JP6166867B2 - Surface defect inspection apparatus and surface defect inspection method - Google Patents

Surface defect inspection apparatus and surface defect inspection method Download PDF

Info

Publication number
JP6166867B2
JP6166867B2 JP2012113230A JP2012113230A JP6166867B2 JP 6166867 B2 JP6166867 B2 JP 6166867B2 JP 2012113230 A JP2012113230 A JP 2012113230A JP 2012113230 A JP2012113230 A JP 2012113230A JP 6166867 B2 JP6166867 B2 JP 6166867B2
Authority
JP
Japan
Prior art keywords
light
light receiving
surface defect
round bar
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012113230A
Other languages
Japanese (ja)
Other versions
JP2013238560A (en
Inventor
達 荒川
達 荒川
渡邊 裕之
裕之 渡邊
仁一 大石
仁一 大石
Original Assignee
下村特殊精工株式会社
大石測器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 下村特殊精工株式会社, 大石測器株式会社 filed Critical 下村特殊精工株式会社
Priority to JP2012113230A priority Critical patent/JP6166867B2/en
Publication of JP2013238560A publication Critical patent/JP2013238560A/en
Application granted granted Critical
Publication of JP6166867B2 publication Critical patent/JP6166867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、パイプ形状を含む丸棒の外周面の疵や汚れによる表面欠陥を検査する表面欠陥検査装置及び表面欠陥検査方法に関する。   The present invention relates to a surface defect inspection apparatus and a surface defect inspection method for inspecting surface defects caused by wrinkles and dirt on the outer peripheral surface of a round bar including a pipe shape.

従来より、圧延等により製造された長尺の鋼材等の丸棒の外周面の疵や汚れによる表面欠陥の検査が行われている。この表面欠陥検査装置としては、例えば、特許文献1に示すようなものがある。特許文献1の表面欠陥検査装置では、丸棒を磁化し、丸棒が磁化されることにより丸棒の表面に存在する疵に磁極が生じ、この疵に粉末を付着させ、この粉末の付着の程度により、疵の程度を判定している。具体的には、粉末が表面疵の形状が反映された模様を呈し、その模様をCCD素子等のイメージセンサで測定し、画像処理に準じる方法で模様を解析し、疵の程度を判定している。   Conventionally, inspection of surface defects due to wrinkles and dirt on the outer peripheral surface of a round bar such as a long steel material manufactured by rolling or the like has been performed. An example of this surface defect inspection apparatus is shown in Patent Document 1. In the surface defect inspection apparatus of Patent Document 1, a round bar is magnetized, and the round bar is magnetized, so that a magnetic pole is generated on the surface of the round bar. The degree of wrinkles is determined by the degree. Specifically, the powder exhibits a pattern reflecting the shape of the surface wrinkles, the pattern is measured with an image sensor such as a CCD element, the pattern is analyzed by a method according to image processing, and the degree of wrinkles is determined. Yes.

従来の表面欠陥検査装置では、丸棒を磁化したり画像処理を掛けたりと装置が複雑で高価で、磁化できない丸棒を検査できないという課題があり、本願発明者は、この課題を解決する方法として、特許文献2に示す表面欠陥検査装置を発明した。   In the conventional surface defect inspection apparatus, there is a problem that the apparatus is complicated and expensive when the round bar is magnetized or subjected to image processing, and the round bar that cannot be magnetized cannot be inspected. Invented the surface defect inspection apparatus shown in Patent Document 2.

この特許文献2に示す表面欠陥検査装置は、丸棒の軸に略垂直に外周面に光を照射する光源と、丸棒の軸断面視で、丸棒の軸における光源の入射方向とのなす角度が90度を超え180度未満になるように設けられた受光センサとを備え、光源からの光の外周面での反射光を受光センサで受光し、受光した光のレベルから外周面を検査することを特徴としている。   The surface defect inspection apparatus shown in Patent Document 2 includes a light source that irradiates light to the outer peripheral surface substantially perpendicular to the axis of the round bar, and an incident direction of the light source on the axis of the round bar in a cross-sectional view of the round bar. And a light receiving sensor provided so that the angle is more than 90 degrees and less than 180 degrees, the light reflected from the outer peripheral surface of the light from the light source is received by the light receiving sensor, and the outer peripheral surface is inspected from the level of the received light It is characterized by doing.

また、レーザ光を用いた表面欠陥検査装置としては、特許文献3に示すようなものがある。特許文献3の表面欠陥検査装置は、被検査線条の表面に照射する検査光を出力する光源と、光源から出力された検査光を、被検査線条の表面に照射する光学処理部と、検査光の被検査線条からの反射光を受光する少なくとも2つの受光素子を、被検査線条の周囲であって、被検査線条の中心軸および検査光の中心軸を含む平面に対して略対称な位置に配置した受光部と、対称に配置された受光素子の出力信号を演算処理し、演算処理された出力信号に基づいて被検査線条の表面欠陥を検出する欠陥検出部とを備えている。   Moreover, as a surface defect inspection apparatus using a laser beam, there exists a thing as shown to patent document 3. FIG. The surface defect inspection apparatus of Patent Document 3 includes a light source that outputs inspection light applied to the surface of the inspected filament, an optical processing unit that irradiates the inspection light output from the light source onto the surface of the inspected filament, The at least two light receiving elements that receive the reflected light of the inspection light from the inspected line are arranged around the inspected line and on a plane including the central axis of the inspected line and the central axis of the inspection light. A light receiving unit arranged at a substantially symmetrical position, and a defect detection unit for calculating an output signal of the light receiving element arranged symmetrically and detecting a surface defect of the inspected filament based on the calculated output signal I have.

特開2005−134177号公報JP 2005-134177 A 特開2008−185356号公報JP 2008-185356 A 特開2010−25642号公報JP 2010-25642 A

しかしながら、従来の検査装置では、より微細な疵や汚れによる表面欠陥の有無を検出することができたとしても、表面欠陥の種類を特定することが困難であった。   However, in the conventional inspection apparatus, even if the presence or absence of surface defects due to finer wrinkles or dirt can be detected, it is difficult to specify the type of surface defects.

本発明は、このような事情に鑑みてなされたもので、丸棒の外周面の疵や汚れの種類を判別して検出することが可能な表面欠陥検査装置及び表面欠陥検査方法を提供することにある。   The present invention has been made in view of such circumstances, and provides a surface defect inspection apparatus and a surface defect inspection method capable of discriminating and detecting types of wrinkles and dirt on the outer peripheral surface of a round bar. It is in.

請求項1記載の表面欠陥検査装置は、丸棒の軸の方向から、軸から5度〜45度の仰角を有して丸棒の外周面の検査点にレーザ光を照射するレーザ光源と、丸棒の外周面で反射した反射レーザ光を受光する複数の受光センサと、複数の受光センサが受光量に基づいて表面欠陥を検出する表面欠陥検出手段とを備え、複数の受光センサが、丸棒の外周の外縁に沿うように升目状に配置され、表面欠陥検出手段が、升目状に配置された複数の受光センサのそれぞれの受光量から、丸棒の外周面で反射したレーザ光の反射リングの位置を検出し、反射リングの位置にある受光センサの受光量と、反射リングの位置にある受光センサに隣接する受光センサの受光量との差が所定以上の場合、差の部分を表面欠陥による乱反射として、表面欠陥を検出することを特徴とする。 The surface defect inspection apparatus according to claim 1, wherein the laser light source irradiates the inspection point on the outer peripheral surface of the round bar with an elevation angle of 5 degrees to 45 degrees from the axis from the direction of the axis of the round bar; A plurality of light receiving sensors for receiving the reflected laser light reflected by the outer peripheral surface of the round bar; and a plurality of light receiving sensors for detecting surface defects based on the amount of received light. Reflection of laser light reflected on the outer peripheral surface of the round bar from the amount of light received by each of the plurality of light receiving sensors arranged in a grid shape, arranged in a grid shape along the outer edge of the outer periphery of the bar detecting the position of the ring, and the amount of light received by the light receiving sensor in the position of the reflection ring when the difference between the amount of light received by the light receiving sensor adjacent to the light-receiving sensor at the position of the reflection ring is equal to or higher than a predetermined surface portion of the difference as diffuse reflection due to defects, to detect surface defects It is characterized in.

請求項2記載の表面欠陥検査装置は、表面欠陥検出手段が、反射リングが反射リングの径方向に隣接する複数の受光センサ上に位置する場合、隣接する受光センサの受光量の合計値から、受光センサの位置を検出すると共に、隣接する受光センサの受光量の合計値を、反射リングの位置にある1つの受光センサの受光量と見なすことを特徴とする。   In the surface defect inspection apparatus according to claim 2, when the surface defect detection means is located on a plurality of light receiving sensors adjacent to each other in the radial direction of the reflecting ring, the total amount of light received by the adjacent light receiving sensors is The position of the light receiving sensor is detected, and the total value of the light receiving amounts of adjacent light receiving sensors is regarded as the light receiving amount of one light receiving sensor at the position of the reflection ring.

請求項3記載の表面欠陥検査装置は、表面欠陥検出手段が、丸棒の軸方向に所定距離離れた異なる検査点に順次レーザ光を照射し、それぞれの検査点での反射リングの位置の複数の受光センサの受光量を比較することで、表面欠陥を検出することを特徴とする。   The surface defect inspection apparatus according to claim 3, wherein the surface defect detection means sequentially irradiates laser beams to different inspection points separated by a predetermined distance in the axial direction of the round bar, and a plurality of positions of the reflection ring at each inspection point. A surface defect is detected by comparing the amount of light received by the light receiving sensors.

請求項4記載の表面欠陥検査装置は、表面欠陥検出手段が、複数の受光センサのうちの同一の受光センサのそれぞれの検査点での受光量を比較し、表面欠陥を検出することを特徴とする。   The surface defect inspection device according to claim 4, wherein the surface defect detection means compares the amount of light received at each inspection point of the same light receiving sensor among the plurality of light receiving sensors, and detects the surface defect. To do.

請求項5記載の表面欠陥検査装置は、丸棒の軸の方向から、軸から5度〜45度の仰角を有して丸棒の外周面の検査点にレーザ光を照射するレーザ光源と、丸棒の外周面で反射した反射レーザ光を受光する複数の受光センサと、複数の受光センサが受光量に基づいて表面欠陥を検出する表面欠陥検出手段とを備え、複数の受光センサが、丸棒の外周の外縁に沿うように升目状に配置され、表面欠陥検出手段が、升目状に配置された複数の受光センサのそれぞれの受光量から、丸棒の外周面で反射したレーザ光の反射リングの位置を検出し、反射リングの位置にある受光センサの受光量と、反射リングの位置ではない受光センサの受光量との差が所定以下の場合、差のない部分を表面欠陥による乱反射として、表面欠陥を検出することを特徴とする。 The surface defect inspection apparatus according to claim 5, wherein the laser light source irradiates the inspection point on the outer peripheral surface of the round bar with an elevation angle of 5 to 45 degrees from the axis from the direction of the axis of the round bar, A plurality of light receiving sensors for receiving the reflected laser light reflected by the outer peripheral surface of the round bar; and a plurality of light receiving sensors for detecting surface defects based on the amount of received light. Reflection of laser light reflected on the outer peripheral surface of the round bar from the amount of light received by each of the plurality of light receiving sensors arranged in a grid shape, arranged in a grid shape along the outer edge of the outer periphery of the bar When the position of the ring is detected and the difference between the amount of light received by the light receiving sensor at the position of the reflective ring and the amount of light received by the light receiving sensor that is not at the position of the reflective ring is less than a predetermined value , and characterized by detecting a surface defect That.

請求項6記載の表面欠陥検査方法は、丸棒の軸の方向から、軸から5度〜45度の仰角を有して丸棒の外周面の検査点にレーザ光を照射し、丸棒の検査点で反射した反射レーザ光を、丸棒の外周の外縁に沿うように升目状に配置された複数の受光センサで受光し、升目状に配置された複数の受光センサのそれぞれの受光量から、丸棒の外周面で反射した反射レーザ光の反射リングの位置を検出し、反射リングの位置にある受光センサの受光量と、反射リングの位置にある受光センサに隣接する受光センサの受光量との差が所定以上の場合、差の部分を表面欠陥による乱反射として、表面欠陥を検出することを特徴とする。 The surface defect inspection method according to claim 6 irradiates the inspection point on the outer peripheral surface of the round bar with a laser beam having an elevation angle of 5 to 45 degrees from the axis in the direction of the axis of the round bar. The reflected laser beam reflected at the inspection point is received by a plurality of light receiving sensors arranged in a grid shape along the outer edge of the outer periphery of the round bar, and from the amount of light received by each of the plurality of light receiving sensors arranged in a grid shape The position of the reflection ring of the reflected laser beam reflected by the outer peripheral surface of the round bar is detected, the amount of light received by the light receiving sensor at the position of the reflecting ring, and the amount of light received by the light receiving sensor adjacent to the light receiving sensor at the position of the reflective ring When the difference between the two is greater than or equal to a predetermined value , the surface defect is detected by using the difference as irregular reflection due to the surface defect .

請求項7記載の表面欠陥検査方法は、反射リングが、反射リングの径方向に隣接する複数の受光センサ上に位置する場合、隣接する受光センサの受光量の合計値から、受光センサの位置を検出すると共に、隣接する受光センサの受光量の合計値を、反射リングの位置にある1つの受光センサの受光量と見なすことを特徴とする。   In the surface defect inspection method according to claim 7, when the reflecting ring is positioned on a plurality of light receiving sensors adjacent in the radial direction of the reflecting ring, the position of the light receiving sensor is determined from the total amount of light received by the adjacent light receiving sensors. In addition to detecting, the total amount of light received by adjacent light receiving sensors is regarded as the amount of light received by one light receiving sensor at the position of the reflection ring.

請求項8記載の表面欠陥検査方法は、丸棒の軸方向に所定距離離れた異なる検査点に順次レーザ光を照射し、それぞれの検査点での反射リングの位置の複数の受光センサの受光量を比較することで、表面欠陥を検出することを特徴とする。   The surface defect inspection method according to claim 8 irradiates laser beams sequentially to different inspection points separated by a predetermined distance in the axial direction of the round bar, and the received light amounts of the plurality of light receiving sensors at the positions of the reflection rings at the respective inspection points. By comparing the above, surface defects are detected.

請求項9記載の表面欠陥検査方法は、複数の受光センサのうちの同一の受光センサのそれぞれの検査点での受光量を比較し、表面欠陥を検出することを特徴とする。   The surface defect inspection method according to claim 9 is characterized in that the surface defect is detected by comparing the received light amounts at the respective inspection points of the same light receiving sensor among the plurality of light receiving sensors.

請求項10記載の表面欠陥検査方法は、丸棒の軸の方向から、軸から5度〜45度の仰角を有して丸棒の外周面の検査点にレーザ光を照射し、丸棒の検査点で反射した反射レーザ光を、丸棒の外周の外縁に沿うように升目状に配置された複数の受光センサで受光し、升目状に配置された複数の受光センサのそれぞれの受光量から、丸棒の外周面で反射した反射レーザ光の反射リングの位置を検出し、反射リングの位置にある受光センサの受光量と、反射リングの位置ではない受光センサの受光量との差が所定以下の場合、差のない部分を表面欠陥による乱反射として、表面欠陥を検出することを特徴とする。 The surface defect inspection method according to claim 10 irradiates the inspection point on the outer peripheral surface of the round bar with a laser beam having an elevation angle of 5 to 45 degrees from the axis from the direction of the axis of the round bar. The reflected laser beam reflected at the inspection point is received by a plurality of light receiving sensors arranged in a grid shape along the outer edge of the outer periphery of the round bar, and from the amount of light received by each of the plurality of light receiving sensors arranged in a grid shape The position of the reflection ring of the reflected laser beam reflected by the outer peripheral surface of the round bar is detected, and the difference between the amount of light received by the light receiving sensor at the position of the reflective ring and the amount of light received by the light receiving sensor not at the position of the reflective ring is predetermined. In the following cases, a surface defect is detected by using a portion having no difference as irregular reflection due to the surface defect .

請求項1及び請求項6の発明によれば、丸棒の軸の方向から、軸から5度〜45度の仰角を有して丸棒の外周面の検査点にレーザ光を照射し、丸棒の検査点で反射した反射レーザ光を、丸棒の外周の外縁に沿うように升目状に配置された複数の受光センサで受光し、升目状に配置された複数の受光センサのそれぞれの受光量から、丸棒の外周面で反射した反射レーザ光の反射リングの位置を検出し、反射リングの位置にある受光センサの受光量と、反射リングの位置にある受光センサに隣接する受光センサの受光量との差が所定以上の場合、表面欠陥として検出することから、丸棒の外周面の疵や汚れの種類を判別して検出することが可能である。   According to the invention of claim 1 and claim 6, from the direction of the axis of the round bar, the inspection point on the outer peripheral surface of the round bar is irradiated with laser light having an elevation angle of 5 to 45 degrees from the axis, The reflected laser beam reflected at the inspection point of the bar is received by a plurality of light receiving sensors arranged in a grid shape along the outer edge of the outer periphery of the round bar, and received by each of the plurality of light receiving sensors arranged in a grid pattern. The position of the reflection ring of the reflected laser light reflected by the outer peripheral surface of the round bar is detected from the amount of light, the amount of light received by the light receiving sensor at the position of the reflecting ring, and the light receiving sensor adjacent to the light receiving sensor at the position of the reflecting ring. When the difference from the amount of received light is greater than or equal to a predetermined value, it is detected as a surface defect, and therefore, it is possible to determine and detect the type of wrinkles and dirt on the outer peripheral surface of the round bar.

請求項2及び請求項7の発明によれば、反射リングが、反射リングの径方向に隣接する複数の受光センサ上に位置する場合、隣接する受光センサの受光量の合計値から、受光センサの位置を検出すると共に、隣接する受光センサの受光量の合計値を、反射リングの位置にある1つの受光センサの受光量と見なすことから、より正確に反射リングの位置を特定可能で、より正確な表面欠陥の検出が可能である。   According to invention of Claim 2 and Claim 7, when a reflection ring is located on the some light reception sensor adjacent to the radial direction of a reflection ring, from the total value of the light reception amount of an adjacent light reception sensor, it is from a light reception sensor. Since the position is detected and the total amount of light received by adjacent light receiving sensors is regarded as the amount of light received by one light receiving sensor at the position of the reflecting ring, the position of the reflecting ring can be specified more accurately and more accurately. It is possible to detect surface defects.

請求項3及び請求項8の発明によれば、丸棒の軸方向に所定距離離れた位置での反射リングの位置の複数の受光センサの受光量を比較することで、表面欠陥を検出することから、より多くの種類の表面欠陥の判別が可能である。   According to invention of Claim 3 and Claim 8, a surface defect is detected by comparing the light reception amount of the some light reception sensor of the position of a reflective ring in the position of predetermined distance in the axial direction of the round bar. Therefore, it is possible to discriminate more types of surface defects.

請求項4及び請求項9の発明によれば、同一の受光センサの丸棒の軸方向に所定距離離れた位置での受光量を比較し、表面欠陥を検出することから、より多くの種類の表面欠陥の判別が可能である。   According to the invention of claim 4 and claim 9, since the amount of light received at a position separated by a predetermined distance in the axial direction of the round bar of the same light receiving sensor is compared and surface defects are detected, more types of It is possible to discriminate surface defects.

請求項5及び請求項10の発明によれば、丸棒の軸の方向から、軸から5度〜45度の仰角を有して丸棒の外周面の検査点にレーザ光を照射し、丸棒の検査点で反射した反射レーザ光を、丸棒の外周の外縁に沿うように升目状に配置された複数の受光センサで受光し、升目状に配置された複数の受光センサのそれぞれの受光量から、丸棒の外周面で反射した反射レーザ光の反射リングの位置を検出し、反射リングの位置にある受光センサの受光量と、反射リングの位置ではない受光センサの受光量との差が所定以下の場合、表面欠陥として検出することから、丸棒の外周面の疵や汚れの種類を判別して検出することが可能である。   According to the invention of claim 5 and claim 10, from the direction of the axis of the round bar, the inspection point on the outer peripheral surface of the round bar is irradiated with laser light having an elevation angle of 5 degrees to 45 degrees from the axis, The reflected laser beam reflected at the inspection point of the bar is received by a plurality of light receiving sensors arranged in a grid shape along the outer edge of the outer periphery of the round bar, and received by each of the plurality of light receiving sensors arranged in a grid pattern. The position of the reflection ring of the reflected laser beam reflected by the outer peripheral surface of the round bar is detected from the amount of light, and the difference between the amount of light received by the light receiving sensor at the position of the reflective ring and the amount of light received by the light receiving sensor not at the position of the reflective ring Is detected as a surface defect, it is possible to determine and detect the type of wrinkles and dirt on the outer peripheral surface of the round bar.

本発明に係る表面欠陥検査装置の構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the surface defect inspection apparatus which concerns on this invention. 同表面欠陥検査装置の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the surface defect inspection apparatus. 同表面欠陥検査装置の受光センサによる受光状態を示す説明図である。It is explanatory drawing which shows the light reception state by the light reception sensor of the surface defect inspection apparatus. 同表面欠陥検査装置の受光センサの受光量を示す説明図である。It is explanatory drawing which shows the light reception amount of the light reception sensor of the same surface defect inspection apparatus. 同表面欠陥検査装置の受光センサの受光量の比較の様子を示す説明図である。It is explanatory drawing which shows the mode of the comparison of the light reception amount of the light reception sensor of the same surface defect inspection apparatus. 同表面欠陥検査装置の受光センサのサンプリング周期毎の受光量の様子を示す説明図である。It is explanatory drawing which shows the mode of the light reception amount for every sampling period of the light reception sensor of the same surface defect inspection apparatus. 同表面欠陥検査装置の第1の実施例の表面欠陥の様子を示す説明図である。It is explanatory drawing which shows the mode of the surface defect of 1st Example of the same surface defect inspection apparatus. 同表面欠陥検査装置の第1の実施例の受光センサによる受光状態を示す説明図である。It is explanatory drawing which shows the light reception state by the light reception sensor of 1st Example of the surface defect inspection apparatus. 同表面欠陥検査装置の第1の実施例の受光センサの受光量を示す説明図である。It is explanatory drawing which shows the light reception amount of the light reception sensor of 1st Example of the same surface defect inspection apparatus. 同表面欠陥検査装置の第2の実施例の表面欠陥の様子を示す説明図である。It is explanatory drawing which shows the mode of the surface defect of the 2nd Example of the same surface defect inspection apparatus. 同表面欠陥検査装置の第2の実施例の受光センサによる受光状態を示す説明図である。It is explanatory drawing which shows the light reception state by the light reception sensor of 2nd Example of the same surface defect inspection apparatus. 同表面欠陥検査装置の第2の実施例の受光センサによる受光状態を示す説明図である。It is explanatory drawing which shows the light reception state by the light reception sensor of 2nd Example of the same surface defect inspection apparatus. 同表面欠陥検査装置の第2の実施例の受光センサの受光量を示す説明図である。It is explanatory drawing which shows the light reception amount of the light reception sensor of 2nd Example of the same surface defect inspection apparatus. 同表面欠陥検査装置の第2の実施例の受光センサのサンプリング周期が異なる受光量の様子を示す説明図である。It is explanatory drawing which shows the mode of the light reception amount from which the sampling period of the light reception sensor of the 2nd Example of the same surface defect inspection apparatus differs. 同表面欠陥検査装置の第3の実施例の表面欠陥の様子を示す説明図である。It is explanatory drawing which shows the mode of the surface defect of the 3rd Example of the same surface defect inspection apparatus. 同表面欠陥検査装置の第3の実施例の受光センサによる受光状態を示す説明図である。It is explanatory drawing which shows the light reception state by the light reception sensor of the 3rd Example of the same surface defect inspection apparatus. 同表面欠陥検査装置の第3の実施例の受光センサの受光量を示す説明図である。It is explanatory drawing which shows the light reception amount of the light receiving sensor of the 3rd Example of the same surface defect inspection apparatus.

以下、本発明の形態について図面を参照しながら具体的に説明する。図1は、本発明に係る表面欠陥検査装置の構造の一例を示す説明図である。図2は、同表面欠陥検査装置の動作を説明する説明図である。図3は、同表面欠陥検査装置の受光センサによる受光状態を示す説明図である。図4は、同表面欠陥検査装置の受光センサの受光量を示す説明図である。図5は、同表面欠陥検査装置の受光センサの受光量の比較の様子を示す説明図である。図6は、同表面欠陥検査装置の受光センサのサンプリング周期毎の受光量の様子を示す説明図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is an explanatory view showing an example of the structure of a surface defect inspection apparatus according to the present invention. FIG. 2 is an explanatory view for explaining the operation of the surface defect inspection apparatus. FIG. 3 is an explanatory view showing a light receiving state by a light receiving sensor of the surface defect inspection apparatus. FIG. 4 is an explanatory diagram showing the amount of light received by the light receiving sensor of the surface defect inspection apparatus. FIG. 5 is an explanatory diagram showing a comparison of the amount of light received by the light receiving sensor of the surface defect inspection apparatus. FIG. 6 is an explanatory diagram showing the amount of received light for each sampling period of the light receiving sensor of the surface defect inspection apparatus.

図における表面欠陥検査装置1は、パイプ形状を含む丸棒Wの外周面の疵や汚れによる表面欠陥を検査し、疵や汚れによる表面欠陥の有無を判断するための装置である。表面欠陥検査装置1は、丸棒Wの外周面に向かってレーザ光Lを照射するレーザ光源10、レーザ光源10のレーザ光Lが丸棒Wの外周面の検査点Pで反射した反射レーザ光Cを受光する受光センサ20を備えている。   A surface defect inspection apparatus 1 in the figure is an apparatus for inspecting surface defects due to wrinkles and dirt on the outer peripheral surface of a round bar W including a pipe shape, and determining the presence or absence of surface defects due to wrinkles and dirt. The surface defect inspection apparatus 1 includes a laser light source 10 that irradiates a laser beam L toward an outer peripheral surface of a round bar W, and a reflected laser beam that is reflected by an inspection point P on the outer peripheral surface of the round bar W. A light receiving sensor 20 for receiving C is provided.

レーザ光源10は、電源12から電力の供給を受けてレーザ光Lを発射するもので、波長が300nm〜700nmで、より具体的には、赤色レーザ(中心波長:赤色(650nm))、緑色レーザ(中心波長:緑色(532nm))、バイオレットレーザ(中心波長:青紫(405nm))、青色レーザ(中心波長:青色(375nm))等である。レーザ光源10は、丸棒Wの軸の方向から、軸から所定の仰角θaを有して丸棒Wの外周面の検査点Pにレーザ光Lを照射する。レーザ光Lの丸棒Wの軸となす仰角θaは、5度〜45度である。仰角θaは、丸棒Wの材質・太さや外周面の状況、検出したい傷の種類や大きさにより適宜定めるようにする。尚、検査可能な丸棒Wは、レーザ光Lが反射可能な材質で、太さは直径数μmの物から検査可能である。   The laser light source 10 is supplied with power from the power source 12 and emits laser light L. The wavelength is 300 nm to 700 nm, more specifically, a red laser (center wavelength: red (650 nm)), a green laser. (Center wavelength: green (532 nm)), violet laser (center wavelength: blue purple (405 nm)), blue laser (center wavelength: blue (375 nm)), and the like. The laser light source 10 irradiates the inspection point P on the outer peripheral surface of the round bar W with the laser beam L from the axis of the round bar W at a predetermined elevation angle θa. The elevation angle θa formed with the axis of the round bar W of the laser beam L is 5 to 45 degrees. The elevation angle θa is appropriately determined according to the material and thickness of the round bar W, the condition of the outer peripheral surface, and the type and size of the wound to be detected. The inspectable round bar W is a material that can reflect the laser beam L, and the thickness can be inspected from an object having a diameter of several μm.

受光センサ20は、丸棒Wの検査点Pで反射した反射レーザ光Cを受光するもので、例えば、受光した光量を出力するフォトダイオードである。受光センサ20は、反射レーザ光Cを最も正確に受光できる位置、すなわち、レーザ光源10と同じ丸棒Wに対する周方向の位置で、且つ、丸棒Wの軸とレーザ光Lとの仰角θaと同じ角度の仰角θa’で検査点Pに向かっている。図1では、受光センサ20の1つが図示されているが、実際には、図3に示すように、複数の受光センサ(位置1a〜6d)が、仰角θa’〜θb(θc)の角度上に升目状に配置されている。尚、1つの受光センサで、複数の受光素子を有するタイプのセンサであってもよい。そして、受光センサ20は、データ解析部22に接続されている。   The light receiving sensor 20 receives the reflected laser light C reflected at the inspection point P of the round bar W, and is, for example, a photodiode that outputs the received light quantity. The light receiving sensor 20 is the position where the reflected laser beam C can be received most accurately, that is, the circumferential position with respect to the same round bar W as the laser light source 10, and the elevation angle θa between the axis of the round bar W and the laser beam L It heads toward the inspection point P at the same elevation angle θa ′. In FIG. 1, one of the light receiving sensors 20 is shown, but actually, as shown in FIG. 3, the plurality of light receiving sensors (positions 1a to 6d) are on the angle of elevation angles θa ′ to θb (θc). Are arranged in a grid pattern. Note that one light receiving sensor may be a type of sensor having a plurality of light receiving elements. The light receiving sensor 20 is connected to the data analysis unit 22.

データ解析部22は、受光センサ20の値から、丸棒Wの検査点Pに疵や汚れによる表面欠陥がないかどうかの判断を行う。データ解析部22は、パーソナルコンピュータのような電子計算機でもよく、また、ロジック回路で構成されたデジタル処理手段でもよく、その形態により制限されるものではない。   The data analysis unit 22 determines from the value of the light receiving sensor 20 whether the inspection point P of the round bar W has a surface defect due to wrinkles or dirt. The data analysis unit 22 may be an electronic computer such as a personal computer, or may be a digital processing means constituted by a logic circuit, and is not limited by the form.

次に、表面欠陥検査装置1の動作を説明する。まず、丸棒Wの正常な検査点Pにレーザ光Lを照射し、その反射レーザ光Cが受光センサ20に投影される反射リングBは、図2に示すように、丸棒Wの外周面の湾曲に沿ったリング状に強い光量を有したものになる。尚、丸棒Wの外周面は、完璧な平滑面ではないことから、若干、反射レーザ光Cが発散した点状に弱い光量の部分も生じる。   Next, the operation of the surface defect inspection apparatus 1 will be described. First, the reflection ring B on which the normal inspection point P of the round bar W is irradiated with the laser beam L and the reflected laser beam C is projected onto the light receiving sensor 20 is the outer peripheral surface of the round bar W as shown in FIG. It has a strong light amount in a ring shape along the curve. In addition, since the outer peripheral surface of the round bar W is not a perfect smooth surface, a portion having a weak light amount in a spot shape where the reflected laser light C diverges slightly occurs.

このようにレーザ光Lを丸棒Wの検査点Pに照射し、その反射レーザ光Cによってできる反射リングBを受光センサ20で受光してデータ解析部22で解析し、検査点Pに疵や汚れによる表面欠陥がないかどうかの判断を行う。   In this way, the inspection point P of the round bar W is irradiated with the laser beam L, the reflection ring B formed by the reflected laser beam C is received by the light receiving sensor 20 and analyzed by the data analysis unit 22, and the inspection point P Judge whether there are any surface defects due to dirt.

まず、正常な検査点Pでは、図2に示す綺麗に連続した反射リングBになる。図3は、受光センサ20の各位置での受光状態を模式的に示した図であるが、図3の場合、表面欠陥により反射リングBが一部途切れたようになっている。図3以降、受光センサ20が、縦4個、横6個並んだ、総数24個の場合の様子を示している(総数や並び方は、一例で有り、この場合に限られるものではない)。この受光センサの並びは、丸棒Wの外周の外縁に沿うように升目状に配置される並びである。そして、図4の升目の1つ1つに示された値は、受光センサ20の受光量を数値化して表したもので、数値が大きいほど、受光量(レーザ光の強さ)が大きいことを示している。   First, at a normal inspection point P, a beautifully continuous reflection ring B shown in FIG. FIG. 3 is a diagram schematically showing a light receiving state at each position of the light receiving sensor 20, but in the case of FIG. 3, the reflection ring B is partially broken due to a surface defect. FIG. 3 and subsequent figures show a state in which the number of light receiving sensors 20 is 4 in the vertical direction and 6 in the horizontal direction, and the total number is 24 (the total number and the way of arrangement are only examples, and are not limited to this case). The array of the light receiving sensors is an array arranged in a grid shape along the outer edge of the outer periphery of the round bar W. The values shown in each of the squares in FIG. 4 are numerical values representing the amount of light received by the light receiving sensor 20, and the larger the number, the greater the amount of received light (the intensity of the laser beam). Is shown.

そして、表面欠陥検査装置1のデータ解析部22は、表面欠陥検出手段の動きとして、まず、受光センサ20の受光量を取り込み、まずは、図4に示すような升目状でのマッピングを行う(以後、図3以降に示す行と列の符号を用いて、位置1a〜6dのように表現する)。   The data analysis unit 22 of the surface defect inspection apparatus 1 first captures the amount of light received by the light receiving sensor 20 as the movement of the surface defect detection means, and first performs mapping in a grid shape as shown in FIG. , Using the row and column codes shown in FIG. 3 and subsequent figures, the positions are represented as positions 1a to 6d).

次に、データ解析部22は、図2に示す丸棒Wの外周面の湾曲に沿った反射リングBの位置を、升目状にマッピングされた受光量から検出する。図4の例では、位置1b,1c,2c,3c,4c,5c,6b,6cに大きな値が存在し、この部分に反射リングがあると予想される。尚、位置2c,3c,4c,5cの値は、同じ行(a〜d)の中では極めて数値が大きいので、その位置に反射リングBがあると端的に検出できる。これに対し、位置1b,1c,6b,6cでは、同じ行に大きな値の位置が存在するため、上下左右の位置の受光量を加算して、反射リングBの位置を検出するようにする。このように、2つの位置に反射リングBが位置する場合には、隣接する位置(例えば、位置1bと1c、位置6bと6c)の受光量の合計値を、反射リングBの位置にある1つの受光センサの受光量と見なすようにすればよい。   Next, the data analysis unit 22 detects the position of the reflection ring B along the curve of the outer peripheral surface of the round bar W shown in FIG. 2 from the received light amount mapped in a grid shape. In the example of FIG. 4, there are large values at positions 1b, 1c, 2c, 3c, 4c, 5c, 6b, and 6c, and it is expected that there is a reflection ring in this portion. Note that the values of the positions 2c, 3c, 4c, and 5c are extremely large in the same row (ad), so that if the reflection ring B is present at that position, it can be easily detected. On the other hand, at positions 1b, 1c, 6b, and 6c, there are positions with large values in the same row. Therefore, the received light amounts at the upper, lower, left, and right positions are added to detect the position of the reflection ring B. Thus, when the reflection ring B is located at two positions, the total amount of light received at adjacent positions (for example, positions 1b and 1c, positions 6b and 6c) is 1 at the position of the reflection ring B. The amount of light received by two light receiving sensors may be considered.

反射リングBのより具体的な検出方法を説明する。データ解析部22は、まず、受光ンサ20の縦に並ぶ位置ごと(位置1a〜1d、位置2a〜2d、位置3a〜3d、位置4a〜4d、位置5a〜5d、位置6a〜6d)の平均受光量を算出する。そして、その縦の位置の平均受光量と、その縦の位置に属するそれぞれの位置の受光量との差を求める。その平均値との差が一番大きく、且つ縦の並びで一番受光量が多い位置に反射リングBがあると判断するようにする。但し、反射リングBがあると判断される位置の上下にある位置との受光量差が少ない場合は、その中間あたりに反射リングBが掛かっていると判断することとする。この演算を、縦の列分(位置1〜位置6)まで行い、反射リングBの位置を確定する。尚、受光量の差は、検査対象となる丸棒により異なるため、あらかじめパラメータ指定にて事前に決めて記憶させておくようにする。   A more specific method for detecting the reflection ring B will be described. The data analysis unit 22 first calculates the average of the light receiving sensors 20 arranged vertically (positions 1a to 1d, positions 2a to 2d, positions 3a to 3d, positions 4a to 4d, positions 5a to 5d, and positions 6a to 6d). Calculate the amount of received light. Then, the difference between the average received light amount at the vertical position and the received light amount at each position belonging to the vertical position is obtained. It is determined that the reflection ring B is at a position where the difference from the average value is the largest and the light receiving amount is the largest in the vertical arrangement. However, when there is little difference in the amount of received light from the position above and below the position where it is determined that the reflection ring B is present, it is determined that the reflection ring B is hanging around the middle. This calculation is performed up to vertical columns (position 1 to position 6), and the position of the reflection ring B is determined. Since the difference in the amount of received light varies depending on the round bar to be inspected, it is determined in advance by parameter designation and stored in advance.

尚、通常は、表面欠陥の有無にかかわらず反射リングBが出るものの、表面欠陥の種類や状態によって、反射リングBを確定できない場合もある。これは、表面欠陥の状態が特に悪い場合で、例えば、ダイヤ目のひどい物や、仕上げ不良(荒仕上げ)の場合がある。このような反射リングBを検出できない場合は、その現象自体が表面欠陥と判定されることになる。   Normally, although the reflection ring B appears regardless of the presence or absence of a surface defect, the reflection ring B may not be determined depending on the type and state of the surface defect. This is a case where the surface defect state is particularly bad. For example, there may be a case with a severe diamond or poor finish (rough finish). When such a reflection ring B cannot be detected, the phenomenon itself is determined as a surface defect.

次に、反射リングBの位置が明らかになったら、その反射リングBの位置の隣(上下左右)の位置の受光量と、受光量を比較し、減衰又は増加して、その反射リングBの位置の受光量が、隣と大きく異なっていないかを判断する。もし、表面欠陥がある場合、その位置の受光量が隣の位置の受光量に比べ減衰している。図5に示すように、反射リングBが位置する位置3cにおいて、隣の位置2c及び4cと比較すると、位置3cの受光量が減衰しており、この位置3cの表面欠陥が存在していることが検出できる。   Next, when the position of the reflection ring B is clarified, the amount of light received next to the position of the reflection ring B (up, down, left and right) is compared with the amount of light received, and attenuated or increased. It is determined whether the amount of light received at the position is not significantly different from the adjacent one. If there is a surface defect, the amount of light received at that position is attenuated compared to the amount of light received at the adjacent position. As shown in FIG. 5, in the position 3c where the reflection ring B is located, the amount of light received at the position 3c is attenuated compared to the adjacent positions 2c and 4c, and a surface defect exists at this position 3c. Can be detected.

また、表面欠陥検査装置1のデータ解析部22は、表面欠陥検出手段として、受光センサ20の同じ位置のサンプリング周期ごとのデータ(丸棒Wの軸方向に所定距離離れた位置での反射リングの受光量)の変化を受光量の増減で把握し、表面欠陥を検出するようにすることもできる。例えば、図6に示すように、現在の丸棒Wの軸方向の位置での受光量に対し、1つ前、2つ前・・・等での受光量を比較するようにする。尚、丸棒Wの軸方向に所定距離離れる量は、長さ的な量として把握してもよいし、丸棒Wを移動させたり表面欠陥検査装置1を移動させて検査点Pをずらし、移動している途中で所定間隔毎に受光量を測定し、結果としてサンプル周期毎のデータとして把握するようにしてもよい。   In addition, the data analysis unit 22 of the surface defect inspection apparatus 1 serves as surface defect detection means for each sampling cycle at the same position of the light receiving sensor 20 (the reflection ring at a position separated by a predetermined distance in the axial direction of the round bar W). It is also possible to detect a surface defect by grasping a change in the amount of received light) by increasing or decreasing the amount of received light. For example, as shown in FIG. 6, the received light amounts of the previous round bar W in the axial direction are compared with the received light amounts one before, two before, and so on. In addition, the amount of the predetermined distance away in the axial direction of the round bar W may be grasped as a length quantity, or the inspection point P is shifted by moving the round bar W or moving the surface defect inspection apparatus 1. While moving, the amount of received light may be measured at predetermined intervals, and as a result, it may be grasped as data for each sample period.

以上のように、本実施の形態における表面欠陥検査装置1は、丸棒Wの軸の方向から、軸から5度〜45度の仰角を有して丸棒Wの外周面の検査点Pにレーザ光Lを照射し、丸棒Wの検査点Pで反射した反射レーザ光Cを、丸棒Wの外周の外縁に沿うように升目状に配置された複数の受光センサ20で受光し、升目状に配置された複数の受光センサ20のそれぞれの受光量から、丸棒Wの外周面で反射した反射レーザ光Cの反射リングBの位置を検出し、反射リングBの位置にある受光センサ20の受光量と、反射リングBの位置にある受光センサ20に隣接する受光センサ20の受光量との差が所定以上の場合、表面欠陥として検出することで丸棒Wの外周面の疵や汚れの種類を判別して検出することが可能である。   As described above, the surface defect inspection apparatus 1 in the present embodiment has an elevation angle of 5 degrees to 45 degrees from the axis in the direction of the axis of the round bar W, and the inspection point P on the outer peripheral surface of the round bar W. The reflected laser beam C irradiated with the laser beam L and reflected at the inspection point P of the round bar W is received by a plurality of light receiving sensors 20 arranged in a grid pattern along the outer edge of the outer circumference of the round bar W, The position of the reflection ring B of the reflected laser beam C reflected from the outer peripheral surface of the round bar W is detected from the amount of light received by each of the plurality of light reception sensors 20 arranged in a shape, and the light reception sensor 20 at the position of the reflection ring B is detected. When the difference between the received light amount of the light receiving sensor 20 adjacent to the light receiving sensor 20 located at the position of the reflection ring B is equal to or greater than a predetermined value, it is detected as a surface defect, so that wrinkles and dirt on the outer peripheral surface of the round bar W are detected. It is possible to discriminate and detect the type.

また、反射リングBが、反射リングBの径方向に隣接する複数の受光センサ20上に位置する場合、隣接する受光センサ20の受光量の合計値から、受光センサ20の位置を検出すると共に、隣接する受光センサ20の受光量の合計値を、反射リングBの位置にある1つの受光センサ20の受光量と見なすことで、より正確に反射リングBの位置を特定可能で、より正確な表面欠陥の検出が可能である。   In addition, when the reflection ring B is positioned on the plurality of light receiving sensors 20 adjacent to each other in the radial direction of the reflection ring B, the position of the light receiving sensor 20 is detected from the total amount of light received by the adjacent light receiving sensors 20, By considering the total amount of light received by adjacent light receiving sensors 20 as the amount of light received by one light receiving sensor 20 at the position of the reflecting ring B, the position of the reflecting ring B can be specified more accurately, and a more accurate surface Defect detection is possible.

さらに、丸棒Wの軸方向に所定距離離れた位置での反射リングBの位置の複数の受光センサ20の受光量を比較することで、表面欠陥を検出することから、より多くの種類の表面欠陥の判別が可能である。   Further, since the surface defects are detected by comparing the light receiving amounts of the plurality of light receiving sensors 20 at the position of the reflection ring B at positions separated by a predetermined distance in the axial direction of the round bar W, more types of surfaces are obtained. Defects can be identified.

さらに、同一の受光センサ20の丸棒Wの軸方向に所定距離離れた位置での受光量を比較し、表面欠陥を検出することで、より多くの種類の表面欠陥の判別が可能である。   Furthermore, by comparing the amount of light received at a position a predetermined distance apart in the axial direction of the round bar W of the same light receiving sensor 20, more types of surface defects can be identified.

さらに、丸棒Wの軸の方向から、軸から5度〜45度の仰角を有して丸棒Wの外周面の検査点Pにレーザ光Lを照射し、丸棒Wの検査点Pで反射した反射レーザ光Cを、丸棒Wの外周の外縁に沿うように升目状に配置された複数の受光センサ20で受光し、升目状に配置された複数の受光センサ20のそれぞれの受光量から、丸棒Wの外周面で反射した反射レーザ光Cの反射リングBの位置を検出し、反射リングBの位置にある受光センサ20の受光量と、反射リングBの位置ではない受光センサ20の受光量との差が所定以下の場合、表面欠陥として検出することもでき、この場合も丸棒Wの外周面の疵や汚れの種類を判別して検出することが可能である。   Further, from the direction of the axis of the round bar W, the laser beam L is irradiated to the inspection point P on the outer peripheral surface of the round bar W with an elevation angle of 5 degrees to 45 degrees from the axis. Reflected reflected laser light C is received by a plurality of light receiving sensors 20 arranged in a grid shape along the outer edge of the outer periphery of the round bar W, and the amount of light received by each of the plurality of light receiving sensors 20 arranged in a grid shape. From this, the position of the reflection ring B of the reflected laser beam C reflected by the outer peripheral surface of the round bar W is detected, the amount of light received by the light receiving sensor 20 at the position of the reflection ring B, and the light receiving sensor 20 that is not the position of the reflection ring B. If the difference from the received light amount is less than or equal to a predetermined value, it can also be detected as a surface defect. In this case as well, it is possible to detect by detecting the type of wrinkles and dirt on the outer peripheral surface of the round bar W.

上述では、表面欠陥の検出について説明したが、本出願における表面欠陥検査装置1は、表面欠陥の検出と共に、表面欠陥の種類の判別も可能であることから、その種類の判別の具体的な例を説明する。図7は、同表面欠陥検査装置の第1の実施例の表面欠陥の様子を示す説明図である。図8は、同表面欠陥検査装置の第1の実施例の受光センサによる受光状態を示す説明図である。図9は、同表面欠陥検査装置の第1の実施例の受光センサの受光量を示す説明図である。   In the above description, the detection of the surface defect has been described. However, the surface defect inspection apparatus 1 in the present application can determine the type of the surface defect as well as the detection of the surface defect. Will be explained. FIG. 7 is an explanatory view showing the state of surface defects of the first embodiment of the surface defect inspection apparatus. FIG. 8 is an explanatory view showing a light receiving state by the light receiving sensor of the first embodiment of the surface defect inspection apparatus. FIG. 9 is an explanatory diagram showing the amount of light received by the light receiving sensor of the first embodiment of the surface defect inspection apparatus.

本実施例1では、図7に示すような、丸棒W1の母材キズ残りの表面欠陥D1の検出について説明する。母材キズ残りとは、加工前材料(母材)の欠陥(未加工)がそのまま残っているものである。母材キズ残りの表面欠陥D1を検査点Pとしてレーザ光Lを照射すると、図8に示すように、反射レーザ光Cが乱反射し、反射リングBが一部欠けることになる。データ解析部22では、受光センサ20の受光量を図9に示すようにマッピングし、まず、反射リングBの位置を特定する。本実施例1の場合、データ解析部22は、反射リングBの位置を、位置1b,1c,2c,3c,4c,5c,6b,6cと検出する。   In the first embodiment, detection of the surface defect D1 remaining on the base metal scratch of the round bar W1 as shown in FIG. 7 will be described. The base material scratch residue is a material in which a defect (unprocessed) of the material before processing (base material) remains as it is. When the surface defect D1 remaining on the base material scratch is used as the inspection point P and the laser beam L is irradiated, the reflected laser beam C is irregularly reflected and the reflection ring B is partially lost as shown in FIG. In the data analysis unit 22, the amount of light received by the light receiving sensor 20 is mapped as shown in FIG. 9, and first, the position of the reflection ring B is specified. In the case of the first embodiment, the data analysis unit 22 detects the position of the reflection ring B as positions 1b, 1c, 2c, 3c, 4c, 5c, 6b, and 6c.

次に、データ解析部22は、特定された反射リングBの位置の隣同士の位置の受光量を比較する。位置2cと位置3cとを比較すると、大きく受光量が異なっており、受光量が著しく落ち込んだ位置2cに表面欠陥D1を検出することになる。そして、母材キズ残りの場合、丸棒W1の軸方向に離れた位置(サンプル周期毎)で、ほぼ同じ位置に反射リングBの欠けを検出できるので、データ解析部22は、この表面欠陥D1の種類として、母材キズ残りを特定できることになる。   Next, the data analysis unit 22 compares the received light amounts at positions adjacent to the specified position of the reflection ring B. When the position 2c is compared with the position 3c, the amount of received light is greatly different, and the surface defect D1 is detected at the position 2c where the amount of received light is significantly reduced. In the case where the base material scratch remains, since the chip of the reflection ring B can be detected at substantially the same position at a position (in each sample period) separated from the round bar W1 in the axial direction, the data analysis unit 22 can detect this surface defect D1. As a type, it is possible to specify the remaining scratch on the base material.

次に、本実施例2では、他の表面欠陥の例を説明する。図10は、同表面欠陥検査装置の第2の実施例の表面欠陥の様子を示す説明図である。図11は、同表面欠陥検査装置の第2の実施例の受光センサによる受光状態を示す説明図である。図12は、同表面欠陥検査装置の第2の実施例の受光センサによる受光状態を示す説明図である。図13は、同表面欠陥検査装置の第2の実施例の受光センサの受光量を示す説明図である。図14は、同表面欠陥検査装置の第2の実施例の受光センサのサンプリング周期が異なる受光量の様子を示す説明図である。   Next, in Example 2, examples of other surface defects will be described. FIG. 10 is an explanatory view showing the state of surface defects of the second embodiment of the surface defect inspection apparatus. FIG. 11 is an explanatory view showing a light receiving state by the light receiving sensor of the second embodiment of the surface defect inspection apparatus. FIG. 12 is an explanatory view showing a light receiving state by the light receiving sensor of the second embodiment of the surface defect inspection apparatus. FIG. 13 is an explanatory diagram showing the amount of light received by the light receiving sensor of the second embodiment of the surface defect inspection apparatus. FIG. 14 is an explanatory view showing the amount of received light with different sampling periods of the light receiving sensor of the second embodiment of the surface defect inspection apparatus.

本実施例2では、図10に示すような、丸棒W2の螺旋キズの表面欠陥D2の検出について説明する。螺旋キズとは、加工時に発生する螺旋状の欠陥で、その間隔が一定なものである。螺旋キズの表面欠陥D2を検査点Pとしてレーザ光Lを照射すると、図11や図12に示すように、反射レーザ光Cが乱反射し、反射リングBが一定周期で一部欠けることになる。図11と図12とは、丸棒W2の軸方向で異なる位置の受光状態を示している。そして、図11と図12とを比較すると分かるとおり、反射リングBが欠けた位置が、異なっている。図11では、位置2cで欠けており、図12では、位置3cで欠けている。データ解析部22では、受光センサ20の受光量を図13及び図14に示すようにマッピングし(図11と図13とが、図12と図14とがそれぞれ対、)、まず、反射リングBの位置を特定する。本実施例2の場合、データ解析部22は、反射リングBの位置を、位置1b,1c,2c,3c,4c,5c,6b,6cと検出する。   In the second embodiment, detection of a surface defect D2 of a spiral flaw of the round bar W2 as shown in FIG. 10 will be described. Spiral scratches are spiral defects that occur during processing and have a constant spacing. When the laser beam L is irradiated with the surface defect D2 of the spiral flaw as the inspection point P, the reflected laser beam C is diffusely reflected as shown in FIGS. 11 and 12, and the reflection ring B is partially missing at a constant period. FIG. 11 and FIG. 12 show light receiving states at different positions in the axial direction of the round bar W2. And as FIG. 11 and FIG. 12 compare, the position where the reflective ring B was missing is different. In FIG. 11, it is missing at position 2c, and in FIG. 12, it is missing at position 3c. In the data analysis unit 22, the amount of light received by the light receiving sensor 20 is mapped as shown in FIGS. 13 and 14 (FIGS. 11 and 13 are paired with FIGS. 12 and 14). Specify the position of. In the case of the present Example 2, the data analysis part 22 detects the position of the reflective ring B as position 1b, 1c, 2c, 3c, 4c, 5c, 6b, 6c.

次に、データ解析部22は、特定された反射リングBの位置の隣同士の位置の受光量を比較する。図13では、位置2cと位置3cとを比較すると、大きく受光量が異なっており、受光量が著しく落ち込んだ位置2cに表面欠陥D2を検出することになる。そして、図14の丸棒W2の軸方向に離れた位置(別のサンプル位置)では、位置2cと位置3cとを比較すると、大きく受光量が異なっており、受光量が著しく落ち込んだ位置3cに表面欠陥D2を検出することになる。このように、データ解析部22は、受光センサ20の同じ位置の時間変化(サンプリング周期ごとのデータの変化)により、表面欠陥の種類として、螺旋キズを特定できることになる。   Next, the data analysis unit 22 compares the received light amounts at positions adjacent to the specified position of the reflection ring B. In FIG. 13, when the position 2c and the position 3c are compared, the received light amount is greatly different, and the surface defect D2 is detected at the position 2c where the received light amount is significantly reduced. Then, at the position (another sample position) that is separated in the axial direction of the round bar W2 in FIG. 14, when the position 2c and the position 3c are compared, the amount of received light is greatly different, and the position 3c where the amount of received light is significantly reduced. The surface defect D2 will be detected. As described above, the data analysis unit 22 can identify the spiral flaw as the type of surface defect by the time change of the same position of the light receiving sensor 20 (data change for each sampling period).

次に、本実施例3では、さらに他の表面欠陥の例を説明する。図15は、同表面欠陥検査装置の第3の実施例の表面欠陥の様子を示す説明図である。図16は、同表面欠陥検査装置の第3の実施例の受光センサによる受光状態を示す説明図である。図17は、同表面欠陥検査装置の第3の実施例の受光センサの受光量を示す説明図である。   Next, in Example 3, another example of surface defects will be described. FIG. 15 is an explanatory view showing the state of surface defects of the third embodiment of the surface defect inspection apparatus. FIG. 16 is an explanatory view showing a light receiving state by the light receiving sensor of the third embodiment of the surface defect inspection apparatus. FIG. 17 is an explanatory diagram showing the amount of light received by the light receiving sensor of the third embodiment of the surface defect inspection apparatus.

本実施例3では、図15に示すような、丸棒W3のダイヤ目の表面欠陥D3の検出について説明する。ダイヤ目とは、加工時に発生する細かい表面凹凸の欠陥である。ダイヤ目の表面欠陥D3を検査点Pとしてレーザ光Lを照射すると、図16に示すように、反射レーザ光Cが乱反射し、反射リングBが薄く投影される。データ解析部22では、受光センサ20の受光量を図17に示すようにマッピングし、まず、反射リングBの位置を特定する。しかしながら、本実施例3の場合、受光量が全体的に少なく、データ解析部22は、反射リングBの位置を、しっかり検出できないケースもある。このように、データ解析部22は、全体的にぼやけたような反射の場合、表面欠陥の種類として、ダイヤ目を特定できることになる。   In the third embodiment, detection of the surface defect D3 of the diamond of the round bar W3 as shown in FIG. 15 will be described. The diamond is a fine surface irregularity defect generated during processing. When the surface defect D3 of the diamond is used as the inspection point P and the laser beam L is irradiated, the reflected laser beam C is irregularly reflected and the reflecting ring B is projected thinly as shown in FIG. In the data analysis unit 22, the amount of light received by the light receiving sensor 20 is mapped as shown in FIG. 17, and the position of the reflection ring B is first identified. However, in the case of the third embodiment, the amount of received light is generally small, and the data analysis unit 22 may not be able to detect the position of the reflection ring B firmly. In this way, the data analysis unit 22 can identify the diamond as the type of surface defect in the case of reflection that is totally blurred.

以上のように、本発明によれば、丸棒の外周面の疵や汚れの種類を判別して検出することが可能な表面欠陥検査装置及び表面欠陥検査方法を提供することができる。   As described above, according to the present invention, it is possible to provide a surface defect inspection apparatus and a surface defect inspection method capable of discriminating and detecting types of wrinkles and dirt on the outer peripheral surface of a round bar.

1・・・・・・・表面欠陥検査装置
10・・・・・・レーザ光源
12・・・・・・電源
20・・・・・・受光センサ
22・・・・・・データ解析部
W・・・・・・・丸棒
W1〜W3・・・丸棒
D1〜D3・・・表面欠陥
1... Surface defect inspection device 10... Laser light source 12... Power source 20. ..... Round bars W1-W3 ... Round bars D1-D3 ... Surface defects

Claims (10)

パイプ形状を含む丸棒の外周面の疵や汚れによる表面欠陥を検出する表面欠陥検査装置において、
該丸棒の軸の方向から、該軸から5度〜45度の仰角を有して該丸棒の該外周面の検査点にレーザ光を照射するレーザ光源と、
該丸棒の外周面で反射した反射レーザ光を受光する複数の受光センサと、
該複数の受光センサが受光量に基づいて該表面欠陥を検出する表面欠陥検出手段とを備え、
該複数の受光センサが、該丸棒の外周の外縁に沿うように升目状に配置され、
該表面欠陥検出手段が、該升目状に配置された複数の受光センサのそれぞれの受光量から、該丸棒の外周面で反射したレーザ光の反射リングの位置を検出し、
該反射リングの位置にある該受光センサの受光量と、該反射リングの位置にある該受光センサに隣接する該受光センサの受光量との差が所定以上の場合、該差の部分を該表面欠陥による乱反射として、該表面欠陥を検出することを特徴とする表面欠陥検査装置。
In the surface defect inspection device that detects surface defects due to wrinkles and dirt on the outer peripheral surface of the round bar including the pipe shape,
A laser light source for irradiating the inspection point on the outer circumferential surface of the round bar with a laser beam having an elevation angle of 5 degrees to 45 degrees from the axis direction of the round bar;
A plurality of light receiving sensors for receiving reflected laser light reflected by the outer peripheral surface of the round bar;
The plurality of light receiving sensors includes surface defect detection means for detecting the surface defects based on the amount of received light,
The plurality of light receiving sensors are arranged in a grid shape along the outer edge of the outer periphery of the round bar,
The surface defect detection means detects the position of the reflection ring of the laser beam reflected on the outer peripheral surface of the round bar from the amount of light received by each of the plurality of light receiving sensors arranged in a grid shape,
And received light amount of the light receiving sensor at a position of the reflecting ring, when the difference between the received light amount of the light receiving sensor adjacent the light receiving sensor at a position of the reflecting ring is higher than the predetermined, the surface portion of the difference A surface defect inspection apparatus , wherein the surface defect is detected as irregular reflection due to a defect.
前記表面欠陥検出手段が、
前記反射リングが該反射リングの径方向に隣接する複数の受光センサ上に位置する場合、該隣接する受光センサの受光量の合計値から、該受光センサの位置を検出すると共に、
該隣接する受光センサの受光量の合計値を、該反射リングの位置にある1つの該受光センサの受光量と見なすことを特徴とする請求項1記載の表面欠陥検査装置。
The surface defect detection means is
When the reflecting ring is positioned on a plurality of light receiving sensors adjacent in the radial direction of the reflecting ring, the position of the light receiving sensor is detected from the total amount of light received by the adjacent light receiving sensors;
2. The surface defect inspection apparatus according to claim 1, wherein a total value of received light amounts of the adjacent light receiving sensors is regarded as a received light amount of one of the light receiving sensors located at the position of the reflection ring.
前記表面欠陥検出手段が、前記丸棒の軸方向に所定距離離れた異なる前記検査点に順次レーザ光を照射し、それぞれの該検査点での前記反射リングの位置の前記複数の受光センサの受光量を比較することで、前記表面欠陥を検出することを特徴とする請求項1又は請求項2記載の表面欠陥検査装置。   The surface defect detection means sequentially irradiates the different inspection points that are separated by a predetermined distance in the axial direction of the round bar, and receives the light from the plurality of light receiving sensors at the position of the reflection ring at each inspection point. 3. The surface defect inspection apparatus according to claim 1, wherein the surface defect is detected by comparing amounts. 前記表面欠陥検出手段が、前記複数の受光センサのうちの同一の該受光センサの前記それぞれの検査点での受光量を比較し、前記表面欠陥を検出することを特徴とする請求項3記載の表面欠陥検査装置。   The said surface defect detection means compares the light reception amount in each said test | inspection point of the same said light reception sensor among these light reception sensors, and detects the said surface defect. Surface defect inspection device. パイプ形状を含む丸棒の外周面の疵や汚れによる表面欠陥を検出する表面欠陥検査装置において、
該丸棒の軸の方向から、該軸から5度〜45度の仰角を有して該丸棒の該外周面の検査点にレーザ光を照射するレーザ光源と、
該丸棒の外周面で反射した反射レーザ光を受光する複数の受光センサと、
該複数の受光センサが受光量に基づいて該表面欠陥を検出する表面欠陥検出手段とを備え、
該複数の受光センサが、該丸棒の外周の外縁に沿うように升目状に配置され、
該表面欠陥検出手段が、該升目状に配置された複数の受光センサのそれぞれの受光量から、該丸棒の外周面で反射したレーザ光の反射リングの位置を検出し、
該反射リングの位置にある該受光センサの受光量と、該反射リングの位置ではない該受光センサの受光量との差が所定以下の場合、該差のない部分を該表面欠陥による乱反射として、該表面欠陥を検出することを特徴とする表面欠陥検査装置。
In the surface defect inspection device that detects surface defects due to wrinkles and dirt on the outer peripheral surface of the round bar including the pipe shape,
A laser light source for irradiating the inspection point on the outer circumferential surface of the round bar with a laser beam having an elevation angle of 5 degrees to 45 degrees from the axis direction of the round bar;
A plurality of light receiving sensors for receiving reflected laser light reflected by the outer peripheral surface of the round bar;
The plurality of light receiving sensors includes surface defect detection means for detecting the surface defects based on the amount of received light,
The plurality of light receiving sensors are arranged in a grid shape along the outer edge of the outer periphery of the round bar,
The surface defect detection means detects the position of the reflection ring of the laser beam reflected on the outer peripheral surface of the round bar from the amount of light received by each of the plurality of light receiving sensors arranged in a grid shape,
When the difference between the amount of light received by the light receiving sensor at the position of the reflecting ring and the amount of light received by the light receiving sensor that is not at the position of the reflecting ring is equal to or less than a predetermined value, the portion without the difference is regarded as irregular reflection due to the surface defect. A surface defect inspection apparatus for detecting the surface defect.
パイプ形状を含む丸棒の外周面の疵や汚れによる表面欠陥を検出する表面欠陥検査方法において、
該丸棒の軸の方向から、該軸から5度〜45度の仰角を有して該丸棒の該外周面の検査点にレーザ光を照射し、
該丸棒の検査点で反射した反射レーザ光を、該丸棒の外周の外縁に沿うように升目状に配置された複数の受光センサで受光し、
該升目状に配置された複数の受光センサのそれぞれの受光量から、該丸棒の外周面で反射した反射レーザ光の反射リングの位置を検出し、
該反射リングの位置にある該受光センサの受光量と、該反射リングの位置にある該受光センサに隣接する該受光センサの受光量との差が所定以上の場合、該差の部分を該表面欠陥による乱反射として、該表面欠陥を検出することを特徴とする表面欠陥検査方法。
In the surface defect inspection method to detect surface defects due to wrinkles and dirt on the outer peripheral surface of the round bar including the pipe shape,
From the direction of the axis of the round bar, irradiate the inspection point on the outer peripheral surface of the round bar with a laser beam having an elevation angle of 5 degrees to 45 degrees from the axis,
The reflected laser beam reflected at the inspection point of the round bar is received by a plurality of light receiving sensors arranged in a grid shape along the outer edge of the outer circumference of the round bar,
From the amount of light received by each of the plurality of light receiving sensors arranged in a grid, the position of the reflection ring of the reflected laser light reflected by the outer peripheral surface of the round bar is detected,
And the amount of light received by the light receiving sensor at a position of the reflecting ring, when the difference between the received light amount of the light receiving sensor that is adjacent to the light receiving sensor at a position of the reflecting ring is higher than the predetermined, the surface portion of the difference A surface defect inspection method , wherein the surface defect is detected as irregular reflection due to a defect.
前記反射リングが、該反射リングの径方向に隣接する複数の受光センサ上に位置する場合、該隣接する受光センサの受光量の合計値から、該受光センサの位置を検出すると共に、
該隣接する受光センサの受光量の合計値を、該反射リングの位置にある1つの該受光センサの受光量と見なすことを特徴とする請求項6記載の表面欠陥検査方法。
When the reflecting ring is positioned on a plurality of light receiving sensors adjacent to each other in the radial direction of the reflecting ring, the position of the light receiving sensor is detected from the total amount of light received by the adjacent light receiving sensors,
7. The surface defect inspection method according to claim 6, wherein a total value of received light amounts of the adjacent light receiving sensors is regarded as a received light amount of one of the light receiving sensors at the position of the reflection ring.
前記丸棒の軸方向に所定距離離れた異なる前記検査点に順次レーザ光を照射し、それぞれの該検査点での前記反射リングの位置の前記複数の受光センサの受光量を比較することで、前記表面欠陥を検出することを特徴とする請求項6又は請求項7記載の表面欠陥検査方法。   By sequentially irradiating laser beams to different inspection points separated by a predetermined distance in the axial direction of the round bar, and comparing the received light amounts of the plurality of light receiving sensors at the positions of the reflection ring at the respective inspection points, The surface defect inspection method according to claim 6, wherein the surface defect is detected. 前記複数の受光センサのうちの同一の該受光センサの前記それぞれの検査点での受光量を比較し、前記表面欠陥を検出することを特徴とする請求項8記載の表面欠陥検査方法。   The surface defect inspection method according to claim 8, wherein the surface defect is detected by comparing light reception amounts at the respective inspection points of the same light reception sensor among the plurality of light reception sensors. パイプ形状を含む丸棒の外周面の疵や汚れによる表面欠陥を検出する表面欠陥検査方法において、
該丸棒の軸の方向から、該軸から5度〜45度の仰角を有して該丸棒の該外周面の検査点にレーザ光を照射し、
該丸棒の検査点で反射した反射レーザ光を、該丸棒の外周の外縁に沿うように升目状に配置された複数の受光センサで受光し、
該升目状に配置された複数の受光センサのそれぞれの受光量から、該丸棒の外周面で反射した反射レーザ光の反射リングの位置を検出し、
該反射リングの位置にある該受光センサの受光量と、該反射リングの位置ではない該受光センサの受光量との差が所定以下の場合、該差のない部分を該表面欠陥による乱反射として、該表面欠陥を検出することを特徴とする表面欠陥検査方法。
In the surface defect inspection method to detect surface defects due to wrinkles and dirt on the outer peripheral surface of the round bar including the pipe shape,
From the direction of the axis of the round bar, irradiate the inspection point on the outer peripheral surface of the round bar with a laser beam having an elevation angle of 5 degrees to 45 degrees from the axis,
The reflected laser beam reflected at the inspection point of the round bar is received by a plurality of light receiving sensors arranged in a grid shape along the outer edge of the outer circumference of the round bar,
From the amount of light received by each of the plurality of light receiving sensors arranged in a grid, the position of the reflection ring of the reflected laser light reflected by the outer peripheral surface of the round bar is detected,
When the difference between the amount of light received by the light receiving sensor at the position of the reflecting ring and the amount of light received by the light receiving sensor that is not at the position of the reflecting ring is equal to or less than a predetermined value, the portion without the difference is regarded as irregular reflection due to the surface defect. A surface defect inspection method comprising detecting the surface defect.
JP2012113230A 2012-05-17 2012-05-17 Surface defect inspection apparatus and surface defect inspection method Active JP6166867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012113230A JP6166867B2 (en) 2012-05-17 2012-05-17 Surface defect inspection apparatus and surface defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012113230A JP6166867B2 (en) 2012-05-17 2012-05-17 Surface defect inspection apparatus and surface defect inspection method

Publications (2)

Publication Number Publication Date
JP2013238560A JP2013238560A (en) 2013-11-28
JP6166867B2 true JP6166867B2 (en) 2017-07-19

Family

ID=49763704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012113230A Active JP6166867B2 (en) 2012-05-17 2012-05-17 Surface defect inspection apparatus and surface defect inspection method

Country Status (1)

Country Link
JP (1) JP6166867B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674728A (en) * 1992-06-24 1994-03-18 Hitachi Cable Ltd Method and apparatus for detecting breakage of strand of transmission line
JP2000121569A (en) * 1998-10-16 2000-04-28 Showa Corp Apparatus for inspection of flaw on surface of rod

Also Published As

Publication number Publication date
JP2013238560A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
TWI600897B (en) Computer-implemented method, non-transitory computer-readable medium, and system for detecting defects on a wafer
JP5882730B2 (en) Appearance inspection apparatus and appearance inspection method
US8547545B2 (en) Method and apparatus for inspecting a surface of a substrate
JP6515344B2 (en) Defect detection apparatus and defect detection method
JP5408915B2 (en) Edge sensor and defect inspection device
TWI713638B (en) Method for detecting defects and associated device
US20130077092A1 (en) Substrate surface defect inspection method and inspection device
TW201602560A (en) Wafer edge detection and inspection
JP6079948B1 (en) Surface defect detection device and surface defect detection method
JP2006201179A (en) Surface inspection device and its method
JP5180608B2 (en) Disk surface defect inspection method and defect inspection apparatus
KR20180037258A (en) Wafer inspection method and wafer inspection apparatus
JP5655045B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JP5784796B2 (en) Surface inspection apparatus and method
JP5506243B2 (en) Defect inspection equipment
JP6166867B2 (en) Surface defect inspection apparatus and surface defect inspection method
JP5687014B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JPWO2005101483A1 (en) Semiconductor wafer inspection apparatus and method
JP5459995B2 (en) Wire surface inspection device
JP2012112654A (en) Round rod inspection device
JP6622679B2 (en) Circle scratch inspection device
JP2017161266A (en) Surface inspection device and surface inspection method
JP5703033B2 (en) Ranging device
JP6460953B2 (en) Optical surface inspection apparatus and optical surface inspection method
JP2002156332A (en) Detection method and device of surface flaw or the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161227

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170626

R150 Certificate of patent or registration of utility model

Ref document number: 6166867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250