portion 21c located on the outer peripheral side.

次に図6を参照して、内凹状部21a及び外凹状部21cの形状について説明する。図6は図4のVI−VI線における仕切体20の断面図である。図6に示すように内凹状部21a及び外凹状部21cは、全体として、円環部22から径方向中央部に向かうにつれ漸次下降傾斜する曲面として形成される。図6に示す軸線O(図2参照)を含む断面視において、外凹状部21c(図3参照)は上に凸の円弧状に形成され、内凹状部21aは下に凸の円弧状に形成される。外凹状部21cは円環部22と滑らかな曲面で連成され、内凹状部21aは外凹状部21cと滑らかな曲面で連成されている。   Next, the shapes of the inner concave portion 21a and the outer concave portion 21c will be described with reference to FIG. 6 is a cross-sectional view of the partition 20 taken along line VI-VI in FIG. As shown in FIG. 6, the inner concave portion 21 a and the outer concave portion 21 c are formed as curved surfaces that gradually descend and incline from the annular portion 22 toward the radial center. In a cross-sectional view including the axis O (see FIG. 2) shown in FIG. 6, the outer concave portion 21c (see FIG. 3) is formed in an upward convex arc shape, and the inner concave portion 21a is formed in a downward convex arc shape. Is done. The outer concave portion 21c is coupled to the annular portion 22 with a smooth curved surface, and the inner concave portion 21a is coupled to the outer concave portion 21c with a smooth curved surface.

本実施の形態では、4つの内凹状部21aは、異なる中心Cを有する4つの球面Sの一部によってそれぞれ凹球面状に形成されている。なお、図5において球面S1の中心はC1であり、図6において球面S2の中心はC2であり、球面S4の中心はC4である。中心C1〜C4は、図6に示すように軸線O(図6上下方向)と直交する平面上に位置し、図5に示すように軸線O上とは異なる位置に存在する。これにより、凹球面状の湾曲面により形成された内凹状部21aを、仕切体20の周方向に配置することができる。外凹状部21cは、形成された内凹状部21aと円環部22とを滑らかな曲面で繋ぐことによって形成される。   In the present embodiment, the four inner concave portions 21a are each formed into a concave spherical shape by a part of the four spherical surfaces S having different centers C. In FIG. 5, the center of the spherical surface S1 is C1, and in FIG. 6, the center of the spherical surface S2 is C2, and the center of the spherical surface S4 is C4. The centers C1 to C4 are located on a plane orthogonal to the axis O (vertical direction in FIG. 6) as shown in FIG. 6, and exist at different positions from the axis O as shown in FIG. Accordingly, the inner concave portion 21 a formed by the concave spherical curved surface can be arranged in the circumferential direction of the partition body 20. The outer concave portion 21c is formed by connecting the formed inner concave portion 21a and the annular portion 22 with a smooth curved surface.

図3に戻って説明する。図3に示すように内凸状部21b及び外凸状部21dは、上述した内凹状部21a及び外凹状部21cと同様に、全体として、円環部22から径方向中央部に向かうにつれ漸次下降傾斜する曲面として形成される。軸線O(図2参照)を含む断面視において、外凸状部21dは上に凸の円弧状に形成され、内凸状部21bは下に凸の円弧状に形成される。外凸状部21dは円環部22と滑らかな曲面で連成され、内凸状部21bは外凸状部21dと滑らかな曲面で連成されている。   Returning to FIG. As shown in FIG. 3, the inner convex portion 21 b and the outer convex portion 21 d are gradually increased from the annular portion 22 toward the radial central portion as a whole, similarly to the inner concave portion 21 a and the outer concave portion 21 c described above. It is formed as a downwardly inclined curved surface. In a cross-sectional view including the axis O (see FIG. 2), the outer convex portion 21d is formed in an upward convex arc shape, and the inner convex portion 21b is formed in a downward convex arc shape. The outer convex portion 21d is coupled to the annular portion 22 with a smooth curved surface, and the inner convex portion 21b is coupled to the outer convex portion 21d with a smooth curved surface.

内凸状部21bは、仕切体20の周方向に形成された外凹状部21c間を、滑らかな曲面で繋ぐことによって形成される。また、外凸状部21dは、形成された内凸状部21bと円環部22とを滑らかな曲面で繋ぐことによって形成される。   The inner convex portion 21b is formed by connecting the outer concave portions 21c formed in the circumferential direction of the partition body 20 with a smooth curved surface. The outer convex portion 21d is formed by connecting the formed inner convex portion 21b and the annular portion 22 with a smooth curved surface.

次に図7を参照して、内凹状部21a及び内凸状部21bの周方向における関係について説明する。図7は図4のVII−VII線における仕切体20の断面図であり、周方向における内凹状部21a及び内凸状部21bの形状を図示している。図7に示すように、内凹状部21aは、周方向に沿って内凸状部21bから離れるにつれ漸次下降傾斜する曲面として形成される。図7に示す周方向における断面視において、内凸状部21bは上に凸の円弧状に形成され、内凹状部21aは下に凸の円弧状に形成される。内凹状部21a及び内凸状部21bは互いに滑らかな曲面で連成される。   Next, the relationship in the circumferential direction between the inner concave portion 21a and the inner convex portion 21b will be described with reference to FIG. FIG. 7 is a cross-sectional view of the partition body 20 taken along the line VII-VII in FIG. 4, and illustrates the shapes of the inner concave portion 21a and the inner convex portion 21b in the circumferential direction. As shown in FIG. 7, the inner concave portion 21 a is formed as a curved surface that gradually descends and slopes away from the inner convex portion 21 b along the circumferential direction. In the cross-sectional view in the circumferential direction shown in FIG. 7, the inner convex portion 21b is formed in an upward convex arc shape, and the inner concave portion 21a is formed in a downward convex arc shape. The inner concave portion 21a and the inner convex portion 21b are coupled to each other with a smooth curved surface.

次に図8を参照して、外凹状部21c及び外凸状部21dの径方向における関係について説明する。図8は仕切体20の部分断面図である。なお、外凹状部21c及び外凸状部21dは軸線Oを含む同一断面上にないので、図8において、軸線Oを含む外凹状部21c及び内凹状部21aの断面視(図6に示す断面図と同じ)を実線で図示し、軸線Oを含む外凸状部21d及び内凸状部21bの断面視を重ねて二点鎖線で図示する。併せて、軸線Oを含む第2ダイヤフラム30の断面視を二点鎖線で図示する。   Next, the relationship in the radial direction between the outer concave portion 21c and the outer convex portion 21d will be described with reference to FIG. FIG. 8 is a partial cross-sectional view of the partition body 20. Since the outer concave portion 21c and the outer convex portion 21d are not on the same cross section including the axis O, in FIG. 8, a cross-sectional view of the outer concave portion 21c and the inner concave portion 21a including the axis O (the cross section shown in FIG. 6). (Same as in the figure) is shown by a solid line, and cross-sectional views of the outer convex part 21d and the inner convex part 21b including the axis O are superimposed and shown by a two-dot chain line. In addition, a sectional view of the second diaphragm 30 including the axis O is illustrated by a two-dot chain line.

図8に示すように、仕切体20の外凹状部21cは、第2ダイヤフラム30(図8上側)に向かう凸の円弧状に形成され、内凹状部21aは第2ダイヤフラム30の反対側(図8下側)に向かう凸の円弧状に形成される。外凹状部21c及び内凹状部21aは、全体として、外周部から径方向中央部(図8左側)に向かうにつれて、第2ダイヤフラム30との対向間隔が次第に大きくなるように設定される。   As shown in FIG. 8, the outer concave portion 21c of the partition 20 is formed in a convex arc shape toward the second diaphragm 30 (upper side in FIG. 8), and the inner concave portion 21a is opposite to the second diaphragm 30 (see FIG. 8). 8 is formed in a convex arc shape toward the lower side. As a whole, the outer concave portion 21c and the inner concave portion 21a are set so that the facing distance from the second diaphragm 30 gradually increases from the outer peripheral portion toward the radial central portion (left side in FIG. 8).

仕切体20の外凸状部21dは、第2ダイヤフラム30(図8上側)に向かう凸の円弧状に形成され、内凸状部21bは第2ダイヤフラム30の反対側(図8下側)に向かう凸の円弧状に形成される。外凸状部21d及び内凸状部21bは、全体として、外周部から径方向中央部(図8左側)に向かうにつれて、第2ダイヤフラム30との対向間隔が次第に大きくなるように設定される。第2ダイヤフラム30との対向間隔は、外凸状部21dが外凹状部21cより小さく設定され、内凸状部21bは、外周部側(図8右側)では内凹状部21aより小さく設定されている。   The outer convex portion 21d of the partition 20 is formed in a convex arc shape toward the second diaphragm 30 (upper side in FIG. 8), and the inner convex portion 21b is on the opposite side (lower side in FIG. 8) of the second diaphragm 30. It is formed in a convex arcuate shape. As a whole, the outer convex portion 21d and the inner convex portion 21b are set so that the facing distance from the second diaphragm 30 gradually increases from the outer peripheral portion toward the radial center portion (left side in FIG. 8). The facing distance to the second diaphragm 30 is set such that the outer convex portion 21d is set smaller than the outer concave portion 21c, and the inner convex portion 21b is set smaller than the inner concave portion 21a on the outer peripheral side (the right side in FIG. 8). Yes.

図8を参照して、液封入式防振装置1に負圧を導入したときの第2ダイヤフラム30の弾性変形挙動について説明する。液封入式防振装置1に外部管路63(図1参照)を接続して空気室Rに負圧を導入すると、第2ダイヤフラム30は、外周部側から径方向中央部へと順に仕切体20に近づくように弾性変形する。第2ダイヤフラム30との対向間隔は、外凸状部21dが外凹状部21cより小さく設定されているので、弾性変形した第2ダイヤフラム30は、外凹状部21cより先に、まず外凸状部21dに接触する。外凸状部21dの周方向長さは外凹状部21cの周方向長さより小さく設定されているので、第2ダイヤフラム30の接触面積を抑えることができ、第2ダイヤフラム30が外凸状部21dに接触したときの打音(異音)を抑えることができる。   With reference to FIG. 8, the elastic deformation behavior of the second diaphragm 30 when a negative pressure is introduced into the liquid-filled vibration isolator 1 will be described. When the external pipe line 63 (see FIG. 1) is connected to the liquid-filled vibration isolator 1 and negative pressure is introduced into the air chamber R, the second diaphragm 30 is sequentially partitioned from the outer peripheral side to the radial center. It is elastically deformed so as to approach 20. The distance between the second diaphragm 30 and the second diaphragm 30 is set so that the outer convex portion 21d is smaller than the outer concave portion 21c. Therefore, the second diaphragm 30 that is elastically deformed is first the outer convex portion before the outer concave portion 21c. 21d is contacted. Since the circumferential length of the outer convex portion 21d is set to be smaller than the circumferential length of the outer concave portion 21c, the contact area of the second diaphragm 30 can be suppressed, and the second diaphragm 30 is made to be the outer convex portion 21d. The hitting sound (abnormal noise) when touching can be suppressed.

さらに、第2ダイヤフラム30との対向間隔は、外周部側(図8右側)では、内凸状部21bが内凹状部21aより小さく設定されているので、外凸状部21dに接触した第2ダイヤフラム30はさらに変形して内凸状部21bに接触する。外凸状部21d及び内凸状部21b、並びに、外凸状部21d及び外凹状部21cが曲面で滑らかに連成されているので、第2ダイヤフラム30は、外凸状部21d及び内凸状部21bに沿って接触面が径方向へ延びつつ、外凸状部21dから外凹状部21cに沿って周方向へ接触面が延びる。第2ダイヤフラム30と仕切体30との接触面を径方向から周方向へと連続的に拡げることができるので、第2ダイヤフラム30に急激な弾性変形が生じることを防止できる。その結果、第3液室L3や第1液室L1内に急激な液圧変動が生じることを防止し、急激な液圧変動に起因するショック感を抑制できる。   Furthermore, since the inner convex portion 21b is set smaller than the inner concave portion 21a on the outer peripheral portion side (right side in FIG. 8), the distance between the second diaphragm 30 and the second diaphragm 30 is in contact with the outer convex portion 21d. The diaphragm 30 is further deformed and comes into contact with the inner convex portion 21b. Since the outer convex portion 21d and the inner convex portion 21b and the outer convex portion 21d and the outer concave portion 21c are smoothly coupled with a curved surface, the second diaphragm 30 includes the outer convex portion 21d and the inner convex portion. The contact surface extends in the radial direction along the outer concave portion 21c from the outer convex portion 21d, while the contact surface extends in the radial direction along the convex portion 21b. Since the contact surface between the second diaphragm 30 and the partition 30 can be continuously expanded from the radial direction to the circumferential direction, it is possible to prevent the second diaphragm 30 from undergoing sudden elastic deformation. As a result, it is possible to prevent sudden fluid pressure fluctuations from occurring in the third fluid chamber L3 and the first fluid chamber L1, and to suppress a shock feeling due to the sudden fluid pressure fluctuations.

以上のように外凸状部21d及び内凸状部21bは、第2ダイヤフラム30との対向間隔が、外周部から径方向中心部に向かうにつれて次第に大きくなるように形成されるので、第2ダイヤフラム30が仕切体20に近づくように変形すると、第2ダイヤフラム30は外周部から外凸状部21d及び内凸状部21bに沿って径方向中心部に向かって少しずつ接触面を拡げる。   As described above, the outer convex portion 21d and the inner convex portion 21b are formed so that the distance between the second diaphragm 30 and the second diaphragm 30 gradually increases from the outer peripheral portion toward the radial center portion. When 30 is deformed so as to approach the partition body 20, the second diaphragm 30 gradually expands the contact surface from the outer peripheral portion along the outer convex portion 21d and the inner convex portion 21b toward the radial center.

また、外凹状部21c及び内凹状部21aは、第2ダイヤフラム30との対向間隔が、外凸状部21d及び内凸状部21bから周方向に沿って離れるにつれて次第に大きくなるように形成される。よって、仕切体20に近づくように第2ダイヤフラム30が変形すると、第2ダイヤフラム30は、外凸状部21d及び内凸状部21bから周方向に向かい外凹状部21c及び内凹状部21aに沿って少しずつ接触面を拡げて、拘束状態となる。   Further, the outer concave portion 21c and the inner concave portion 21a are formed such that the facing distance from the second diaphragm 30 gradually increases as the distance from the outer convex portion 21d and the inner convex portion 21b increases in the circumferential direction. . Therefore, when the 2nd diaphragm 30 deform | transforms so that it may approach the partition 20, the 2nd diaphragm 30 goes to the circumferential direction from the outer convex part 21d and the inner convex part 21b, and follows the outer concave part 21c and the inner concave part 21a. The contact surface is expanded little by little to become a restrained state.

第2ダイヤフラム30が拘束状態から可動状態になるときは、これとは逆に、接触面積を少しずつ狭めていく。第2ダイヤフラム30は、状態(拘束状態または可動状態)が切り換わるときに仕切体20との接触面積を少しずつ変化させるので、第1液室L1や第3液室L3に急激な液圧変動が生じることを抑制できる。よって、ショック感を抑制できる。   When the second diaphragm 30 changes from the restrained state to the movable state, on the contrary, the contact area is gradually reduced. Since the second diaphragm 30 changes the contact area with the partition 20 little by little when the state (restrained state or movable state) is switched, sudden fluid pressure fluctuations occur in the first liquid chamber L1 and the third liquid chamber L3. Can be suppressed. Therefore, a feeling of shock can be suppressed.

また、内凹状部21aは、球面Sの一部により構成される凹球面状に一部が形成され、凹球面状の内凹状部21aが周方向に配置されている。凹球面状の内凹状部21aに沿って連続的に弾性膜を接触変形させることができるので、液圧変動をさらに抑制することができ、ショック感をさらに抑制できる。   Further, the inner concave portion 21a is partly formed into a concave spherical shape constituted by a part of the spherical surface S, and the concave spherical inner concave portion 21a is arranged in the circumferential direction. Since the elastic film can be continuously contact-deformed along the concave spherical inner concave portion 21a, the hydraulic pressure fluctuation can be further suppressed, and the shock feeling can be further suppressed.

なお、空気室Rに導入される負圧の大きさ(減圧の程度)に応じて、第2ダイヤフラム30の仕切体20に対する接触面積ひいては残余の非拘束の部分(可動面積)を変化させることができる。特に、第2ダイヤフラム30は凸面部31の外周に凹面部32を有しているので、空気室Rに導入される負圧の大きさ(減圧の程度)に応じて、外周部から凹面部32までを仕切体20に接触させる状態と、外周部から凸面部31までを仕切体20に接触させる状態とを選択的に変更させることができる。これにより、第2ダイヤフラム30の弾性率と固有振動数とを選択的に変更できる。なお、第2ダイヤフラム30の仕切体20との対向面に凸起等を設けることは当然可能である。   Note that the contact area of the second diaphragm 30 with respect to the partition 20 and the remaining unconstrained portion (movable area) can be changed according to the magnitude of the negative pressure introduced into the air chamber R (degree of decompression). it can. In particular, since the second diaphragm 30 has the concave surface portion 32 on the outer periphery of the convex surface portion 31, the concave surface portion 32 extends from the outer peripheral portion according to the magnitude of the negative pressure introduced into the air chamber R (degree of decompression). It is possible to selectively change the state in which the partition 20 is brought into contact with the partition 20 and the state in which the outer periphery to the convex surface 31 are brought into contact with the partition 20. Thereby, the elastic modulus and the natural frequency of the second diaphragm 30 can be selectively changed. Of course, it is possible to provide a protrusion or the like on the surface of the second diaphragm 30 facing the partition 20.

次に図9から図11を参照して第2実施の形態について説明する。第1実施の形態では、内部に空気室Rを設け、外部から空気室Rの圧力を変更することにより防振特性を変更できる制御型(能動型)の液封入式防振装置1について説明した。これに対し第2実施の形態では、受動型の液封入式防振装置101について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図9は第2実施の形態における液封入式防振装置101の軸方向断面図である。   Next, a second embodiment will be described with reference to FIGS. In the first embodiment, the control type (active type) liquid-filled vibration isolator 1 in which the air chamber R is provided inside and the vibration isolation characteristics can be changed by changing the pressure of the air chamber R from the outside has been described. . In contrast, in the second embodiment, a passive liquid-filled vibration isolator 101 will be described. In addition, about the part same as the part demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 9 is an axial cross-sectional view of the liquid-filled vibration isolator 101 according to the second embodiment.

図9に示すように液封入式防振装置101は、エンジン側に取り付けられる第1取付部材102と、エンジン下方の車体フレーム側に取り付けられる筒状の第2取付部材103と、これらを連結すると共にゴム状弾性体から構成される防振基体104とを備えている。第1取付部材102は、上端部にボルト孔2aが設けられる。   As shown in FIG. 9, the liquid-filled vibration isolator 101 connects the first attachment member 102 attached to the engine side and the cylindrical second attachment member 103 attached to the vehicle body frame side below the engine. And an anti-vibration base 104 made of a rubber-like elastic body. The first mounting member 102 is provided with a bolt hole 2a at the upper end.

防振基体104は、ゴム状弾性体から円錐台形状に形成され、第2取付部材103の内周面を覆うゴム膜105が下端部に連成される。ゴム膜105には仕切部材110(後述する)の外周が密着され、オリフィス116が形成される。   The anti-vibration base 104 is formed in a truncated cone shape from a rubber-like elastic body, and a rubber film 105 covering the inner peripheral surface of the second mounting member 103 is coupled to the lower end portion. An outer periphery of a partition member 110 (described later) is in close contact with the rubber film 105 to form an orifice 116.

ダイヤフラム117は、ゴム状弾性体から部分球状を有するゴム膜状に形成され、円環状の支持金具118に外周部が加硫接着されている。ダイヤフラム117は、カップ状に形成された底部材119と第2取付部材103との間で支持金具118がかしめ固定されることで液密に固着される。その結果、ダイヤフラム117と防振基体104との間に液体封入室Lが形成される。液体封入室Lには水やエチレングリコール等の非圧縮性液体(液体)が封入される。なお、底部材119の底部には、取付ボルト120が突設されている。   The diaphragm 117 is formed from a rubber-like elastic body into a rubber film shape having a partial spherical shape, and an outer peripheral portion is vulcanized and bonded to an annular support fitting 118. The diaphragm 117 is fixed in a liquid-tight manner by the caulking and fixing of the support fitting 118 between the bottom member 119 and the second mounting member 103 formed in a cup shape. As a result, a liquid enclosure chamber L is formed between the diaphragm 117 and the vibration isolation base 104. The liquid enclosure chamber L is filled with an incompressible liquid (liquid) such as water or ethylene glycol. A mounting bolt 120 projects from the bottom of the bottom member 119.

仕切部材110は、液体封入室Lを第1液室L1と第2液室L2とに仕切るための部材であり、ゴム膜から略円板状に構成される弾性仕切膜115と、弾性仕切膜115を内周面側に収容する保持部材111,114とを備えている。保持部材111,114間に弾性仕切膜115が収容された状態で、保持部材114は保持部材111に圧入される。保持部材111は、弾性仕切膜115との対向面が、外周部から径方向中心部に向かうにつれて下降傾斜し、保持部材114は、弾性仕切膜115との対向面が、外周部から径方向中心部に向かうにつれて上昇傾斜している。   The partition member 110 is a member for partitioning the liquid sealing chamber L into the first liquid chamber L1 and the second liquid chamber L2, and includes an elastic partition film 115 configured from a rubber film in a substantially disc shape, and an elastic partition film. The holding member 111,114 which accommodates 115 in an inner peripheral surface side is provided. The holding member 114 is press-fitted into the holding member 111 in a state where the elastic partition film 115 is accommodated between the holding members 111 and 114. The holding member 111 inclines downward as the surface facing the elastic partition film 115 moves from the outer peripheral portion toward the center in the radial direction, and the holding member 114 has the surface facing the elastic partition film 115 from the outer periphery to the center in the radial direction. Increasing slope toward the part.

保持部材(蓋側)114が保持部材(受側)111に圧入されることで、弾性仕切膜115は、保持部材111の挟圧部112と保持部材114との間で、外周部の全周が隙間なく挟圧保持される。また、仕切部材110は、保持部材111の外周縁部113が、底部材119と第2取付部材103との間でかしめ固定されることで液密に固着される。よって、液体封入室L内の液体が、開口部111a,114a(後述する)を介して第1液室L1及び第2液室L2間でリーク(漏出)することなく、オリフィス116を介してのみ第1液室L1と第2液室L2との間で流通する。   When the holding member (lid side) 114 is press-fitted into the holding member (receiving side) 111, the elastic partition film 115 is arranged between the holding portion 112 of the holding member 111 and the holding member 114. Is held with no gap. Further, the partition member 110 is fixed in a liquid-tight manner by the caulking and fixing of the outer peripheral edge 113 of the holding member 111 between the bottom member 119 and the second mounting member 103. Therefore, the liquid in the liquid enclosure chamber L does not leak between the first liquid chamber L1 and the second liquid chamber L2 through the openings 111a and 114a (described later), but only through the orifice 116. It distribute | circulates between the 1st liquid chamber L1 and the 2nd liquid chamber L2.

次に図10及び図11を参照して、保持部材111,114について説明する。図10は受側の保持部材111の平面図であり、図11は蓋側の保持部材114の平面図である。図10に示すように、保持部材111は、第1液室L1と連通しオリフィス116の一部を構成する切欠き112aが形成される。また、保持部材111は、弾性仕切膜115(図9参照)との対向面に円環部22が形成され、その径方向内側に、外凹状部21c及び内凹状部21a(凹状部)並びに外凸状部21d及び内凸状部21b(凸状部)が形成されている。保持部材111の厚さ方向に貫通する開口部111aが内凹状部21aに形成される。図11に示す保持部材114も同様に、弾性仕切膜115(図9参照)との対向面(図11紙面裏側)に円環部22、外凹状部21c及び内凹状部21a(凹状部)並びに外凸状部21d及び内凸状部21b(凸状部)が形成されている。   Next, the holding members 111 and 114 will be described with reference to FIGS. 10 and 11. 10 is a plan view of the holding member 111 on the receiving side, and FIG. 11 is a plan view of the holding member 114 on the lid side. As shown in FIG. 10, the holding member 111 is formed with a notch 112 a that communicates with the first liquid chamber L <b> 1 and forms a part of the orifice 116. In addition, the holding member 111 has an annular portion 22 formed on a surface facing the elastic partition film 115 (see FIG. 9), and an outer concave portion 21c, an inner concave portion 21a (concave portion) and an outer portion on the radially inner side thereof. A convex portion 21d and an inner convex portion 21b (convex portion) are formed. An opening 111a penetrating in the thickness direction of the holding member 111 is formed in the inner concave portion 21a. Similarly, the holding member 114 shown in FIG. 11 has an annular portion 22, an outer concave portion 21 c, an inner concave portion 21 a (concave portion), and a surface facing the elastic partition film 115 (see FIG. 9) (back side in FIG. 11). An outer convex portion 21d and an inner convex portion 21b (convex portion) are formed.

液封入式防振装置101によれば、弾性仕切膜115は保持部材111,114間で可動状態(非拘束状態)とされるので、第1液室L1及び第2液室L2間の液圧変動(液圧差)を弾性仕切膜115の往復動変形により吸収することができる。よって、小振幅入力時の低動ばね特性を得ることができる。   According to the liquid-filled vibration isolator 101, the elastic partition film 115 is movable (unconstrained) between the holding members 111 and 114, so that the liquid pressure between the first liquid chamber L1 and the second liquid chamber L2 is maintained. The fluctuation (hydraulic pressure difference) can be absorbed by the reciprocating deformation of the elastic partition film 115. Therefore, a low dynamic spring characteristic at the time of inputting a small amplitude can be obtained.

液封入式防振装置101に大振幅入力があると、弾性仕切膜115の変位量は保持部材111,114によって規制される。保持部材111,114によって膜剛性を高めることができるので、大振幅入力時の減衰特性を向上させることができる。保持部材111,114は外凹状部21c及び内凹状部21a(凹状部)並びに外凸状部21d及び内凸状部21b(凸状部)を備えているので、保持部材111,114に弾性仕切膜115が接触して弾性仕切膜115の変位が規制される場合、第1実施の形態と同様に、弾性仕切膜115は保持部材111,114との接触面積を少しずつ変化させる。その結果、急激な液圧変動が生じることを抑制することができ、ショック感を抑制できる。   When the liquid-filled vibration isolator 101 has a large amplitude input, the displacement amount of the elastic partition film 115 is regulated by the holding members 111 and 114. Since the membrane rigidity can be increased by the holding members 111 and 114, the attenuation characteristic at the time of inputting a large amplitude can be improved. Since the holding members 111 and 114 include the outer concave portion 21c and the inner concave portion 21a (concave portion), and the outer convex portion 21d and the inner convex portion 21b (convex portion), the holding members 111 and 114 are provided with elastic partitions. When the displacement of the elastic partition film 115 is restricted due to the contact of the film 115, the elastic partition film 115 changes the contact area with the holding members 111 and 114 little by little, as in the first embodiment. As a result, it is possible to suppress a sudden change in hydraulic pressure, and to suppress a shock feeling.

また、保持部材111は、外凸状部21d、外凹状部21c及び内凸状部21bを避けて内凹状部21aに開口部111aが形成されているので、弾性仕切膜115の接触面積の変化を緩和する効果が損なわれることを防止できる。即ち、弾性仕切膜115は外周部から径方向中央部に向けて保持部材111との接触面積を拡げていくので、外凸状部21d及び外凹状部21cに開口部111aが形成されていると、弾性仕切膜115の接触面積の変化を緩和する効果が損なわれる可能性があるからである。また、外凸状部21dの径方向に連成される内凸状部21bに開口部111aが形成される場合も、本発明の効果が同様に損なわれるおそれがあるからである。   Further, since the holding member 111 is formed with the opening 111a in the inner concave portion 21a while avoiding the outer convex portion 21d, the outer concave portion 21c, and the inner convex portion 21b, the change in the contact area of the elastic partition film 115 is changed. It can prevent that the effect which relaxes is impaired. That is, since the elastic partition film 115 increases the contact area with the holding member 111 from the outer peripheral portion toward the radial center, the opening 111a is formed in the outer convex portion 21d and the outer concave portion 21c. This is because the effect of reducing the change in the contact area of the elastic partition film 115 may be impaired. Moreover, also when the opening part 111a is formed in the inner convex part 21b coupled to the radial direction of the outer convex part 21d, the effect of the present invention may be similarly impaired.

なお、内凹状部21aに開口部111aを形成するのに代えて、或いは内凹状部21aに開口部111aを形成するのに加えて、保持部材111の径方向中央部に開口部111aを形成することは可能である。同様に、内凸状部21bの径方向中央部側の部分に開口部111aを形成することも可能である。保持部材111の径方向中央部や内凸状部21bの径方向中央部側の部分に弾性仕切膜115が接触するまでの間に、液圧変動に起因する弾性仕切膜115のエネルギーを低下させることができるからである。   Instead of forming the opening 111a in the inner concave portion 21a, or in addition to forming the opening 111a in the inner concave portion 21a, the opening 111a is formed in the central portion in the radial direction of the holding member 111. It is possible. Similarly, it is also possible to form the opening 111a in the radially central portion of the inner convex portion 21b. The energy of the elastic partition film 115 due to the fluid pressure fluctuation is reduced until the elastic partition film 115 comes into contact with the radial center part of the holding member 111 and the radially central part of the inner convex part 21b. Because it can.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.

上記各実施の形態では、外凹状部21c及び内凹状部21a(凹状部)並びに外凸状部21d及び内凸状部21b(凸状部)が各々4つ形成される場合について説明したが、必ずしもこれに限られるものではない。凹状部および凸状部の数はそれぞれ2以上であれば適宜設定できる。但し、2以上の凹状部および凸状部は、径方向中央部を中心に対称状に配置されることが望ましい。第2ダイヤフラム30や弾性仕切膜115(弾性膜)を対称状に変形させるためである。   In each of the above embodiments, the case where four outer concave portions 21c and inner concave portions 21a (concave portions), four outer convex portions 21d and four inner convex portions 21b (convex portions) are formed has been described. It is not necessarily limited to this. The number of the concave portions and the convex portions can be appropriately set as long as it is 2 or more. However, it is desirable that the two or more concave portions and the convex portions are disposed symmetrically with respect to the central portion in the radial direction. This is because the second diaphragm 30 and the elastic partition film 115 (elastic film) are deformed symmetrically.

なお、本実施の形態のように、内凹状部21aを球面Sの一部の凹球面状に形成する場合には、凹状部および凸状部は3以上形成される。仕切体20や保持部材111,114の径方向中央部の周りに凹球面を配置する場合には、3つ以上の凹球面が存在しないと、凹球面を連成させることができないからである。   In the case where the inner concave portion 21a is formed in a part of the spherical surface S as in the present embodiment, three or more concave portions and convex portions are formed. This is because when the concave spherical surface is arranged around the radial center of the partition 20 and the holding members 111 and 114, the concave spherical surfaces cannot be coupled unless there are three or more concave spherical surfaces.

上記各実施の形態では、内凹状部21aを構成する球面S1〜S4の中心C1〜C4が軸線Oと直交する平面上に位置する場合(球面S1〜S4の半径が同一の場合)について説明したが、必ずしもこれに限られるものではない。複数の球面Sの半径を異ならせることは当然可能である。但し、本実施の形態のように複数の球面Sの半径を同一に設定することが望ましい。複数の球面Sの半径が異なる場合には、凹状部や凸状部の曲率が異なることになるため、繰返し変形する弾性膜に部分的な劣化や弾性低下が生じ易くなるからである。   In each of the above-described embodiments, the case where the centers C1 to C4 of the spherical surfaces S1 to S4 constituting the inner concave portion 21a are located on a plane orthogonal to the axis O (when the spheres S1 to S4 have the same radius) has been described. However, it is not necessarily limited to this. Of course, it is possible to make the spheres S have different radii. However, it is desirable to set the radii of the plurality of spherical surfaces S to be the same as in the present embodiment. This is because, when the spheres S have different radii, the concave portions and the convex portions have different curvatures, so that partial deterioration and elastic reduction are likely to occur in the elastic film that repeatedly deforms.

上記各実施の形態では、内凹状部21aを球面Sの一部の凹球面状に形成する場合について説明したが、必ずしもこれに限られるものではない。仕切体20や保持部材111,114の一面に径方向中央部から放射状に凸状部(外凸状部21d及び内凸状部21b)を突条状に設け、その凸状部間を円筒面や円錐面等の湾曲面を用いて繋ぐことで凹状部を形成することは当然可能である。この場合も、凸状部と凹状部とに弾性膜を接触させることができ、弾性膜の接触面を径方向から周方向へと拡げることができる。   In each of the above-described embodiments, the case where the inner concave portion 21a is formed as a part of the spherical surface of the spherical surface S has been described. However, the present invention is not necessarily limited thereto. Convex portions (outer convex portions 21d and inner convex portions 21b) are radially provided from one central portion in the radial direction on one surface of the partition 20 and the holding members 111 and 114, and a cylindrical surface is provided between the convex portions. Naturally, it is possible to form the concave portion by connecting them using curved surfaces such as conical surfaces. Also in this case, the elastic film can be brought into contact with the convex part and the concave part, and the contact surface of the elastic film can be expanded from the radial direction to the circumferential direction.

上記各実施の形態では、第2ダイヤフラム30や弾性仕切膜115(弾性膜)の変位を規制する仕切体20や保持部材111,114(変位規制部材)に凹状部や凸状部を形成する場合について説明したが、必ずしもこれに限られるものではない。凹状部や凸状部は相対的なものなので、第2ダイヤフラム30や弾性仕切膜115(弾性膜)に凸状部や凹状部を形成することは当然可能である。また、第2ダイヤフラム30や弾性仕切膜115(弾性膜)及び仕切体20や保持部材111,114(変位規制部材)の双方に、凹状部や凸状部の機能をもたせるようにすることは当然可能である。   In each of the above embodiments, a concave portion or a convex portion is formed in the partition 20 or the holding members 111 and 114 (displacement regulating members) that regulate the displacement of the second diaphragm 30 or the elastic partition membrane 115 (elastic membrane). However, the present invention is not necessarily limited to this. Since the concave portion and the convex portion are relative, it is naturally possible to form the convex portion and the concave portion on the second diaphragm 30 and the elastic partition film 115 (elastic film). In addition, it is natural that both the second diaphragm 30 and the elastic partition film 115 (elastic film) and the partition body 20 and the holding members 111 and 114 (displacement regulating members) have the functions of the concave portion and the convex portion. Is possible.

上記第1実施の形態では、液室形成部材10によって第3液室L3及び第2オリフィス10aが形成される場合について説明したが、液室形成部材10は必ずしも必要ではない。液室形成部材10を設けない場合には、第2ダイヤフラム30の周縁を仕切体20に加硫接着等の手段で気密に固着する。液室形成部材10を設けない場合、第2ダイヤフラム30及び防振基体4が第1液室L1の室壁を構成する。   In the first embodiment, the case where the third liquid chamber L3 and the second orifice 10a are formed by the liquid chamber forming member 10 has been described. However, the liquid chamber forming member 10 is not necessarily required. When the liquid chamber forming member 10 is not provided, the periphery of the second diaphragm 30 is airtightly fixed to the partition 20 by means such as vulcanization adhesion. When the liquid chamber forming member 10 is not provided, the second diaphragm 30 and the vibration isolation base 4 constitute a chamber wall of the first liquid chamber L1.

1,101 液封入式防振装置
2,102 第1取付部材
3,103 第2取付部材
4,104 防振基体
20 仕切体(変位規制部材)
21a 内凹状部(凹状部)
21b 内凸状部(凸状部)
21c 外凹状部(凹状部)
21d 外凸状部(凸状部)
30 第2ダイヤフラム(弾性膜)
40 第1ダイヤフラム(ダイヤフラム)
111,114 保持部材(変位規制部材)
115 弾性仕切膜(弾性膜)
117 ダイヤフラム
C 中心
L 液体封入室
O 軸線
S 曲面
DESCRIPTION OF SYMBOLS 1,101 Liquid enclosure type vibration isolator 2,102 1st attachment member 3,103 2nd attachment member 4,104 Anti-vibration base | substrate 20 Partition (displacement control member)
21a Inner concave part (concave part)
21b Inner convex part (convex part)
21c Outer concave part (concave part)
21d Outer convex part (convex part)
30 Second diaphragm (elastic membrane)
40 1st diaphragm (diaphragm)
111, 114 holding member (displacement regulating member)
115 Elastic partition membrane (elastic membrane)
117 Diaphragm C Center L Liquid enclosure O Axis S Curved surface

Claims (3)

第1取付部材と、筒状の第2取付部材と、前記第2取付部材と前記第1取付部材とを連結すると共にゴム状弾性体から構成される防振基体と、前記第2取付部に固着され前記防振基体との間に液体封入室を形成するダイヤフラムと、前記液体封入室に配置されると共にゴム状弾性体から構成され前記液体封入室内の圧力変動によって変形可能な弾性膜と、前記弾性膜と対向して配置され前記弾性膜の変位を規制する変位規制部材とを備える液封入式防振装置において、
前記弾性膜は、前記変位規制部材に外周部が固着され、
前記弾性膜および前記変位規制部材が互いに対向する対向面の一方は、
前記弾性膜または前記変位規制部材の他方の対向面との対向間隔が、前記外周部から径方向中心部に向かうにつれて次第に大きくなるように形成される複数の凸状部と、
前記凸状部の周方向に隣接し、前記弾性膜または前記変位規制部材の他方の対向面との対向間隔が、前記凸状部から周方向に沿って離れるにつれて次第に大きくなるように形成される複数の凹状部とを備え
前記凸状部と前記凹状部とは互いに滑らかな曲面で連続して形成されることを特徴とする液封入式防振装置。
A first mounting member, a cylindrical second mounting member, a vibration isolating base that connects the second mounting member and the first mounting member and is formed of a rubber-like elastic body, and the second mounting portion. A diaphragm which is fixed and forms a liquid sealing chamber between the anti-vibration base, an elastic film which is arranged in the liquid sealing chamber and is made of a rubber-like elastic body and which can be deformed by pressure fluctuations in the liquid sealing chamber; In a liquid-filled vibration isolator provided with a displacement regulating member that is disposed to face the elastic membrane and regulates the displacement of the elastic membrane,
The elastic film has an outer peripheral portion fixed to the displacement regulating member,
One of the facing surfaces where the elastic film and the displacement regulating member face each other is:
A plurality of convex portions that are formed such that an opposing distance between the elastic membrane and the other opposing surface of the displacement regulating member gradually increases from the outer peripheral portion toward the radial center portion;
Adjacent to the convex portion in the circumferential direction, the distance between the elastic film or the other facing surface of the displacement regulating member is gradually increased as the distance from the convex portion increases in the circumferential direction. A plurality of concave portions ,
The liquid filled type vibration damping device, wherein the convex portion and the concave portion are continuously formed with smooth curved surfaces .
前記各凹状部は、球面の一部により構成される凹球面状に少なくとも一部が形成され、
前記球面は、前記弾性膜または前記変位規制部材の軸中心を通る軸線上とは異なる位置であって前記軸線と直交する同一平面上に中心が位置し、半径が同一であることを特徴とする請求項1記載の液封入式防振装置。
Each concave portion is formed at least partially in a concave spherical shape constituted by a part of a spherical surface,
The spherical surface is located at a position different from an axis passing through the axial center of the elastic film or the displacement regulating member, and is centered on the same plane orthogonal to the axis, and has the same radius. The liquid-filled vibration isolator according to claim 1.
前記凸状部は、周方向における断面視において、対向面の他方へ向かって凸の円弧状に形成され、
前記凹状部は、周方向における断面視において、対向面の他方の反対側へ向かって凸の円弧状に形成されることを特徴とする請求項1又は2に記載の液封入式防振装置。
The convex portion is formed in a circular arc shape convex toward the other of the opposing surfaces in a cross-sectional view in the circumferential direction,
The concave portion is in the cross-sectional view in the circumferential direction, liquid-filled vibration damping device according to claim 1 or 2 toward the other of the opposite side of the facing surface is formed in a circular arc shape convex to said Rukoto.
JP2013080916A 2013-04-09 2013-04-09 Liquid-filled vibration isolator Expired - Fee Related JP6192342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080916A JP6192342B2 (en) 2013-04-09 2013-04-09 Liquid-filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080916A JP6192342B2 (en) 2013-04-09 2013-04-09 Liquid-filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2014202327A JP2014202327A (en) 2014-10-27
JP6192342B2 true JP6192342B2 (en) 2017-09-06

Family

ID=52352944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080916A Expired - Fee Related JP6192342B2 (en) 2013-04-09 2013-04-09 Liquid-filled vibration isolator

Country Status (1)

Country Link
JP (1) JP6192342B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6460781B2 (en) * 2014-12-25 2019-01-30 Toyo Tire株式会社 Liquid filled vibration isolator
JP6460782B2 (en) * 2014-12-25 2019-01-30 Toyo Tire株式会社 Liquid filled vibration isolator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2727244C2 (en) * 1976-06-30 1990-06-21 Automobiles Peugeot, 75116 Paris Rubber spring with liquid filling
US4738435A (en) * 1985-05-16 1988-04-19 Flower Wallace C Fluid filled vibration isolator which operates quietly over broad frequency and amplitude ranges
JP4198771B2 (en) * 1997-12-12 2008-12-17 東洋ゴム工業株式会社 Controlled liquid-filled vibration isolator
JP3967831B2 (en) * 1998-08-25 2007-08-29 株式会社ブリヂストン Vibration isolator
JP4220107B2 (en) * 2000-06-16 2009-02-04 東洋ゴム工業株式会社 Controlled liquid-filled vibration isolator
JP3943354B2 (en) * 2001-08-02 2007-07-11 本田技研工業株式会社 Liquid-filled engine mount
JP5118904B2 (en) * 2007-07-04 2013-01-16 東海ゴム工業株式会社 Pneumatic actuator for vibration isolator and fluid filled vibration isolator using the same

Also Published As

Publication number Publication date
JP2014202327A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
JP5095763B2 (en) Liquid-filled vibration isolator
JP5882125B2 (en) Liquid-filled vibration isolator
JP5118904B2 (en) Pneumatic actuator for vibration isolator and fluid filled vibration isolator using the same
JP5535958B2 (en) Liquid-filled vibration isolator
JP2006097824A (en) Fluid sealing type vibration control device
JP5882124B2 (en) Liquid-filled vibration isolator
JP5431982B2 (en) Liquid-filled vibration isolator
JP6192342B2 (en) Liquid-filled vibration isolator
JP2015206437A (en) Liquid-sealed vibration isolator
JP5060196B2 (en) Diaphragm
WO2019117193A1 (en) Anti-vibration device
JP2008202766A (en) Liquid-sealed vibration control device
JP6279497B2 (en) Vibration isolator
JP4158111B2 (en) Pneumatic switching type fluid-filled engine mount
JP2011027157A (en) Vibration control device
JP7233242B2 (en) Liquid-filled anti-vibration device
JP2006283779A (en) Liquid seal type vibration damper
JP2008075670A (en) Liquid-sealed vibration-proof device
JP6240397B2 (en) Liquid-filled vibration isolator
JP2017096480A (en) Fluid filled vibration control device
JP6604825B2 (en) Liquid-filled vibration isolator
JP2005180543A (en) Fluid filled vibration isolating device
JP2005140176A (en) Liquid sealing type anti-vibration equipment
JP2024060810A (en) Liquid sealed type vibration control device
JP5122523B2 (en) Liquid-filled vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170808

R150 Certificate of patent or registration of utility model

Ref document number: 6192342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees