JP5967534B2 - Heat shielding film forming method and heat shielding film covering member - Google Patents
Heat shielding film forming method and heat shielding film covering member Download PDFInfo
- Publication number
- JP5967534B2 JP5967534B2 JP2012180706A JP2012180706A JP5967534B2 JP 5967534 B2 JP5967534 B2 JP 5967534B2 JP 2012180706 A JP2012180706 A JP 2012180706A JP 2012180706 A JP2012180706 A JP 2012180706A JP 5967534 B2 JP5967534 B2 JP 5967534B2
- Authority
- JP
- Japan
- Prior art keywords
- bond coat
- heat shielding
- coat layer
- shielding film
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 17
- 239000007921 spray Substances 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 239000000463 material Substances 0.000 description 37
- 238000000576 coating method Methods 0.000 description 28
- 239000011248 coating agent Substances 0.000 description 27
- 206010040844 Skin exfoliation Diseases 0.000 description 18
- 238000012360 testing method Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 238000013001 point bending Methods 0.000 description 10
- 238000001878 scanning electron micrograph Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000012720 thermal barrier coating Substances 0.000 description 7
- 238000003878 thermal aging Methods 0.000 description 6
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 6
- 230000032683 aging Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 239000007888 film coating Substances 0.000 description 3
- 238000009501 film coating Methods 0.000 description 3
- 229910000601 superalloy Inorganic materials 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 229910000636 Ce alloy Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- LHLMOSXCXGLMMN-CLTUNHJMSA-M [(1s,5r)-8-methyl-8-propan-2-yl-8-azoniabicyclo[3.2.1]octan-3-yl] 3-hydroxy-2-phenylpropanoate;bromide Chemical compound [Br-].C([C@H]1CC[C@@H](C2)[N+]1(C)C(C)C)C2OC(=O)C(CO)C1=CC=CC=C1 LHLMOSXCXGLMMN-CLTUNHJMSA-M 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005328 electron beam physical vapour deposition Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、熱遮蔽被膜の形成方法および熱遮蔽被膜被覆部材に関する。 The present invention relates to a method for forming a heat shielding coating and a heat shielding coating-coated member.
発電所等のガスタービンは、その初期には、タービン入口温度(TIT:Turbine Inlet gas Temperature)が約800℃と低く、熱効率も30%程度であった。しかし、近年では、TITが1300℃〜1500℃級となり、熱効率も50%強まで向上している。さらに、コンバインドサイクル方式の採用により一層の高効率化が可能となっている。このようなTITの上昇は、燃焼器や静翼および動翼等の高温部品における冷却技術の進歩や、その材料の改良によってもたらされてきた。しかし、冷却技術やタービン翼の材料開発だけではTIT上昇の限界が近づいたため、現在では、タービン翼に熱遮蔽被膜(遮熱コーティング;TBC:Thermal Barrier Coating)を施すことが必要不可欠となっている。 In the initial stage of a gas turbine such as a power plant, the turbine inlet temperature (TIT) was as low as about 800 ° C. and the thermal efficiency was about 30%. However, in recent years, the TIT has reached the 1300 ° C. to 1500 ° C. class, and the thermal efficiency has improved to over 50%. In addition, the use of the combined cycle method enables further improvement in efficiency. Such an increase in TIT has been brought about by advances in cooling technology and improvement of materials in high-temperature parts such as combustors, stationary blades and moving blades. However, since the limit of TIT rise is approaching only by cooling technology and turbine blade material development, it is indispensable to apply a thermal barrier coating (TBC: Thermal Barrier Coating) to the turbine blade. .
熱遮蔽皮膜は、熱伝導率の低いセラミックスを耐熱合金基材表面にコーティングすることにより、基材の温度上昇を抑制させる技術である。タービン動翼は、一般に内部を冷却しているため、表面と内部との間に温度勾配が存在する。このため、セラミックスのコーティングを施すことにより熱伝導を抑制し、基材表面温度を低下させることが可能となる。 The heat shielding film is a technique for suppressing the temperature rise of the base material by coating the surface of the heat-resistant alloy base material with a ceramic having a low thermal conductivity. Since the turbine rotor blade generally cools the inside, a temperature gradient exists between the surface and the inside. For this reason, by applying a ceramic coating, it is possible to suppress heat conduction and lower the substrate surface temperature.
一般的な熱遮蔽皮膜は、Ni基超合金基材上に、MCrAlY合金(Mは、Fe,Ni,Coから選ばれる1種以上の元素)から成るボンドコート層(BC:Bond Coat)を、減圧プラズマ溶射(LPPS:Low Pressure Plasma Spray)や高速フレーム溶射(HVOF:High Velocity Oxy−fuel Frame−spraying)により、厚さ約100μm程度で形成し、そのボンドコート層の上に、イットリア安定化ジルコニア(YSZ:Yttria Stabilized Zirconia)から成るトップコート層(TC:Top Coat)を、大気圧プラズマ溶射(APS:Air Plasma Spray)または電子ビーム物理蒸着法(EB−PVD:Electron Beam−Physical Vapor Deposition)により、厚さ250〜300μm程度で形成して成っている(例えば、非特許文献1または2参照)。 A general heat shielding film has a bond coat layer (BC: Bond Coat) made of an MCrAlY alloy (M is one or more elements selected from Fe, Ni, Co) on a Ni-based superalloy substrate. It is formed with a thickness of about 100 μm by low pressure plasma spray (LPPS) or high velocity flame spraying (HVOF), and the yttria stabilized zirconia is formed on the bond coat layer. A top coat layer (TC: Top Coat) made of (YSZ: Yttria Stabilized Zirconia) is applied to atmospheric pressure plasma spray (APS: Air Plasma Spray) or electron beam physical vapor deposition (EB-PVD: Electror). The n Beam-Physical Vapor Deposition), is made to form in a thickness of about 250-300 (e.g., see Non-Patent Document 1 or 2).
熱遮蔽皮膜は、高温環境において高速回転による遠心力や振動および燃焼ガスによる腐食等を受けることが予想される。また、タービンの起動・停止に伴う熱サイクル環境下に曝されるため、経年劣化によるはく離や脱落が危惧される。熱遮蔽皮膜がはく離した場合、基材が直接高温環境に曝されるため、深刻な破壊に繋がる恐れがある。このような熱遮蔽皮膜のはく離劣化を支配する一つの要因として、高温環境における長時間使用により、トップコート層とボンドコート層との界面に、熱成長酸化物(TGO:Thermally Grown Oxide)が生成し成長することが挙げられる。 The heat shielding film is expected to be subjected to centrifugal force and vibration due to high-speed rotation, corrosion due to combustion gas, and the like in a high temperature environment. Moreover, since it is exposed to the heat cycle environment accompanying the start / stop of the turbine, there is a risk of peeling or dropping due to aging. When the heat shielding film is peeled off, the substrate is directly exposed to a high temperature environment, which may lead to serious destruction. One factor that governs the degrading degradation of such a thermal barrier coating is the formation of thermally grown oxide (TGO) at the interface between the topcoat layer and the bondcoat layer after prolonged use in a high temperature environment. And growing.
そこで、熱成長酸化物の生成挙動を制御して、熱遮蔽皮膜のはく離性を向上させるために、本発明者等は、CoNiCrAlYから成るボンドコート層に、CeおよびSiを微量(0.5wt%Ce,1.0wt%Si)添加したものを開発している(例えば、非特許文献3または特許文献1参照)。この熱遮蔽皮膜は、ボンドコート層内に入り組むように形成された熱成長酸化物の楔止効果により、耐はく離性が向上することが確認されている。 Therefore, in order to control the generation behavior of the thermally grown oxide and improve the peelability of the heat shielding film, the present inventors have added a trace amount of Ce and Si (0.5 wt%) to the bond coat layer made of CoNiCrAlY. (Ce, 1.0 wt% Si) is added (for example, see Non-Patent Document 3 or Patent Document 1). It has been confirmed that the heat-shielding film has improved peeling resistance due to the wedge-fastening effect of the thermally grown oxide formed so as to be embedded in the bond coat layer.
なお、LPPSによりボンドコート層を形成する場合には、熱影響が発生することや、真空チャンバーが必要となるといった問題点があった。このため、粒子を高速で飛翔させ、粒子を大きく塑性変形させることにより皮膜を形成するコールドスプレー(CS:Cold spray)法により、ボンドコート層を形成する試みがなされている(例えば、特許文献2または3参照)。また、LPPSで施工したボンドコート層よりも、コールドスプレー法で施工したボンドコート層の方が、熱成長酸化物の成長速度が遅いことが報告されている(例えば、非特許文献4参照)。なお、従来のコールドスプレー(CS)法によるボンドコート層の形成では、ボンドコート材料としてCoNiCrAlY合金を利用している。しかし、LPPSで施工可能な材料も、CS法で施工可能とは限らないため、他の材料を使用する場合には、成膜の可否や、最適条件の検討を行う必要がある。 Note that when the bond coat layer is formed by LPPS, there is a problem that a thermal effect occurs and a vacuum chamber is required. For this reason, an attempt is made to form a bond coat layer by a cold spray (CS) method in which a film is formed by flying particles at a high speed and greatly deforming the particles (for example, Patent Document 2). Or see 3). Further, it has been reported that the growth rate of the thermally grown oxide is slower in the bond coat layer applied by the cold spray method than in the bond coat layer applied by LPPS (for example, see Non-Patent Document 4). In forming a bond coat layer by a conventional cold spray (CS) method, a CoNiCrAlY alloy is used as a bond coat material. However, materials that can be constructed by LPPS are not necessarily constructable by the CS method. Therefore, when other materials are used, it is necessary to examine the possibility of film formation and the optimum conditions.
近年、熱効率を向上させるために、ガスタービンのタービン入口温度(TIT)が上昇する傾向にある。現在よりさらにTITが上昇するものと考えられる次世代のガスタービンに対応するためには、非特許文献3および特許文献1に記載の熱遮蔽被膜よりもさらに高温における耐はく離性に優れたものが必要になると考えられる。 In recent years, in order to improve thermal efficiency, the turbine inlet temperature (TIT) of gas turbines tends to increase. In order to cope with the next-generation gas turbine that is considered to have a further increase in TIT than the present one, the one having superior peeling resistance at a higher temperature than the heat shielding coating described in Non-Patent Document 3 and Patent Document 1 It is considered necessary.
本発明は、このような課題に着目してなされたもので、高温における耐はく離性に優れた熱遮蔽被膜の形成方法および熱遮蔽被膜被覆部材を提供することを目的としている。 The present invention has been made paying attention to such a problem, and an object of the present invention is to provide a method for forming a heat shielding film and a heat shielding film-coated member having excellent peeling resistance at high temperatures.
本発明に係る熱遮蔽被膜の形成方法は、金属基材の表面に、コールドスプレー法によりMCrAl又はMCrAlY(Mは、Fe,Ni,Coから選ばれる1種以上の元素)にCeを添加した合金から成るボンドコート層を形成し、前記ボンドコート層の上に、セラミックスから成るトップコート層を形成した後、1050℃乃至1300℃で熱処理を行って前記ボンドコート層に楔形の熱成長酸化物を成長させることを特徴とする。 The method for forming a heat shielding film according to the present invention is an alloy in which Ce is added to MCrAl or MCrAlY (M is one or more elements selected from Fe, Ni, Co) on the surface of a metal substrate by a cold spray method. A bond coat layer is formed, and a ceramic top coat layer is formed on the bond coat layer, followed by heat treatment at 1050 ° C. to 1300 ° C. to form a wedge-shaped thermally grown oxide on the bond coat layer. It is characterized by growing.
本発明に係る熱遮蔽被膜の形成方法では、コールドスプレー法によりボンドコート層を形成するため、LPPSで形成したボンドコート層と比べて熱成長酸化物(TGO)の成長速度が遅く、耐はく離性に優れた熱遮蔽被膜を得ることができる。また、ボンドコート層のMCrAl又はMCrAlYにCeを添加し、1050℃乃至1300℃で熱処理を行うことにより、ボンドコート層の内部にTGOが成長する際も、楔形のTGOを成長させることができる。こうして成長した楔形TGOにより熱応力分散が生じるため、熱遮蔽被膜の高温における耐はく離性をさらに向上させることができる。なお、熱処理温度が1300℃を越えると、溶融や組織変化等が発生するため、熱処理温度は1300℃以下とする。 In the method for forming a heat-shielding film according to the present invention, a bond coat layer is formed by a cold spray method, so that the growth rate of thermally grown oxide (TGO) is slower than that of a bond coat layer formed by LPPS, and peel resistance is improved. It is possible to obtain an excellent heat shielding film. Further, by adding Ce to MCrAl or MCrAlY of the bond coat layer and performing a heat treatment at 1050 ° C. to 1300 ° C., the wedge-shaped TGO can be grown even when the TGO grows inside the bond coat layer. Since the wedge-shaped TGO thus grown causes thermal stress dispersion, it is possible to further improve the peel resistance of the heat shielding film at a high temperature. Note that if the heat treatment temperature exceeds 1300 ° C., melting, structural change or the like occurs, so the heat treatment temperature is set to 1300 ° C. or less.
また、ボンドコート材料として一般的に使用されているCoNiCrAlY合金では、トップコート層とボンドコート層との界面に複合酸化物YAGが生成され、この酸化物により界面強度が低下している。このため、ボンドコート層がMCrAlにCeを添加した合金からなる場合には、ボンドコート材料にYが含まれている場合に比べて、楔形のTGOが一様にかつ顕著に成長すると共に、トップコート層とボンドコート層との界面に複合酸化物YAGが生成されるのを防ぐことができ、熱遮蔽被膜の耐はく離性をさらに向上させることができる。 Further, in a CoNiCrAlY alloy generally used as a bond coat material, a composite oxide YAG is generated at the interface between the top coat layer and the bond coat layer, and the interface strength is reduced by this oxide. For this reason, when the bond coat layer is made of an alloy obtained by adding Ce to MCrAl, the wedge-shaped TGO grows uniformly and significantly as compared with the case where the bond coat material contains Y, and the top Generation of the composite oxide YAG at the interface between the coat layer and the bond coat layer can be prevented, and the peel resistance of the heat shielding coating can be further improved.
本発明に係る熱遮蔽被膜被覆部材は、金属基材と該金属基材の表面に形成された熱遮蔽被膜とを有し、前記熱遮蔽被膜は、MCrAl又はMCrAlY(Mは、Fe,Ni,Coから選ばれる1種以上の元素)にCeを添加した合金から成るコールドスプレー法により形成されたボンドコート層と、該ボンドコート層の上に形成されたセラミックスから成るトップコート層とを有し、前記ボンドコート層は、内部に楔形の熱成長酸化物を有していることを特徴とする。
The heat shielding coating member according to the present invention has a metal substrate and a heat shielding coating formed on the surface of the metal substrate, and the heat shielding coating is MCrAl or MCrAlY (M is Fe, Ni, A bond coat layer formed by a cold spray method made of an alloy obtained by adding Ce to one or more elements selected from Co), and a top coat layer made of ceramics formed on the bond coat layer. The bond coat layer has a wedge-shaped thermally grown oxide inside .
本発明に係る熱遮蔽被膜被覆部材は、本発明に係る熱遮蔽被膜の形成方法により好適に形成される。本発明に係る熱遮蔽被膜被覆部材は、コールドスプレー法によりボンドコート層が形成されているため、熱遮蔽被膜の耐はく離性が優れている。また、ボンドコート層のMCrAl又はMCrAlYにCeが添加され、1050℃乃至1300℃で熱処理が行われているため、熱遮蔽被膜の高温における耐はく離性をさらに向上させることができる。また、ボンドコート層がMCrAlにCeを添加した合金からなる場合には、ボンドコート材料にYが含まれている場合に比べて、楔形のTGOが一様にかつ顕著に成長していると共に、トップコート層とボンドコート層との界面に複合酸化物YAGが生成されるのを防ぐことができ、熱遮蔽被膜の耐はく離性をさらに向上させることができる。 The heat shielding film covering member according to the present invention is suitably formed by the method for forming a heat shielding film according to the present invention. Since the heat-shielding coating member according to the present invention has a bond coat layer formed by a cold spray method, the heat-shielding coating has excellent peel resistance. Further, since Ce is added to MCrAl or MCrAlY of the bond coat layer and heat treatment is performed at 1050 ° C. to 1300 ° C., the peel resistance at a high temperature of the heat shielding coating can be further improved. Further, when the bond coat layer is made of an alloy obtained by adding Ce to MCrAl, the wedge-shaped TGO is uniformly and significantly grown as compared with the case where the bond coat material contains Y, It is possible to prevent the composite oxide YAG from being generated at the interface between the top coat layer and the bond coat layer, and to further improve the peel resistance of the heat shielding coating.
本発明によれば、高温における耐はく離性に優れた熱遮蔽被膜の形成方法および熱遮蔽被膜被覆部材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the formation method and heat shielding film coating | coated member of the heat shielding film excellent in the peeling resistance in high temperature can be provided.
以下、本発明の実施の形態について説明する。
本発明の実施の形態の熱遮蔽被膜被覆部材は、本発明の実施の形態の熱遮蔽被膜の形成方法により、以下のようにして形成される。すなわち、まず、金属基材の表面に、コールドスプレー法により、MCrAlまたはMCrAlY(Mは、Fe,Ni,Coから選ばれる1種以上の元素)にCeを添加した合金から成るボンドコート層を、厚さ約100μmで形成する。金属基材は、例えば、耐熱合金のNi基超合金である。また、ボンドコート材料は、例えば、CoNiCrAl+Ce合金またはCoNiCrAlY+Ce合金である。
Embodiments of the present invention will be described below.
The heat shielding coating member according to the embodiment of the present invention is formed as follows by the method for forming a heat shielding coating according to the embodiment of the present invention. That is, first, a bond coat layer made of an alloy in which Ce is added to MCrAl or MCrAlY (M is one or more elements selected from Fe, Ni, Co) by a cold spray method on the surface of a metal substrate. It is formed with a thickness of about 100 μm. The metal substrate is, for example, a heat resistant alloy Ni-base superalloy. The bond coat material is, for example, a CoNiCrAl + Ce alloy or a CoNiCrAlY + Ce alloy.
次に、ボンドコート層の上に、大気圧プラズマ溶射(APS)により、セラミックスから成るトップコート層を、厚さ250〜300μmで形成する。トップコート層は、例えば、イットリア安定化ジルコニア(YSZ)である。トップコート層を形成後、約1100℃で熱処理を行う。こうして、本発明の実施の形態の熱遮蔽被膜被覆部材を形成することができる。 Next, a top coat layer made of ceramic is formed to a thickness of 250 to 300 μm on the bond coat layer by atmospheric pressure plasma spraying (APS). The topcoat layer is, for example, yttria stabilized zirconia (YSZ). After forming the topcoat layer, heat treatment is performed at about 1100 ° C. In this way, the heat shielding film covering member of the embodiment of the present invention can be formed.
本発明の実施の形態の熱遮蔽被膜の形成方法では、コールドスプレー法によりボンドコート層を形成するため、LPPSで形成したボンドコート層と比べてTGO(熱成長酸化物)の成長速度が遅く、耐はく離性に優れた熱遮蔽被膜を得ることができる。また、ボンドコート層のMCrAlまたはMCrAlYにCeを添加し、約1100℃で熱処理を行った場合は、ボンドコート層の内部にTGOが成長する際も、楔形のTGOを成長させることができる。こうして成長した楔形TGOにより熱応力分散が生じるため、熱遮蔽被膜の高温における耐はく離性をさらに向上させることができる。 In the method for forming a heat shielding film according to the embodiment of the present invention, since the bond coat layer is formed by a cold spray method, the growth rate of TGO (thermally grown oxide) is slower than the bond coat layer formed by LPPS, A heat shielding film having excellent peeling resistance can be obtained. Further, when Ce is added to MCrAl or MCrAlY of the bond coat layer and heat treatment is performed at about 1100 ° C., wedge-shaped TGO can be grown even when TGO grows inside the bond coat layer. Since the wedge-shaped TGO thus grown causes thermal stress dispersion, it is possible to further improve the peel resistance of the heat shielding film at a high temperature.
また、ボンドコート層がMCrAlにCeを添加した合金からなる場合には、ボンドコート材料にYが含まれている場合に比べて、楔形のTGOが一様にかつ顕著に成長していると共に、トップコート層とボンドコート層との界面に複合酸化物YAGが生成されるのを防ぐことができ、熱遮蔽被膜の耐はく離性をさらに向上させることができる。 Further, when the bond coat layer is made of an alloy obtained by adding Ce to MCrAl, the wedge-shaped TGO is uniformly and significantly grown as compared with the case where the bond coat material contains Y, It is possible to prevent the composite oxide YAG from being generated at the interface between the top coat layer and the bond coat layer, and to further improve the peel resistance of the heat shielding coating.
金属基材の表面に、コールドスプレー法により厚さ約100μmのボンドコート層を形成し、ボンドコート層の上に、APSにより厚さ約300μmのトップコート層を形成した。金属基材には、厚さ3mmの多結晶Ni基超合金(Inconel 738LC)を使用した。ボンドコート材料には、CoNiCrAl+Ce(以下「実施例1」)およびCoNiCrAlY+Ce(以下「実施例2」)を使用した。また、比較のために、ボンドコート材料として、CoNiCrAlY(SULZER METCO製「AMDRY 9951」)を用いたもの(以下「比較例」)も形成した。各ボンドコート材料の化学組成を、表1に示す。トップコート材料には、8wt%YSZ(SULZER METCO製「METCO 204NS」)を使用した。 A bond coat layer having a thickness of about 100 μm was formed on the surface of the metal substrate by a cold spray method, and a top coat layer having a thickness of about 300 μm was formed on the bond coat layer by APS. As the metal substrate, a 3 mm thick polycrystalline Ni-base superalloy (Inconel 738LC) was used. CoNiCrAl + Ce (hereinafter “Example 1”) and CoNiCrAlY + Ce (hereinafter “Example 2”) were used as bond coat materials. For comparison, a material using CoNiCrAlY (“AMDRY 9951” manufactured by SULZER METCO) (hereinafter “Comparative Example”) was also formed as a bond coat material. The chemical composition of each bond coat material is shown in Table 1. As the top coat material, 8 wt% YSZ (“METCO 204NS” manufactured by SULZER METCO) was used.
形成した各ボンドコート材料の熱遮蔽被膜被覆部材を用いて、TGO(熱成長酸化物)の生成状態の観察および四点曲げ試験を行った。 Using the formed heat-shielding coating member of each bond coat material, observation of the formation state of TGO (thermally grown oxide) and a four-point bending test were performed.
[TGOの生成状態の観察]
各ボンドコート材料を用いた熱遮蔽被膜被覆部材を、機械加工により縦10mm、横10mm、厚さ3mmに切断し、熱時効処理を施した。熱時効処理は、高温電気炉(ヤマト科学製「FO401」)にて、大気環境下1000℃で行った。熱時効処理後のトップコート層とボンドコート層との界面(TC/BC界面)を、走査型電子顕微鏡(SEM)にて観察し、各ボンドコート材料でのTGOの生成状態の評価を行った。SEM観察には、電界放出型走査電子顕微鏡(HITACHI製「FE−SEM S−4700」)を用いた。
[Observation of TGO generation state]
The heat shielding film covering member using each bond coat material was cut into 10 mm in length, 10 mm in width, and 3 mm in thickness by machining, and subjected to heat aging treatment. The thermal aging treatment was performed at 1000 ° C. in an atmospheric environment in a high temperature electric furnace (“FO401” manufactured by Yamato Scientific). The interface (TC / BC interface) between the top coat layer and the bond coat layer after the thermal aging treatment was observed with a scanning electron microscope (SEM), and the generation state of TGO in each bond coat material was evaluated. . For SEM observation, a field emission scanning electron microscope (“FE-SEM S-4700” manufactured by HITACHI) was used.
また、TGO(熱成長酸化物)を構成する酸化物の同定を行うため、エネルギー分散型X線分光器(EDX)により定性元素分析を行った。EDX分析には、電界放出型走査電子顕微鏡(「FE−SEM S−4700」)に搭載のEDX分析装置(EDAX製)を用いた。 Moreover, in order to identify the oxide which comprises TGO (thermally grown oxide), the qualitative elemental analysis was performed with the energy dispersive X-ray spectrometer (EDX). For the EDX analysis, an EDX analyzer (manufactured by EDAX) mounted on a field emission scanning electron microscope (“FE-SEM S-4700”) was used.
各ボンドコート材料の、熱処理時間1000時間におけるTC/BC界面のSEM画像を、図1に示す。また、実施例1のCoNiCrAl+Ceの、熱処理時間0時間および1000時間におけるTC/BC界面のSEM画像を、図2に示す。さらに、各ボンドコート材料の、熱処理時間1000時間または300時間でのEDX分析によるEDX元素マッピングを、それぞれ図3乃至図5に示す。図1乃至図5のいずれの図も、図中の上方がトップコート(TC)層、下方がボンドコート(BC)層である。 FIG. 1 shows an SEM image of the TC / BC interface of each bond coat material at a heat treatment time of 1000 hours. Moreover, the SEM image of the TC / BC interface in the heat treatment time of 0 hour and 1000 hours of CoNiCrAl + Ce of Example 1 is shown in FIG. Furthermore, the EDX element mapping by the EDX analysis at the heat treatment time of 1000 hours or 300 hours for each bond coat material is shown in FIGS. 3 to 5, respectively. In any of FIGS. 1 to 5, the upper side in the figure is a top coat (TC) layer, and the lower side is a bond coat (BC) layer.
実施例1のCoNiCrAl+Ceおよび実施例2のCoNiCrAlY+Ceでは、図1(a)、(b)、図2に示すように、熱処理時間が進むと、ボンドコート層の内部に分散するように楔形TGOが成長するのが確認できた。これは、Ce酸化物が拡散パスとなり、酸素がボンドコート層の内部に侵入して、楔形TGOが成長したものと考えられる。この楔形TGOにより熱応力分散が生じるため、熱遮蔽被膜の耐はく離性が向上するものと考えられる。 In CoNiCrAl + Ce of Example 1 and CoNiCrAlY + Ce of Example 2, as shown in FIGS. 1A, 1B, and 2, as the heat treatment time proceeds, wedge-shaped TGO grows so as to disperse inside the bond coat layer. I was able to confirm. This is presumably because Ce oxide becomes a diffusion path, oxygen penetrates into the bond coat layer, and the wedge-shaped TGO grows. Since this wedge-shaped TGO causes thermal stress dispersion, it is considered that the peel resistance of the heat shielding coating is improved.
また、CoNiCrAl+CeおよびCoNiCrAlY+Ceは、楔形TGOの成長に差異があり、CoNiCrAl+Ceの方が顕著に成長していることが確認できた。また、CoNiCrAl+Ceは、どの場所でもTGOが成長していたが、CoNiCrAlY+Ceは、楔形TGO成長速度が場所により異なっていることが確認できた。これらの違いは、Yの有無によるものと考えられる。この楔形TGOの成長の差異により、CoNiCrAl+Ceの方が、CoNiCrAlY+Ceよりも耐はく離性が高くなると考えられる。 In addition, CoNiCrAl + Ce and CoNiCrAlY + Ce were different in the growth of wedge-shaped TGO, and it was confirmed that CoNiCrAl + Ce was growing significantly. Further, TGO grew at any location in CoNiCrAl + Ce, but it was confirmed that CoNiCrAlY + Ce had different wedge-shaped TGO growth rates depending on the location. These differences are thought to be due to the presence or absence of Y. Due to the difference in growth of the wedge-shaped TGO, CoNiCrAl + Ce is considered to have higher peeling resistance than CoNiCrAlY + Ce.
これに対し、従来材料である比較例のCoNiCrAlYでは、図1(c)に示すように、熱処理時間増加と共に、TC/BC界面に薄いTGOが成長していることが確認された。また、図3に示すように、成長したTGOは、場所に関係なくほぼ均一の厚さであることも確認された。 On the other hand, in the CoNiCrAlY of the comparative example which is a conventional material, as shown in FIG. 1C, it was confirmed that a thin TGO grew at the TC / BC interface as the heat treatment time increased. Further, as shown in FIG. 3, it was confirmed that the grown TGO had a substantially uniform thickness regardless of the location.
実施例1のCoNiCrAl+Ceおよび実施例2のCoNiCrAlY+Ceでは、図3および図4に示すように、熱処理の初期の段階で、ボンドコート層の内部に、Ce酸化物のCeO2であると考えられる白い点在物が存在していることが確認できた。また、TGOの内部にCr酸化物の存在が認められたが、TGOの上部には、酸化物は確認されなかった。これに対し、比較例のCeを含まないCoNiCrAlYでは、図5に示すように、TGOはAl酸化物であると考えられる。また、TGO上部には、Co,Ni,Crの酸化物が混在している混合酸化層の存在も確認された。 In CoNiCrAl + Ce of Example 1 and CoNiCrAlY + Ce of Example 2, as shown in FIG. 3 and FIG. 4, white points considered to be CeO 2 of Ce oxide in the bond coat layer at the initial stage of heat treatment. It was confirmed that the existence existed. In addition, the presence of Cr oxide was observed in the TGO, but no oxide was confirmed in the upper part of the TGO. On the other hand, in CoNiCrAlY which does not contain Ce of the comparative example, as shown in FIG. 5, TGO is considered to be an Al oxide. In addition, the presence of a mixed oxide layer in which oxides of Co, Ni, and Cr were mixed was confirmed on the TGO.
[四点曲げ試験]
各ボンドコート材料を用いた熱遮蔽被膜被覆部材を、機械加工により長さ50mm、幅5mm、厚さ3.4mmに切断し、1000℃の大気環境下で500時間、および、1100℃の大気環境下で100時間の熱時効処理を施した。熱時効処理後の各試験片を用いて、図6に示す方法で、四点曲げ試験を行った。四点曲げ試験には、材料疲労試験機(MTS製「810 Material Test System」)を用いた。試験片の両面での治具の支点間距離をそれぞれ34mm、15mmとし、熱遮蔽被膜側に引張応力が作用するよう設定した。金属基材側の治具の変位速度を、0.01mm/secの一定とし、はく離が確認されるまで荷重を負荷した。
[Four-point bending test]
The heat-shielding coating member using each bond coat material was cut into a length of 50 mm, a width of 5 mm, and a thickness of 3.4 mm by machining, and the atmospheric environment at 1000 ° C. for 500 hours and the atmospheric environment at 1100 ° C. Under the heat aging treatment of 100 hours under. A four-point bending test was performed by the method shown in FIG. 6 using each test piece after the heat aging treatment. A material fatigue tester (“810 Material Test System” manufactured by MTS) was used for the four-point bending test. The distance between the fulcrum points of the jigs on both sides of the test piece was set to 34 mm and 15 mm, respectively, and the tensile stress was set to act on the heat shielding coating side. The displacement speed of the jig on the metal substrate side was made constant at 0.01 mm / sec, and a load was applied until peeling was confirmed.
試験片の金属基材側の表面に、ひずみゲージ(共和電業製「KFG−2N−120−C1−11L1M2R」)を貼付し、熱遮蔽被膜側の一方の治具の側面にアコースティックエミッション(AE:Acoustic Emission)センサーを取り付け、金属基材側の表面の圧縮ひずみおよびAE信号を計測した。AEの測定には、AEワークステーション(PHYSICAL ACOUSTIC製「DiSP AE Workstation」)を用いた。 A strain gauge (“KFG-2N-120-C1-11L1M2R” manufactured by Kyowa Dengyo) is attached to the surface of the test piece on the metal substrate side, and acoustic emission (AE) is applied to the side surface of one jig on the heat shielding coating side. : Acoustic Emission) sensor was attached, and the compressive strain and AE signal on the surface of the metal substrate were measured. For the measurement of AE, an AE workstation (“DiSP AE Workstation” manufactured by PHYSICAL ACOUSTIC) was used.
ここで、四点曲げ試験により熱遮蔽被膜のはく離が発生した場合、AEカウントを逐次累積した累積AEカウントが急上昇するため、この累積AEカウントの急上昇点をはく離発生点と定義する。はく離発生点での金属基材側の表面の圧縮ひずみ量を測定することにより、熱遮蔽被膜に引張負荷が作用する場合の耐はく離性について、定量的な評価を行うことができる。 Here, when peeling of the heat shielding film occurs in the four-point bending test, the cumulative AE count obtained by sequentially accumulating the AE counts rapidly rises. Therefore, the sudden rise point of the cumulative AE count is defined as the peeling occurrence point. By measuring the amount of compressive strain on the surface of the metal substrate at the separation occurrence point, it is possible to quantitatively evaluate the separation resistance when a tensile load acts on the heat shielding coating.
1100℃の大気環境下で100時間の熱時効処理後の四点曲げ試験結果を、図7に示す。また、四点曲げ試験後のはく離点のSEM画像を、図8に示す。 FIG. 7 shows the results of a four-point bending test after thermal aging treatment for 100 hours in an air environment at 1100 ° C. Moreover, the SEM image of the peeling point after a four-point bending test is shown in FIG.
1100℃の大気環境下で100時間の熱時効処理を行った場合、図7に示すように、実施例1のCoNiCrAl+Ceが最も良好な耐はく離特性を有し、比較例のCoNiCrAlYの耐はく離特性が最も低いことが確認された。図8(a)に示すように、CoNiCrAl+Ceは、はく離位置で一様に楔型TGOが成長していることが確認され、これにより耐はく離特性が高くなったものと考えられる。また、図8(b)に示すように、実施例2のCoNiCrAlY+Ceは、楔型TGOが部分的に成長していることが確認された。このことから、CoNiCrAlY+Ceは、比較例のCoNiCrAlYよりも高く、CoNiCrAl+Ceよりも低い耐はく離特性を有しているものと考えられる。また、図8(c)に示すように、比較例のCoNiCrAlYは、TGOの上部からはく離していることが確認され、混合酸化層がはく離の起点になっているものと考えられる。 When thermal aging treatment is performed for 100 hours in an atmospheric environment at 1100 ° C., as shown in FIG. 7, the CoNiCrAl + Ce of Example 1 has the best peeling resistance, and the peeling resistance of the CoNiCrAlY of the comparative example is The lowest was confirmed. As shown in FIG. 8A, it was confirmed that CoNiCrAl + Ce had a wedge-shaped TGO uniformly grown at the peeling position, and this was considered to have improved peeling resistance. Moreover, as shown in FIG.8 (b), it was confirmed that the wedge-shaped TGO has grown partially about CoNiCrAlY + Ce of Example 2. FIG. From this, it is considered that CoNiCrAlY + Ce has a peeling resistance higher than that of the comparative example CoNiCrAlY and lower than that of CoNiCrAl + Ce. Moreover, as shown in FIG.8 (c), it is confirmed that CoNiCrAlY of a comparative example has peeled from the upper part of TGO, and it is thought that the mixed oxide layer is a starting point of peeling.
以上の結果から、TIT(タービン入口温度)が上昇するものと考えられる次世代のガスタービンを考慮すると、ボンドコート材料としては、1100℃で熱時効処理を行ったときに最も高い耐はく離性が得られた、CoNiCrAl+Ceが最も有効であり、それよりもやや耐はく離性に劣るが、CoNiCrAlY+Ceも有効であると考えられる。また、ボンドコート材料としてCoNiCrAl+CeまたはCoNiCrAlY+Ceを使用した熱遮蔽被膜に対して、あらかじめ1100℃で熱処理を行っておくことにより、熱遮蔽被膜の高温における強度を高めることができると考えられる。
From the above results, considering the next-generation gas turbine that is considered to increase the TIT (turbine inlet temperature), the bond coat material has the highest peel resistance when subjected to thermal aging treatment at 1100 ° C. The obtained CoNiCrAl + Ce is the most effective and is slightly inferior to the peel resistance, but CoNiCrAlY + Ce is also considered effective. In addition, it is considered that the strength at a high temperature of the heat shielding film can be increased by performing heat treatment at 1100 ° C. in advance on the heat shielding film using CoNiCrAl + Ce or CoNiCrAlY + Ce as the bond coat material.
Claims (2)
前記熱遮蔽被膜は、MCrAl又はMCrAlY(Mは、Fe,Ni,Coから選ばれる1種以上の元素)にCeを添加した合金から成るコールドスプレー法により形成されたボンドコート層と、該ボンドコート層の上に形成されたセラミックスから成るトップコート層とを有し、前記ボンドコート層は、内部に楔形の熱成長酸化物を有していることを
特徴とする熱遮蔽被膜被覆部材。
A metal substrate and a heat shielding film formed on the surface of the metal substrate;
The heat shielding film includes a bond coat layer formed by a cold spray method made of an alloy obtained by adding Ce to MCrAl or MCrAlY (M is one or more elements selected from Fe, Ni, Co), and the bond coat And a top coat layer made of ceramics formed on the layer, wherein the bond coat layer has a wedge-shaped thermally grown oxide therein .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012180706A JP5967534B2 (en) | 2012-08-17 | 2012-08-17 | Heat shielding film forming method and heat shielding film covering member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012180706A JP5967534B2 (en) | 2012-08-17 | 2012-08-17 | Heat shielding film forming method and heat shielding film covering member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014037579A JP2014037579A (en) | 2014-02-27 |
JP5967534B2 true JP5967534B2 (en) | 2016-08-10 |
Family
ID=50285940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012180706A Active JP5967534B2 (en) | 2012-08-17 | 2012-08-17 | Heat shielding film forming method and heat shielding film covering member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5967534B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109715334A (en) * | 2016-10-07 | 2019-05-03 | 三菱日立电力系统株式会社 | The manufacturing method of turbo blade |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6547209B2 (en) * | 2015-07-01 | 2019-07-24 | 国立大学法人東北大学 | Method of producing thermal barrier coating and powder for bond coat |
JP6746457B2 (en) | 2016-10-07 | 2020-08-26 | 三菱日立パワーシステムズ株式会社 | Turbine blade manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1380672A1 (en) * | 2002-07-09 | 2004-01-14 | Siemens Aktiengesellschaft | Highly oxidation resistant component |
US20060216428A1 (en) * | 2005-03-23 | 2006-09-28 | United Technologies Corporation | Applying bond coat to engine components using cold spray |
US8052074B2 (en) * | 2009-08-27 | 2011-11-08 | General Electric Company | Apparatus and process for depositing coatings |
JP5566802B2 (en) * | 2010-07-14 | 2014-08-06 | 三菱重工業株式会社 | Bond coat layer, thermal spray powder thereof, high temperature resistant member having bond coat layer, and method for producing the same |
-
2012
- 2012-08-17 JP JP2012180706A patent/JP5967534B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109715334A (en) * | 2016-10-07 | 2019-05-03 | 三菱日立电力系统株式会社 | The manufacturing method of turbo blade |
Also Published As
Publication number | Publication date |
---|---|
JP2014037579A (en) | 2014-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5082563B2 (en) | Heat-resistant member with thermal barrier coating | |
US7306859B2 (en) | Thermal barrier coating system and process therefor | |
EP1840238A2 (en) | Oxidation-resistant coating and formation method thereof, thermal barrier coating, heat-resistant member, and gas turbine | |
JP7174811B2 (en) | high temperature parts | |
EP1627862A1 (en) | Ceramic compositions for thermal barrier coatings with improved mechanical properties | |
JPH1088368A (en) | Thermal insulation coating member and its production | |
JP5905336B2 (en) | Gas turbine blade for power generation, gas turbine for power generation | |
JP2013127117A (en) | Nickel-cobalt-based alloy and bond coat and bond coated articles incorporating the same | |
Zhu et al. | Microstructure and oxidation behavior of conventional and pseudo graded NiCrAlY/YSZ thermal barrier coatings produced by supersonic air plasma spraying process | |
EP3748031A1 (en) | Reflective coating and coating process therefor | |
JP3700766B2 (en) | Thermal barrier coating member and thermal spraying powder | |
US20190047253A1 (en) | Adhesion promoter layer for joining a high-temperature protection layer to a substrate, and method for producing same | |
JP5660428B2 (en) | Heat-resistant coating material | |
JP5967534B2 (en) | Heat shielding film forming method and heat shielding film covering member | |
WO2012029540A1 (en) | Heat-masking coating film, process for production thereof, and heat-resistant alloy members using the same | |
JP2015113255A (en) | Coating structure, turbine member, gas turbine, and method of producing coating structure | |
WO2015053947A1 (en) | Thermal barrier coating with improved adhesion | |
JP5164250B2 (en) | Thermal barrier coating member and manufacturing method thereof | |
Nijdam et al. | Service experience with single crystal superalloys for high pressure turbine shrouds | |
JP2021123771A (en) | Heat resistant alloy member, manufacturing method of the same, high temperature apparatus and manufacturing method of the same | |
EP2423347A1 (en) | Method for forming a thermal barrier coating and a turbine component with the thermal barrier coating | |
JP7516293B2 (en) | Heat-resistant components and power generation systems | |
EP3705597A1 (en) | Thermal barrier coating with improved adhesion | |
WO2022208861A1 (en) | Heat-resistant alloy member and production method therefor, and high temperature device and production method therefor | |
JP6547209B2 (en) | Method of producing thermal barrier coating and powder for bond coat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150527 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160315 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160624 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5967534 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |