JP6105933B2 - Air conditioner using direct expansion coil - Google Patents
Air conditioner using direct expansion coil Download PDFInfo
- Publication number
- JP6105933B2 JP6105933B2 JP2012287144A JP2012287144A JP6105933B2 JP 6105933 B2 JP6105933 B2 JP 6105933B2 JP 2012287144 A JP2012287144 A JP 2012287144A JP 2012287144 A JP2012287144 A JP 2012287144A JP 6105933 B2 JP6105933 B2 JP 6105933B2
- Authority
- JP
- Japan
- Prior art keywords
- direct expansion
- expansion coil
- air
- coil
- coils
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Central Air Conditioning (AREA)
- Air Conditioning Control Device (AREA)
Description
本発明は、複数の直膨コイルを使用した空気調和機に関し、特に、直列2段の直膨コイル群をそれぞれ複数の並列する直膨コイルとするものであって、省エネを実現する直膨コイルを使用した空気調和機に関する。 The present invention relates to an air conditioner that uses a plurality of directly expanded coils, and more particularly to a series of two directly expanded coils that are arranged in parallel, each of which is a directly expanded coil that realizes energy saving. The present invention relates to an air conditioner using
従来、水コイルを使用する空気調和機の熱媒(冷媒)は冷水、温水、蒸気などであるが、直膨コイルの空気調和機の冷媒コイルの熱媒は水以外の冷媒である。
従来、クリーンルームでは厳格な空調管理が要求されているが、通常、設定温度・湿度の許容範囲は、温度では±3℃以内、湿度では10%以内の制御が求められている。
ところで、水コイルを使用する空気調和機の熱媒は冷水、温水、蒸気などであり、直膨コイルの空気調和機の冷媒コイルの熱媒は冷媒であるが、以下に述べるように、それぞれに利点や欠点がある。
Conventionally, the heat medium (refrigerant) of an air conditioner using a water coil is cold water, hot water, steam, or the like, but the heat medium of the refrigerant coil of the air conditioner of a direct expansion coil is a refrigerant other than water.
Conventionally, strict air conditioning management is required in clean rooms, but normally, the allowable range of set temperature and humidity is controlled within ± 3 ° C. for temperature and within 10% for humidity.
By the way, the heat medium of the air conditioner using a water coil is cold water, hot water, steam, etc., and the heat medium of the refrigerant coil of the air conditioner of the direct expansion coil is a refrigerant, but as described below, There are advantages and disadvantages.
クリーンルームでの水コイル使用の基本的な空調システムは、図1に示すようなものであるが、戸外からの空気OAは、冷水コイルaをバルブiで制御して熱交換され、目標の大凡の温度・湿度以下に冷房(暖房)され、再熱コイルbと加湿器cとで微調整して求められる給気SAを得ている。
この場合の空気の状態変化を、図2の空気線図を参照して図1のシステムを説明すると、外気OAが図2でのA点の状態であると、水コイルaは冷凍機hやチラーから冷水(温水、蒸気)が供給されていて、バルブiを制御することにより、コイル出口空気温度を設定した露点温度、実際は、露点温度の設定値は余裕をみて目標絶対湿度より低い露点温度まで(図2の目標絶対湿度線以下)温度をさげ、B点に移行する。
その後、ボイラeにより高温の温水或いは蒸気をバルブdにより制御して再加熱コイルbに供給し、露点温度から加湿可能温度まで再熱し、空気温度を図2のC点まで上昇させる。更に、ボイラeからの蒸気を加湿器cから噴霧して、最終目標の湿度にして図2のD点まで上昇させている。
The basic air conditioning system using a water coil in a clean room is as shown in FIG. 1, but the air OA from the outside is heat-exchanged by controlling the cold water coil a with a valve i, and the target is roughly Air supply SA obtained by cooling (heating) below temperature and humidity and finely adjusting with reheat coil b and humidifier c is obtained.
The air state change in this case will be described with reference to the air diagram of FIG. 2. When the outside air OA is in the state of point A in FIG. 2, the water coil a is connected to the refrigerator h or Cold water (hot water, steam) is supplied from the chiller, and by controlling the valve i , the dew point temperature where the coil outlet air temperature is set, in fact, the dew point temperature setting value is lower than the target absolute humidity with a margin The temperature is lowered to (until the target absolute humidity line in FIG. 2) and the process moves to point B.
Thereafter, hot water or steam at a high temperature is controlled by a valve d by a boiler e and supplied to a reheating coil b, reheated from a dew point temperature to a humidifiable temperature, and the air temperature is raised to a point C in FIG. Further, the steam from the boiler e is sprayed from the humidifier c to reach the final target humidity, which is raised to the point D in FIG.
しかしながら、図1に示すような、従来の水コイル使用の基本的な空調システムは、(1)冷却・再熱のための熱源機器を設置するための熱源機械室が必要であり、(2)バックアップを考えた場合もう1セットのシステム設置が必要であり、(3)分散している空気調和機の運転台数に関わらず大型の熱源機器が運転し、冷水の搬送動力が低減し難く、(4)熱源機器、冷水・再熱コイル・加湿のバルブ制御が異なる工事区分となり、施工後の管理項目が煩雑となるといった問題点があった。 However, the basic air conditioning system using a conventional water coil as shown in FIG. 1 requires (1) a heat source machine room for installing a heat source device for cooling and reheating, and (2) When considering backup, another system must be installed. (3) Regardless of the number of distributed air conditioners, large heat source equipment operates and it is difficult to reduce the chilled water transport power. 4) There is a problem that the heat source equipment, cold water, reheat coil, and humidification valve control are in different construction categories, and the management items after construction become complicated.
また、直膨コイルは間接的な熱の受け渡しがないため、直膨コイルのシステムの冷暖房効率は水コイルを上回るはずであるが、直膨コイルは水以外の冷媒であることから、液体や気体といった異なった相にするための圧力・温度の制御が難しく、きめ細かい制御の管理が厄介であるといった問題点があった。
例えば、クリーンルームでの直膨コイル使用の基本的な空調システムは、図3に示すようなものであるが、図1の水コイルaの使用と異なるのは、水コイルaの変わりに、3台の直膨コイルg1,g2,g3を並列配置した構成で、下流に送風機(ファン)lを配置した構成である。直膨コイルで広範囲な空調制御が難しく、そこで、直膨コイルを3台並列にして、低負荷の場合は1台稼働にし、高負荷の場合には全台を稼働して、広範囲の空調制御を可能としている。
In addition, since the direct expansion coil does not indirectly transfer heat, the cooling and heating efficiency of the direct expansion coil system should exceed that of the water coil. However, since the direct expansion coil is a refrigerant other than water, However, it is difficult to control the pressure and temperature for different phases, and it is difficult to manage fine control.
For example, the basic air conditioning system using a direct expansion coil in a clean room is as shown in FIG. 3, but the use of the water coil a in FIG. The direct expansion coils g1, g2, and g3 are arranged in parallel, and a blower (fan) 1 is arranged downstream. It is difficult to control a wide range of air conditioning with a direct expansion coil. Therefore, three units of the direct expansion coil are arranged in parallel, one unit is operated when the load is low, and all units are operated when the load is high. Is possible.
この場合の空気の状態変化を、図2の空気線図を参照して図3のシステムを説明すると、外気OAが図4でのA点の状態であると、ファンと圧縮器からなる室外機k1,k2,k3の全機運転し、直膨コイルg1,g2,g3のコイル出口空気温湿度を設定した露点温度以下、露点温度の設定値は余裕をみて目標絶対湿度より低い露点温度にさげ、B点に移行する。
その後は、水コイルの空調機と同様に、ボイラeにより高温の温水或いは蒸気をバルブfにより制御して再加熱コイルbに供給し、露点温度から加湿可能温度まで再熱し、空気温度を図2のC点まで上昇させる。更に、ボイラeからの蒸気を加湿器cから噴霧して、最終目標の湿度にして図2のD点まで上昇させている。
The air state change in this case will be described with reference to the air diagram of FIG. 2 and the system of FIG. 3 will be described. When the outside air OA is in the state of point A in FIG. Operate all units k1, k2, and k3, and set the coil outlet air temperature and humidity of the direct expansion coils g1, g2, and g3 below the set dew point temperature, and set the dew point temperature to a dew point temperature that is lower than the target absolute humidity with a margin. , Move to point B.
After that, as with the water coil air conditioner, hot water or steam is controlled by the valve e by the boiler e, supplied to the reheating coil b, reheated from the dew point temperature to the humidifiable temperature, and the air temperature is shown in FIG. To C point. Further, the steam from the boiler e is sprayed from the humidifier c to reach the final target humidity, which is raised to the point D in FIG.
しかしながら、図3に示すような、直膨コイル使用の基本的な空調システムは、(1)直膨コイルが並列設置の為、除湿能力を考慮すると負荷による室外機の停止が困難となり、台数制御運転やメンテナンス時・故障時の対応が出来ない。例えば、図4の空気線図で説明すると、直膨コイルg2,g3が停止してバイパス状態であって、直膨コイルg1だけが稼働してる場合は、直膨コイルg1の出口空気温湿度はB点にはなるが、直膨コイルg2,g3がバイパス状態であるので、これらを混合した空気は、Bmix点となり設定した露点温度以下にはならない。したがって、常時全数運転する必要がある。
また、(2)直膨コイル出口温度を目標露点温度以下にするため、常時すべての室外機が運転が必要となり、低負荷時はコイル出口空気温湿度は目標値よりもかなり低くなる。そのため、B→Cの再熱能力及びC→Dの加湿能力が大きくなる為、結果として、省エネルギー運転とならない。
However, the basic air conditioning system using a direct expansion coil as shown in FIG. 3 is: (1) Since the direct expansion coil is installed in parallel, it is difficult to stop the outdoor unit due to the load, considering the dehumidification capacity. Cannot handle during operation, maintenance or failure. For example, in the air diagram of FIG. 4, when the direct expansion coils g2 and g3 are stopped and in a bypass state, and only the direct expansion coil g1 is operating, the outlet air temperature and humidity of the direct expansion coil g1 is Although the point B is reached, since the directly expanded coils g2 and g3 are in the bypass state, the air in which these coils are mixed becomes the Bmix point and does not fall below the set dew point temperature. Therefore, it is necessary to always operate all of them.
In addition, (2) since the direct expansion coil outlet temperature is set to be equal to or lower than the target dew point temperature, all outdoor units need to be operated at all times, and the coil outlet air temperature and humidity are considerably lower than the target value at low load. Therefore, since the reheating capability of B → C and the humidification capability of C → D are increased, as a result, energy saving operation is not performed.
このため、直膨コイルは空気の温度・湿度管理の要求が厳格ではない家庭用の空気調和機等の室内機1個に対し室外機も1個ずつ使っている小型のエアコンを部屋ごとに設置する方法がむしろ好まれる傾向にあり、直膨コイルだけの空調設備は大きな工場等では採用され難い傾向にあり、特許文献1、2に開示されているように、直膨コイルと水コイルとの併用によって大きな工場等でも採用できる空気調和システムが提案されている。
For this reason, the direct expansion coil has a small air conditioner for each room that uses one outdoor unit for each indoor unit such as a home air conditioner that does not require strict control of air temperature and humidity. However, air conditioning equipment with only a direct expansion coil tends to be difficult to be adopted in large factories, etc., and as disclosed in
そこで、発明者らは、特許文献3として、直膨コイルだけを使用した空気調和機であって、水コイルのための冷水をつくる熱源機が不要で省スペース化とし、ローテーション運転を可能として耐久性を向上させ、また、故障時のバックアップ運転が容易に対応でき、かつ、従来の冷水コイルや並列配置と同様に、広範囲での温度・湿度をきめ細かく制御が可能で、再熱コイル・加湿器を設置し恒温恒湿条件を満足できる空気調和機を提供している。
Therefore, the inventors have disclosed, as
本発明は、直膨コイルだけを用いた空気調和機において、圧縮器に還流する冷媒の蒸発圧力を検知して、その蒸発圧力の値によって圧縮器の圧縮圧力を制御する空気調和機を提供しようとするものである。
更に、水コイルのための冷水をつくる熱源機が不要で省スペース化とし、ローテーション運転を可能として耐久性を向上させ、また、故障時のバックアップ運転が容易に対応でき、従来の冷水コイルや並列配置と同様に、広範囲での温度・湿度のきめ細かい制御が可能となり、高効率運転を実現し、恒温恒湿条件を満足できる空気調和機を提供しようとするものである。
The present invention provides an air conditioner that uses only a direct expansion coil to detect the evaporating pressure of the refrigerant returning to the compressor and control the compressing pressure of the compressor based on the value of the evaporating pressure. It is what.
In addition, a heat source device that creates cold water for the water coil is not required, saving space, enabling rotation operation, improving durability, and easily supporting backup operation in the event of a failure. As with the arrangement, it is intended to provide an air conditioner that enables fine control of temperature and humidity over a wide range, realizes high-efficiency operation, and satisfies constant temperature and humidity conditions.
上記課題を解決するために、請求項1の発明は、外気を導入して冷媒により冷却あるいは加熱する2群の直膨コイルを直列に配置し、上流の第1直膨コイル群はさらに複数並列に配列し、下流の第2直膨コイル群もさらに複数並列に配列した空気調和機において、
下流の第2直膨コイル群は独立して制御可能とし、圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって圧縮器の圧縮圧力を制御し、直膨コイルでの冷却温度を制御するとともに、
室温の検知による制御系を併設して、前記蒸発圧力による制御系の信号と前記室温の検知による制御系の信号とを選択回路で比較して、圧縮圧力を制御し直膨コイルは常に非凍結域以上で冷媒を循環するように選択して直膨コイルでの冷却温度を制御したことを特徴とする直膨コイルを使用した空気調和機である。
請求項2の発明は、外気を導入して冷媒により冷却あるいは加熱する2群の直膨コイルを直列に配置し、上流の第1直膨コイル群はさらに複数並列に配列し、下流の第2直膨コイル群もさらに複数並列に配列した空気調和機において、
下流の第2直膨コイル群は独立して制御可能とし、圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって圧縮器の圧縮圧力を制御し、直膨コイルでの冷却温度を制御するとともに、
冷房時の給気露点温度による制御系を併設して、前記蒸発圧力による制御系の信号と前記冷房時の給気露点温度による制御系の信号とを選択回路で比較して、圧縮圧力を制御し直膨コイルは常に非凍結域以上で冷媒を循環するように選択して直膨コイルでの冷却温度を制御したことを特徴とする直膨コイルを使用した空気調和機である。
請求項3の発明は、請求項1又は2に記載の直膨コイルを使用した空気調和機において、前記第2直膨コイル群は3台又は4台の直膨コイルを並列に配置したことを特徴とする。
請求項4の発明は、請求項1乃至3に記載の直膨コイルを使用した空気調和機において、給気を兼ねた送風機を前記第1直膨コイル群と前記第2直膨コイル群の間に配置したことを特徴とする。
In order to solve the above-mentioned problem, the invention of
The downstream second direct expansion coil group can be controlled independently, detects the evaporation pressure of the refrigerant returning to the compressor, controls the compression pressure of the compressor based on the detected evaporation pressure value, and the direct expansion coil While controlling the cooling temperature at
A control system based on room temperature detection is also provided, and the control system signal based on the evaporation pressure and the control system signal based on the room temperature detection are compared by a selection circuit to control the compression pressure and the direct expansion coil is always unfrozen. It is an air conditioner using a direct expansion coil, characterized in that the cooling temperature in the direct expansion coil is controlled by selecting the refrigerant to circulate in the region or higher.
In the invention of
The downstream second direct expansion coil group can be controlled independently, detects the evaporation pressure of the refrigerant returning to the compressor, controls the compression pressure of the compressor based on the detected evaporation pressure value, and the direct expansion coil While controlling the cooling temperature at
A control system based on the supply air dew point temperature during cooling is also provided, and the control signal based on the evaporation pressure and the control system signal based on the supply air dew point temperature during cooling are compared by a selection circuit to control the compression pressure. The direct expansion coil is an air conditioner using a direct expansion coil, characterized in that the cooling temperature in the direct expansion coil is controlled by always selecting the refrigerant to circulate in the non-freezing region or higher.
The invention of
According to a fourth aspect of the present invention, in the air conditioner using the direct expansion coil according to any one of the first to third aspects, a blower also serving as an air supply is provided between the first direct expansion coil group and the second direct expansion coil group. It is characterized by having been arranged in.
本発明の直膨コイルを使用した空気調和機によれば、(1)圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって圧縮器の圧縮圧力を制御したので、直膨コイルにおいてもきめ細かな制御が可能となり、直膨コイルは間接的な熱の受け渡しがないため、直膨コイルのシステムの冷暖房効率は水コイルを上回り省エネ運転が可能となる。(2)圧縮器の稼働にあたり、蒸発圧力の値によって圧縮器の圧縮圧力を制御する制御系の他に、室温、或いは、給気温度を検知して制御する制御系を併設して、これらの制御系の信号を選択回路で選択して圧縮圧力を制御し、かつ、直膨コイル35は常に非凍結域以上で冷媒を循環するようにして直膨コイルでの冷却温度を制御したので、凍結事故を回避することができる。(3)凍結回避以外に、直膨コイル31の蒸発圧力(蒸発温度)を制限する値を変更することで蒸発温度を常に一定以上に高く保つことで(図7の実線の冷凍サイクルを参照)高効率運転が可能となる。また、(4)コイル蒸発温度を制御できるので、非結露運転の要望がある空調の場合には、蒸発圧力(蒸発温度)を空気露点温度以上に保つ、すなわち、冷却する直膨コイル31の非結露運転も可能となる。
According to the air conditioner using the direct expansion coil of the present invention, (1) the evaporating pressure of the refrigerant returning to the compressor is detected, and the compressing pressure of the compressor is controlled by the detected evaporating pressure value. Fine control is also possible in the direct expansion coil, and since the direct expansion coil does not indirectly transfer heat, the cooling / heating efficiency of the system of the direct expansion coil exceeds that of the water coil, and energy saving operation is possible. (2) In the operation of the compressor, in addition to the control system for controlling the compression pressure of the compressor by the value of the evaporation pressure, a control system for detecting and controlling the room temperature or the supply air temperature is provided. select signal of the control system by the selection circuit to control the compression pressure, and so to control the cooling temperature in to direct expansion coil to circulate the refrigerant in
更に、(5)多段(2段)並列の直膨コイル群を更に配置したので、細かな段数制御により直膨コイル出口温度を設定した露点温度に制御可能となる。特に、実施例では第2直膨コイル群3を4段並列としたので、給気に近い位置で正確な温度・湿度の制御が出来る。更に、細かな段数制御により、従来システムよりも少エネルギー成績係数が良く、直膨コイル出口空気温度の誤差が±3℃程度のため、再熱や加湿の使用エネルギーが少ない。なお、この装置では再熱コイルやヒートポンプ(冷媒)にも対応可能である。
また、(6)直膨コイルを使用した空気調和機は、従来の水コイル使用の空調機とは異なり、冷水による冷却が必要でなくなるため冷水をつくるための熱源機が不要となって、室外機設置スペースだけとなり、水コイルのための冷熱源の機械室が不要になる。
Further, (5) since the multi-stage (two-stage) parallel direct expansion coil group is further arranged, it becomes possible to control the dew point temperature at which the direct expansion coil outlet temperature is set by fine step number control. In particular, since the second direct
In addition, (6) air conditioners using direct expansion coils, unlike conventional air-coil air conditioners, do not require cooling with cold water, so a heat source for producing cold water is not necessary, Only the machine installation space is required, and the machine room of the cold heat source for the water coil is not required.
また、(7)並列配置の直膨コイル群と並列配置の直膨コイル群を2段の直列設置の組み合わせにすることにより、ローテーション運転が可能で、ローテーション運転により直膨コイル群や室外機の長寿命化が可能となり、また、一部の直膨コイルや室外機が故障時のバックアップ運転が容易に対応できる。(8)しかも、複数の並列配置した直膨コイル群を2段に直列に配置して給気露点温度制御を行うので、上流の直膨コイル群で大まかな冷房制御を行った後、下流の直膨コイル群で温度・湿度をきめ細かく制御が可能で、かつ、広範囲の温度・湿度管理が可能であり、更に、風下に従来の水コイルの場合同様に再熱コイル・加湿器を設置し正確に恒温恒湿条件を満足する制御が可能となる。 Moreover, (7) Rotation operation is possible by combining a parallel-arranged direct expansion coil group and a parallel-arrangement direct expansion coil group in a series of two stages, and the rotation operation enables the direct expansion coil group and the outdoor unit The service life can be extended, and backup operation when some of the direct expansion coils and outdoor units fail can be easily handled. (8) In addition, since a plurality of directly expanded coil groups arranged in parallel are arranged in series in two stages to perform supply air dew point temperature control, after performing rough cooling control on the upstream directly expanded coil group, The temperature and humidity can be finely controlled with a group of directly expanded coils, and a wide range of temperature and humidity management is possible. In addition, a reheat coil and humidifier are installed in the lee as in the case of conventional water coils. In addition, it is possible to perform control that satisfies the constant temperature and humidity conditions.
更に、(9)給気を兼ねた送風機7を第1直膨コイル群2と第2直膨コイル群3との間に配置したので、第1直膨コイル群2の一部が運転停止しても、吸気した空気を攪拌し冷却を均一にして、下流の複数の第2直膨コイル群3に同じ状態の空調空気を均等に送風することができ、第2直膨コイル群3の複数の直膨コイルにほぼ同じような負荷がかかるので、運転に偏りがなく使用期間も長くでき、故障も少ない。
Further, (9) since the
本発明の直膨コイルを使用した空気調和機の好適な実施例を図面に沿って説明する。
[実施例1]
図5は、実施例の直膨コイルを使用したクリーンルーム用の空気調和機1の全体系統図で、外気OA(図5で右側から)を導入し、まず、上流側に冷媒により冷却する第1直膨コイル群2を配置し、下流に第2直膨コイル群3を配置し、更に、その下流に再熱コイル4、及び第1加湿器51と第2加湿器52を配置している。なお、本実施例の空気調和機1はクリーンルームに用いるが、通常、室内には加熱機器等が存在して室内温度を上昇させるので、冷却機能を使用した場合で説明する。なお、本発明で「外気」とは、戸外の空気のみを意味するものではなく、空調を対象の空気調和機の外から取り入れる空気のことである。
前記第1直膨コイル群2は、3台の直膨コイルである直膨コイル21と直膨コイル22と直膨コイル23とを空気流に対して並列3段に配置したもので、この2台の直膨コイルにはそれぞれ膨張(制御)弁211(221,231)を介して圧縮器241と凝縮器243及びファン242等からなる室外機24に接続され、それぞれ独立して制御される。
A preferred embodiment of an air conditioner using a direct expansion coil of the present invention will be described with reference to the drawings.
[Example 1]
Figure 5 is a full system integration diagram of an
The first direct
前記第1直膨コイル群2の下流には前記第2直膨コイル群3が配置されるが、この直膨コイル群3は3台の直膨コイルである直膨コイル31乃至33が空気流に対して並列3段に配置され、それぞれ独立して運転・制御される。
これらの第1直膨コイル群2と第2直膨コイル群3の間には、空気OAを給気SAとして送風する送風機(ファン)7が配置され、この給気を兼ねた送風機7は第1直膨コイル群2の一部が運転停止しても、吸気した空気を攪拌し冷却を均一にして、下流の複数の第2直膨コイル群3に同じ状態の空調空気を均等に送風するものである。したがって、第2直膨コイル群3の直膨コイル31,32,33にほぼ同じような負荷がかかるので、運転に偏りがなく使用期間も長くでき、故障も少ない。なお、従来の送風機(ファン)7’の位置は、図5の点線で示すように、最下流に配置するのが普通で、これでは、第2直膨コイル群3の直膨コイル31,32,33には偏った空調空気が送られるいとう不都合があった。
第2直膨コイル群3の4台の直膨コイル31乃至33は独立して運転・制御され、第2直膨コイル群3の下流には 空調状態を微調整して目標の温度・湿度にするために、再熱コイル4及び第1加湿器51と第2加湿器52が配備される。
The second direct
Between the first direct
The four direct expansion coils 31 to 33 of the second direct
ここで、第2直膨コイル群3における複数の直膨コイルのうち、直膨コイル31を例として冷房サイクルを説明する。
直膨コイル31で冷房を終えた冷媒は、圧縮器35、室外機371を構成する凝縮器37、ファン371に接続され、圧縮器35で圧縮され温度上昇した冷媒は凝縮器37で排熱し、凝縮器37で排熱された冷媒は、膨張弁38によって冷却され直膨コイル31に循環させ、送風機7からの攪拌された空気を冷房する。他の直膨コイル32、33も同様の構成であり、それぞれ独立して制御される。
また、圧縮器35の制御は、通常、室温センサ313で検知された温度値が設定温度になるように圧縮器の運転制御回路392によって制御するが、一方、圧力センサ311や温度センサ312は、圧縮器35の稼働により直膨コイル31の冷媒過熱度が一定の温度になるように、また、コイル冷凍域Y1以下にならいように制御をするためのものであり、特に、圧力センサー311は冷媒の直膨コイル31からの蒸発圧力を直接検出するもので、この値を中央制御装置39に入力し、中央制御装置39から選択回路391に、検出した直膨コイル31からの蒸発圧力値が、一定に制限するか、又は、コイル冷凍域Y1以下にならないように優先的に選択し、圧縮器の運転制御回路392に入力して圧縮器35の駆動を制御するようにしている。
Here, the cooling cycle will be described using the
The refrigerant that has been cooled by the
The
すなわち、圧縮器35の圧縮器の運転制御回路392による駆動運転周波数指令を得るにあたり、室内からの露点温度センサを兼ねる室温センサ313の値(或いは図6の給気温度mの値)から演算制御回路393を介しての制御系の冷却圧力要求信号Aと、直膨コイル31からのコイル蒸発圧力(蒸発温度)を検知する圧力センサ311から値から中央制御装置39内の演算制御回路で冷媒が冷凍域以上での冷却圧力要求信号Bと、を選択回路391で比較し、冷媒が冷凍域以下にならない範囲でより冷却可能な冷却圧力要求信号Cを選択することで、圧縮器35の冷媒圧力をなるべく高く維持することで高効率運転で稼働するように、前記選択回路391で選択された選択信号Cを圧縮器35の運転制御回路392に入力して、必ず直膨コイル35は非凍結域以上で冷媒を循環するように維持し、直膨コイル35の凍結事故を回避することができる。
以上の凍結回避以外に、直膨コイル31の蒸発圧力(蒸発温度)を制限する値を変更することで蒸発温度を常に一定以上に高く保つことで(図7の実線の冷凍サイクルを参照)高効率運転を可能としている。
また、コイル蒸発温度を制御できるので、非結露運転の要望がある空調の場合には、蒸発圧力(蒸発温度)を空気露点温度以上に保つ、すなわち、冷却する直膨コイル31の非結露運転も可能となる。
第2直膨コイル群3の下流には再熱コイル4や加湿器51,52を配置するが、ボイラ6の水を加熱して温水或いは蒸気を作り、これらを膨張(制御)弁(バルブ)421を介して再熱コイル4に供給し加熱し、最終的に空調状態を微調整して目標の温度にする。
更に、ボイラ6の水を加熱した蒸気によって上流の第1加湿器51によって大まかな加湿を行い、下流の第2加湿器52で最終的な目標湿度に供給空気SAを加湿する。
That is, in obtaining the drive operation frequency command by the
In addition to avoiding the above freezing, by changing the value that limits the evaporation pressure (evaporation temperature) of the
Further, since the coil evaporation temperature can be controlled, in the case of air conditioning in which there is a demand for non-condensing operation, the evaporating pressure (evaporating temperature) is kept above the air dew point temperature, that is, the non-condensing operation of the
A reheating
Further, rough humidification is performed by the upstream first humidifier 51 by steam that heats the water in the boiler 6, and the supply air SA is humidified to the final target humidity by the downstream
ここで、実施例での第2直膨コイル群3での冷房サイクルで再熱としての空気線図を図6で説明する。
図6の空気線図で、外気OAはj点から第1直膨コイル群2でk点まで冷やされ、更に、第2直膨コイル群3でl点まで冷やされ、次に、再熱コイル4で室温にm点まで加熱される。なお、第1、第2加湿器51,52は冬季に稼働するので、第2直膨コイル群3等が稼働する冷房時には稼働しない。この空気線図で必要エネルギーは、A1である。
Here, an air diagram as reheating in the cooling cycle in the second directly expanded
In the air diagram of FIG. 6, the outside air OA is cooled from the point j to the point k by the first direct
次に、実施例の冷凍サイクルを図7に沿って説明するが、従来、直膨コイル31からの蒸発圧力設定等は当初設定した以後はそのままの設定で稼働していた。これは前述したように直膨コイルは水以外の冷媒であることから、液体や気体といった異なった相にするための圧力・温度の制御が難しく、冷媒状態のみを目標に制御したためにコイル冷房能力が成り行きとなり空気状態の精密制御が出来ないうえ、風量等の空気負荷の急変時は図7のモリエル線図に示す凍結域Y1以下に下がる欠点があり、また、圧縮器35の溶媒への作動も飽和蒸気線を余裕を持って越え、冷媒が完全気体となってから圧縮器35に移送するように設定していた。
すなわち、従来の冷凍サイクルはV’→X→Y’→Z’→V’で、冷媒は圧縮器35で圧縮工程(V’)から、凝縮工程(X)で凝縮器37とファン371とで冷媒は排熱され、膨張工程(Y’)で圧力を減じて冷却され、この冷却された冷媒で直膨コイル31で冷媒工程(Z’)で空気を冷却し、温度が上昇した冷媒は圧縮器35に還流する。
Next, the refrigeration cycle of the embodiment will be described with reference to FIG. 7. Conventionally, the evaporating pressure setting and the like from the
That is, the conventional refrigeration cycle is V ′ → X → Y ′ → Z ′ → V ′, and the refrigerant is changed from the compression step (V ′) by the
これに対して、実施例の冷凍サイクルは実線で示すV→X→Y→Z→Vで、圧縮器35での圧縮負荷は、従来の点線の冷凍サイクルよりもY2だけ短縮し、それだけ圧縮負荷が軽減され、高効率運転を可能となるが、冷媒は圧縮器35で圧縮工程(V)から、凝縮工程(X)で凝縮器37、膨張工程(Y)で圧力を減じ、この冷却された冷媒で直膨コイル31で冷媒工程(Z)で空気を冷却し、冷媒は圧縮器35に還流する。
実施例では、直膨コイル31からの蒸発圧力を直接検出して、この圧力センサ311で検知した蒸発圧力によって、圧縮器35の駆動を制御して、必要に応じて実線の冷凍サイクルの冷房工程(Z)に任意に変化することができるので、コイルの冷凍域Y1にならない範囲Y2で空気状態を目標に任意に変化することができ、かつ、従来では圧縮器35での圧縮開始点U’で設定されるが、実施例では圧縮開始点Uと任意変更できるので、不必要に飽和蒸気線を越える必要もなく、最小限の飽和蒸気線の超過値で効率よく冷凍サイクルを実行することが出来る。
このように、本実施例では直膨コイル31を組み込んだ冷凍サイクルにおいて、圧縮器35の能力の範囲内で直膨コイル35の蒸発圧力によって直膨コイル31の冷房を可変にできる。
On the other hand, the refrigeration cycle of the embodiment is V → X → Y → Z → V indicated by a solid line, and the compression load in the
In the embodiment, the evaporating pressure from the
Thus, in the present embodiment, in the refrigeration cycle in which the
ここで、本実施例での上記の構成での実験結果を説明する。
運転実験例
設計風量:4000m3/h (外気取入量:20%)
給気目標:露点4.9℃DP及び3℃DP
コイル組み合わせ:直列・・・2列
段数・・・(風上側)室外機3台・3段
(風下側)室外機3台・3段
一般に、直膨コイルは、高温源と低温源の温度差が小さいほど理論上の効率は良くなるものであり、定格運転が効率がよい。
また、上述したように、本実施例の6台の直膨コイル21,22,23,31,32,33は、それぞれ温度制御が可能であり、小さな部屋であれば直膨コイル1台で十分であるが、大量の空気を空調するクリーンルームでは複数の直膨コイル群にすることで対処可能である。
Here, the experimental results of the above-described configuration in this example will be described.
Example of operation experiment Design air volume: 4000m3 / h (Outside air intake: 20%)
Air supply target: dew points 4.9 ° C DP and 3 ° C DP
Coil combination: in series ... 2 rows Number of stages ... (windward) 3 outdoor units, 3 stages
(Leeward side) 3 outdoor units, 3 stages Generally, the direct expansion coil has a theoretical efficiency that increases as the temperature difference between the high temperature source and the low temperature source is small, and the rated operation is efficient.
Further, as described above, the six direct expansion coils 21, 22, 23, 31, 32, and 33 of this embodiment can be controlled in temperature, and one direct expansion coil is sufficient in a small room. However, in a clean room that air-conditions a large amount of air, it can be dealt with by using a plurality of directly expanded coils.
これを本実施例の直膨コイル21,22,23,31,32,33について説明すると、図6に示す空気線図のk点の空気エンタルピ状態を目標にコイル21,22,23は比例制御、及び、段数制御される。運転冷凍機の最適効率を維持できないところまで外気OAがj点よりも下がりかつ冷凍機2台運転でk点のエンタルピまで空気状態を下げられる場合コイル21,22,23のうち一台を停止させて、運転冷凍機の効率を最高点近くに維持する。上記により冷凍機を一台停止することが可能となる。
同様に、さらに外気OAが下がった場合は一台運転に移行する。これにより冷凍機二台を停止させることが可能となる。外気OAがk点のエンタルピ以下に下がった場合には3台とも停止する。
This will be described with respect to the directly expanded coils 21, 22, 23, 31, 32, 33 of this embodiment. The
Similarly, when the outside air OA further decreases, the operation shifts to one unit operation. This makes it possible to stop the two refrigerators. When the outside air OA falls below the k-th enthalpy, all three units stop.
一方、直膨コイル31,32,33については、i点の露点温度またはm点の乾球温度を目標に冷凍機蒸発圧力を変化させて精密制御されるが、この際、蒸発圧力を検知し、非凍結域に運転を制限することによりコイル凍結を避けて精密制御が可能となる。
凍結制限がかからない状態での運転では図8に示すように目標露点4.9℃DPに対して±0.5℃DPの高精度運転を実現している。凍結制限を加えた状態ではも従来方式では不可能な低露点である目標露点3℃DPに対して±0.7℃DPの高精度制御を凍結を回避して実現している。いずれも再加湿は実施せず省エネ運転を実現している。
直膨コイル31,32,33についても、直膨コイル21,22,23と同様に外気工ンタルピの低下により能力に余裕ができ、かつ冷凍機運転が最高効率点より下がった段階で順次停止してゆく。
On the other hand, the direct expansion coils 31, 32, and 33 are precisely controlled by changing the refrigerator evaporation pressure with the target of the dew point temperature at point i or the dry bulb temperature at point m. By restricting the operation to the non-freezing range, the coil can be prevented from freezing and precise control can be performed.
In the operation in which the freezing limit is not applied, as shown in FIG. 8, a highly accurate operation of ± 0.5 ° C. DP is realized with respect to the target dew point of 4.9 ° C. DP. Even in the state where the freezing limit is added, high precision control of ± 0.7 ° C. DP is realized by avoiding freezing with respect to the
As with the direct expansion coils 21, 22, and 23, the direct expansion coils 31, 32, and 33 are also stopped in sequence when the capacity of the direct expansion coils 31, 22, and 23 is reduced due to the decrease in the outside air working rate and the refrigerator operation falls below the maximum efficiency point. Go.
このように、外気条件の低下に応じて冷凍機を停止してゆくことにより、冷凍機の高効率運転を維持し、計画的なローテンション運転を実施して冷凍機の長寿命化、運転状態での容易なメンテナンスを実現する。
冷凍機故障時のバックアップ運転についても休止冷凍機をただちに起動させることにより容易に実現する。
In this way, by stopping the refrigerator according to the decrease in the outside air conditions, maintaining the high efficiency operation of the refrigerator, implementing the planned low-tension operation, extending the life of the refrigerator, the operating state Realize easy maintenance.
Backup operation in the event of a refrigeration machine failure can be easily realized by immediately starting the idle refrigeration machine.
[実施例2]
上述したローテーション運転を上流を2台の直膨コイル21,22(図5で上の2台とした構成)、下流4台の直膨コイル31,32,33,34(図9,図10、図5での3台に点線部の1台を追加した構成)を配置した別の実施例21,22,31,32,33,34ついて説明すると、図9の空気線図で、外気OAが高温高湿のA領域の状態では、目標温度・湿度にするためには高負荷となり、全直膨コイルを稼働させることになるが、次に、外気OAが高温高湿のA領域よりも多少湿度が低いB領域の状態では、負荷が多少下がるので、6台のうちどれか1台を休ませることができ、本実施例では直膨コイル34を停止させることができる。なお、直膨コイル33,34を停止させるときは、当然のことながら空調空気の通過はダンパ等で停止することになる。
更に、外気OAがB領域よりも更に湿度が低いC領域の状態では、負荷が更に下がるので、6台のうちどれか2台を休ませることができ、本実施例では直膨コイル33,34を停止させることができる。
[Example 2]
In the above-described rotation operation, the upstream two direct expansion coils 21 and 22 (configuration with the upper two in FIG. 5) and the downstream four direct expansion coils 31, 32, 33, and 34 (FIGS. 9, 10, Next, another
Further, when the outside air OA is in the C region where the humidity is lower than that in the B region, the load is further reduced. Therefore, any two of the six units can be rested. In this embodiment, the direct expansion coils 33 and 34 are used. Can be stopped.
同様に、外気OAがC領域よりも更に湿度と温度が低いD領域の状態では、負荷が更に下がるので、6台のうちどれか3台を休ませることができ、本実施例では直膨コイル32,33,34を停止させることができる。
同様に、外気OAがD領域よりも更に湿度と温度が低いE領域の状態では、負荷も小さくなるので、6台のうちどれか4台を休ませることができ、本実施例では第2直膨コイル群3の直膨コイル31乃至34を停止させ、第1直膨コイル群2だけを稼働して、省エネを実現している。
Similarly, when the outside air OA is in the D region where the humidity and temperature are lower than those in the C region, the load is further reduced. Therefore, any three of the six units can rest, and in this embodiment, the
Similarly, when the outside air OA is in the E region where the humidity and temperature are lower than those in the D region, the load is also small, so that any four of the six units can be rested. The direct expansion coils 31 to 34 of the
この時の実際の実施例での運転状態の測定結果をグラフにした図10に沿って説明すると、図10は、空気調和機1での入口空気条件(エンタルピを減少)を変化させた場合の出口での温度・湿度を測定したグラフである。
先ず、湿度について説明すると、図10の上側(細線)は湿度の変化に関するグラフであり、空気調和機1への入口湿度:Vが90〜80%程度であって外気(入口)OAの状態がAからE領域に変化しても、直膨コイル群1,2をこれに対応した運転状態に切り換え、AからE領域に対応して直膨コイルの稼働台数を徐々に減らしていっても、出口湿度:Wは50〜60%を維持していることが判る。
Referring to FIG. 10 which graphs the measurement result of the operation state in the actual embodiment at this time, FIG. 10 shows the case where the inlet air condition (decreasing enthalpy) in the
First, the humidity will be described. The upper side (thin line) in FIG. 10 is a graph relating to the change in humidity. The inlet humidity to the
次に、温度について説明すると、図10の下側は温度の変化に関するグラフであるが、空気調和機1の入口温度:Yが33℃から18℃程度まで下がり、外気(入口)OAの状態がAからE領域に変化し、直膨コイルの稼働状態に伴って切り換え、直膨コイルの稼働台数を徐々に減らしていっても、途中、領域切換えで新たに直膨コイルの運転を停止する際に多少温度が上昇するが、それでも出口温度:Zは10.3〜12.6℃の範囲を維持している。
このように、高温高湿のA領域以外では直膨コイルの1部を停止することができ、ローテンションを組めば効率的に直膨コイルや室外機等を休ませることができ、更に、計画的にローテーション運転を行って直膨コイルや室外機等の長寿命化を実現できる。
Next, the temperature will be described. The lower side of FIG. 10 is a graph related to the change in temperature. The inlet temperature of the air conditioner 1 Y decreases from about 33 ° C. to about 18 ° C., and the state of the outside air (inlet) OA is When changing from A to E region, switching according to the operation state of the direct expansion coil, and gradually reducing the number of operation of the direct expansion coil, when the operation of the direct expansion coil is newly stopped by switching the region on the way However, the outlet temperature: Z is still in the range of 10.3-12.6 ° C.
In this way, a part of the direct expansion coil can be stopped outside the high-temperature and high-humidity A region, and if the low tension is assembled, the direct expansion coil and the outdoor unit can be efficiently rested. Rotation operation can be performed to extend the service life of directly expanded coils and outdoor units.
また、この実施例によれば、故障時のバックアップ運転が容易に対応できるが、これをローテーションの実例と併せて、図11に沿って説明する。
図11において、高温・高湿のA領域においては6台の全直膨コイルを稼働させるが、負荷が減少したC領域においては、各直膨コイル21,22,31,32,33,34は独立して制御可能であるので2台の直膨コイル及びこれらに付随する室外機等を休ませることができる。この場合、各直膨コイル21,22,31,32,33,34は独立して制御可能であるので、能力が同じ場合には2台の選択は任意であり、例えば、C領域運転1のように直膨コイル31,32を休ませることができ、また、C領域運転2のように直膨コイル33,34及びこれらに付随する室外機等を休ませることができ、次のC領域運転1と2を交互に稼働させるようにしてもよい。
In addition, according to this embodiment, backup operation at the time of failure can be easily handled, and this will be described along with FIG. 11 together with an example of rotation.
In FIG. 11, six fully expanded coils are operated in the high temperature and high humidity A region, but in the C region where the load is reduced, each of the directly expanded coils 21, 22, 31, 32, 33, 34 is Since it can be controlled independently, the two directly expanded coils and the outdoor unit associated with them can be rested. In this case, since each
また、故障時について説明すると、通常運転では、図11の中段の両端に示されるように、E領域で直膨コイル21と22を稼働して直膨コイル31乃至34の4台を停止しているが、図11の下段の両端(a)(f)に示すように、直膨コイル21と22が故障或いは保守で停止せざるを得ない場合は、直膨コイル31乃至34の4台を稼働させれば、通常通りの冷房能力を確保できる。
同様に、図11のC領域運転1のように直膨コイル31,32を休ませている場合、図11の下段の(b)に示すように、直膨コイル33と34が故障或いは保守で停止せざるを得ない場合は、直膨コイル31、32、及び、直膨コイル21,22の4台を稼働させれば、通常通りの冷房能力を確保でき、また、図11の下段の(c)に示すように、直膨コイル21と22が故障或いは保守で停止せざるを得ない場合は、直膨コイル31乃至34の4台を稼働させれば、通常通りの冷房能力を確保できる。
In the normal operation, as shown at both ends of the middle stage in FIG. 11, the linear expansion coils 21 and 22 are operated in the E region and the four linear expansion coils 31 to 34 are stopped in normal operation. However, as shown in the lower ends (a) and (f) of FIG. 11, when the directly expanded
Similarly, when the direct expansion coils 31 and 32 are rested as in the
更に、図11のC領域運転2のように直膨コイル33,34を休ませている場合、図11の下段の(d)に示すように、直膨コイル31と32が故障或いは保守で停止せざるを得ない場合は、直膨コイル33、34、及び、直膨コイル21,22の4台を稼働させれば、通常通りの冷房能力を確保でき、また、図11の下段の(e)に示すように、直膨コイル21と22が故障或いは保守で停止せざるを得ない場合は、直膨コイル31乃至34の4台を稼働させれば、通常通りの冷房能力を確保できる。
このように、ローテーション運転で各直膨コイル群での効率を向上させるともに、前述したように各直膨コイル自体を細かく制御して効率のよい稼働が可能になるので、全体としてより効率的な運転が可能となる。
Further, when the direct expansion coils 33 and 34 are rested as in the
Thus, the rotation operation improves the efficiency of each direct expansion coil group, and as described above, each direct expansion coil itself can be finely controlled to enable efficient operation. Driving is possible.
以上詳述したように、各実施例によれば、
(1)圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって圧縮器の圧縮圧力を制御したので、直膨コイルにおいてもきめ細かな制御が可能となり、直膨コイルは間接的な熱の受け渡しがないため、直膨コイルのシステムの冷暖房効率は水コイルを上回り省エネ運転が可能となる。
(2)圧縮器の稼働にあたり、蒸発圧力の値によって圧縮器の圧縮圧力を制御する制御系の他に、室温の検知よる制御系を併設して、これらの制御系の信号を選択回路391で選択して圧縮圧力を制御し、かつ、直膨コイル35は常に非凍結域以上で冷媒で循環するようにして直膨コイルでの冷却温度を制御したので、凍結事故を回避することができる。
(3)凍結回避以外に、直膨コイル31の蒸発圧力(蒸発温度)を制限する値を変更することで蒸発温度を常に一定以上に高く保つことで(図7の実線の冷凍サイクルを参照)高効率運転を可能となる。
(4)コイル蒸発温度を制御できるので、非結露運転の要望がある空調の場合には、蒸発圧力(蒸発温度)を空気露点温度以上に保つ、すなわち、冷却する直膨コイル31の非結露運転も可能となる。
As detailed above, according to each embodiment,
(1) Since the evaporation pressure of the refrigerant returning to the compressor is detected and the compression pressure of the compressor is controlled by the detected value of the evaporation pressure, fine control is possible even in the direct expansion coil. Since there is no indirect heat transfer, the heating and cooling efficiency of the direct expansion coil system exceeds that of the water coil, enabling energy-saving operation.
(2) In operation of the compressor, in addition to a control system for controlling the compression pressure of the compressor according to the value of the evaporation pressure, a control system for detecting the room temperature is also provided, and signals from these control systems are selected by the
(3) In addition to avoiding freezing, by changing the value that limits the evaporation pressure (evaporation temperature) of the
(4) Since the coil evaporation temperature can be controlled, in the case of air conditioning that requires non-condensing operation, the evaporating pressure (evaporating temperature) is kept above the air dew point temperature, that is, the non-condensing operation of the
(4)多段(2段)並列の直膨コイル群を更に配置したので、冷凍機一台では対応が不可能な大風量、大負荷においても、細かな段数制御により直膨コイル出口温度を設定した露点温度に制御可能となる。特に、実施例では第2直膨コイル群3を4段並列としたので、給気に近い位置で正確な温度・湿度の制御が出来る。
(5)直列に直膨コイル群2、3を配置したことにより、各段での空気条件に応じて、冷凍機が最適の蒸発圧力運転を行うことにより、従来システムよりエネルギー成績係数が良く、直膨コイル出口空気温度の誤差が±0.6℃程度のため、再熱や加湿の使用エネルギーが少ない。なお、この装置では再熱コイルやヒートポンプ(冷媒)にも対応可能である。
(6)実施例の直膨コイルを使用した空気調和機は、従来の水コイル使用の空調機とは異なり、冷水による冷却が必要でなくなるため冷水をつくるための熱源機が不要となって、室外機設置スペースだけとなり、水コイルのための冷熱源の機械室が不要になる。
(4) A multi-stage (two-stage) parallel direct expansion coil group is further arranged so that the direct expansion coil outlet temperature can be set by fine stage control even at large air volumes and loads that cannot be handled by a single refrigerator. The dew point temperature can be controlled. In particular, since the second direct
(5) By arranging the direct
(6) The air conditioner using the direct expansion coil of the embodiment is different from the air conditioner using the conventional water coil, so that it is not necessary to cool with cold water. Only an outdoor unit installation space is required, and a machine room with a cold heat source for the water coil is not required.
(7)並列配置の直膨コイル群と並列配置の直膨コイル群を2段の直列設置の組み合わせにすることにより、ローテーション運転が可能で、ローテーション運転により直膨コイル群や室外機の長寿命化が可能となり、また、一部の直膨コイルや室外機が故障時のバックアップ運転が容易に対応できる。
(8)しかも、複数の並列配置した直膨コイル群を2段に直列に配置して給気露点温度制御を行うので、上流の直膨コイル群で大まかな冷房制御を行った後、下流の直膨コイル群で温度・湿度をきめ細かく制御が可能で、かつ、広範囲の温度・湿度管理が可能であり、更に、風下に従来の水コイルの場合同様に再熱コイル・加湿器を設置し正確に恒温恒湿条件を満足する制御が可能となる。
(9)給気を兼ねた送風機7を第1直膨コイル群2と第2直膨コイル群3との間に配置したので、第1直膨コイル群2の一部が運転停止しても、吸気した空気を攪拌し冷却を均一にして、下流の複数の第2直膨コイル群3に同じ状態の空調空気を均等に送風することができ、第2直膨コイル群3の複数の直膨コイル31,32,33,(34)にほぼ同じような負荷がかかるので、運転に偏りがなく使用期間も長くでき、故障も少ない。
なお、本発明の特徴を損なうものでなければ、上記の各実施例に限定されるものでないことは勿論である。
(7) Rotation operation is possible by combining a parallel-arranged direct expansion coil group and a parallel-arrangement direct expansion coil group in a two-stage series installation. Long life of the direct expansion coil group and outdoor unit is achieved by rotation operation. In addition, it is possible to easily cope with backup operation when some directly expanded coils and outdoor units are out of order.
(8) In addition, since a plurality of directly expanded coil groups arranged in parallel are arranged in series in two stages to perform supply air dew point temperature control, after performing rough cooling control on the upstream directly expanded coil group, The temperature and humidity can be finely controlled with a group of directly expanded coils, and a wide range of temperature and humidity management is possible. In addition, a reheat coil and humidifier are installed in the lee as in the case of conventional water coils. In addition, it is possible to perform control that satisfies the constant temperature and humidity conditions.
(9) Since the
Of course, the present invention is not limited to the above-described embodiments as long as the features of the present invention are not impaired.
a・・冷水コイル、b・・再熱コイル、c・・加湿器、d・・バルブ、
e・・ボイラ、f・・バルブ、g1,g2,g3・・直膨コイル、
h・・冷凍機、i・・バルブ、k1,k2,k3・・室外機、
l・・送風機(ファン)、
1・・空気調和機、
2・・第1の直膨コイル群、21,22,23・・直膨コイル、
211,221,231・・膨張(制御)弁、
24・・室外機、241・・圧縮器、242・・ファン、243・・凝縮器、
3・・第2の直膨コイル群、31,32,33,(34)・・直膨コイル、
311・・圧力センサ、312・・温度センサ、313・・室温センサ
35・・圧縮器、36・・三方弁、
37・・凝縮器、371・・室外機、
38,382,383,384・・膨張弁、
39・・中央制御装置、391・・選択回路、392・・運転制御回路、
393・・演算制御回路、
4・・再熱コイル、41・・制御弁(バルブ)、
51・・第1加湿器、511・・制御弁(バルブ)、
52・・第2加湿器、521・・制御弁(バルブ)、
6・・ボイラ、
7・・送風機(ファン)
a ... cold water coil, b ... reheat coil, c ... humidifier, d ... valve,
e ・ Boiler, f ・ Valve, g1, g2, g3 ・ ・ Direct expansion coil,
h ・ ・ Refrigerator, i ・ ・ Valve, k1, k2, k3 ・ ・ Outdoor unit,
l. Blower (fan),
1. Air conditioner,
2. First direct expansion coil group, 21, 22, 23 ... Direct expansion coil,
211, 221, 231 .. Expansion (control) valve,
24..Outdoor unit, 241, ... Compressor, 242, ... Fan, 243 ... Condenser,
3. Second direct
311 ..
37 ... Condenser, 371 ... Outdoor unit,
38,382,383,384 ..expansion valve,
39 ... Central control unit, 391 ... Selection circuit, 392 ... Operation control circuit,
393 .. arithmetic control circuit,
4. Reheat coil, 41 Control valve (valve)
51..First humidifier, 511..Control valve (valve),
52 .. Second humidifier, 521 .. Control valve (valve),
6. Boiler,
7. Blower (fan)
Claims (4)
下流の第2直膨コイル群は独立して制御可能とし、圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって圧縮器の圧縮圧力を制御し、直膨コイルでの冷却温度を制御するとともに、
室温の検知による制御系を併設して、前記蒸発圧力による制御系の信号と前記室温の検知による制御系の信号とを選択回路で比較して、圧縮圧力を制御し直膨コイルは常に非凍結域以上で冷媒を循環するように選択して直膨コイルでの冷却温度を制御したことを特徴とする直膨コイルを使用した空気調和機。 Two groups of direct expansion coils that introduce outside air and are cooled or heated by a refrigerant are arranged in series, a plurality of upstream first direct expansion coils are arranged in parallel, and a plurality of downstream second direct expansion coils are also included. In air conditioners arranged in parallel,
The downstream second direct expansion coil group can be controlled independently, detects the evaporation pressure of the refrigerant returning to the compressor, controls the compression pressure of the compressor based on the detected evaporation pressure value, and the direct expansion coil While controlling the cooling temperature at
A control system based on room temperature detection is also provided, and the control system signal based on the evaporation pressure and the control system signal based on the room temperature detection are compared by a selection circuit to control the compression pressure and the direct expansion coil is always unfrozen. An air conditioner using a direct expansion coil, wherein the cooling temperature in the direct expansion coil is controlled by selecting the refrigerant to circulate in the region or higher.
下流の第2直膨コイル群は独立して制御可能とし、圧縮器に還流する冷媒の蒸発圧力を検知して、その検知した蒸発圧力の値によって圧縮器の圧縮圧力を制御し、直膨コイルでの冷却温度を制御するとともに、
冷房時の給気露点温度による制御系を併設して、前記蒸発圧力による制御系の信号と前記冷房時の給気露点温度による制御系の信号とを選択回路で比較して、圧縮圧力を制御し直膨コイルは常に非凍結域以上で冷媒を循環するように選択して直膨コイルでの冷却温度を制御したことを特徴とする直膨コイルを使用した空気調和機。 Two groups of direct expansion coils that introduce outside air and are cooled or heated by a refrigerant are arranged in series, a plurality of upstream first direct expansion coils are arranged in parallel, and a plurality of downstream second direct expansion coils are also included. In air conditioners arranged in parallel,
The downstream second direct expansion coil group can be controlled independently, detects the evaporation pressure of the refrigerant returning to the compressor, controls the compression pressure of the compressor based on the detected evaporation pressure value, and the direct expansion coil While controlling the cooling temperature at
A control system based on the supply air dew point temperature during cooling is also provided, and the control signal based on the evaporation pressure and the control system signal based on the supply air dew point temperature during cooling are compared by a selection circuit to control the compression pressure. An air conditioner using a direct expansion coil, wherein the direct expansion coil is always selected so as to circulate a refrigerant in the non-freezing region or more and the cooling temperature in the direct expansion coil is controlled.
4. An air conditioner using a direct expansion coil according to claim 1, wherein a blower also serving as an air supply is disposed between the first direct expansion coil group and the second direct expansion coil group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012287144A JP6105933B2 (en) | 2012-12-28 | 2012-12-28 | Air conditioner using direct expansion coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012287144A JP6105933B2 (en) | 2012-12-28 | 2012-12-28 | Air conditioner using direct expansion coil |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017039911A Division JP6370425B2 (en) | 2017-03-02 | 2017-03-02 | Air conditioner using direct expansion coil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014129912A JP2014129912A (en) | 2014-07-10 |
JP6105933B2 true JP6105933B2 (en) | 2017-03-29 |
Family
ID=51408439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012287144A Active JP6105933B2 (en) | 2012-12-28 | 2012-12-28 | Air conditioner using direct expansion coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6105933B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017122573A (en) * | 2017-03-02 | 2017-07-13 | 鹿島建設株式会社 | Air conditioner using direct expansion coil |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207422557U (en) * | 2015-08-11 | 2018-05-29 | 三菱电机株式会社 | Air-conditioning system |
JP6873721B2 (en) * | 2017-02-03 | 2021-05-19 | 株式会社テクノ菱和 | Air treatment device, control device for air treatment device, control method for air treatment system and air treatment device |
KR101856743B1 (en) * | 2017-03-08 | 2018-05-10 | 주식회사 성지테크 | Air conditioner with evaporation cooler |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4784213A (en) * | 1986-04-08 | 1988-11-15 | Temptronic Corporation | Mixing valve air source |
JPH01169262A (en) * | 1987-12-25 | 1989-07-04 | Matsushita Seiko Co Ltd | Air-conditioner |
JP4989256B2 (en) * | 2007-02-23 | 2012-08-01 | 株式会社大気社 | Control device and control method for air conditioning equipment and heat source equipment, air conditioning system and control method therefor. |
JP2010159928A (en) * | 2009-01-08 | 2010-07-22 | Tokyo Electric Power Co Inc:The | Air conditioner |
JP5424706B2 (en) * | 2009-05-13 | 2014-02-26 | 三菱電機株式会社 | Refrigeration cycle equipment |
-
2012
- 2012-12-28 JP JP2012287144A patent/JP6105933B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017122573A (en) * | 2017-03-02 | 2017-07-13 | 鹿島建設株式会社 | Air conditioner using direct expansion coil |
Also Published As
Publication number | Publication date |
---|---|
JP2014129912A (en) | 2014-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1536186B1 (en) | Air conditioner | |
US11959652B2 (en) | Machine learning apparatus, air conditioning system, and machine learning method | |
US11280511B2 (en) | Systems and methods for evaporative heat rejection equipment fan speed control | |
US10309676B2 (en) | Air-source heat pump air conditioner | |
JP5971907B2 (en) | Air conditioner using direct expansion coil | |
WO2017081820A1 (en) | Air conditioning system and method for controlling air conditioning system | |
US20050257539A1 (en) | Air conditioner and method for controlling operation thereof | |
JP6250148B2 (en) | Air conditioning system | |
JP6105933B2 (en) | Air conditioner using direct expansion coil | |
US20190376702A1 (en) | Method for sequencing compressor operation based on space humidity | |
JP2013002749A (en) | Air conditioning device | |
JP6370425B2 (en) | Air conditioner using direct expansion coil | |
JP7374633B2 (en) | Air conditioners and air conditioning systems | |
JP6134511B2 (en) | Air conditioner using direct expansion coil | |
KR20170138703A (en) | Air conditioner system and its control method | |
JP4074422B2 (en) | Air conditioner and its control method | |
JP7462830B2 (en) | Air Conditioning Equipment | |
KR102087737B1 (en) | Constant temperature and humidity air conditioning system | |
US10914487B2 (en) | Low load mode of HVAC system | |
KR100712857B1 (en) | Refrigerants Control Method For Dual Type Unitary Air Conditioner | |
JP6938950B2 (en) | Air conditioning system | |
JP4809208B2 (en) | Refrigeration air conditioning system | |
KR100723946B1 (en) | Method for controlling dehumidification operation of multi type air-conditioner | |
JP6239100B2 (en) | Air conditioning system | |
KR20240042308A (en) | air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170303 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6105933 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |