JP6126858B2 - Exhaust gas purification device for internal combustion engine - Google Patents
Exhaust gas purification device for internal combustion engine Download PDFInfo
- Publication number
- JP6126858B2 JP6126858B2 JP2013026934A JP2013026934A JP6126858B2 JP 6126858 B2 JP6126858 B2 JP 6126858B2 JP 2013026934 A JP2013026934 A JP 2013026934A JP 2013026934 A JP2013026934 A JP 2013026934A JP 6126858 B2 JP6126858 B2 JP 6126858B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- catalyst
- nox
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000746 purification Methods 0.000 title claims description 206
- 238000002485 combustion reaction Methods 0.000 title claims description 40
- 239000003054 catalyst Substances 0.000 claims description 290
- 239000007789 gas Substances 0.000 claims description 198
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 67
- 229910021536 Zeolite Inorganic materials 0.000 claims description 66
- 239000010457 zeolite Substances 0.000 claims description 66
- 229910017840 NH 3 Inorganic materials 0.000 claims description 55
- 238000006243 chemical reaction Methods 0.000 claims description 33
- 238000007254 oxidation reaction Methods 0.000 claims description 27
- 230000000694 effects Effects 0.000 claims description 23
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052697 platinum Inorganic materials 0.000 claims description 15
- 229910052763 palladium Inorganic materials 0.000 claims description 14
- 229910052741 iridium Inorganic materials 0.000 claims description 12
- 229910052703 rhodium Inorganic materials 0.000 claims description 12
- 229910052684 Cerium Inorganic materials 0.000 claims description 11
- 229910052737 gold Inorganic materials 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 150000002484 inorganic compounds Chemical class 0.000 claims description 5
- 229910010272 inorganic material Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 4
- 239000004202 carbamide Substances 0.000 claims description 4
- 230000003197 catalytic effect Effects 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims 2
- 239000000969 carrier Substances 0.000 claims 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 362
- 229910002091 carbon monoxide Inorganic materials 0.000 description 106
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 105
- 229930195733 hydrocarbon Natural products 0.000 description 97
- 150000002430 hydrocarbons Chemical class 0.000 description 97
- 230000003647 oxidation Effects 0.000 description 22
- 238000000034 method Methods 0.000 description 20
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 16
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 239000010948 rhodium Substances 0.000 description 10
- 238000011144 upstream manufacturing Methods 0.000 description 10
- 239000010931 gold Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000012495 reaction gas Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000010955 niobium Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052878 cordierite Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 229910052762 osmium Inorganic materials 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229910018516 Al—O Inorganic materials 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000008093 supporting effect Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- -1 CH 4 Chemical class 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000000218 acetic acid group Chemical class C(C)(=O)* 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000009283 thermal hydrolysis Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9477—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/468—Iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/648—Vanadium, niobium or tantalum or polonium
- B01J23/6484—Niobium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/061—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/072—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/076—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/10—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
- B01J29/14—Iron group metals or copper
- B01J29/146—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0246—Coatings comprising a zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0248—Coatings comprising impregnated particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/103—Oxidation catalysts for HC and CO only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1028—Iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20715—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20723—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/2073—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20746—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20753—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/406—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
- B01J35/57—Honeycombs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/02—Heat treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/063—Surface coverings for exhaust purification, e.g. catalytic reaction zeolites
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は、ディーゼルエンジンやリーンバーンエンジンなどの希薄燃焼域で運転される内燃機関に適用可能な排ガス浄化装置、排ガス浄化方法及び排ガス浄化触媒に関する。 The present invention relates to an exhaust gas purification device, an exhaust gas purification method, and an exhaust gas purification catalyst applicable to an internal combustion engine operated in a lean combustion region such as a diesel engine or a lean burn engine.
ディーゼルエンジンやリーンバーンエンジンなど、酸素過多の状態で燃料を燃焼させる内燃機関からは、一酸化炭素(CO)及び窒素酸化物(NOx)を多く含む排ガスが排出される。また、これらの内燃機関の排ガス中には、燃料の未燃分である炭化水素(HC)が含まれる。さらに、これらの内燃機関の排ガス中には、NOx浄化用に排ガス中に添加される尿素水溶液が熱分解及び加水分解されることにより生成されるアンモニア(NH3)も含まれる。従って、これらの内燃機関に適用可能な排ガス浄化装置、排ガス浄化方法及び排ガス浄化触媒には、酸素過多の雰囲気中でCO,NOx,HC及びNH3を高度に酸化浄化できるものが要求される。 An exhaust gas containing a large amount of carbon monoxide (CO) and nitrogen oxides (NOx) is discharged from an internal combustion engine such as a diesel engine or a lean burn engine that burns fuel in an oxygen-rich state. Further, the exhaust gas of these internal combustion engines contains hydrocarbons (HC) that are unburned fuel. Further, in the exhaust gas of these internal combustion engines, ammonia (NH 3 ) produced by thermal decomposition and hydrolysis of an aqueous urea solution added to the exhaust gas for N Ox purification is also included. Therefore, an exhaust gas purification device, an exhaust gas purification method, and an exhaust gas purification catalyst that can be applied to these internal combustion engines are required to be capable of highly oxidizing and purifying CO, NOx, HC, and NH 3 in an oxygen-rich atmosphere.
従来、CO及びHCを酸化浄化する技術としては、白金(Pt)やパラジウム(Pd)などの貴金属触媒を用いるものが知られており、ディーゼルエンジン等の排ガス浄化に適用されている(例えば、非特許文献1の第351頁〜第373頁参照。)。しかし、貴金属触媒ではNOxを浄化することができない。 Conventionally, as techniques for oxidizing and purifying CO and HC, those using noble metal catalysts such as platinum (Pt) and palladium (Pd) are known and applied to exhaust gas purification of diesel engines (for example, (See pages 351 to 373 of Patent Document 1.) However, NOx cannot be purified with a noble metal catalyst.
一方、NOxの浄化技術としては、従来、尿素水溶液又はNH3を排ガス流路内に吹き込み、NOx浄化触媒にてNOxとNH3を反応させることでNOxを浄化する技術が知られている。NOx浄化触媒としては、チタニア(TiO2)、バナジア(V2O5)等のベースメタル酸化物をハニカム成形したものや、コージェライト等のセラミックハニカムモノリスにバナジウム系触媒やゼオライト系触媒を担持して、耐熱性を高めたものが用いられている。また、添加されたNH3成分の大気中への拡散を防止する為、NOx浄化触媒の後段にNH3酸化触媒を設置する技術も従来知られている(例えば、非特許文献2の第133頁〜第138頁参照。)。 On the other hand, as NOx purification technology, conventionally, a technology for purifying NOx by injecting an aqueous urea solution or NH 3 into an exhaust gas passage and reacting NOx and NH 3 with a NOx purification catalyst is known. NOx purification catalysts include honeycomb-shaped base metal oxides such as titania (TiO 2 ) and vanadia (V 2 O 5 ), and ceramic honeycomb monoliths such as cordierite carrying vanadium catalysts and zeolite catalysts. Those with improved heat resistance are used. In addition, a technique in which an NH 3 oxidation catalyst is installed after the NOx purification catalyst in order to prevent diffusion of the added NH 3 component into the atmosphere is also known (for example, page 133 of Non-Patent Document 2). -See page 138).
上述したように、内燃機関の排ガス中には、燃料の未燃分であるHCが含まれるので、排ガス流路内に設置されたNOx浄化触媒は、HCに晒される。本願の発明者等は、HCの流入がNOx浄化触媒の活性に与える影響について研究した結果、NOx浄化触媒にゼオライト成分が含有されていると、NOx浄化触媒のNOx浄化性能が低下すると共に、HCが部分酸化してCOが発生するという知見を得た。非特許文献1,2に記載の排ガス浄化装置は、HCが流入した場合の影響について何も考慮されておらず、このままでは排ガス中のCO,NOx,HC及びNH3を高度に酸化浄化することができない。 As described above, since the exhaust gas of the internal combustion engine contains HC that is an unburned portion of the fuel, the NOx purification catalyst installed in the exhaust gas passage is exposed to HC. The inventors of the present application have studied the influence of the inflow of HC on the activity of the NOx purification catalyst. As a result, if the NOx purification catalyst contains a zeolite component, the NOx purification performance of the NOx purification catalyst is reduced and the HC It was found that CO was partially oxidized to generate CO. The exhaust gas purification devices described in Non-Patent Documents 1 and 2 do not consider anything about the effects of HC inflow, and highly oxidize and purify CO, NOx, HC and NH 3 in the exhaust gas as they are. I can't.
本発明は、上述の知見に基づいてなされたものであり、その目的は、酸素過剰の排ガス中に含まれるCO,NOx,HC及びNH3を高度に浄化することができる内燃機関の排ガス浄化装置、排ガス浄化方法及び排ガス浄化触媒を提供することにある。 The present invention has been made on the basis of the above-described knowledge, and an object thereof is an exhaust gas purifying apparatus for an internal combustion engine capable of highly purifying CO, NOx, HC and NH 3 contained in exhaust gas containing excess oxygen. Another object is to provide an exhaust gas purification method and an exhaust gas purification catalyst.
上記の目的を達成する為に本発明は、内燃機関の排ガス浄化装置に関して、CO及びHCの酸化反応における化学量論量よりも過剰な酸素を含む排ガスを排出する内燃機関の排ガス流路にゼオライト成分を含有するNOx浄化触媒を設置すると共に、前記排ガスの流れ方向に関して前記NOx浄化触媒の前段に前記排ガス中のCO及びHCを酸化浄化するCO,HC浄化触媒を設置し、前記排ガスの流れ方向に関して前記NOx浄化触媒の後段にIr含有触媒を設置し、前記NOx浄化触媒を通過した排ガスの温度を、前記Ir含有触媒のNOx−CO反応活性を高めることができる温度まで低減させる手段を備えるという構成にした。 The present invention to achieve the above object, relates to an exhaust gas purification system of an internal combustion engine, in the exhaust gas line of an internal combustion engine to discharge the exhaust gas containing excess oxygen than the stoichiometric amount in the oxidation reaction of CO and HC A NOx purification catalyst containing a zeolite component is installed, and a CO and HC purification catalyst for oxidizing and purifying CO and HC in the exhaust gas is installed upstream of the NOx purification catalyst with respect to the flow direction of the exhaust gas, and the flow of the exhaust gas An Ir-containing catalyst is installed downstream of the NOx purification catalyst with respect to the direction, and means for reducing the temperature of the exhaust gas that has passed through the NOx purification catalyst to a temperature that can increase the NOx-CO reaction activity of the Ir-containing catalyst is provided. It was configured as follows.
本発明によれば、ディーゼルエンジンなどの希薄な燃料を燃焼室内に噴射することにより運転される内燃機関から排出される排ガスに含まれるCO,HC,NOx,NH3を効率よく浄化することができる。 According to the present invention, CO, HC, NOx, and NH 3 contained in exhaust gas discharged from an internal combustion engine that is operated by injecting a lean fuel such as a diesel engine into a combustion chamber can be efficiently purified. .
以下、本発明に係る内燃機関の排ガス浄化装置、排ガス浄化方法及び排ガス浄化触媒の実施形態について、図を用いて詳細に説明する。 Hereinafter, embodiments of an exhaust gas purification apparatus, an exhaust gas purification method, and an exhaust gas purification catalyst of an internal combustion engine according to the present invention will be described in detail with reference to the drawings.
一般に、乗用車や建設機械等に搭載されるディーゼルエンジンに代表される内燃機関から排出される排ガスは、化学量論量よりも過剰な酸素を含む酸素過剰雰囲気であることが多い。また、これら内燃機関から排出される排ガスには、CO,HC,NOxが含まれており、場合によってはNH3成分も含まれる。本発明において、化学量論量とは、排ガス中に含まれるO2及びCO,HCが互いに過不足無く反応する場合の、O2,CO,HCの量を意味する。以下、化学量論量の意味について、より詳細に説明する。 In general, exhaust gas discharged from an internal combustion engine typified by a diesel engine mounted on a passenger car, construction machine, or the like often has an oxygen-excess atmosphere containing oxygen in excess of the stoichiometric amount. Further, the exhaust gas discharged from these internal combustion engines contains CO, HC, NOx, and in some cases also contains NH 3 components. In the present invention, the stoichiometric amount means the amount of O 2 , CO, and HC when O 2 and CO, HC contained in the exhaust gas react with each other without excess or deficiency. Hereinafter, the meaning of the stoichiometric amount will be described in more detail.
排ガス中にO2,CO,HCが含有されている場合、排ガス流路内では、これら3種のガスの間で、下記の反応式(1)、(2)で表される化学反応が生じる。 When the exhaust gas contains O 2 , CO, and HC, a chemical reaction represented by the following reaction formulas (1) and (2) occurs between these three gases in the exhaust gas flow path. .
2CO+O2 → 2CO2 ・・・(1)
CnHm+(n+m/4)O2 → nCO2+(m/2)H2O ・・・(2)
例えば、排ガス中にCO及びC3H6がそれぞれ300ppmずつ存在する場合、反応式(1)、(2)で表される化学反応が進行する為には、それぞれ150ppm、1350ppmの酸素(O2)を必要とする。酸素過剰雰囲気とは、CO,HCが全て酸化されうる酸素量を超えるO2が存在することを意味する。即ち、上例のように排ガス中にCO及びC3H6がそれぞれ300ppm存在する場合、O2が1500ppm(=150ppm+1350ppm)よりも多い場合を意味する。
2CO + O 2 → 2CO 2 (1)
CnHm + (n + m / 4) O 2 → nCO 2 + (m / 2) H 2 O (2)
For example, when 300 ppm of CO and C 3 H 6 are present in the exhaust gas, respectively, in order for the chemical reaction represented by the reaction formulas (1) and (2) to proceed, 150 ppm and 1350 ppm of oxygen (O 2 ) Is required. An oxygen-excess atmosphere means that O 2 is present that exceeds the amount of oxygen that can oxidize CO and HC. That is, when 300 ppm of CO and C 3 H 6 are present in the exhaust gas as in the above example, this means a case where O 2 is higher than 1500 ppm (= 150 ppm + 1350 ppm).
本発明は、この化学量論量よりも過剰な酸素を含む排ガスを排出するディーゼルエンジン等の排ガスの浄化に特に好適な排ガス浄化装置、排ガス浄化方法及び排ガス浄化触媒に関する。 The present invention relates to an exhaust gas purifying apparatus, an exhaust gas purifying method, and an exhaust gas purifying catalyst particularly suitable for purifying exhaust gas such as a diesel engine that exhausts exhaust gas containing oxygen in excess of the stoichiometric amount.
即ち、本願の発明者等は、鋭意検討した結果、排ガス流路内に、ゼオライト成分を含むNOx浄化触媒を設置し、かつ、排ガスの流れ方向に関してその後段にIrを含有する触媒(Ir含有触媒)を設置することで、排ガス中のCO,HC,NOx,NH3を効果的に浄化できることを明らかにした。 That is, the inventors of the present application, as a result of intensive studies, installed a NOx purification catalyst containing a zeolite component in the exhaust gas flow path, and a catalyst containing Ir in the subsequent stage with respect to the flow direction of the exhaust gas (Ir containing catalyst) It was clarified that CO, HC, NOx, and NH 3 in the exhaust gas can be effectively purified.
ゼオライト成分を含むNOx浄化触媒を排ガス流路に設置し、該NOx浄化触媒に流入する排ガス中にNH3成分を添加すると、下記の反応式(3)によりNOとNH3が反応し、NOxが浄化される。 When a NOx purification catalyst containing a zeolite component is installed in the exhaust gas flow path and NH 3 component is added to the exhaust gas flowing into the NOx purification catalyst, NO and NH 3 react with each other according to the following reaction formula (3), and NOx Purified.
4NO+4NH3+O2 → 4N2+6H2O ・・・(3)
乗用車や建設機械に搭載されるディーゼルエンジンの排ガス温度は、400℃以上になり得る為、NOx浄化触媒には耐熱性能が要求される。NOx浄化触媒としてゼオライト成分を含有させることでNOx浄化触媒の耐熱性能が向上し、更にはNOxを浄化できる温度域を高めることができるので、好適である。
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (3)
Since the exhaust gas temperature of a diesel engine mounted on a passenger car or construction machine can be 400 ° C. or more, the NOx purification catalyst is required to have heat resistance. By containing a zeolite component as the NOx purification catalyst, the heat resistance performance of the NOx purification catalyst is improved, and further, the temperature range in which NOx can be purified can be increased, which is preferable.
しかし、NOx浄化触媒にゼオライト成分が含有されていると、HCがNOx浄化触媒に流入した際に、NOx浄化性能が低下すると共に、HCが部分酸化してCOが発生する不具合が生じることが判明した。また、排ガス流路に添加したNH3成分もNOx浄化触媒上で消費されにくくなる。即ち、NOx,CO,NH3がNOx浄化触媒後段から排出される可能性がある。 However, if the NOx purification catalyst contains a zeolite component, it turns out that when HC flows into the NOx purification catalyst, the NOx purification performance deteriorates and the HC partially oxidizes and CO is generated. did. Further, the NH 3 component added to the exhaust gas passage is not easily consumed on the NOx purification catalyst. That is, there is a possibility that NOx, CO, and NH 3 are discharged from the latter stage of the NOx purification catalyst.
即ち、NOx浄化触媒にHCが流入すると、HCによりNOx浄化触媒が被毒され、NOxの還元剤であるNH3がNOx浄化触媒に吸着し難くなる為、NOxの浄化反応が低下し、NH3が放出すると考えられる。また、付着したHCがゼオライト上で部分酸化を受け、CO2のみならずCOが発生すると考えられる。この現象は、ゼオライト成分を含有した場合に特に顕著に生じており、ゼオライト成分を含有しないNOx浄化触媒では、顕著には生じない。 That is, when HC flows into the NOx purification catalyst, the NOx purification catalyst is poisoned by HC, and NH 3 that is a reducing agent of NOx becomes difficult to be adsorbed to the NOx purification catalyst, so that the NOx purification reaction is reduced, and NH 3 Is considered to be released. Further, it is considered that the adhering HC undergoes partial oxidation on the zeolite and CO is generated as well as CO 2 . This phenomenon occurs particularly remarkably when the zeolite component is contained, and does not remarkably occur in the NOx purification catalyst not containing the zeolite component.
本願の発明者等は、排ガスの流れ方向に関してNOx浄化触媒の後段にIr含有触媒を設置することで、上記不具合を解消できることを見出した。Ir含有触媒を用いると、化学量論量よりも過剰な酸素を含む雰囲気中でも、下記の反応式(4)で表される化学反応によりNOxとCOが反応し、NOxとCOを高度に浄化することができる。 The inventors of the present application have found that the above problem can be solved by installing an Ir-containing catalyst downstream of the NOx purification catalyst with respect to the flow direction of the exhaust gas. When an Ir-containing catalyst is used, even in an atmosphere containing oxygen in excess of the stoichiometric amount, NOx and CO react by a chemical reaction represented by the following reaction formula (4) to highly purify NOx and CO. be able to.
2NO+2CO → N2+2CO2 ・・・(4)
更に、Ir含有触媒は、NH3の酸化能力を有している。従って、NOx浄化触媒の後段にIr含有触媒を設置することで、前段のNOx浄化触媒より流出したNOx,CO,NH3を浄化することができる。このゼオライト含有NOx浄化触媒とIr含有触媒の組合せによれば、例えばNO,NO2,N2O,N2O3等、全ての窒素酸化物を低減対象とすることができる。また、このゼオライト含有NOx浄化触媒とIr含有触媒の組合せによれば、例えばCH4、C3H6、C2H4、C2H2、C3H8等、全ての炭化水素を低減対象とすることができる。排ガス流路に添加されるNOx還元用のNH3成分としては、NH3ガス以外に、尿素、シアヌル酸、メラミン、ビウレット等を用いることができる。
2NO + 2CO → N 2 + 2CO 2 (4)
Furthermore, the Ir-containing catalyst has the ability to oxidize NH 3 . Therefore, by installing the Ir-containing catalysts downstream of the NOx purifying catalyst, it is possible to purify NOx flowing out from the front of the NOx purifying catalyst, CO, and NH 3. According to the combination of the zeolite-containing NOx purification catalyst and the Ir-containing catalyst, all nitrogen oxides such as NO, NO 2 , N 2 O, N 2 O 3 can be targeted for reduction. In addition, according to the combination of the zeolite-containing NOx purification catalyst and the Ir-containing catalyst, for example, all hydrocarbons such as CH 4 , C 3 H 6 , C 2 H 4 , C 2 H 2 , C 3 H 8 and the like are reduced. It can be. As the NH 3 component for NOx reduction added to the exhaust gas flow path, urea, cyanuric acid, melamine, biuret and the like can be used in addition to the NH 3 gas.
排ガスの流れ方向に関してNOx浄化触媒の前段には、CO,HC酸化触媒を設置しても良い。HCを酸化浄化することでNOx浄化触媒に流入するHC量を低減させれば、ゼオライトを含有したNOx浄化触媒上でのNOxとNH3の浄化が進む為、後段のIr含有触媒上でのNO-CO反応、更にはNH3の酸化反応が進み、系外へのHC,CO,NOx,NH3の放出が高度に抑制できる。例えばディーゼルエンジン排ガス中にはSOxやすす等の触媒被毒成分が存在しており、HC酸化触媒が被毒を受けることでHC酸化性能が低下することも考えられるが、Ir含有触媒をゼオライト含有触媒の後段に設置しておけば、その場合でも系外へのHC,CO,NOx,NH3の放出を高度に抑制できる。 A CO and HC oxidation catalyst may be installed upstream of the NOx purification catalyst with respect to the flow direction of the exhaust gas. If the amount of HC flowing into the NOx purification catalyst is reduced by oxidizing and purifying HC, the purification of NOx and NH 3 on the NOx purification catalyst containing zeolite proceeds, so that the NO on the Ir-containing catalyst in the latter stage is advanced. -CO reaction and further NH 3 oxidation reaction proceed, and release of HC, CO, NOx, NH 3 out of the system can be highly suppressed. For example, there are catalyst poisoning components such as SOx and soot in diesel engine exhaust gas, and it is possible that the HC oxidation performance deteriorates due to the poisoning of the HC oxidation catalyst. If it is installed at the rear stage of the catalyst, the release of HC, CO, NOx, NH 3 out of the system can be highly suppressed even in that case.
本発明に適用するゼオライト含有NOx浄化触媒は、NOxが浄化できるゼオライト含有触媒であれば、触媒活性成分については特に拘らない。しかしNOx浄化触媒として、ゼオライト担体上にバナジウム(V),マンガン(Mn),鉄(Fe),コバルト(Co),ニッケル(Ni),銅(Cu),Ce,Zrから選ばれた少なくとも1種の触媒活性成分を担持したものを使用すると、排ガス中のNOxが効果的に浄化される。更には、NH3成分を排ガス流路内に吹き込むことで、NOxが高度に浄化される。このゼオライト含有NOx浄化触媒は、耐熱性能も高く、350℃以上の温度領域においてもNOxを効果的に浄化できる。触媒活性成分として使用するV,Mn,Fe,Co,Ni,Cu,Ce,Zrは、二元素以上を組み合わせても良い。二元素以上の触媒活性成分を組合せることで相互作用が生じ、高い性能を有する為と考えられる。 As long as the zeolite-containing NOx purification catalyst applied to the present invention is a zeolite-containing catalyst capable of purifying NOx, the catalytically active component is not particularly limited. However, as a NOx purification catalyst, at least one selected from vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), Ce, Zr on a zeolite carrier. If the catalyst active component is used, NOx in the exhaust gas is effectively purified. Furthermore, NOx is highly purified by blowing NH 3 component into the exhaust gas flow path. This zeolite-containing NOx purification catalyst has high heat resistance and can effectively purify NOx even in a temperature range of 350 ° C. or higher. V, Mn, Fe, Co, Ni, Cu, Ce, and Zr used as the catalyst active component may be a combination of two or more elements. This is thought to be due to the fact that an interaction occurs by combining two or more catalytically active components, resulting in high performance.
担体成分として使用するゼオライトは、比表面積が高いので、触媒活性成分の分散度を向上させてNOx浄化性能を高める効果がある。また、活性成分をイオン状態のまま担持できることで活性が向上すると考えられる。ゼオライトについては特に限定されないが、SiO2とAl2O3のモル比が5以上であるハイシリカゼオライトを使用すると耐熱性能が高まる。用いるゼオライト種としては、βゼオライト、Y型ゼオライト、ZSM-5、モルデナイト、フェリエライト等が挙げられる。 Since the zeolite used as the carrier component has a high specific surface area, it has the effect of improving the NOx purification performance by improving the degree of dispersion of the catalytically active component. Moreover, it is thought that activity improves because an active ingredient can be carry | supported with an ionic state. No particular limitation is imposed on zeolite, heat resistance is increased by using the high-silica zeolite molar ratio of SiO 2 and Al 2 O 3 is 5 or more. Examples of the zeolite species used include β zeolite, Y-type zeolite, ZSM-5, mordenite, and ferrierite.
触媒活性成分であるV,Mn,Fe,Co,Ni,Cu,Ce,Zrの合計担持量は、好ましくはゼオライト担体に対して元素換算で0.1wt%以上30wt%以下であり、より好ましくは1.0wt%以上10wt%以下である。V,Mn,Fe,Co,Ni,Cu,Ce,Zrの合計量が0.1wt%以下であると担持効果が不十分となり、30wt%を超えると活性成分自体の比表面積が低下して触媒コストが高くなるからである。 The total supported amount of the catalytically active components V, Mn, Fe, Co, Ni, Cu, Ce, and Zr is preferably 0.1 wt% or more and 30 wt% or less in terms of element with respect to the zeolite support, more preferably It is 1.0 wt% or more and 10 wt% or less. When the total amount of V, Mn, Fe, Co, Ni, Cu, Ce, and Zr is 0.1 wt% or less, the supporting effect becomes insufficient, and when it exceeds 30 wt%, the specific surface area of the active ingredient itself is reduced and the catalyst is reduced. This is because the cost becomes high.
一方、Ir含有触媒については、Irを含有する触媒であれば良く、他の構成については特に拘りが無い。好ましい実施形態としては、Al,Ce,Si,Ti,Zrから選ばれた少なくとも1種を含む無機化合物からなる多孔質担体上に、触媒活性成分としてIrと、Nb,Pt,Pd,Rh,Auから選ばれた少なくとも1種とを担持したものを挙げることができる。このIr含有触媒をNOx浄化触媒の後段に設置することにより、NOx,CO,NH3を高度に浄化できる。 On the other hand, the Ir-containing catalyst may be any catalyst containing Ir, and the other configurations are not particularly limited. As a preferred embodiment, Ir and Nb, Pt, Pd, Rh, Au as a catalytically active component are formed on a porous carrier made of an inorganic compound containing at least one selected from Al, Ce, Si, Ti, and Zr. And those carrying at least one selected from the above. By installing this Ir-containing catalyst downstream of the NOx purification catalyst, NOx, CO, and NH 3 can be highly purified.
Irは、化学量論量よりも過剰な酸素を含む酸素過剰雰囲気中でもNOxとCOを反応させ、NOx,COを同時に浄化できる性能を有する。また、IrはNH3の酸化能を有しており、NH3も浄化できる。更に、Irは反応ガス中にSOxが含有されている場合、NOxとCOの反応を促進する。S分が反応ガス中に存在すると、Irの電子状態が変化する為と考えられる。 Ir has the capability of reacting NOx and CO in an oxygen-excess atmosphere containing oxygen in excess of the stoichiometric amount, and simultaneously purifying NOx and CO. Further, Ir has an oxidation ability of NH 3, NH 3 can also be purified. Furthermore, Ir promotes the reaction between NOx and CO when SOx is contained in the reaction gas. This is probably because the presence of S in the reaction gas changes the electronic state of Ir.
触媒活性成分として、Irと、Nb,Pt,Pd,Rh,Auから選ばれた少なくとも1種とを組合せると、その組合せによって触媒の活性及び活性化温度が変化する。よって、適用する排ガスの性状によって最適な成分の組み合わせを選択することができる。また、担体としてAl,Ce,Si,Ti,Zrから選ばれた少なくとも1種を含むことで、触媒の活性及び活性化温度を異ならせることができる。特に、Si酸化物を担体として用いた場合には、Ir含有触媒の活性を向上することができる。 When Ir and at least one selected from Nb, Pt, Pd, Rh, and Au are combined as a catalyst active component, the activity and activation temperature of the catalyst change depending on the combination. Therefore, the optimal combination of components can be selected according to the properties of the exhaust gas to be applied. Moreover, the activity and activation temperature of a catalyst can be varied by including at least one selected from Al, Ce, Si, Ti, and Zr as a support. In particular, when Si oxide is used as a carrier, the activity of the Ir-containing catalyst can be improved.
触媒活性成分のIrと、Nb,Pt,Pd,Rh,Auの合計担持量は、好ましくは、多孔質担体2mol部に対して、元素換算で0.00005mol部〜10mol部であり、より好ましくは、0.0003mol部〜0.3mol部である。Irと、Nb,Pt,Pd,Rh,Auの合計担持量が0.00005mol部未満であると担持効果が不十分となり、10mol部を越えると活性成分自体の比表面積が低下して、触媒コストが高くなるからである。ここで、「mol部」とは、各成分のmol数換算での含有比率を意味する。例えば、A成分2mol部に対してB成分の担持量が1mol部とは、A成分の絶対量の多少に関わらず、mol数換算でA成分が2に対し、B成分が1の割合で担持されていることを意味する。 The total supported amount of the catalytically active component Ir and Nb, Pt, Pd, Rh, Au is preferably 0.00005 mol part to 10 mol part in terms of element with respect to 2 mol part of the porous carrier, more preferably , 0.0003 mol part to 0.3 mol part. If the total supported amount of Ir and Nb, Pt, Pd, Rh, and Au is less than 0.00005 mol part, the effect of supporting is insufficient, and if it exceeds 10 mol part, the specific surface area of the active ingredient itself decreases, resulting in a catalyst cost. Because it becomes higher. Here, "mol part" means the content ratio of each component in terms of mol number. For example, the loading amount of B component is 1 mol part with respect to 2 mol part of A component, regardless of the absolute amount of A component. Means that
上述のように、Ir含有触媒は、Irと組み合わせる他の活性成分もしくは用いる担体を変更することで、触媒が活性化する温度領域を変えることができる。Irと他元素とが合金化するか、もしくはIrの電子状態が変化する為と考えられる。従って、これら2種以上の触媒を排ガス流路に沿って設置することでNOxとCOを浄化できる温度領域を拡大することができ、排ガス温度が変動してもNOxとCOを高度に浄化することができる。 As described above, the temperature range in which the catalyst is activated can be changed in the Ir-containing catalyst by changing other active components combined with Ir or the carrier used. This is probably because Ir and other elements are alloyed or the electronic state of Ir changes. Therefore, by installing these two or more catalysts along the exhaust gas flow path, the temperature range in which NOx and CO can be purified can be expanded, and even if the exhaust gas temperature fluctuates, NOx and CO can be highly purified. Can do.
ゼオライト含有NOx浄化触媒の前段に設置するCO,HC浄化触媒としては、Al,Ce,Si,Ti,Zrから選ばれた少なくとも1種を含む無機化合物からなる多孔質担体上に、触媒活性成分としてPt,Pd,Rh,Au,Ir,ルテニウム(Ru),オスミウム(Os)から選ばれた少なくとも1種を担持したものを用いることができる。このCO,HC浄化触媒をゼオライト含有NOx浄化触媒の前段に設置することにより、CO,HC浄化性能を高めることができる。即ち、CO,HC浄化触媒を設置することにより、後段のNOx浄化触媒に流入するHC量を低減できるので、全体として高いNOx浄化性能を発揮することができる。 As the CO and HC purification catalyst installed in the preceding stage of the zeolite-containing NOx purification catalyst, as a catalytically active component on a porous carrier made of an inorganic compound containing at least one selected from Al, Ce, Si, Ti and Zr A material carrying at least one selected from Pt, Pd, Rh, Au, Ir, ruthenium (Ru), and osmium (Os) can be used. By installing this CO, HC purification catalyst before the zeolite-containing NOx purification catalyst, the CO, HC purification performance can be enhanced. That is, by installing the CO and HC purification catalyst, the amount of HC flowing into the subsequent NOx purification catalyst can be reduced, so that high NOx purification performance can be exhibited as a whole.
CO,HC浄化触媒の多孔質担体として、Al,Ce,Si,Ti,Zrから選ばれた少なくとも1種を含む無機化合物からなるものを用いるのは、比表面積が高い酸化物を用いることで、Pt,Pd,Rh,Au,Ir,Ru,Osを高分散化し、CO,HC浄化性能を高めるためである。特に、多孔質担体としてAlを含む酸化物を使用すると、高いHC浄化性能が安定して得られる。多孔質担体の比表面積は、30〜800m2/gの範囲が好ましく、特に50〜400m2/gの範囲が好ましい。多孔質担体の比表面積が30m2/g未満であると所要のHC浄化性能が得られず、800m2/gを超えると、触媒コストが高くなるためである。 The porous carrier of the CO, HC purification catalyst is made of an inorganic compound containing at least one selected from Al, Ce, Si, Ti, Zr by using an oxide having a high specific surface area. This is because Pt, Pd, Rh, Au, Ir, Ru, and Os are highly dispersed to enhance the CO and HC purification performance. In particular, when an oxide containing Al is used as the porous carrier, high HC purification performance can be stably obtained. The specific surface area of the porous carrier is preferably in the range of 30~800m 2 / g, in particular in the range of 50 to 400 m 2 / g are preferred. This is because if the specific surface area of the porous carrier is less than 30 m 2 / g, the required HC purification performance cannot be obtained, and if it exceeds 800 m 2 / g, the catalyst cost increases.
触媒活性成分としてPt,Pd,Rh,Au,Ir,Ru,Osから選ばれた2種以上を含有させると、熱劣化後のCO,HC浄化性能が高まる。活性成分同士が合金化することで貴金属の凝集が抑制される為と考えられる。特に、PtとPd又はPtとRhを組み合わせると耐熱性能が高まる。 When two or more kinds selected from Pt, Pd, Rh, Au, Ir, Ru, and Os are contained as catalytic active components, the CO and HC purification performance after heat deterioration is enhanced. It is thought that the aggregation of the noble metal is suppressed by alloying the active components. In particular, when Pt and Pd or Pt and Rh are combined, the heat resistance performance is enhanced.
触媒活性成分であるPt,Pd,Rh,Au,Ir,Ru,Osの合計担持量は、好ましくは、多孔質担体2mol部に対して元素換算で0.00005mol部〜10mol部であり、より好ましくは、0.0003mol部〜0.3mol部である。Pt,Pd,Rh,Au,Irの合計担持量が0.00005mol部未満であると、担持効果が不十分となり、10mol部を超えると、活性成分自体の比表面積が低下すると共に、触媒コストが高くなるからである。 The total supported amount of catalytically active components Pt, Pd, Rh, Au, Ir, Ru, and Os is preferably 0.00005 mol part to 10 mol part in terms of element with respect to 2 mol part of the porous carrier, and more preferably. Is from 0.0003 mol parts to 0.3 mol parts. When the total supported amount of Pt, Pd, Rh, Au and Ir is less than 0.00005 mol part, the effect of supporting is insufficient, and when it exceeds 10 mol part, the specific surface area of the active ingredient itself is reduced and the catalyst cost is reduced. Because it becomes high.
Ir含有触媒によるNOxとCOの反応は、凡そ350℃以下の温度範囲で最適に行われる。一方、ゼオライト含有NOx浄化触媒を通過した排ガスの温度は、350℃以上になることがある。その場合、ゼオライト含有NOx浄化触媒を通過した排ガスの温度を低減させる手段を設けることで、Ir含有触媒上でのNOx−CO反応活性を高めることができる。排ガス温度を低減させる手段としては、例えば、排ガス流路へ水分を添加する冷却器を設ける等の方策が考えられる。排ガス流路へ水分を添加した場合、Ir含有触媒へ流入する水分も増加するが、触媒活性への影響は小さい。 The reaction between NOx and CO by the Ir-containing catalyst is optimally performed in a temperature range of about 350 ° C. or less. On the other hand, the temperature of the exhaust gas that has passed through the zeolite-containing NOx purification catalyst may be 350 ° C. or higher. In that case, the NOx-CO reaction activity on the Ir-containing catalyst can be increased by providing means for reducing the temperature of the exhaust gas that has passed through the zeolite-containing NOx purification catalyst. As a means for reducing the exhaust gas temperature, for example, a measure such as providing a cooler for adding moisture to the exhaust gas flow path can be considered. When water is added to the exhaust gas passage, the water flowing into the Ir-containing catalyst also increases, but the influence on the catalyst activity is small.
ゼオライト含有NOx浄化触媒にHCが継続して流入すると、ゼオライト含有NOx浄化触媒にHCが付着し、NOx浄化性能が低下することがある。その場合には、NOx浄化触媒に炭化水素を実質的に含有しないガスを流入させることにより付着したHCを脱離させ、ゼオライト含有NOx浄化触媒のNOx浄化性能を回復できる。なお、NOx浄化触媒へ炭化水素を実質的に含有しないガスを流入させてHCを脱離させると、HCの部分酸化が生じ、COが発生してしまう場合がある。しかし、その場合でも後段に設置したIr含有触媒においてCOを浄化できる為、系外へのCO,NOxの放出は抑制できる。 If HC continues to flow into the zeolite-containing NOx purification catalyst, HC may adhere to the zeolite-containing NOx purification catalyst, and the NOx purification performance may be reduced. In that case, the adsorbed HC can be desorbed by flowing a gas substantially free of hydrocarbons into the NOx purification catalyst, and the NOx purification performance of the zeolite-containing NOx purification catalyst can be recovered. Note that if HC is desorbed by flowing a gas substantially free of hydrocarbons into the NOx purification catalyst, partial oxidation of HC may occur, and CO may be generated. However, even in that case, CO can be purified by the Ir-containing catalyst installed in the subsequent stage, so that release of CO and NOx to the outside of the system can be suppressed.
ここで、「実質的に含有しない」とは、反応ガス中に含有されているHC量が、NOx浄化触媒からHCを脱離させることができる程度に少ない量であることを意味しており、具体的には、炭素元素換算で100ppm以下の含有量である。更に、HCを実質的に含有しないガスの温度を高めることで、NOx浄化性能の回復が促進される。ガス温度は、350℃以上550℃以下が望ましく、更には400℃以上500℃以下が好適である。350℃以下ではHCの脱離反応が進まず、550℃以上では触媒の性能が熱負荷により低下するからである。 Here, “substantially does not contain” means that the amount of HC contained in the reaction gas is small enough to desorb HC from the NOx purification catalyst, Specifically, the content is 100 ppm or less in terms of carbon element. Furthermore, the recovery of the NOx purification performance is promoted by increasing the temperature of the gas that does not substantially contain HC. The gas temperature is preferably 350 ° C. or higher and 550 ° C. or lower, and more preferably 400 ° C. or higher and 500 ° C. or lower. This is because the desorption reaction of HC does not proceed at 350 ° C. or lower, and the performance of the catalyst decreases due to heat load at 550 ° C. or higher.
HCを実質的に含有しないガスを排ガス流通路内に流入させる手法については、例えばエンジンの運転をコントローラで制御するによりエンジン内の燃焼を促進させ、排ガス中のHC量を低減するという手法をとることができる(図11参照)。この場合、排ガス中のNOx量が増加する可能性があるが、ゼオライト含有NOx浄化触媒及びIr含有触媒により、排ガス中のNOxを高度に浄化できるので、大気中に放出されるNOx量が増加することはない。 As for the method of causing the gas that does not substantially contain HC to flow into the exhaust gas flow passage, for example, a method of promoting combustion in the engine by controlling the engine operation with a controller and reducing the amount of HC in the exhaust gas is taken. (See FIG. 11). In this case, there is a possibility that the amount of NOx in the exhaust gas may increase. However, since the NOx in the exhaust gas can be highly purified by the zeolite-containing NOx purification catalyst and the Ir-containing catalyst, the amount of NOx released into the atmosphere increases. There is nothing.
更に、ゼオライト含有NOx浄化触媒に排ガス中のS分が蓄積することで、ゼオライト含有NOx浄化触媒のNOx浄化性能が低下することも考えられる。しかし、この場合にも、ゼオライト含有NOx浄化触媒に流入する排ガスの温度を350℃以上550℃以下とし、かつゼオライト含有NOx浄化触媒にHCを実質的に含有しないガスを流入させることで、NOx浄化触媒からS分を脱離でき、結果としてNOx浄化性能を回復できる可能性がある。S分をCO,HC浄化触媒から脱離させる際に、排ガス中にHCよりもCOが多く存在すると、S分脱離が促進されることがある。 Furthermore, it is conceivable that the NOx purification performance of the zeolite-containing NOx purification catalyst deteriorates due to accumulation of S in the exhaust gas in the zeolite-containing NOx purification catalyst. However, even in this case, the temperature of the exhaust gas flowing into the zeolite-containing NOx purification catalyst is set to 350 ° C. or more and 550 ° C. or less, and the NOx purification catalyst is caused to flow into the zeolite-containing NOx purification catalyst. There is a possibility that S component can be desorbed from the catalyst, and as a result, the NOx purification performance can be recovered. When desorbing the S component from the CO and HC purification catalyst, if there is more CO than HC in the exhaust gas, desorption of the S component may be promoted.
ゼオライト含有NOx浄化触媒、Ir含有触媒、CO,HC浄化触媒に使用する多孔質担体又は触媒活性成分は、基材上に担持させてもよい。基材としては、従来から使用されてきたコージェライト、Si-Al-Oからなるセラミックス或いはステンレススチールなどの耐熱性金属基板などが適している。基材を用いる場合には、CO,HC浄化性能を向上させる上で、多孔質担体の担持量は、基材1リットルに対して10g以上300g以下であることが好ましい。10g以下であると貴金属の分散が低下して、触媒活性が低下する。一方、300g以上であると、基材がハニカム形状の場合にガス流路への目詰まりが発生し易くなる等の不具合が生じるようになる。 The porous carrier or catalytically active component used for the zeolite-containing NOx purification catalyst, Ir-containing catalyst, CO, HC purification catalyst may be supported on a substrate. As the base material, cordierite that has been conventionally used, ceramics made of Si—Al—O, heat resistant metal substrates such as stainless steel, and the like are suitable. When a substrate is used, the amount of the porous carrier supported is preferably 10 g or more and 300 g or less with respect to 1 liter of the substrate in order to improve the CO and HC purification performance. If it is 10 g or less, the dispersion of the noble metal is lowered, and the catalytic activity is lowered. On the other hand, when it is 300 g or more, when the substrate has a honeycomb shape, problems such as clogging in the gas flow path are likely to occur.
ゼオライト含有NOx浄化触媒、Ir含有触媒、CO,HC浄化触媒の調製方法としては、例えば、含浸法、混練法、共沈法、ゾルゲル法、イオン交換法、蒸着法等の物理的調製方法や、化学反応を利用した調製方法等などを用いることができる。なかでも、化学反応を利用した調製方法を用いることで、触媒活性成分の原料と多孔質担体との接触が強固になり、触媒活性成分のシンタリング(結晶成長)等を防止できる。 As preparation methods of zeolite-containing NOx purification catalyst, Ir-containing catalyst, CO, HC purification catalyst, for example, physical preparation methods such as impregnation method, kneading method, coprecipitation method, sol-gel method, ion exchange method, vapor deposition method, A preparation method using a chemical reaction or the like can be used. In particular, by using a preparation method utilizing a chemical reaction, the contact between the raw material of the catalytically active component and the porous carrier is strengthened, and sintering (crystal growth) of the catalytically active component can be prevented.
ゼオライト含有NOx浄化触媒、Ir含有触媒、CO,HC浄化触媒の出発原料としては、硝酸化合物、塩化物、酢酸化合物、錯体化合物、水酸化物、炭酸化合物、有機化合物などの種々の化合物、金属、金属酸化物を用いることができる。例えば、触媒活性成分として2種以上の元素を組み合わせる場合には、活性成分が同一の溶液中に存在するような含浸液を用いて共含浸法にて調製することで触媒成分を均一に担持することができる。 Starting materials for zeolite-containing NOx purification catalyst, Ir-containing catalyst, CO and HC purification catalyst include various compounds such as nitric acid compounds, chlorides, acetic acid compounds, complex compounds, hydroxides, carbonic acid compounds, organic compounds, metals, Metal oxides can be used. For example, when two or more elements are combined as a catalyst active component, the catalyst component is uniformly supported by preparing it by a co-impregnation method using an impregnation solution in which the active component is present in the same solution. be able to.
ゼオライト含有NOx浄化触媒、Ir含有触媒、CO,HC浄化触媒の形状は、用途に応じて適宜調整できる。例えば、コージェライト、Si-Al-O、SiC、ステンレス等の各種基体材料からなるハニカム構造体に、本発明の浄化触媒をコーティングして得られるハニカム形状をはじめ、ペレット状、板状、粒状、粉末状などが挙げられる。ハニカム形状の場合、その基材はコ−ジェライト又はSi−Al−Oからなる構造体を用いることが好適であるが、触媒温度が高まる恐れがある場合には、触媒活性成分と反応しにくい基材(例えばFeを主成分とするメタルハニカム等の基材)を用いることが好ましい。また、多孔質担体と触媒活性成分のみでハニカムを形成してもよい。更には、フィルタ機能を有する基材を使用すれば、排ガス中のすす等を浄化できるようになる。 The shapes of the zeolite-containing NOx purification catalyst, Ir-containing catalyst, CO, and HC purification catalyst can be appropriately adjusted according to the application. For example, a honeycomb structure obtained by coating the purification catalyst of the present invention on a honeycomb structure made of various base materials such as cordierite, Si-Al-O, SiC, stainless steel, pellets, plates, granules, Examples include powder. In the case of a honeycomb shape, it is preferable to use a structure made of cordierite or Si—Al—O as the base material. It is preferable to use a material (for example, a base material such as a metal honeycomb mainly composed of Fe). Alternatively, the honeycomb may be formed with only the porous carrier and the catalytically active component. Furthermore, if a base material having a filter function is used, soot in the exhaust gas can be purified.
本発明に係る排ガス浄化装置、排ガス浄化方法及び排ガス浄化触媒は、CO及びHCの酸化反応における化学量論量よりも過剰な酸素を含む排ガスの浄化に対して特に有効であり、常に排ガス中の酸素が化学量論量よりも過剰である場合に、特に好適である。 The exhaust gas purification device, the exhaust gas purification method, and the exhaust gas purification catalyst according to the present invention are particularly effective for purifying exhaust gas containing oxygen in excess of the stoichiometric amount in the oxidation reaction of CO and HC, and are always effective in the exhaust gas. It is particularly suitable when the oxygen is in excess of the stoichiometric amount.
以下、本発明に係る排ガス浄化装置、排ガス浄化方法及び排ガス浄化触媒のより具体的な実施例について説明する。 Hereinafter, more specific examples of the exhaust gas purifying apparatus, the exhaust gas purifying method, and the exhaust gas purifying catalyst according to the present invention will be described.
<ゼオライト含有NOx浄化触媒の調製>
Y型ゼオライト(東ソー株式会社製)粉末に硝酸Fe溶液を含浸し、大気下にて150℃×10時間で乾燥して得られたサンプルを、電気炉を用いて大気下にて600℃×1時間の焼成を行うことで、ゼオライトに対し金属元素換算で2wt%のFeが担持されたFe/ゼオライト粉末を得た。得られたFe/ゼオライト粉末及びアルミナゾルを水に添加して調製したスラリーをコージェライト製ハニカム(300セル/iNC2)にコーティングした後、150℃の熱風を15分間流通させることで乾燥した。更に、得られたサンプルを電気炉を用いて大気下にて600℃×1時間の焼成を行うことで、見掛けの容積1リットル当たり250gのFe/ゼオライトをコーティングしたハニカム触媒を得た。この触媒を実施例触媒1とする。
<Preparation of zeolite-containing NOx purification catalyst>
A sample obtained by impregnating a Y-type zeolite (manufactured by Tosoh Corporation) with an Fe nitrate solution and drying it in the atmosphere at 150 ° C. for 10 hours was obtained using an electric furnace in the atmosphere at 600 ° C. × 1 By firing for a period of time, an Fe / zeolite powder carrying 2 wt% Fe in terms of metal element relative to zeolite was obtained. A slurry prepared by adding the obtained Fe / zeolite powder and alumina sol to water was coated on a cordierite honeycomb (300 cells / iNC 2 ), and then dried by circulating hot air at 150 ° C. for 15 minutes. Furthermore, the obtained sample was baked at 600 ° C. for 1 hour in the air using an electric furnace to obtain a honeycomb catalyst coated with 250 g of Fe / zeolite per liter of apparent volume. This catalyst is referred to as Example catalyst 1.
<基準ガスによるゼオライト含有NOx浄化触媒の性能評価>
実施例触媒1につき、次の条件で性能評価を行った。容量6cm3のハニカム触媒を石英ガラス製反応管中に固定し、この反応管を電気炉中に設置した。反応管に導入する反応ガスは、酸素過剰雰囲気の排ガスを模擬した組成であり、NOx:150ppm、NH3:180ppm,CO2:6%,O2:10%,H2O:6%,N2:残差とした。このガスを基準ガスとする。実施例触媒1のNOx浄化性能を、次式に示すNOx浄化率により見積もった。なお、体積空間速度は45,000/Hとした。反応ガスを流通させながら、ガス温度を200℃から500℃にまで加熱制御し、NOx浄化性能を測定した。
<Performance evaluation of zeolite-containing NOx purification catalyst using reference gas>
The performance of the example catalyst 1 was evaluated under the following conditions. A honeycomb catalyst having a capacity of 6 cm 3 was fixed in a reaction tube made of quartz glass, and this reaction tube was installed in an electric furnace. The reaction gas introduced into the reaction tube has a composition simulating exhaust gas in an oxygen-excess atmosphere, NOx: 150 ppm, NH 3 : 180 ppm, CO 2 : 6%, O 2 : 10%, H 2 O: 6%, N 2 : It was set as the residual. This gas is used as a reference gas. The NOx purification performance of Example Catalyst 1 was estimated by the NOx purification rate shown in the following equation. The volume space velocity was 45,000 / H. While the reaction gas was circulated, the gas temperature was controlled from 200 ° C. to 500 ° C., and the NOx purification performance was measured.
NOx浄化率(%)=((触媒に流入したNOx濃度)-(触媒から流出したNOx濃度))
÷(触媒に流入したNO濃度)×100
<C3H6の影響を加味したゼオライト含有NOx浄化触媒の性能評価>
反応ガス中に300ppmもしくは3333ppmのC3H6を添加したこと以外は、基準ガスを用いた場合と同様の方法で、ゼオライト含有NOx浄化触媒のNOx浄化性能を測定した。更に、C3H6が触媒上でCO,CO2に転化する割合を次式に示すHC転化率により見積もった。
NOx purification rate (%) = ((NOx concentration flowing into the catalyst) − (NOx concentration flowing out from the catalyst))
÷ (NO concentration flowing into the catalyst) × 100
<Performance evaluation of zeolite-containing NOx purification catalyst taking into account the effect of C 3 H 6 >
The NOx purification performance of the zeolite-containing NOx purification catalyst was measured in the same manner as in the case of using the reference gas except that 300 ppm or 3333 ppm of C 3 H 6 was added to the reaction gas. Furthermore, the rate at which C 3 H 6 was converted to CO and CO 2 on the catalyst was estimated by the HC conversion rate represented by the following formula.
HC→CO2転化率
=((触媒に流入したC3H6濃度×3)−(触媒から流出したCO2濃度))
÷(触媒に流入したC3H6濃度×3)×100
HC→CO転化率
=((触媒に流入したC3H6濃度×3)−(触媒から流出したCO濃度))
÷(触媒に流入したC3H6濃度×3)×100
<ゼオライト含有NOx浄化触媒のNOx浄化率>
図1に、基準ガス、基準ガスに300ppmのC3H6を添加したガス、及び基準ガスに3333ppmのC3H6を添加したガスを使用した場合における、実施例触媒1のNOx浄化率を示す。300ppmのC3H6を添加したガスを使用した場合は、基準ガスを使用した場合と比較して、250℃以下及び400℃以上の温度域でのNOx浄化率が低下した。また、3333ppmのC3H6を添加したガスを使用した場合には、NOx浄化率がさらに大きく低下した。400℃での活性に着目すると、基準ガスと比較した場合、NOx浄化率は93%から25%へ大きく低下した。本結果から、排ガス中のHC濃度が増えるとNOx浄化率が低下するのは明らかである。
HC → CO 2 conversion rate = ((C 3 H 6 concentration flowing into the catalyst × 3) − (CO 2 concentration flowing out from the catalyst))
÷ (C 3 H 6 concentration flowing into the catalyst × 3) × 100
HC → CO conversion rate = ((C 3 H 6 concentration flowing into the catalyst × 3) − (CO concentration flowing out from the catalyst))
÷ (C 3 H 6 concentration flowing into the catalyst × 3) × 100
<NOx purification rate of NOx purification catalyst containing zeolite>
1, the reference gas, gas obtained by adding C 3 H 6 of 300ppm based gas, and in a case where the reference gas using the added gas C 3 H 6 of 3333 ppm, the NOx purification rate of the catalyst of Example 1 Show. When the gas to which 300 ppm of C 3 H 6 was added was used, the NOx purification rate in the temperature range of 250 ° C. or lower and 400 ° C. or higher was lower than when the reference gas was used. Further, when the gas added with 3333 ppm of C 3 H 6 was used, the NOx purification rate was further greatly reduced. Focusing on the activity at 400 ° C., the NOx purification rate greatly decreased from 93% to 25% when compared with the reference gas. From this result, it is clear that the NOx purification rate decreases as the HC concentration in the exhaust gas increases.
<ゼオライト含有NOx浄化触媒のHC転化率>
図2に、基準ガス、基準ガスに300ppmのC3H6を添加したガス、及び基準ガスに3333ppmのC3H6を添加したガスを使用した場合における、実施例触媒1のHC転化率を示す。この図から明らかなように、ガス中のC3H6濃度に関わらずCOが発生していることが分かる。特に、3333ppmのC3H6を添加したガスの場合、400℃でのHC→CO転化率は13%であり、約1300ppmのCOが発生することが分かる。
<HC conversion of zeolite-containing NOx purification catalyst>
2, the reference gas, the reference gas to a gas obtained by adding C 3 H 6 of 300 ppm, and in the case of using a gas added C 3 H 6 of 3333ppm based gas, the HC conversion rate of example catalyst 1 Show. As can be seen from this figure, CO is generated regardless of the C 3 H 6 concentration in the gas. In particular, in the case of a gas added with 3333 ppm of C 3 H 6 , the HC → CO conversion rate at 400 ° C. is 13%, and it can be seen that about 1300 ppm of CO is generated.
以上の検討結果より、排ガス中にC3H6が存在した場合、実施例触媒1からはNOxとCOが排出されてしまうことは明らかである。 From the above examination results, it is clear that when C 3 H 6 is present in the exhaust gas, NOx and CO are discharged from the catalyst of Example 1.
<Ir含有触媒の調製>
市販のSiO2粉末(富士シリシア化学株式会社製のCARiActG−3)に硝酸Ir溶液を含浸した後、120℃で乾燥し、続いて600℃×1時間で焼成した。Irの添加量は、SiO2に対し金属元素換算で0.05wt%とした。このIr含有触媒を、実施例触媒2とする。また、実施例触媒2の製造に使用するSiO2粉末を、予め800℃×1時間で大気中にて電気炉処理し、それ以外は実施例触媒2と同じ方法でIr含有触媒を作製した。このIr含有触媒を、実施例触媒3とする。更に、実施例触媒2,3にそれぞれNb2O5ゾル水溶液を含浸した後、120℃で乾燥し、続いて600℃×1時間で焼成した。Nb添加量はIr添加量と同じモル数とした。このIr含有触媒を、それぞれ実施例触媒4,5とする。下記の表1にIr含有触媒の組成一覧を示す。
A commercially available SiO 2 powder (CarriAct G-3 manufactured by Fuji Silysia Chemical Co., Ltd.) was impregnated with an Ir nitrate solution, dried at 120 ° C., and then fired at 600 ° C. for 1 hour. The amount of Ir added was 0.05 wt% in terms of metal element with respect to SiO 2 . This Ir-containing catalyst is referred to as Example catalyst 2. In addition, the SiO 2 powder used for the production of Example catalyst 2 was previously treated in an electric furnace at 800 ° C. for 1 hour in the atmosphere, and an Ir-containing catalyst was produced in the same manner as Example catalyst 2 except that. This Ir-containing catalyst is referred to as Example catalyst 3. Further, each of Example Catalysts 2 and 3 was impregnated with an Nb 2 O 5 sol aqueous solution, dried at 120 ° C., and then calcined at 600 ° C. for 1 hour. The amount of Nb added was the same number of moles as the amount of Ir added. The Ir-containing catalysts are referred to as Example catalysts 4 and 5, respectively. Table 1 below shows a list of compositions of Ir-containing catalysts.
<Ir含有触媒の性能評価>
実施例触媒2〜5につき、次の条件でNOx,COの浄化に関する性能評価を行った。容量0.9cm3の粒状触媒(直径0.75mm〜1.5mm)を石英ガラス製反応管中に固定した。この反応管を電気炉中に導入し、反応管に導入されるガス温度が200℃〜350℃となるように加熱制御した。反応管に導入する反応ガスは、酸素過剰雰囲気の排ガスを模擬したモデルガスであり、その組成は、NOx:150ppm、CO:1500ppm,O2:3%,SO2:3ppm、N2:残差とした。体積空間速度(F/V)は、200,000/Hとした。
<Performance evaluation of Ir-containing catalyst>
With respect to Example Catalysts 2 to 5, performance evaluation regarding purification of NOx and CO was performed under the following conditions. A granular catalyst (diameter 0.75 mm to 1.5 mm) having a capacity of 0.9 cm 3 was fixed in a reaction tube made of quartz glass. This reaction tube was introduced into an electric furnace, and the temperature of the gas introduced into the reaction tube was controlled to be 200 ° C to 350 ° C. The reaction gas introduced into the reaction tube is a model gas simulating exhaust gas in an oxygen-excess atmosphere, and the composition thereof is NOx: 150 ppm, CO: 1500 ppm, O 2 : 3%, SO 2 : 3 ppm, N 2 : residual It was. The volume space velocity (F / V) was 200,000 / H.
実施例触媒2〜5の浄化性能を、下記の計算式によりNOx,CO浄化率を求めることで判定した。 The purification performance of Example Catalysts 2 to 5 was determined by determining the NOx and CO purification rates using the following formula.
NOx浄化率 (%) = ((触媒に流入したNOx量)−(触媒から流出したNOx量))
÷(触媒に流入したNOx量)×100
CO浄化率 (%) = ((触媒に流入したCO量)−(触媒から流出したCO量))
÷(触媒に流入したCO量)×100
図3に、実施例触媒2〜5のNOx浄化率を示す。この図から明らかなように、各触媒ともに凡そ40%前後のNOx浄化率が得られ、酸素共存下でもNOxとCOが反応し、NOxが浄化されることが分かった。最高活性を示す温度域は、実施例触媒2,4では300℃、実施例触媒3では280℃〜300℃、実施例触媒5では260℃〜270℃であり、SiO2への熱処理の有無や、Nb添加の有無により異なることが分かる。
NOx purification rate (%) = ((NOx amount flowing into the catalyst)-(NOx amount flowing out from the catalyst))
÷ (NOx amount flowing into the catalyst) × 100
CO purification rate (%) = ((CO amount flowing into the catalyst)-(CO amount flowing out from the catalyst))
÷ (CO amount flowing into the catalyst) x 100
In FIG. 3, the NOx purification rate of Example catalysts 2-5 is shown. As is clear from this figure, it was found that the NOx purification rate of about 40% was obtained for each catalyst, and NOx and CO reacted even in the presence of oxygen to purify NOx. The temperature ranges showing the highest activity were 300 ° C. for Example Catalysts 2 and 4, 280 ° C. to 300 ° C. for Example Catalyst 3, 260 ° C. to 270 ° C. for Example Catalyst 5, and the presence or absence of heat treatment on SiO 2 It can be seen that the difference depends on whether or not Nb is added.
図4に、実施例触媒2〜5のCO浄化率を示す。この図から明らかなように、各触媒ともに、NOx浄化率が40%前後に到達する温度域にてCO浄化率は60%を超え、NOxのみでなくCOも浄化されていることが明らかである。 In FIG. 4, the CO purification rate of Example catalysts 2-5 is shown. As is apparent from this figure, it is clear that in each catalyst, the CO purification rate exceeds 60% in the temperature range where the NOx purification rate reaches around 40%, and not only NOx but also CO is purified. .
以上の評価結果から、Ir含有触媒は、酸素過剰雰囲気で、NOxとCOを同時に浄化できることが明らかである。また、IrとNbを含有する触媒を用いることで、NOxとCOの浄化率をより高めることが可能であることも明らかである。 From the above evaluation results, it is clear that the Ir-containing catalyst can simultaneously purify NOx and CO in an oxygen-excess atmosphere. It is also clear that the NOx and CO purification rates can be further increased by using a catalyst containing Ir and Nb.
<Ir含有触媒のNH3酸化率評価>
Ir含有触媒につき、NH3の酸化率を評価した。反応ガスとしては、上述の基準ガスからNOxを除外したものを用い、他の試験条件は、ゼオライト含有NOx浄化触媒の性能評価と同じにした。Ir含有触媒のNH3酸化率は次式により見積もった。
<Evaluation of NH 3 oxidation rate of Ir-containing catalyst>
The oxidation rate of NH 3 was evaluated for the Ir-containing catalyst. As the reaction gas, the above-mentioned reference gas excluding NOx was used, and the other test conditions were the same as the performance evaluation of the zeolite-containing NOx purification catalyst. The NH 3 oxidation rate of the Ir-containing catalyst was estimated by the following equation.
NH3浄化率(%)
=((触媒に流入したNH3濃度)−(触媒から流出したNH3濃度))
÷(触媒に流入したNH3濃度)×100
図5に、実施例触媒2,3のNH3浄化率を示す。両触媒ともに300℃以上ではNH3浄化率が60%を超え、高い性能を示すことが分かる。
NH 3 purification rate (%)
= ((NH 3 concentration flowing into the catalyst) − (NH 3 concentration flowing out from the catalyst))
÷ (NH 3 concentration flowing into the catalyst) × 100
FIG. 5 shows the NH 3 purification rate of Example Catalysts 2 and 3 . It can be seen that the NH 3 purification rate exceeds 60% at 300 ° C. or higher for both catalysts, and shows high performance.
以下、本発明に係る排ガス浄化装置の構成を、比較例と対比して説明する。 Hereinafter, the configuration of the exhaust gas purifying apparatus according to the present invention will be described in comparison with a comparative example .
<排ガス浄化装置の第1比較例>
排ガス浄化装置の第1比較例は、図6に示すように、エンジンの排ガス流路に、排ガスの流れ方向の上流側から実施例触媒1と実施例触媒2をこの順に設置すると共に、実施例触媒1の上流側にNH3ガスを添加することを特徴とする。上述のように、実施例触媒1は、排ガス中にC3H6が存在した場合、NOxとCOが排出されてしまい、更に排ガス中にNH3ガスが添加された場合には、未反応のNH3ガスが排出される虞があるが、実施例触媒2は、NOx及びCOを浄化できるのみならずNH3も浄化できるので、全体としてNOx,CO,NH3に対して高い浄化性能を発揮できる。
<First comparative example of exhaust gas purification device>
As shown in FIG. 6, the first comparative example of the exhaust gas purifying apparatus is provided with the example catalyst 1 and the example catalyst 2 in this order from the upstream side in the exhaust gas flow direction in the exhaust gas flow path of the engine. An NH 3 gas is added to the upstream side of the catalyst 1. As described above, in Example Catalyst 1, NOx and CO are discharged when C 3 H 6 is present in the exhaust gas, and when NH 3 gas is added to the exhaust gas, unreacted. there is a possibility that the NH 3 gas is discharged, but example catalyst 2, since NH 3 can not only purify NOx and CO can also be purified, exhibit NOx, CO, a high purification performance for NH 3 as a whole it can.
<排ガス浄化装置の第2比較例>
排ガス浄化装置の第2比較例は、図7に示すように、エンジンの排ガス流路に、排ガスの流れ方向の上流側から実施例触媒1、実施例触媒2及び実施例触媒5をこの順に設置すると共に、実施例触媒1の上流側にNH3ガスの添加することを特徴とする。図3の実験データから明らかなように、実施例触媒2,5が40%前後のNOx浄化率を示すのは、それぞれ300℃付近、260℃付近である。従って、実施例触媒1の後段に実施例触媒2と実施例触媒5を配置することにより、高いNOx浄化率を示す温度域を拡大でき、排ガス温度が変化しても有効にNOx及びCOを浄化することができる。
<Second comparative example of exhaust gas purification device>
As shown in FIG. 7, in the second comparative example of the exhaust gas purifying apparatus, Example catalyst 1, Example catalyst 2 and Example catalyst 5 are installed in this order from the upstream side in the exhaust gas flow direction in the exhaust gas flow path of the engine. In addition, NH 3 gas is added to the upstream side of the catalyst 1 of the embodiment. As is apparent from the experimental data in FIG. 3, the catalyst examples 2 and 5 show NOx purification rates of around 40% at around 300 ° C. and around 260 ° C., respectively. Therefore, by disposing the example catalyst 2 and the example catalyst 5 at the subsequent stage of the example catalyst 1, the temperature range showing a high NOx purification rate can be expanded, and NOx and CO are effectively purified even if the exhaust gas temperature changes. can do.
<排ガス浄化装置の第3比較例>
排ガス浄化装置の第3比較例は、図8に示すように、エンジンの排ガス流路に、排ガスの流れ方向の上流側から実施例触媒1と実施例触媒2をこの順に設置し、実施例触媒1の上流側にNH3ガスを添加すると共に、実施例触媒1と実施例触媒2の間に、排ガス流路内に水を噴霧する冷却装置を設置したことを特徴とする。図2の実験データから明らかなように、実施例触媒1にてHCからCOが発生するのは凡そ350℃以上である。一方、図3の実験データから明らかなように、実施例触媒2にてNOxとCOの浄化が進むのは300℃以下である。従って、冷却水供給装置から冷却水を噴霧して実施例触媒1の後段で排ガス温度を低下させることにより、実施例触媒2上でのNOx,CO浄化反応を促進させることができる。なお、実施例触媒1と実施例触媒2の設置間隔が十分に大きい場合には、この間に排ガス温度が低下し、両触媒にとって最適な温度域になるので、冷却水供給装置を省略することができる。
<Third comparative example of exhaust gas purification device>
As shown in FIG. 8, in the third comparative example of the exhaust gas purifying apparatus, Example catalyst 1 and Example catalyst 2 are installed in this order from the upstream side in the exhaust gas flow direction in the exhaust gas flow path of the engine. In addition, NH 3 gas is added to the upstream side of No. 1 and a cooling device for spraying water in the exhaust gas flow path is installed between the Example catalyst 1 and the Example catalyst 2. As is apparent from the experimental data in FIG. 2, the generation of CO from HC in the example catalyst 1 is about 350 ° C. or higher. On the other hand, as is clear from the experimental data of FIG. 3, the NOx and CO purification progresses at 300 ° C. or less in the example catalyst 2. Therefore, the NOx and CO purification reaction on the example catalyst 2 can be promoted by spraying the cooling water from the cooling water supply device and lowering the exhaust gas temperature at the subsequent stage of the example catalyst 1. When the interval between the example catalyst 1 and the example catalyst 2 is sufficiently large, the exhaust gas temperature decreases during this period, and the temperature range is optimal for both catalysts. Therefore, the cooling water supply device may be omitted. it can.
<排ガス浄化装置の実施例>
排ガス浄化装置の実施例は、図9に示すように、エンジンの排ガス流路に、排ガスの流れ方向の上流側からHC,CO酸化触媒と、実施例触媒1と、実施例触媒2をこの順に設置すると共に、HC,CO酸化触媒と実施例触媒1の間にNH3ガスを添加することを特徴とする。本構成の排ガス浄化装置は、HC,CO酸化触媒を実施例触媒1の前段に設置するので、実施例触媒1に流入するHC,COを低減することができ、実施例触媒1上でのNOx浄化反応を促進することができて、系外へ放出されるNOxが低減できる。更には、HC,CO酸化触媒が排ガス中のSOx等により被毒を受けてHC,CO酸化性能が低下しても、実施例触媒上2でNOxとCOを浄化できる。
<Example of the exhaust gas purifying device>
As shown in FIG. 9, the embodiment of the exhaust gas purifying apparatus is configured such that the HC and CO oxidation catalyst, the embodiment catalyst 1 and the embodiment catalyst 2 are arranged in this order from the upstream side in the exhaust gas flow direction in the exhaust gas flow path of the engine. While being installed, NH 3 gas is added between the HC, CO oxidation catalyst and the example catalyst 1. In the exhaust gas purification apparatus of this configuration, the HC and CO oxidation catalyst is installed in the preceding stage of the example catalyst 1, so that HC and CO flowing into the example catalyst 1 can be reduced, and NOx on the example catalyst 1 can be reduced. The purification reaction can be promoted, and NOx released to the outside of the system can be reduced. Furthermore, even if the HC and CO oxidation catalyst is poisoned by SOx or the like in the exhaust gas and the HC and CO oxidation performance is reduced, NOx and CO can be purified on the example catalyst 2.
<HC,CO酸化触媒の調製>
ベーマイト粉末を大気下にて電気炉中で600℃×5時間の焼成を行うことにより得たAl2O3粉末にアルミナゾルと水を添加して調製したスラリーを、コージェライト製ハニカム(300セル/inc2)にコーティングした後、150℃の熱風を15分間流通させることで乾燥した。更に、得られたサンプルを電気炉にて600℃×1時間の焼成を行うことでハニカムの見掛けの容積1リットル当たり200gのAl2O3粉末をコーティングした。得られたアルミナコートハニカムに対し、ジニトロジアンミンPt硝酸溶液と硝酸Pd溶液の混合溶液を含浸し、150℃の熱風を15分間流通させて乾燥後、電気炉にて600℃×1時間の焼成を行った。本手法により、元素換算でPtとPdがハニカム1リットル当たりそれぞれ1.5g、0.5g含有するPtPd/Al2O3ハニカム触媒粉末を得た。
<Preparation of HC, CO oxidation catalyst>
A slurry prepared by adding alumina sol and water to Al 2 O 3 powder obtained by calcining boehmite powder in an electric furnace at 600 ° C. for 5 hours in the atmosphere was used as a cordierite honeycomb (300 cells / cell). inc 2 ) and then dried by flowing hot air at 150 ° C. for 15 minutes. Furthermore, the obtained sample was fired at 600 ° C. for 1 hour in an electric furnace to coat 200 g of Al 2 O 3 powder per liter of apparent volume of the honeycomb. The resulting alumina-coated honeycomb is impregnated with a mixed solution of dinitrodiammine Pt nitric acid solution and Pd nitric acid solution, dried by flowing hot air at 150 ° C. for 15 minutes, and then fired at 600 ° C. for 1 hour in an electric furnace. went. By this method, PtPd / Al 2 O 3 honeycomb catalyst powder containing 1.5 g and 0.5 g of Pt and Pd per liter of honeycomb in terms of element was obtained.
<ゼオライト含有NOx浄化触媒の再生処理:その1>
実施例触媒1に対し、基準ガスを用いてNOx浄化活性を評価した後、触媒入口温度を400℃に維持したまま、3333ppmのC3H6を添加したガスを30分間流通させて、触媒をC3H6に被毒させた。その後、触媒入口温度を200℃まで低下させ、基準ガスにて再度NOx浄化活性を評価した。更に、基準ガスを流通させたまま触媒入口温度を450℃で60分間維持させて触媒再生処理を行った。その後、触媒入口温度を200℃まで低下させて、基準ガスにて再度NOx浄化活性を評価した。その試験結果を、図10に示す。
<Regeneration treatment of NOx purification catalyst containing zeolite: Part 1>
After evaluating the NOx purification activity using the reference gas with respect to the catalyst of Example 1, the gas added with 3333 ppm of C 3 H 6 was circulated for 30 minutes while maintaining the catalyst inlet temperature at 400 ° C. It was poisoned with C 3 H 6 . Thereafter, the catalyst inlet temperature was lowered to 200 ° C., and the NOx purification activity was evaluated again with the reference gas. Further, the catalyst regeneration process was performed by maintaining the catalyst inlet temperature at 450 ° C. for 60 minutes while the reference gas was circulated. Thereafter, the catalyst inlet temperature was lowered to 200 ° C., and the NOx purification activity was evaluated again with the reference gas. The test results are shown in FIG.
図10から明らかなように、実施例触媒1は、C3H6被毒後、新品と比較して全温度域で凡そ20ポイント活性が低下するが、再生処理を施すことにより、新品並みの活性を回復する。従って、実施例触媒1にHCが流入してNOx浄化活性が低下しても、HC濃度を低減させたガスを流通させることで、ゼオライト含有NOx浄化触媒の活性を回復できることが分かる。 As is clear from FIG. 10, the catalyst of Example 1 has approximately 20 points lower activity in the entire temperature range after the C 3 H 6 poisoning compared to the new one. Restore activity. Therefore, it can be seen that even if HC flows into the example catalyst 1 and the NOx purification activity decreases, the activity of the zeolite-containing NOx purification catalyst can be recovered by circulating the gas having a reduced HC concentration.
<ゼオライト含有NOx浄化触媒の再生処理:その2>
図11に、本発明に係る排ガス浄化装置の構成を示す。本例の排ガス浄化装置は、ディーゼルエンジン1の排ガスを浄化するものであり、エンジン1の駆動制御を行うコントローラ9を備えている。ディーゼルエンジン1は、燃焼室(シリンダ)1a内の空気をピストン1bで圧縮して高温にし、その圧縮空気に燃料噴射装置2から燃料を供給して自然着火させることで動力を得ている。また、ディーゼルエンジン1は、吸気管4と燃焼室1aの間に吸気バルブ1cを備えており、燃焼室1aと排気管3の間に排気バルブ1dを備えている。なお、図11においては吸排気バルブ1c,1dを1個ずつ示したが、バルブの数はこれに限定されるものではなく、必要に応じて複数個の吸気バルブ1c及び排気バルブ1dを備えることができる。排気管3の出口側には浄化触媒5,6,7が設置されており、ディーゼルエンジン1から排出された排ガスは浄化触媒5,6,7へ供給され、浄化触媒5,6,7で浄化された後に、外部に放出される。浄化触媒5としてはCO,HC酸化触媒、浄化触媒6としてはゼオライト含有NOx浄化触媒、浄化触媒7としてはIr含有触媒が設置される。なお、図中の符号11はNH3タンク、符号8はCO,HC酸化触媒5とゼオライト含有NOx浄化触媒6との間にNH3を噴射するNH3噴射ノズル、符号10はHC,CO,NOxセンサを示している。
<Regeneration treatment of zeolite-containing NOx purification catalyst: Part 2>
FIG. 11 shows the configuration of the exhaust gas purifying apparatus according to the present invention. The exhaust gas purifying apparatus of this example purifies exhaust gas of the diesel engine 1 and includes a controller 9 that performs drive control of the engine 1. The diesel engine 1 obtains power by compressing the air in the combustion chamber (cylinder) 1a with a piston 1b to a high temperature, supplying fuel from the fuel injection device 2 to the compressed air, and causing spontaneous ignition. The diesel engine 1 includes an intake valve 1c between the intake pipe 4 and the combustion chamber 1a, and an exhaust valve 1d between the combustion chamber 1a and the exhaust pipe 3. In FIG. 11, one intake / exhaust valve 1c, 1d is shown, but the number of valves is not limited to this, and a plurality of intake valves 1c and exhaust valves 1d are provided as necessary. Can do. Purifying catalysts 5, 6, and 7 are installed on the outlet side of the exhaust pipe 3, and exhaust gas discharged from the diesel engine 1 is supplied to the purifying catalysts 5, 6, and 7 and purified by the purifying catalysts 5, 6, and 7. Is released to the outside. A CO and HC oxidation catalyst is installed as the purification catalyst 5, a zeolite-containing NOx purification catalyst is installed as the purification catalyst 6, and an Ir-containing catalyst is installed as the purification catalyst 7. In the figure, reference numeral 11 is an NH 3 tank, reference numeral 8 is an NH 3 injection nozzle for injecting NH 3 between the CO and HC oxidation catalyst 5 and the zeolite-containing NOx purification catalyst 6, and reference numeral 10 is HC, CO, NOx. The sensor is shown.
コントローラ9は、センサ10の出力信号に基づいてHC,CO,NOx浄化性能の低下の程度を判断すると共に、HC,CO,NOx浄化性能が所定の値よりも低下したと判断した場合には、エンジン1内の燃焼を促進させて浄化触媒5,6に流入する排ガスの温度を高めると共に、浄化触媒5,6に流入する排ガス中のHC濃度を低減させる。 When the controller 9 determines the degree of decrease in the HC, CO, NOx purification performance based on the output signal of the sensor 10, and determines that the HC, CO, NOx purification performance has decreased below a predetermined value, The combustion in the engine 1 is promoted to increase the temperature of the exhaust gas flowing into the purification catalysts 5 and 6, and the HC concentration in the exhaust gas flowing into the purification catalysts 5 and 6 is reduced.
このように、図11に示す排ガス浄化装置は、排ガス流通路の上流側からCO,HC酸化触媒5、ゼオライト含有NOx浄化触媒6及びIr含有触媒7をこの順に設置したので、排ガス中のCO,HC,NOx,NH3を高度に除去できると共に、CO,HC酸化触媒5及びゼオライト含有NOx浄化触媒6がHC分やS分に被毒した場合にも、コントローラ9がエンジン1の燃焼状態を制御することで、CO,HC酸化触媒5及びゼオライト含有NOx浄化触媒6のHC,CO浄化性能を回復させることができる。 As described above, the exhaust gas purification apparatus shown in FIG. 11 has the CO, the HC oxidation catalyst 5, the zeolite-containing NOx purification catalyst 6 and the Ir-containing catalyst 7 installed in this order from the upstream side of the exhaust gas flow passage. HC, NOx, NH 3 can be removed to a high degree, and the controller 9 controls the combustion state of the engine 1 even when the CO, HC oxidation catalyst 5 and the zeolite-containing NOx purification catalyst 6 are poisoned by HC and S. By doing so, the HC and CO purification performance of the CO and HC oxidation catalyst 5 and the zeolite-containing NOx purification catalyst 6 can be recovered.
1…エンジン、1a…燃焼室、1b…ピストン、1c…吸気バルブ、1d…排気バルブ、2…燃料噴射装置、3…排気管、4…吸気管、5…HC,CO酸化触媒、6…ゼオライト含有NOx浄化触媒、7…Ir含有触媒2、8…NH3注入口、9…コントローラ、10…HC,CO,NOxセンサ、11…NH3タンク DESCRIPTION OF SYMBOLS 1 ... Engine, 1a ... Combustion chamber, 1b ... Piston, 1c ... Intake valve, 1d ... Exhaust valve, 2 ... Fuel injection device, 3 ... Exhaust pipe, 4 ... Intake pipe, 5 ... HC, CO oxidation catalyst, 6 ... Zeolite containing NOx purification catalyst, 7 ... Ir-containing catalysts 2, 8 ... NH 3 inlet, 9 ... controller, 10 ... HC, CO, NOx sensor, 11 ... NH 3 tank
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013026934A JP6126858B2 (en) | 2013-02-14 | 2013-02-14 | Exhaust gas purification device for internal combustion engine |
PCT/JP2014/052138 WO2014125934A1 (en) | 2013-02-14 | 2014-01-30 | Exhaust gas purifying apparatus, exhaust gas purifying method and exhaust gas purifying catalyst for internal combustion engines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013026934A JP6126858B2 (en) | 2013-02-14 | 2013-02-14 | Exhaust gas purification device for internal combustion engine |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2014155888A JP2014155888A (en) | 2014-08-28 |
JP2014155888A5 JP2014155888A5 (en) | 2015-05-28 |
JP6126858B2 true JP6126858B2 (en) | 2017-05-10 |
Family
ID=51353943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013026934A Expired - Fee Related JP6126858B2 (en) | 2013-02-14 | 2013-02-14 | Exhaust gas purification device for internal combustion engine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6126858B2 (en) |
WO (1) | WO2014125934A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018019983A1 (en) * | 2016-07-29 | 2018-02-01 | Basf Se | Process for the preparation of a zeolitic material having a fau-type framework structure and use thereof in the selective catalytic reduction of nox |
KR102051857B1 (en) * | 2017-09-29 | 2019-12-04 | 한국화학연구원 | High performance nitrogen oxide reduction catalyst and method for producing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3560147B2 (en) * | 1999-07-02 | 2004-09-02 | 日産自動車株式会社 | Exhaust gas purification system |
JP4250856B2 (en) * | 2000-05-24 | 2009-04-08 | 三菱自動車工業株式会社 | In-cylinder internal combustion engine |
DE10103771A1 (en) * | 2001-01-27 | 2002-08-14 | Omg Ag & Co Kg | Method for restoring the catalytic activity of a catalyst which is arranged in the exhaust tract of a diesel engine and has at least one oxidation function |
US7229597B2 (en) * | 2003-08-05 | 2007-06-12 | Basfd Catalysts Llc | Catalyzed SCR filter and emission treatment system |
EP3473825A1 (en) * | 2008-06-27 | 2019-04-24 | Umicore Ag & Co. Kg | Method and device for cleaning diesel exhaust gases |
-
2013
- 2013-02-14 JP JP2013026934A patent/JP6126858B2/en not_active Expired - Fee Related
-
2014
- 2014-01-30 WO PCT/JP2014/052138 patent/WO2014125934A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2014125934A1 (en) | 2014-08-21 |
JP2014155888A (en) | 2014-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7206045B2 (en) | Nitrous oxide removal catalyst for exhaust system | |
US10173173B2 (en) | Ammonia slip catalyst | |
JP5373255B2 (en) | NOx reduction catalyst, NOx reduction catalyst system, and NOx reduction method | |
KR101974704B1 (en) | Bifunctional catalysts for selective ammonia oxidation | |
JP5110954B2 (en) | Exhaust gas purification catalyst apparatus using selective reduction catalyst and exhaust gas purification method | |
US8062601B2 (en) | Emission SCR NOX aftertreatment system having reduced SO3 generation and improved durability | |
EP3024574A1 (en) | Tungsten/titania oxidation catalyst | |
JPH11276907A (en) | Catalyst for purifying exhaust gas and its production | |
JP6126858B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2006150223A (en) | Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus | |
JP2007239616A (en) | Exhaust emission control device, exhaust emission control method, and purification catalyst | |
JP2003290629A (en) | Cleaning system for exhaust gas | |
JP2015183587A (en) | Emission control device, emission control method and emission control catalyst for heat engine | |
JP2009138591A (en) | Exhaust emission control device, exhaust emission control method, and nox emission control catalyst of thermal engine | |
JP6325042B2 (en) | Exhaust gas purification device for heat engine | |
US20240066468A1 (en) | Exhaust gas treatment system | |
JP4106762B2 (en) | Exhaust gas purification catalyst device and purification method | |
JP2013244483A (en) | Exhaust gas purifying apparatus of thermal engine and exhaust gas purifying method | |
JP2011050855A (en) | Exhaust gas purifying apparatus | |
JP6210849B2 (en) | Exhaust gas purification apparatus and exhaust gas purification method for heat engine | |
JP2016217357A (en) | Exhaust emission control device of heat engine | |
JP2010203328A (en) | Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst | |
KR20060105906A (en) | Catalytic compositions for oxidizing particular matters and catalytic soot filters employing the compositions | |
JP2009297628A (en) | APPARATUS AND METHOD FOR CLEANING EXHAUST GAS OF HEAT ENGINE AND NOx CLEANING CATALYST | |
JP2009056459A (en) | Catalyst and method for cleaning exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150406 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170410 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6126858 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |