JP6163145B2 - Thermal energy recovery device - Google Patents

Thermal energy recovery device Download PDF

Info

Publication number
JP6163145B2
JP6163145B2 JP2014180983A JP2014180983A JP6163145B2 JP 6163145 B2 JP6163145 B2 JP 6163145B2 JP 2014180983 A JP2014180983 A JP 2014180983A JP 2014180983 A JP2014180983 A JP 2014180983A JP 6163145 B2 JP6163145 B2 JP 6163145B2
Authority
JP
Japan
Prior art keywords
oil
liquid
working medium
return
thermal energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014180983A
Other languages
Japanese (ja)
Other versions
JP2016056689A (en
Inventor
治幸 松田
治幸 松田
宏一郎 橋本
宏一郎 橋本
和真 西村
和真 西村
高橋 和雄
和雄 高橋
祐治 田中
祐治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014180983A priority Critical patent/JP6163145B2/en
Publication of JP2016056689A publication Critical patent/JP2016056689A/en
Application granted granted Critical
Publication of JP6163145B2 publication Critical patent/JP6163145B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、熱エネルギー回収装置に関するものである。   The present invention relates to a thermal energy recovery device.

従来、工場等の各種設備の排熱から動力を回収する熱エネルギー回収装置が知られている。例えば、特許文献1には、作動媒体を蒸発させる蒸発器と、蒸発器から作動媒体とともに流出した油を回収する油分離タンクと、油分離タンクから流出した作動媒体を膨張させるスクリュ膨張機と、スクリュ膨張機に接続された発電機と、膨張機から流出した作動媒体を凝縮させる凝縮器と、凝縮器から流出した作動媒体を蒸発器へ送出するポンプと、を備えた発電装置が開示されている。蒸発器には、外部の熱源から作動媒体を加熱するための加熱媒体が供給されている。また、特許文献2にも、同様の発電装置が開示されている。   2. Description of the Related Art Conventionally, a thermal energy recovery device that recovers power from exhaust heat of various facilities such as factories is known. For example, Patent Document 1 discloses an evaporator that evaporates a working medium, an oil separation tank that collects oil that flows out of the evaporator together with the working medium, a screw expander that expands the working medium that flows out of the oil separation tank, Disclosed is a power generator including a generator connected to a screw expander, a condenser for condensing a working medium flowing out from the expander, and a pump for sending the working medium flowing out from the condenser to an evaporator. Yes. A heating medium for heating the working medium from an external heat source is supplied to the evaporator. Patent Document 2 also discloses a similar power generator.

特開2011−122568号公報JP 2011-122568 A 特開2006−283675号公報JP 2006-283675 A

上記特許文献1又は2に記載されるような発電装置では、当該装置の起動時(暖機運転時)や蒸発器に供給される加熱媒体の流量又は温度の低下時等に、ポンプの上流側における液状の作動媒体の量が減少し、ポンプの運転が不安定になったりポンプ内でキャビテーションが生じたりする懸念がある。具体的に、当該装置の起動時は、蒸発器の下流側の流路や油回収器の温度が当該装置の定常運転時のそれよりも低いため、蒸発器から流出した作動媒体が前記流路や油回収器において凝縮し、液状の作動媒体として油回収器に溜まる。よって、ポンプの上流側における液状の作動媒体の量が減少する。また、熱源から蒸発器に供給される加熱媒体の流量又は温度が低下したときは、液状の作動媒体が蒸発器で十分に蒸発しきらずに気液二相の状態で蒸発器から流出し、当該作動媒体のうち液状のものが油回収器内に溜まるので、ポンプの上流側における液状の作動媒体の量が減少する。このため、起動時(暖機運転時)や蒸発器に供給される加熱媒体の流量又は温度の低下時には、ポンプにガス状の作動媒体が流入することによってポンプの運転が不安定になる恐れや、ポンプ内にキャビテーションが生じ、これによりポンプが損傷する恐れがある。   In the power generator as described in Patent Document 1 or 2, the upstream side of the pump at the start-up time (warm-up operation) or when the flow rate or temperature of the heating medium supplied to the evaporator decreases. There is a concern that the amount of the liquid working medium in the pump is reduced, the pump operation becomes unstable, and cavitation occurs in the pump. Specifically, when the apparatus is activated, the temperature of the flow path on the downstream side of the evaporator and the temperature of the oil recovery device is lower than that during steady operation of the apparatus. And condensed in the oil recovery unit and collected in the oil recovery unit as a liquid working medium. Therefore, the amount of the liquid working medium on the upstream side of the pump is reduced. In addition, when the flow rate or temperature of the heating medium supplied from the heat source to the evaporator decreases, the liquid working medium does not fully evaporate in the evaporator and flows out of the evaporator in a gas-liquid two-phase state. Since the liquid of the working medium is accumulated in the oil recovery unit, the amount of the liquid working medium on the upstream side of the pump is reduced. For this reason, at the time of start-up (during warm-up operation) or when the flow rate or temperature of the heating medium supplied to the evaporator is reduced, the operation of the pump may become unstable due to the gaseous working medium flowing into the pump. Cavitation occurs in the pump, which can damage the pump.

本発明の目的は、起動時や蒸発器に供給される加熱媒体の流量又は温度の低下時におけるポンプの不安定運転やポンプ内でのキャビテーションの発生を抑制可能な熱エネルギー回収装置を提供することである。   An object of the present invention is to provide a thermal energy recovery device capable of suppressing the unstable operation of a pump and the occurrence of cavitation in the pump at the time of startup or when the flow rate or temperature of a heating medium supplied to an evaporator is lowered. It is.

前記課題を解決する手段として、本発明は、外部から供給される加熱媒体で作動媒体を加熱することによって当該作動媒体を蒸発させる蒸発器と、前記蒸発器から前記作動媒体とともに流出した油を回収する油回収器と、前記油回収器から流出した作動媒体を膨張させる膨張機と、前記膨張機に接続された動力回収機と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器で凝縮された作動媒体を前記蒸発器へ送るポンプと、前記蒸発器、前記油回収器、前記膨張機、前記凝縮器及び前記ポンプをこの順に接続する循環流路と、前記油回収器内の液体を前記循環流路のうち前記凝縮器の下流側でかつ前記ポンプの上流側の部位に戻す戻し流路と、前記凝縮器内における前記作動媒体の液量又は前記循環流路のうち前記凝縮器と前記ポンプとの間における前記作動媒体の液量が基準量以下に減少したことを示す液量減少条件が成立したときに前記戻し流路を通じて前記油回収器内の液体を戻す戻し操作を行う制御ユニットと、を備える、熱エネルギー回収装置を提供する。   As means for solving the above-mentioned problems, the present invention collects an evaporator that evaporates the working medium by heating the working medium with an externally supplied heating medium, and oil that flows out of the evaporator together with the working medium. An oil recovering device, an expander that expands the working medium flowing out from the oil recovering device, a power recovery device connected to the expander, a condenser that condenses the working medium flowing out from the expander, and A pump for sending the working medium condensed in the condenser to the evaporator; a circulation path for connecting the evaporator, the oil recovery unit, the expander, the condenser and the pump in this order; and the oil recovery unit A return flow path for returning the liquid in the circulation flow path to the downstream side of the condenser and the upstream side of the pump, and the amount of the working medium in the condenser or the circulation flow path The condenser Control for performing a return operation to return the liquid in the oil recovery unit through the return flow path when a liquid volume reduction condition indicating that the volume of the working medium between the pump and the pump has decreased below a reference amount is established And a thermal energy recovery device comprising the unit.

本発明では、ポンプの上流側(凝縮器内、又は、循環流路のうち凝縮器とポンプとの間の部位)における作動媒体の液量が基準量以下に減少したとき、換言すれば、油回収器に液状の作動媒体が溜まっているときに、戻し操作が行われるので、すなわち、油回収器内の液体(油及び作動媒体)が戻し流路を通じて循環流路のうち凝縮器の下流側でかつポンプの上流側の部位に戻されるので、ポンプの上流側における液量が早期に増大する。よって、起動時(暖機運転時)や蒸発器に供給される加熱媒体の流量又は温度の低下時におけるポンプの不安定運転やポンプ内でのキャビテーションの発生が抑制される。しかも、油回収器内の液体が凝縮器の上流側ではなく凝縮器の下流側に戻されることにより当該液体の凝縮器での冷却が回避されるため、前記液体が凝縮器の上流側に戻される場合に比べて、当該液体に含まれる作動媒体が蒸発器から流出した後に凝縮すること、あるいは当該液体に含まれる作動媒体が蒸発器から気液二相の状態で流出することが抑制される。   In the present invention, when the amount of the working medium on the upstream side of the pump (in the condenser or the portion between the condenser and the pump in the circulation flow path) decreases below the reference amount, in other words, the oil Since the return operation is performed when the liquid working medium is accumulated in the collector, that is, the liquid (oil and working medium) in the oil collector passes through the return flow path and is downstream of the condenser in the circulation flow path. And since it returns to the site | part upstream of a pump, the liquid quantity in the upstream of a pump increases early. Therefore, the unstable operation of the pump and the occurrence of cavitation in the pump at the time of start-up (during warm-up operation) or when the flow rate or temperature of the heating medium supplied to the evaporator is reduced are suppressed. Moreover, since the liquid in the oil recovery unit is returned not to the upstream side of the condenser but to the downstream side of the condenser, cooling of the liquid in the condenser is avoided, so that the liquid is returned to the upstream side of the condenser. Compared to the case where the working medium contained in the liquid is condensed after flowing out of the evaporator, or the working medium contained in the liquid is prevented from flowing out from the evaporator in a gas-liquid two-phase state. .

この場合において、前記制御ユニットは、前記凝縮器内における前記作動媒体の液面の高さ又は前記循環流路のうち前記凝縮器と前記ポンプとの間における前記作動媒体の液面の高さを検知可能な液面センサと、前記液面センサの検出値が基準高さ以下となったときに前記液量減少条件が成立したと判定して前記戻し操作を行う戻し制御部と、を有してもよい。   In this case, the control unit determines the height of the liquid level of the working medium in the condenser or the height of the liquid level of the working medium between the condenser and the pump in the circulation channel. A liquid level sensor that can be detected, and a return control unit that performs the return operation by determining that the liquid amount reduction condition is satisfied when a detection value of the liquid level sensor is equal to or lower than a reference height. May be.

このようにすれば、凝縮器内又は循環流路のうち凝縮器とポンプとの間に液面センサを設けるという簡単な構成で前記液量減少条件が成立したか否かを判定することが可能となる。   In this way, it is possible to determine whether or not the liquid amount reduction condition is satisfied with a simple configuration in which a liquid level sensor is provided between the condenser and the pump in the condenser or in the circulation flow path. It becomes.

あるいは、前記制御ユニットは、前記油回収器内の液面の高さを検知可能な液面センサと、前記液面センサの検出値が上限高さ以上となったときに前記液量減少条件が成立したと判定して前記戻し操作を行う戻し制御部と、を有してもよい。   Alternatively, the control unit includes a liquid level sensor capable of detecting the height of the liquid level in the oil recovery unit, and the liquid amount reduction condition when the detected value of the liquid level sensor exceeds an upper limit height. And a return control unit that performs the return operation by determining that it has been established.

このようにしても、起動時や蒸発器に供給される加熱媒体の流量又は温度の低下時におけるポンプの不安定運転やポンプ内でのキャビテーションの発生が抑制される。具体的に、起動時や加熱媒体の流量又は温度の低下時には、蒸発器から流出した作動媒体の少なくとも一部が液状で油回収器内に溜まる。そうすると、油回収器内の液面が高くなる一方でポンプ上流側における液量が減少するので、油回収器の液面の高さに基づいて前記液量減少条件が成立したか否かを判定することができる。よって、油回収器の液面が上限高さ以上となったときに戻し操作を行うことにより、ポンプの不安定運転やポンプ内でのキャビテーションの発生を抑制することができる。   Even in this case, the unstable operation of the pump and the occurrence of cavitation in the pump at the time of start-up or when the flow rate or temperature of the heating medium supplied to the evaporator is reduced are suppressed. Specifically, at the time of start-up or when the flow rate or temperature of the heating medium is lowered, at least a part of the working medium that has flowed out of the evaporator accumulates in the oil recovery unit in a liquid state. Then, while the liquid level in the oil recovery unit becomes higher, the amount of liquid on the upstream side of the pump decreases, so it is determined whether or not the liquid amount reduction condition is satisfied based on the height of the liquid level of the oil recovery unit can do. Therefore, by performing the return operation when the liquid level of the oil recovery device reaches or exceeds the upper limit height, it is possible to suppress the unstable operation of the pump and the occurrence of cavitation in the pump.

または、前記制御ユニットは、前記油回収器内の液体の温度又は前記油回収器の温度を検知可能な温度センサと、前記温度センサの検出値が下限温度以下となったときに前記液量減少条件が成立したと判定して前記戻し操作を行う戻し制御部と、を有してもよい。   Alternatively, the control unit includes a temperature sensor capable of detecting the temperature of the liquid in the oil recovery unit or the temperature of the oil recovery unit, and the liquid amount decrease when a detection value of the temperature sensor becomes a lower limit temperature or less. A return control unit that determines that the condition is satisfied and performs the return operation.

このようにしても、ポンプの不安定運転やポンプ内でのキャビテーションの発生が抑制される。具体的に、油回収器内の液体の温度又は前記油回収器の温度が例えば作動媒体の気化温度よりも低い場合、蒸発器から流出した作動媒体の少なくとも一部が油回収器内で凝縮して当該油回収器内に溜まる。そうすると、油回収器内の液面が高くなる一方でポンプ上流側における液量が減少するので、油回収器内の液体の温度又は前記油回収器の温度に基づいて前記液量減少条件が成立したか否かを判定することができる。よって、油回収器内の液体の温度又は前記油回収器の温度が下限温度以下となったときに戻し操作を行うことにより、ポンプの不安定運転やポンプ内でのキャビテーションの発生を抑制することができる。   Even in this case, unstable operation of the pump and occurrence of cavitation in the pump are suppressed. Specifically, when the temperature of the liquid in the oil recovery unit or the temperature of the oil recovery unit is lower than the vaporization temperature of the working medium, for example, at least a part of the working medium flowing out of the evaporator is condensed in the oil collecting unit. In the oil collector. As a result, the liquid level in the oil recovery unit increases while the liquid amount on the upstream side of the pump decreases, so that the liquid amount reduction condition is established based on the temperature of the liquid in the oil recovery unit or the temperature of the oil recovery unit. It can be determined whether or not. Therefore, by performing a return operation when the temperature of the liquid in the oil recovery device or the temperature of the oil recovery device is lower than the lower limit temperature, the unstable operation of the pump and the occurrence of cavitation in the pump are suppressed. Can do.

あるいは、前記制御ユニットは、前記循環流路のうち前記油回収器と前記膨張機との間の部位の温度又は前記部位を流れる作動媒体の温度が設定温度以上となるまで前記戻し操作を行ってもよい。   Alternatively, the control unit performs the return operation until the temperature of the part of the circulation channel between the oil recovery unit and the expander or the temperature of the working medium flowing through the part becomes a set temperature or higher. Also good.

このようにすれば、油回収器内に液状の作動媒体が溜まりやすい暖機運転時(循環流路のうち蒸発器と油回収器との間の部位、油回収器及び循環流路のうち油回収器と膨張機との間の部位の温度が通常運転時の温度になるまでの運転時)に戻し操作が継続されるので、特に起動時におけるポンプの不安定運転やポンプ内でのキャビテーションの発生を有効に抑制することができる。   In this way, during the warm-up operation in which the liquid working medium tends to accumulate in the oil recovery unit (the portion between the evaporator and the oil recovery unit in the circulation channel, the oil in the oil recovery unit and the circulation channel) The operation is continued until the temperature of the part between the collector and the expander reaches the normal operation temperature), so that the unstable operation of the pump during start-up and cavitation in the pump Generation can be effectively suppressed.

また、本発明において、前記油回収器内の油を前記膨張機に供給するための給油流路をさらに備え、前記油の比重は液状の作動媒体の比重よりも小さく、前記給油流路の上流側の端部は、前記戻し流路の上流側の端部よりも上方の位置で前記油回収器に接続されていることが好ましい。   Further, in the present invention, an oil supply passage for supplying the oil in the oil recovery unit to the expander is further provided, and the specific gravity of the oil is smaller than the specific gravity of the liquid working medium, and the upstream of the oil supply passage. The side end is preferably connected to the oil collector at a position above the upstream end of the return flow path.

このようにすれば、油回収器から相対的に比重の小さな油を多く含む液体が膨張機に供給されるので、膨張機での油膜切れの発生が抑制される。具体的に、油の比重が液状の作動媒体のそれよりも小さいので、給油流路の上流側の端部が戻し流路の上流側の端部と同じ高さかそれよりも下方の位置で油回収器に接続される場合に比べて戻し流路の上流側の端部よりも上方の位置で油回収器に接続される方が、給油流路を通じて膨張機に供給される液体に対する油の割合が大きくなり、これにより前記液体の粘度が高くなる。よって、膨張機での油膜切れの発生が抑制される。   In this way, since a liquid containing a large amount of oil having a relatively small specific gravity is supplied from the oil collector to the expander, the occurrence of oil film breakage in the expander is suppressed. Specifically, since the specific gravity of oil is smaller than that of the liquid working medium, the upstream end of the oil supply passage is at the same height as or lower than the upstream end of the return passage. The ratio of oil to the liquid supplied to the expander through the oil supply passage is more connected to the oil recovery device at a position higher than the upstream end of the return passage compared to the case where it is connected to the recovery device. Increases, thereby increasing the viscosity of the liquid. Therefore, the occurrence of oil film breakage in the expander is suppressed.

この場合において、前記油回収器内の油を前記膨張機に供給するための補助給油流路をさらに備え、前記補助給油流路の上流側の端部は、前記給油流路の上流側の端部よりも下方の位置で前記油回収器に接続されていることが好ましい。   In this case, an auxiliary oil supply passage for supplying the oil in the oil recovery unit to the expander is further provided, and an upstream end of the auxiliary oil supply passage is an upstream end of the oil supply passage. It is preferable that it is connected to the oil recovery unit at a position below the part.

このようにすれば、油回収器内に液状の作動媒体が溜まった場合であっても、給油流路を通じて油を多く含む液体を膨張機に供給しつつ、油回収器内の液面が給油流路の上流側の端部よりも低くなったときでも補助給油流路を通じて確実に油を膨張機に供給することができる。   In this way, even when a liquid working medium is accumulated in the oil recovery unit, the liquid level in the oil recovery unit is refueled while supplying a liquid containing a large amount of oil to the expander through the oil supply passage. Even when lower than the upstream end of the flow path, the oil can be reliably supplied to the expander through the auxiliary oil supply flow path.

さらにこの場合において、前記補助給油流路の上流側の端部は、前記戻し流路の上流側の端部と同じ高さ位置かそれよりも下方の位置で前記油回収器に接続されていることが好ましい。   Furthermore, in this case, the upstream end of the auxiliary oil supply channel is connected to the oil recovery device at the same height as or lower than the upstream end of the return channel. It is preferable.

このようにすれば、油回収器内の液体が戻し流路を通じて戻されている間は常に膨張機に油が供給される。   In this way, the oil is always supplied to the expander while the liquid in the oil recovery unit is returned through the return channel.

また、本発明において、前記給油流路を開放するとともに前記補助給油流路を遮断する第1態様と前記給油流路を遮断するとともに前記補助給油流路を開放する第2態様との間を切り替え可能な切替弁をさらに備え、前記制御ユニットは、前記油回収器内の液面が前記給油流路の上流側の端部よりも上方に位置するときは前記切替弁を前記第1態様とする一方、前記油回収器内の液面が前記給油流路の上流側の端部よりも下方に位置するときは前記切替弁を前記第2態様とする切替弁制御部をさらに有することが好ましい。   Further, in the present invention, switching between a first mode in which the oil supply channel is opened and the auxiliary oil supply channel is blocked and a second mode in which the oil supply channel is blocked and the auxiliary oil channel is opened. The control unit further includes a possible switching valve, and the control unit sets the switching valve as the first mode when the liquid level in the oil recovery unit is located above the upstream end of the oil supply passage. On the other hand, when the liquid level in the oil recovery unit is located below the upstream end of the oil supply passage, it is preferable to further include a switching valve control unit that uses the switching valve as the second mode.

このようにすれば、油回収器内の液面が給油流路の上流側の端部よりも高い場合に給油流路を通じて比較的油を多く含む液体のみを膨張機に供給することができ、しかも、油回収器内の液面が給油流路の上流側の端部よりも低い場合には給油流路が遮断されるので、給油流路を通じて例えばガス状の作動媒体が膨張機に流入することが抑制される。   In this way, when the liquid level in the oil recovery device is higher than the end on the upstream side of the oil supply passage, only the liquid containing a relatively large amount of oil can be supplied to the expander through the oil supply passage. In addition, when the liquid level in the oil recovery unit is lower than the upstream end of the oil supply passage, the oil supply passage is blocked, so that, for example, a gaseous working medium flows into the expander through the oil supply passage. It is suppressed.

以上のように、本発明によれば、起動時や蒸発器に供給される加熱媒体の流量又は温度の低下時におけるポンプの不安定運転やポンプ内でのキャビテーションの発生を抑制可能な熱エネルギー回収装置を提供することができる。   As described above, according to the present invention, thermal energy recovery that can suppress unstable operation of the pump and occurrence of cavitation in the pump at the time of start-up or when the flow rate or temperature of the heating medium supplied to the evaporator is reduced. An apparatus can be provided.

本発明の第1実施形態の熱エネルギー回収装置の構成の概略を示す図である。It is a figure which shows the outline of a structure of the thermal energy recovery apparatus of 1st Embodiment of this invention. 図1の熱エネルギー回収装置の戻し制御部の制御内容を示すフローチャートである。It is a flowchart which shows the control content of the return control part of the thermal energy recovery apparatus of FIG. 図1の熱エネルギー回収装置の変形例を示す図である。It is a figure which shows the modification of the thermal energy recovery apparatus of FIG. 図1の熱エネルギー回収装置の変形例を示す図である。It is a figure which shows the modification of the thermal energy recovery apparatus of FIG. 図1の熱エネルギー回収装置の変形例を示す図である。It is a figure which shows the modification of the thermal energy recovery apparatus of FIG. 図1の熱エネルギー回収装置の変形例を示す図である。It is a figure which shows the modification of the thermal energy recovery apparatus of FIG. 図1の熱エネルギー回収装置の変形例を示す図である。It is a figure which shows the modification of the thermal energy recovery apparatus of FIG. 本発明の第2実施形態の熱エネルギー回収装置の構成の概略を示す図である。It is a figure which shows the outline of a structure of the thermal energy recovery apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態の熱エネルギー回収装置の構成の概略を示す図である。It is a figure which shows the outline of a structure of the thermal energy recovery apparatus of 3rd Embodiment of this invention.

本発明の好ましい実施形態について、以下、図面を参照しながら説明する。   Preferred embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
本発明の第1実施形態の熱エネルギー回収装置について、図1及び図2を参照しながら説明する。
(First embodiment)
A thermal energy recovery device according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1に示されるように、熱エネルギー回収装置は、蒸発器10と、油回収器12と、膨張機14と、動力回収機16と、凝縮器18と、レシーバ20と、ポンプ22と、循環流路30と、戻し流路32と、制御ユニット40と、を備えている。   As shown in FIG. 1, the thermal energy recovery apparatus includes an evaporator 10, an oil recovery unit 12, an expander 14, a power recovery unit 16, a condenser 18, a receiver 20, a pump 22, and a circulation. A flow path 30, a return flow path 32, and a control unit 40 are provided.

循環流路30は、蒸発器10、油回収器12、膨張機14、凝縮器18、レシーバ20及びポンプ22をこの順に直列に接続している。   The circulation flow path 30 connects the evaporator 10, the oil recovery device 12, the expander 14, the condenser 18, the receiver 20, and the pump 22 in this order in series.

蒸発器10は、外部から供給される加熱媒体と液状の作動媒体とを熱交換させることにより当該作動媒体を蒸発させる。蒸発器10に供給される加熱媒体としては、例えば、工場等から排出される温水や高温ガスが挙げられる。また、作動媒体としては、R245faが用いられている。   The evaporator 10 evaporates the working medium by exchanging heat between the heating medium supplied from the outside and the liquid working medium. Examples of the heating medium supplied to the evaporator 10 include hot water and high-temperature gas discharged from a factory or the like. Further, R245fa is used as the working medium.

油回収器12は、循環流路30における蒸発器10の下流側の部位に設けられている。油回収器12は、蒸発器10から作動媒体とともに流出した油を回収する。油回収器12で回収された油は、油回収器12と膨張機14とを接続する給油流路13を通じて膨張機14に供給される。本実施形態では、給油流路13の上流側の端部は、油回収器12の側部に接続されている。この油の比重は、液状の作動媒体の比重よりも小さい。   The oil recovery unit 12 is provided at a downstream side of the evaporator 10 in the circulation flow path 30. The oil recovery unit 12 recovers oil that has flowed out of the evaporator 10 together with the working medium. The oil recovered by the oil recovery unit 12 is supplied to the expander 14 through an oil supply passage 13 that connects the oil recovery unit 12 and the expander 14. In the present embodiment, the upstream end of the oil supply passage 13 is connected to the side of the oil collector 12. The specific gravity of this oil is smaller than the specific gravity of the liquid working medium.

膨張機14は、循環流路30における油回収器12の下流側の部位に設けられている。本実施形態では、膨張機14として、油回収器12から流出したガス状の作動媒体の膨張エネルギーにより回転駆動されるロータを有する容積式のスクリュー膨張機が用いられている。具体的に、膨張機14は、雌雄一対のスクリュロータを有している。   The expander 14 is provided in the downstream portion of the oil collector 12 in the circulation flow path 30. In the present embodiment, a positive displacement screw expander having a rotor that is rotationally driven by the expansion energy of the gaseous working medium flowing out from the oil recovery unit 12 is used as the expander 14. Specifically, the expander 14 has a pair of male and female screw rotors.

動力回収機16は、膨張機14に接続されている。本実施形態では、動力回収機16として発電機が用いられている。この動力回収機16は、膨張機14の一対のスクリュロータのうちの一方に接続された回転軸を有している。動力回収機16は、前記回転軸が前記スクリュロータの回転に伴って回転することにより電力を発生させる。なお、動力回収機16として、発電機の他、圧縮機等が用いられてもよい。   The power recovery machine 16 is connected to the expander 14. In the present embodiment, a power generator is used as the power recovery machine 16. The power recovery machine 16 has a rotating shaft connected to one of a pair of screw rotors of the expander 14. The power recovery machine 16 generates electric power when the rotating shaft rotates with the rotation of the screw rotor. In addition to the generator, a compressor or the like may be used as the power recovery machine 16.

凝縮器18は、循環流路30における膨張機14の下流側の部位に設けられている。凝縮器18は、膨張機14から流出した作動媒体を外部から供給される冷却媒体(冷却水等)で冷却することにより凝縮(液化)させる。   The condenser 18 is provided in a portion of the circulation channel 30 on the downstream side of the expander 14. The condenser 18 condenses (liquefies) the working medium flowing out from the expander 14 by cooling with a cooling medium (cooling water or the like) supplied from the outside.

レシーバ20は、循環流路30における凝縮器18の下流側の部位に設けられている。レシーバ20は、凝縮器18から流出した液状の作動媒体を貯留する。   The receiver 20 is provided at a site on the downstream side of the condenser 18 in the circulation flow path 30. The receiver 20 stores the liquid working medium that has flowed out of the condenser 18.

ポンプ22は、循環流路30におけるレシーバ20の下流側の部位(レシーバ20と蒸発器10との間の部位)に設けられている。ポンプ22は、液状の作動媒体を所定の圧力まで加圧して蒸発器10へ送り出す。ポンプ22としては、インペラをロータとして備える遠心ポンプや、ロータが一対のギアからなるギアポンプ等が用いられる。   The pump 22 is provided at a site downstream of the receiver 20 in the circulation channel 30 (a site between the receiver 20 and the evaporator 10). The pump 22 pressurizes the liquid working medium to a predetermined pressure and sends it to the evaporator 10. As the pump 22, a centrifugal pump having an impeller as a rotor, a gear pump having a rotor composed of a pair of gears, or the like is used.

戻し流路32は、油回収器12内の液体を循環流路30のうち凝縮器18の下流側でかつポンプ22の上流側の部位に戻すための流路である。本実施形態では、戻し流路32の上流側の端部は、油回収器12の底部に接続されており、戻し流路32の下流側の端部は、レシーバ20に接続されている。なお、戻し流路32の上流側の端部は、給油流路13に接続されていてもよい。また、戻し流路32の下流側の端部は、循環流路30のうち凝縮器18とレシーバ20との間の部位に接続されてもよい。   The return flow path 32 is a flow path for returning the liquid in the oil recovery unit 12 to a site downstream of the condenser 18 and upstream of the pump 22 in the circulation flow path 30. In the present embodiment, the upstream end of the return channel 32 is connected to the bottom of the oil recovery device 12, and the downstream end of the return channel 32 is connected to the receiver 20. The upstream end of the return channel 32 may be connected to the oil supply channel 13. Further, the downstream end of the return channel 32 may be connected to a portion of the circulation channel 30 between the condenser 18 and the receiver 20.

戻し流路32には、戻し弁V1が設けられている。この戻し弁V1が開かれることにより、油回収器12内の液体がレシーバ20内に流入する。   A return valve V <b> 1 is provided in the return channel 32. By opening the return valve V1, the liquid in the oil collector 12 flows into the receiver 20.

制御ユニット40は、循環流路30のうち凝縮器18とポンプ22との間における作動媒体の液量が基準量以下に減少したことを示す液量減少条件が成立したときに戻し流路32を通じて油回収器12内の液体を戻す戻し操作を行う。具体的には、制御ユニット40は、前記液量減少条件が成立したときに戻し弁V1を開く制御を行う。本実施形態では、制御ユニット40は、液面センサ41と、戻し制御部42と、を有している。   The control unit 40 passes through the return flow path 32 when a liquid volume reduction condition is established that indicates that the liquid volume of the working medium between the condenser 18 and the pump 22 in the circulation flow path 30 has decreased below the reference volume. A return operation for returning the liquid in the oil collector 12 is performed. Specifically, the control unit 40 performs control to open the return valve V1 when the liquid amount reduction condition is satisfied. In the present embodiment, the control unit 40 includes a liquid level sensor 41 and a return control unit 42.

液面センサ41は、循環流路30のうち凝縮器18とポンプ22との間に位置するレシーバ20に設けられている。   The liquid level sensor 41 is provided in the receiver 20 located between the condenser 18 and the pump 22 in the circulation flow path 30.

戻し制御部42は、液面センサ41の検出値L1が基準高さL0以下になったときに前記液量減少条件が成立したと判定して前記戻し操作(戻し弁V1を開く操作)を行う。また、戻し制御部42は、前記検出値L1が前記基準高さL0よりも大きくなったときに戻し弁V1を閉じる。   The return control unit 42 determines that the liquid amount reduction condition is satisfied when the detection value L1 of the liquid level sensor 41 is equal to or less than the reference height L0, and performs the return operation (operation to open the return valve V1). . Further, the return control unit 42 closes the return valve V1 when the detected value L1 becomes larger than the reference height L0.

本実施形態では、制御ユニット40は、油回収器12の液面の高さを検知可能な液面センサ43をさらに有している。戻し制御部42は、液面センサ43の検出値L2が下限高さLα以下になったときに戻し弁V1を閉じる。下限高さLαは、給油流路13の上流側の端部の位置に設定される。   In the present embodiment, the control unit 40 further includes a liquid level sensor 43 that can detect the height of the liquid level of the oil recovery unit 12. The return control unit 42 closes the return valve V1 when the detection value L2 of the liquid level sensor 43 becomes equal to or lower than the lower limit height Lα. The lower limit height Lα is set at the position of the upstream end of the oil supply passage 13.

次に、図2を参照しながら、戻し制御部42の具体的な制御内容を説明する。   Next, specific control contents of the return control unit 42 will be described with reference to FIG.

まず、戻し制御部42は、ポンプ22の起動中において、液面センサ41の検出値L1が基準高さL0以下か否かを判定する(ステップS12)。   First, the return control unit 42 determines whether or not the detection value L1 of the liquid level sensor 41 is equal to or lower than the reference height L0 during the activation of the pump 22 (step S12).

この結果、検出値L1が基準高さL0以下の場合(ステップS12でYES)、戻し制御部42は、油回収器12内の液体をレシーバ20へ流入させるために戻し弁V1を開く操作(戻し操作)を行う(ステップS13)。一方、検出値L1が基準高さL0よりも大きい場合(ステップS12でNO)、戻し制御部42は、ステップS12に戻り、再び検出値L1が基準高さL0以下か否か判定する。   As a result, when the detected value L1 is equal to or less than the reference height L0 (YES in step S12), the return control unit 42 opens the return valve V1 to return the liquid in the oil recovery unit 12 to the receiver 20 (return). Operation) is performed (step S13). On the other hand, when the detected value L1 is larger than the reference height L0 (NO in step S12), the return control unit 42 returns to step S12 and determines again whether or not the detected value L1 is equal to or lower than the reference height L0.

戻し制御部42は、戻し弁V1を開く操作を行った後(ステップS13の後)、液面センサ43の検出値L2が下限高さLα以下か否かを判定する(ステップS14)。   After performing the operation of opening the return valve V1 (after step S13), the return control unit 42 determines whether or not the detection value L2 of the liquid level sensor 43 is equal to or lower than the lower limit height Lα (step S14).

この結果、検出値L2が下限高さLα以下の場合(ステップS14でYES)、すなわち、油回収器12内の液面の高さが給油流路13の上流側の端部と同じ高さかそれよりも下方に位置する場合、戻し制御部42は、給油流路13を通じた油回収器12内の油の膨張機14への供給不足を回避するために戻し弁V1を閉じ(ステップS16)、ステップS12に戻る。一方、検出値L2が下限高さLαよりも大きい場合(ステップS14でNO)、戻し制御部42は、液面センサ41の検出値L1が基準高さL0よりも大きいか否かを判定する(ステップS15)。   As a result, if the detected value L2 is equal to or lower than the lower limit height Lα (YES in step S14), that is, the level of the liquid level in the oil recovery unit 12 is the same height as the upstream end of the oil supply passage 13 or higher. The return control unit 42 closes the return valve V1 in order to avoid insufficient supply of the oil in the oil collector 12 through the oil supply passage 13 to the expander 14 (step S16). Return to step S12. On the other hand, when the detected value L2 is larger than the lower limit height Lα (NO in step S14), the return control unit 42 determines whether or not the detected value L1 of the liquid level sensor 41 is larger than the reference height L0 ( Step S15).

そして、検出値L1が基準高さL0以下の場合(ステップS15でNO)、ステップS14に戻る一方、検出値L1が基準高さL0よりも大きい場合(ステップS15でYES)、油回収器12内の液体のレシーバ20への流入を停止させるために戻し弁V1を閉じ(ステップS16)、ステップS12に戻る。   If the detected value L1 is less than or equal to the reference height L0 (NO in step S15), the process returns to step S14. On the other hand, if the detected value L1 is greater than the reference height L0 (YES in step S15), the oil collector 12 In order to stop the flow of liquid into the receiver 20, the return valve V1 is closed (step S16), and the process returns to step S12.

次に、本熱エネルギー回収装置の動作を説明する。ここでは、当該装置の起動時(暖機運転時)について説明する。この装置の起動時は、戻し弁V1は閉じられている。   Next, operation | movement of this thermal energy recovery apparatus is demonstrated. Here, the start-up time (during warm-up operation) of the device will be described. When the device is activated, the return valve V1 is closed.

まず、蒸発器10に加熱媒体を供給し、凝縮器18に冷却媒体を供給する。そして、ポンプ22を駆動する。そうすると、ポンプ22の上流側の液状の作動媒体が蒸発器10に送られ、ここで蒸発する。   First, a heating medium is supplied to the evaporator 10 and a cooling medium is supplied to the condenser 18. Then, the pump 22 is driven. Then, the liquid working medium upstream of the pump 22 is sent to the evaporator 10 where it is evaporated.

ここで、本装置の起動時は、循環流路30のうち蒸発器10と油回収器12との間の部位、油回収器12及び油回収器12内の液体の温度が当該装置の定常運転時のそれよりも低いため、蒸発器10から流出した作動媒体が前記部位や油回収器12において凝縮し、液状の作動媒体として油回収器12に溜まる。そうすると、油回収器12内の液面が高くなる一方でポンプ22の上流側に位置するレシーバ20内の液面が低くなる。   Here, at the time of activation of the present apparatus, the temperature of the liquid in the circulation path 30 between the evaporator 10 and the oil recovery unit 12, the oil recovery unit 12 and the oil recovery unit 12 is a steady operation of the apparatus. Since it is lower than that at the time, the working medium that has flowed out of the evaporator 10 is condensed in the part and the oil recovery unit 12 and collected in the oil recovery unit 12 as a liquid working medium. If it does so, while the liquid level in the oil recovery device 12 will become high, the liquid level in the receiver 20 located in the upstream of the pump 22 will become low.

この結果、レシーバ20に設けられている液面センサ41の検出値L1が基準高さL0以下になったとき(液量減少条件が成立したとき)、戻し制御部42は、戻し弁V1を開く。これにより、油回収器12内の液体(油及び液状の作動媒体)が戻し流路32を通じてレシーバ20に流入する。その後、検出値L2が下限高さLα以下になる、あるいは検出値L1が基準高さL0よりも大きくなると、戻し制御部42は、戻し弁V1を閉じる。   As a result, when the detection value L1 of the liquid level sensor 41 provided in the receiver 20 becomes equal to or less than the reference height L0 (when the liquid amount reduction condition is satisfied), the return control unit 42 opens the return valve V1. . As a result, the liquid (oil and liquid working medium) in the oil recovery device 12 flows into the receiver 20 through the return channel 32. Thereafter, when the detected value L2 becomes equal to or lower than the lower limit height Lα, or the detected value L1 becomes larger than the reference height L0, the return control unit 42 closes the return valve V1.

以上のようにして暖機運転から定常運転に移行する。   As described above, the warm-up operation shifts to the steady operation.

以上説明したように、本実施形態の熱エネルギー回収装置では、ポンプ22の上流側に位置するレシーバ20内の液面が基準高さL0以下に低下したとき、換言すれば、油回収器12に液状の作動媒体が溜まっているときに、戻し操作(戻し弁V1を開く操作)が行われるので、すなわち、油回収器12内の液体(油及び作動媒体)がレシーバ20に戻されるので、ポンプ22の上流側における液量が早期に増大する。よって、起動時(暖機運転時)におけるポンプの22不安定運転やポンプ22内でのキャビテーションの発生が抑制される。このため、暖機運転時のポンプ22の回転数を定常運転時のそれよりも小さくするという操作が回避可能となり、これにより暖機運転時においても動力回収機16で有効に動力を回収することが可能となる。   As described above, in the thermal energy recovery device of the present embodiment, when the liquid level in the receiver 20 located on the upstream side of the pump 22 has dropped below the reference height L0, in other words, in the oil recovery unit 12 Since the return operation (operation to open the return valve V1) is performed when the liquid working medium is accumulated, the liquid (oil and working medium) in the oil recovery unit 12 is returned to the receiver 20, so that the pump The amount of liquid on the upstream side of 22 increases early. Accordingly, the 22 unstable operation of the pump and the occurrence of cavitation in the pump 22 at the start (during warm-up operation) are suppressed. For this reason, it is possible to avoid the operation of reducing the rotational speed of the pump 22 during the warm-up operation to be smaller than that during the steady operation, and thus the power recovery machine 16 can effectively recover the power even during the warm-up operation. Is possible.

さらに、油回収器12内の液体が凝縮器18の上流側ではなく凝縮器18の下流側に戻されることにより当該液体の凝縮器18での冷却が回避されるため、前記液体が凝縮器18の上流側に戻される場合に比べて、当該液体に含まれる作動媒体が蒸発器10から流出した後に凝縮すること、あるいは当該液体に含まれる作動媒体が蒸発器10から気液二相の状態で流出することが抑制される。   Further, since the liquid in the oil recovery unit 12 is returned not to the upstream side of the condenser 18 but to the downstream side of the condenser 18, cooling of the liquid in the condenser 18 is avoided, so that the liquid is condensed into the condenser 18. The working medium contained in the liquid is condensed after flowing out of the evaporator 10 or the working medium contained in the liquid is in a gas-liquid two-phase state compared with the case where the working medium is contained in the liquid. Outflow is suppressed.

また、レシーバ20内の液面の低下は、当該装置の起動時に限らず、定常運転時において蒸発器10に供給される加熱媒体の流量又は温度が低下したとき等にも起こり得る。具体的に、加熱媒体の流量又は温度が低下したときは、液状の作動媒体が蒸発器10で十分に蒸発しきらずに気液二相の状態で蒸発器10から流出し、当該作動媒体のうち液状のものが油回収器12内に溜まるので、レシーバ20の液面が低下する。このときも、戻し制御部42は上記と同じ制御を行うため、当該装置の起動時(暖機運転時)だけでなく蒸発器10に供給される加熱媒体の流量又は温度の低下時等においても、ポンプ22の不安定運転やポンプ22内でのキャビテーションの発生が有効に抑制される。   In addition, the liquid level in the receiver 20 is not limited to when the apparatus is activated, but may also occur when the flow rate or temperature of the heating medium supplied to the evaporator 10 is reduced during steady operation. Specifically, when the flow rate or temperature of the heating medium decreases, the liquid working medium does not fully evaporate in the evaporator 10 and flows out of the evaporator 10 in a gas-liquid two-phase state, Since a liquid thing accumulates in the oil recovery device 12, the liquid level of the receiver 20 falls. At this time, since the return control unit 42 performs the same control as described above, not only when the apparatus is started up (during warm-up operation) but also when the flow rate or temperature of the heating medium supplied to the evaporator 10 is decreased. The unstable operation of the pump 22 and the occurrence of cavitation in the pump 22 are effectively suppressed.

また、本実施形態では、油回収器12から相対的に比重の小さな油を多く含む液体が膨張機14に供給されるので、膨張機14での油膜切れの発生が抑制される。具体的に、油の比重が作動媒体のそれよりも小さく、かつ、給油流路13の上流側の端部が戻し流路32の上流側の端部よりも上方の位置で油回収器12に接続されているので、給油流路13の上流側の端部が戻し流路32の上流側の端部と同じ高さかそれよりも下方の位置で油回収器12に接続される場合に比べて、給油流路13を通じて膨張機14に供給される液体に対する油の割合が大きくなり、これにより前記液体の粘度が高くなる。よって、膨張機14での油膜切れの発生が抑制される。   Moreover, in this embodiment, since the liquid which contains much oil with relatively small specific gravity is supplied to the expander 14 from the oil collection | recovery device 12, generation | occurrence | production of the oil film breakage | shortage in the expander 14 is suppressed. Specifically, the specific gravity of the oil is smaller than that of the working medium, and the upstream end of the oil supply passage 13 is located above the upstream end of the return passage 32 to the oil recovery device 12. Since it is connected, the upstream end of the oil supply passage 13 is connected to the oil collector 12 at the same height as the upstream end of the return passage 32 or at a position below it. The ratio of oil to the liquid supplied to the expander 14 through the oil supply passage 13 is increased, thereby increasing the viscosity of the liquid. Therefore, the occurrence of oil film breakage in the expander 14 is suppressed.

また、本実施形態では、戻し制御部42は検出値L1が基準高さL0よりも大きくなったときに戻し弁V1を閉じる例が示されたが、戻し制御部42は、循環流路30のうち油回収器12と膨張機14との間の部位に設けられた温度センサ49(図3を参照)の検出値が設定温度以上となるまで(暖機運転が終了するまで)戻し弁V1を開いてもよい。   In the present embodiment, an example is shown in which the return control unit 42 closes the return valve V1 when the detected value L1 becomes larger than the reference height L0. Among them, the return valve V1 is turned on until the detected value of the temperature sensor 49 (see FIG. 3) provided in the region between the oil recovery device 12 and the expander 14 becomes equal to or higher than the set temperature (until the warm-up operation is finished). You may open it.

このようにすれば、油回収器12内に液状の作動媒体が溜まりやすい暖機運転時(循環流路30のうち蒸発器10と油回収器12との間の部位、油回収器12及び循環流路30のうち油回収器12と膨張機14との間の部位の温度が通常運転時の温度である前記設定温度になるまでの運転時)に戻し弁V1が開き続けるので、特に起動時におけるポンプ22の不安定運転やポンプ22内でのキャビテーションの発生を有効に抑制することができる。   In this way, during the warm-up operation in which the liquid working medium tends to accumulate in the oil recovery unit 12 (the portion of the circulation channel 30 between the evaporator 10 and the oil recovery unit 12, the oil recovery unit 12 and the circulation Since the return valve V1 continues to open during the operation until the temperature of the portion of the flow path 30 between the oil recovery unit 12 and the expander 14 reaches the set temperature, which is the temperature during normal operation), particularly during startup The unstable operation of the pump 22 and the occurrence of cavitation in the pump 22 can be effectively suppressed.

また、図4に示されるように、レシーバ20は省略されてもよい。この場合、液面センサ41は、循環流路30のうち凝縮器18とポンプ22との間の液面を検知可能な部位に設けられ、戻し流路32の下流側の端部は、循環流路30のうち液面センサ41が設けられている位置よりも上流側の部位に接続される。あるいは、特に凝縮器18としていわゆるシェル&チューブ式の熱交換器のように熱交換器が液状の作動媒体を貯留する機能を有する場合、図5に示されるように、液面センサ41は、凝縮器18に接続されてもよい。   Further, as shown in FIG. 4, the receiver 20 may be omitted. In this case, the liquid level sensor 41 is provided in a portion where the liquid level between the condenser 18 and the pump 22 can be detected in the circulation flow path 30, and the downstream end of the return flow path 32 has a circulation flow rate. It connects with the site | part upstream from the position in which the liquid level sensor 41 is provided among the paths 30. Alternatively, in particular, when the heat exchanger has a function of storing a liquid working medium, such as a so-called shell-and-tube heat exchanger as the condenser 18, as shown in FIG. It may be connected to the device 18.

また、図6に示されるように、油回収器12内の油を膨張機14に供給するための補助給油流路13aをさらに有してもよい。補助給油流路13aの上流側の端部は、給油流路13の上流側の端部よりも下方の位置でかつ戻し流路32の上流側の端部と同じ高さ位置かそれよりも下方の位置で油回収器12に接続される。補助給油流路13aの下流側の端部は、例えば給油流路13の中間部位に接続される。   Moreover, as FIG. 6 shows, you may further have the auxiliary oil supply flow path 13a for supplying the oil in the oil recovery device 12 to the expander 14. FIG. The upstream end of the auxiliary oil supply passage 13a is located below the upstream end of the oil supply passage 13 and at the same height as or lower than the upstream end of the return passage 32. It is connected to the oil collector 12 at the position. The downstream end of the auxiliary oil supply channel 13 a is connected to, for example, an intermediate portion of the oil supply channel 13.

このようにすれば、油回収器12内に液状の作動媒体が溜まった場合であっても、給油流路13を通じて比較的比重の小さな油を多く含む液体を膨張機14に供給しつつ、油回収器12内の液面が給油流路13の上流側の端部よりも低くなったときでも補助給油流路13aを通じて常時油を膨張機14に供給することができる。この場合、戻し制御部42の制御フローのうちステップS14は省略される。あるいは、図7に示されるように、給油流路13の上流側の端部が油回収器12の底部に接続されており、戻し流路32の上流側の端部が給油流路13に接続されてもよい。この場合も、前記ステップS14は省略される。   In this way, even when a liquid working medium accumulates in the oil recovery unit 12, the liquid containing a large amount of oil having a relatively small specific gravity is supplied to the expander 14 through the oil supply passage 13, Even when the liquid level in the recovery device 12 becomes lower than the upstream end of the oil supply passage 13, oil can always be supplied to the expander 14 through the auxiliary oil supply passage 13a. In this case, step S14 in the control flow of the return control unit 42 is omitted. Alternatively, as shown in FIG. 7, the upstream end of the oil supply passage 13 is connected to the bottom of the oil collector 12, and the upstream end of the return passage 32 is connected to the oil supply passage 13. May be. Also in this case, the step S14 is omitted.

(第2実施形態)
本発明の第2実施形態の熱エネルギー回収装置について、図8を参照しながら説明する。なお、第2実施形態では、第1実施形態と異なる部分についてのみ説明を行い、第1実施形態と同じ構造、作用及び効果の説明は省略する。
(Second Embodiment)
A thermal energy recovery apparatus according to a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, only parts different from the first embodiment will be described, and the description of the same structure, operation, and effect as in the first embodiment will be omitted.

本実施形態では、前記液量減少条件が成立したか否かの判定態様が第1実施形態のそれと異なっている。具体的に、本実施形態では、戻し制御部42は、油回収器12に設けられた液面センサ45の検出値が上限高さ以上となったときに前記液量減少条件が成立したと判定して前記戻し操作(戻し弁V1を開く操作)を行う。また、戻し制御部42は、液面センサ45の検出値が上限高さ未満となったときに戻し弁V1を閉じる。   In the present embodiment, the determination mode for determining whether or not the liquid amount reduction condition is satisfied is different from that in the first embodiment. Specifically, in the present embodiment, the return control unit 42 determines that the liquid amount reduction condition is satisfied when the detection value of the liquid level sensor 45 provided in the oil recovery device 12 is equal to or higher than the upper limit height. Then, the return operation (operation to open the return valve V1) is performed. Further, the return control unit 42 closes the return valve V1 when the detection value of the liquid level sensor 45 becomes less than the upper limit height.

このようにしても、第1実施形態と同様に、起動時や蒸発器10に供給される加熱媒体の流量又は温度の低下時におけるポンプ22の不安定運転やポンプ22内でのキャビテーションの発生が抑制される。具体的に、起動時や加熱媒体の流量又は温度の低下時には、蒸発器10から流出した作動媒体の少なくとも一部が液状で油回収器12内に溜まる。そうすると、油回収器12内の液面が高くなる一方でポンプ22上流側における液量(例えばレシーバ20内の液量)が減少するので、油回収器12の液面の高さに基づいて前記液量減少条件が成立したか否かを判定することができる。よって、油回収器12の液面が上限高さ以上となったときに戻し弁V1を開くことにより、ポンプ22の不安定運転やポンプ22内でのキャビテーションの発生を抑制することができる。   Even in this case, similarly to the first embodiment, the unstable operation of the pump 22 and the occurrence of cavitation in the pump 22 at the time of startup or when the flow rate or temperature of the heating medium supplied to the evaporator 10 is lowered. It is suppressed. Specifically, at the time of start-up or when the flow rate or temperature of the heating medium decreases, at least a part of the working medium flowing out of the evaporator 10 is stored in the oil recovery unit 12 in a liquid state. Then, while the liquid level in the oil recovery unit 12 is increased, the amount of liquid on the upstream side of the pump 22 (for example, the amount of liquid in the receiver 20) is decreased. It can be determined whether or not the liquid amount reduction condition is satisfied. Therefore, the unstable operation of the pump 22 and the occurrence of cavitation in the pump 22 can be suppressed by opening the return valve V1 when the liquid level of the oil recovery device 12 becomes equal to or higher than the upper limit height.

なお、本実施形態では、給油流路13の上流側の端部は、油回収器12の底部に接続されている。   In the present embodiment, the upstream end of the oil supply passage 13 is connected to the bottom of the oil collector 12.

ここで、本実施形態では、液面センサ45の代わりに温度センサが油回収器12に設けられ、戻し制御部42がその温度センサの検出値に基づいて戻し弁V1の開閉を制御してもよい。具体的に、戻し制御部42は、温度センサの検出値が下限温度(例えば作動媒体の気化温度)以下となったときに前記液量減少条件が成立したと判定して前記戻し操作(戻し弁V1を開く操作)を行ってもよい。   Here, in the present embodiment, a temperature sensor is provided in the oil recovery device 12 instead of the liquid level sensor 45, and the return control unit 42 controls the opening / closing of the return valve V1 based on the detection value of the temperature sensor. Good. Specifically, the return control unit 42 determines that the liquid amount reduction condition is satisfied when the detection value of the temperature sensor becomes lower than the lower limit temperature (for example, the vaporization temperature of the working medium), and performs the return operation (return valve). (Operation for opening V1) may be performed.

このようにしても、ポンプ22の不安定運転やポンプ22内でのキャビテーションの発生が抑制される。具体的に、油回収器12内の液体の温度又は油回収器12の温度が作動媒体の気化温度よりも低い場合、蒸発器10から流出した作動媒体の少なくとも一部が油回収器12内で凝縮して当該油回収器12内に溜まる。そうすると、油回収器12内の液面が高くなる一方でポンプ22の上流側における液量が減少するので、油回収器12内の液体の温度又は油回収器12の温度に基づいて前記液量減少条件が成立したか否かを判定することができる。よって、油回収器12内の液体の温度又は油回収器12の温度が前記下限温度以下となったときに戻し弁V1を開くことにより、ポンプ22の不安定運転やポンプ22内でのキャビテーションの発生を抑制することができる。なお、この場合、戻し制御部42は、温度センサの検出値が前記下限温度よりも高くなったときに戻し弁V1を閉じる。   Even in this case, the unstable operation of the pump 22 and the occurrence of cavitation in the pump 22 are suppressed. Specifically, when the temperature of the liquid in the oil collector 12 or the temperature of the oil collector 12 is lower than the vaporization temperature of the working medium, at least a part of the working medium flowing out of the evaporator 10 is contained in the oil collector 12. It condenses and accumulates in the oil collector 12. As a result, the liquid level in the oil recovery unit 12 is increased while the liquid level on the upstream side of the pump 22 is decreased. Therefore, the liquid level is determined based on the temperature of the liquid in the oil recovery unit 12 or the temperature of the oil recovery unit 12. It can be determined whether or not the decrease condition is satisfied. Therefore, by opening the return valve V1 when the temperature of the liquid in the oil recovery unit 12 or the temperature of the oil recovery unit 12 is equal to or lower than the lower limit temperature, unstable operation of the pump 22 or cavitation in the pump 22 is caused. Occurrence can be suppressed. In this case, the return control unit 42 closes the return valve V1 when the detected value of the temperature sensor becomes higher than the lower limit temperature.

(第3実施形態)
続いて、本発明の第3実施形態の熱エネルギー回収装置について、図8を参照しながら説明する。なお、第3実施形態についても、第1実施形態と異なる部分についてのみ説明を行い、第1実施形態と同じ構造、作用及び効果の説明は省略する。
(Third embodiment)
Next, a thermal energy recovery device according to a third embodiment of the present invention will be described with reference to FIG. In addition, also about 3rd Embodiment, only a different part from 1st Embodiment is demonstrated, and description of the same structure, an effect | action, and an effect as 1st Embodiment is abbreviate | omitted.

本実施形態の熱エネルギー回収装置は、前記補助給油流路13aと、切替弁と、を備えている。切替弁は、給油流路13に設けられた第1切替弁V2と、補助給油流路13aに設けられた第2切替弁V3と、を有している。第1切替弁V2は、給油流路13のうち当該給油流路13と補助給油流路13aとの接続部よりも上流側の部位に設けられている。各切替弁V2,V3は、開度調整が可能な開閉弁である。   The thermal energy recovery device of this embodiment includes the auxiliary oil supply passage 13a and a switching valve. The switching valve has a first switching valve V2 provided in the oil supply passage 13 and a second switching valve V3 provided in the auxiliary oil supply passage 13a. The first switching valve V2 is provided in a portion of the oil supply passage 13 that is upstream of the connection portion between the oil supply passage 13 and the auxiliary oil supply passage 13a. Each switching valve V2, V3 is an on-off valve whose opening degree can be adjusted.

また、制御ユニット40は、各切替弁V2,V3の開閉を制御する切替弁制御部46をさらに有している。切替弁制御部46は、第1切替弁V2を開くとともに第2切替弁V3を閉じる(給油流路13を開放するとともに補助給油流路13aを遮断する)第1態様と、第1切替弁V2を閉じるとともに第2切替弁V3を開く(給油流路13を遮断するとともに補助給油流路13aを開放する)第2態様と、の間を切り替える。具体的に、切替弁制御部46は、油回収器12内の液面が給油流路13の上流側の端部よりも高いとき(液面センサ43の検出値が給油流路13の上流側の端部の高さ位置よりも大きいとき)は第1切替弁V2を開くとともに第2切替弁V3を閉じる(前記第1態様とする)一方、油回収器12内の液面が給油流路13の上流側の端部よりも低いときは第1切替弁V2を閉じるとともに第2切替弁V3を開く(前記第2態様とする)。   The control unit 40 further includes a switching valve control unit 46 that controls opening and closing of the switching valves V2 and V3. The switching valve control unit 46 opens the first switching valve V2 and closes the second switching valve V3 (opens the oil supply passage 13 and shuts off the auxiliary oil supply passage 13a), and the first switch valve V2. Is closed and the second switching valve V3 is opened (the oil supply passage 13 is shut off and the auxiliary oil supply passage 13a is opened). Specifically, when the liquid level in the oil recovery unit 12 is higher than the upstream end of the oil supply passage 13 (the detected value of the liquid level sensor 43 is upstream of the oil supply passage 13). The first switching valve V2 is opened and the second switching valve V3 is closed (referred to as the first mode), while the liquid level in the oil recovery unit 12 is the oil supply passage. When it is lower than the upstream end of 13, the first switching valve V2 is closed and the second switching valve V3 is opened (referred to as the second mode).

このようにすれば、油回収器12内の液面が給油流路13の上流側の端部よりも高い場合には、給油流路13を通じて比較的油を多く含む液体のみを膨張機14に供給することができ、油回収器12内の液面が給油流路13の上流側の端部よりも低い場合には、給油流路13を通じて例えばガス状の作動媒体が膨張機14に流入することを抑制しつつ補助給油流路13aを通じて確実に油を膨張機14に供給することができる。   In this way, when the liquid level in the oil recovery unit 12 is higher than the upstream end of the oil supply passage 13, only the liquid containing a relatively large amount of oil is supplied to the expander 14 through the oil supply passage 13. When the liquid level in the oil recovery unit 12 is lower than the upstream end of the oil supply passage 13, for example, a gaseous working medium flows into the expander 14 through the oil supply passage 13. While suppressing this, oil can be reliably supplied to the expander 14 through the auxiliary oil supply passage 13a.

なお、本実施形態では、給油流路13に第1切替弁V2が設けられ、補助給油流路13aに第2切替弁V3が設けられた例が示されたが、給油流路13と補助給油流路13aとの接続部に前記切替弁として3方弁が設けられてもよい。   In this embodiment, the example in which the first switching valve V2 is provided in the oil supply passage 13 and the second switching valve V3 is provided in the auxiliary oil supply passage 13a is shown. However, the oil supply passage 13 and the auxiliary oil supply are shown. A three-way valve may be provided as the switching valve at the connection with the flow path 13a.

また、補助給油流路13aの下流型の端部は、膨張機14に接続されてもよい。   Further, the downstream end portion of the auxiliary oil supply channel 13 a may be connected to the expander 14.

10 蒸発器
12 油回収器
13 給油流路
13a 補助給油流路
14 膨張機
16 動力回収機(発電機)
18 凝縮器
20 レシーバ
22 ポンプ
30 循環流路
32 戻し流路
40 制御ユニット
41 液面センサ
42 戻し制御部
43 液面センサ
45 液面センサ
46 切替弁制御部
49 温度センサ
V1 戻し弁
V2 第1切替弁
V3 第2切替弁
DESCRIPTION OF SYMBOLS 10 Evaporator 12 Oil recovery machine 13 Oil supply flow path 13a Auxiliary oil supply flow path 14 Expander 16 Power recovery machine (generator)
DESCRIPTION OF SYMBOLS 18 Condenser 20 Receiver 22 Pump 30 Circulation flow path 32 Return flow path 40 Control unit 41 Liquid level sensor 42 Return control part 43 Liquid level sensor 45 Liquid level sensor 46 Switching valve control part 49 Temperature sensor V1 Return valve V2 1st switching valve V3 2nd switching valve

Claims (9)

外部から供給される加熱媒体で作動媒体を加熱することによって当該作動媒体を蒸発させる蒸発器と、
前記蒸発器から前記作動媒体とともに流出した油を回収する油回収器と、
前記油回収器から流出した作動媒体を膨張させる膨張機と、
前記膨張機に接続された動力回収機と、
前記膨張機から流出した作動媒体を凝縮させる凝縮器と、
前記凝縮器で凝縮された作動媒体を前記蒸発器へ送るポンプと、
前記蒸発器、前記油回収器、前記膨張機、前記凝縮器及び前記ポンプをこの順に接続する循環流路と、
前記油回収器内の液体を前記循環流路のうち前記凝縮器の下流側でかつ前記ポンプの上流側の部位に戻す戻し流路と、
前記凝縮器内における前記作動媒体の液量又は前記循環流路のうち前記凝縮器と前記ポンプとの間における前記作動媒体の液量が基準量以下に減少したことを示す液量減少条件が成立したときに前記戻し流路を通じて前記油回収器内の液体を戻す戻し操作を行う制御ユニットと、を備える、熱エネルギー回収装置。
An evaporator that evaporates the working medium by heating the working medium with a heating medium supplied from the outside;
An oil recovery unit that recovers oil that has flowed out of the evaporator together with the working medium;
An expander that expands the working medium that has flowed out of the oil collector;
A power recovery machine connected to the expander;
A condenser for condensing the working medium flowing out of the expander;
A pump for sending the working medium condensed in the condenser to the evaporator;
A circulation channel for connecting the evaporator, the oil recovery unit, the expander, the condenser and the pump in this order;
A return flow path for returning the liquid in the oil recovery unit to the downstream side of the condenser and the upstream side of the pump in the circulation flow path;
A liquid volume reduction condition is established that indicates that the liquid volume of the working medium in the condenser or the liquid volume of the working medium between the condenser and the pump in the circulation channel has decreased below a reference amount. And a control unit for performing a return operation for returning the liquid in the oil recovery unit through the return flow path.
請求項1に記載の熱エネルギー回収装置において、
前記制御ユニットは、前記凝縮器内における前記作動媒体の液面の高さ又は前記循環流路のうち前記凝縮器と前記ポンプとの間における前記作動媒体の液面の高さを検知可能な液面センサと、前記液面センサの検出値が基準高さ以下となったときに前記液量減少条件が成立したと判定して前記戻し操作を行う戻し制御部と、を有する、熱エネルギー回収装置。
The thermal energy recovery device according to claim 1,
The control unit is configured to detect a liquid level of the working medium in the condenser or a liquid level of the working medium between the condenser and the pump in the circulation channel. A thermal energy recovery device comprising: a surface sensor; and a return control unit that determines that the liquid amount reduction condition is satisfied when a detection value of the liquid level sensor becomes a reference height or less and performs the return operation. .
請求項1に記載の熱エネルギー回収装置において、
前記制御ユニットは、前記油回収器内の液面の高さを検知可能な液面センサと、前記液面センサの検出値が上限高さ以上となったときに前記液量減少条件が成立したと判定して前記戻し操作を行う戻し制御部と、を有する、熱エネルギー回収装置。
The thermal energy recovery device according to claim 1,
The control unit has a liquid level sensor capable of detecting the height of the liquid level in the oil recovery unit, and the liquid amount reduction condition is satisfied when a detection value of the liquid level sensor exceeds an upper limit height. And a return control unit that performs the return operation by determining that the heat energy is recovered.
請求項1に記載の熱エネルギー回収装置において、
前記制御ユニットは、前記油回収器内の液体の温度又は前記油回収器の温度を検知可能な温度センサと、前記温度センサの検出値が下限温度以下となったときに前記液量減少条件が成立したと判定して前記戻し操作を行う戻し制御部と、を有する、熱エネルギー回収装置。
The thermal energy recovery device according to claim 1,
The control unit includes a temperature sensor capable of detecting the temperature of the liquid in the oil recovery unit or the temperature of the oil recovery unit, and the condition for reducing the amount of liquid when the detected value of the temperature sensor becomes a lower limit temperature or less And a return control unit that performs the return operation after determining that it has been established.
請求項1に記載の熱エネルギー回収装置において、
前記制御ユニットは、前記循環流路のうち前記油回収器と前記膨張機との間の部位の温度又は前記部位を流れる作動媒体の温度が設定温度以上となるまで前記戻し操作を行う、熱エネルギー回収装置。
The thermal energy recovery device according to claim 1,
The control unit performs the return operation until the temperature of the part of the circulation channel between the oil recovery unit and the expander or the temperature of the working medium flowing through the part reaches or exceeds a set temperature. Recovery device.
請求項1ないし5のいずれかに記載の熱エネルギー回収装置において、
前記油回収器内の油を前記膨張機に供給するための給油流路をさらに備え、
前記油の比重は液状の作動媒体の比重よりも小さく、
前記給油流路の上流側の端部は、前記戻し流路の上流側の端部よりも上方の位置で前記油回収器に接続されている、熱エネルギー回収装置。
In the thermal energy recovery device according to any one of claims 1 to 5,
An oil supply passage for supplying oil in the oil recovery unit to the expander;
The specific gravity of the oil is smaller than the specific gravity of the liquid working medium,
The thermal energy recovery device, wherein the upstream end of the oil supply channel is connected to the oil recovery unit at a position above the upstream end of the return channel.
請求項6に記載の熱エネルギー回収装置において、
前記油回収器内の油を前記膨張機に供給するための補助給油流路をさらに備え、
前記補助給油流路の上流側の端部は、前記給油流路の上流側の端部よりも下方の位置で前記油回収器に接続されている、熱エネルギー回収装置。
The thermal energy recovery device according to claim 6,
An auxiliary oil supply passage for supplying oil in the oil recovery unit to the expander;
The thermal energy recovery device, wherein the upstream end of the auxiliary oil supply channel is connected to the oil recovery unit at a position below the upstream end of the oil supply channel.
請求項7に記載の熱エネルギー回収装置において、
前記補助給油流路の上流側の端部は、前記戻し流路の上流側の端部と同じ高さ位置かそれよりも下方の位置で前記油回収器に接続されている、熱エネルギー回収装置。
The thermal energy recovery apparatus according to claim 7,
An end portion on the upstream side of the auxiliary oil supply flow path is connected to the oil recovery device at the same height as or lower than the end on the upstream side of the return flow path. .
請求項7又は8に記載の熱エネルギー回収装置において、
前記給油流路を開放するとともに前記補助給油流路を遮断する第1態様と前記給油流路を遮断するとともに前記補助給油流路を開放する第2態様との間を切り替え可能な切替弁をさらに備え、
前記制御ユニットは、前記油回収器内の液面が前記給油流路の上流側の端部よりも上方に位置するときは前記切替弁を前記第1態様とする一方、前記油回収器内の液面が前記給油流路の上流側の端部よりも下方に位置するときは前記切替弁を前記第2態様とする切替弁制御部をさらに有する、熱エネルギー回収装置。
In the thermal energy recovery device according to claim 7 or 8,
A switching valve capable of switching between a first mode for opening the oil supply channel and blocking the auxiliary oil flow channel and a second mode for blocking the oil supply channel and opening the auxiliary oil flow channel; Prepared,
When the liquid level in the oil recovery unit is located above the upstream end of the oil supply passage, the control unit sets the switching valve as the first mode while the control unit has a liquid level in the oil recovery unit. The thermal energy recovery device further includes a switching valve control unit that uses the switching valve as the second mode when the liquid level is positioned below the upstream end of the oil supply passage.
JP2014180983A 2014-09-05 2014-09-05 Thermal energy recovery device Expired - Fee Related JP6163145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014180983A JP6163145B2 (en) 2014-09-05 2014-09-05 Thermal energy recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014180983A JP6163145B2 (en) 2014-09-05 2014-09-05 Thermal energy recovery device

Publications (2)

Publication Number Publication Date
JP2016056689A JP2016056689A (en) 2016-04-21
JP6163145B2 true JP6163145B2 (en) 2017-07-12

Family

ID=55757751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014180983A Expired - Fee Related JP6163145B2 (en) 2014-09-05 2014-09-05 Thermal energy recovery device

Country Status (1)

Country Link
JP (1) JP6163145B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6815911B2 (en) * 2017-03-22 2021-01-20 株式会社神戸製鋼所 Thermal energy recovery device
JP2020186691A (en) * 2019-05-15 2020-11-19 株式会社神戸製鋼所 Heat recovery device and method for collecting working medium of heat recovery device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206912A (en) * 1984-03-30 1985-10-18 Mitsubishi Heavy Ind Ltd Flush preventive method for condensate in rankin cycle system
JP4310132B2 (en) * 2003-05-13 2009-08-05 株式会社荏原製作所 Power generator
JP2004346843A (en) * 2003-05-22 2004-12-09 Ebara Corp Power generating device and power generating method
JP4659503B2 (en) * 2005-03-31 2011-03-30 株式会社荏原製作所 Power generation device and lubricating oil recovery method
US9541312B2 (en) * 2008-05-07 2017-01-10 United Technologies Corporation Passive oil level limiter
US20100034684A1 (en) * 2008-08-07 2010-02-11 General Electric Company Method for lubricating screw expanders and system for controlling lubrication
JP5081894B2 (en) * 2009-12-14 2012-11-28 株式会社神戸製鋼所 Power generator

Also Published As

Publication number Publication date
JP2016056689A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6060040B2 (en) Waste heat recovery device and operation control method of waste heat recovery device
JP6315814B2 (en) Energy recovery device, compression device, and energy recovery method
KR101707744B1 (en) Compressing device
US9771835B2 (en) Flow rate control of heat energy recovery device including oil separator
US20150322821A1 (en) Thermal energy recovery device and start-up method of thermal energy recovery device
JP6423614B2 (en) Thermal energy recovery device
JP2006283675A (en) Power generating device and lubricating oil recovery method
JP6163145B2 (en) Thermal energy recovery device
KR101482876B1 (en) Power generation apparatus and control method thereof
JP5957410B2 (en) Waste heat recovery device
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
JP6170487B2 (en) Thermal energy recovery device
JP6595395B2 (en) Thermal energy recovery device and operation method thereof
JP5671442B2 (en) Thermal energy utilization apparatus and operation method thereof
JP6005586B2 (en) Binary drive
JP6815911B2 (en) Thermal energy recovery device
JP6647922B2 (en) Thermal energy recovery apparatus and start-up method thereof
JP6111184B2 (en) Waste heat recovery device
JP2019163910A (en) Heat pump type steam generation device, steam generation system, and operational method thereof
JP2006283674A (en) Power generating device and lubricating oil recovery method
KR102179759B1 (en) Heat energy recovery device and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170616

R150 Certificate of patent or registration of utility model

Ref document number: 6163145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees