JP5941439B2 - Coil spring and manufacturing method thereof - Google Patents
Coil spring and manufacturing method thereof Download PDFInfo
- Publication number
- JP5941439B2 JP5941439B2 JP2013143514A JP2013143514A JP5941439B2 JP 5941439 B2 JP5941439 B2 JP 5941439B2 JP 2013143514 A JP2013143514 A JP 2013143514A JP 2013143514 A JP2013143514 A JP 2013143514A JP 5941439 B2 JP5941439 B2 JP 5941439B2
- Authority
- JP
- Japan
- Prior art keywords
- coil spring
- less
- fatigue resistance
- spring
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000013078 crystal Substances 0.000 claims description 36
- 239000010410 layer Substances 0.000 claims description 36
- 229910001566 austenite Inorganic materials 0.000 claims description 34
- 238000005255 carburizing Methods 0.000 claims description 33
- 229910000831 Steel Inorganic materials 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- 239000010959 steel Substances 0.000 claims description 18
- 239000002344 surface layer Substances 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000011282 treatment Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 239000003921 oil Substances 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000005496 tempering Methods 0.000 description 5
- 238000005261 decarburization Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000005480 shot peening Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- 229910000669 Chrome steel Inorganic materials 0.000 description 1
- 229910001065 Chromium-vanadium steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- QKJXFFMKZPQALO-UHFFFAOYSA-N chromium;iron;methane;silicon Chemical compound C.[Si].[Cr].[Fe] QKJXFFMKZPQALO-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000376 effect on fatigue Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- -1 scrap Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/02—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/773—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/20—Carburising
- C23C8/22—Carburising of ferrous surfaces
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Articles (AREA)
- Springs (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明はコイルばね、およびその製造方法に関し、詳細には耐疲労性に優れたコイルばね、およびその製造方法に関するものである。 The present invention relates to a coil spring and a manufacturing method thereof, and more particularly to a coil spring excellent in fatigue resistance and a manufacturing method thereof.
コイルばねは、自動車のエンジン、クラッチ、サスペンションなどで弁ばね、クラッチばね、懸架ばねなどとして使用されている。コイルばねは、長期間に亘り高応力で繰り返し使用されるため、高レベルの耐疲労性が要求されている。 Coil springs are used as valve springs, clutch springs, suspension springs and the like in automobile engines, clutches, suspensions and the like. Since the coil spring is repeatedly used with a high stress over a long period of time, a high level of fatigue resistance is required.
例えばエンジンにおける弁ばね用の線材として、JISには、弁ばね用オイルテンパー線(SWO−V:JIS G 3561)、弁ばね用クロムバナジウム鋼オイルテンパー線(SWOCV−V:JIS G 3565)、および弁ばね用シリコンクロム鋼オイルテンパー線(SWOSC−V:JIS G 3566)等が規定されており、従来、疲労強度に優れるSWOSC−Vが主に使用されてきた。 For example, as a wire for a valve spring in an engine, JIS includes an oil temper wire for a valve spring (SWO-V: JIS G 3561), a chrome vanadium steel oil temper wire for a valve spring (SWOCV-V: JIS G 3565), and Silicon chrome steel oil tempered wires (SWOSC-V: JIS G 3566) for valve springs are defined, and conventionally, SWOSC-V having excellent fatigue strength has been mainly used.
これらの線材は、圧延材を伸線後に焼入れ・焼戻し処理を行い、所要の強度とされたものであり、これを用いて、所要の形状のばねにコイリングした後、窒化、ショットピーニング、テンパー、セッチングなどの処理をおこなうことにより、耐疲労性に優れたばねを得るのが弁ばねの一般的な製造方法である。 These wire rods are subjected to quenching and tempering treatment after drawing the rolled material, and are made to have the required strength, and after using this, coiling into a spring of the required shape, nitriding, shot peening, temper, A general manufacturing method of a valve spring is to obtain a spring having excellent fatigue resistance by performing a treatment such as setting.
環境保護や資源保護の観点から、自動車に対する排気の清浄化、燃費向上への要求が高いが、これらに対して大きく寄与するのが車両の軽量化であり、車体を構成する各部品についても軽量化に向けた努力が絶えず続けられている。 From the viewpoint of environmental protection and resource protection, there is a high demand for purifying exhaust and improving fuel efficiency for automobiles, but the major contribution to these is the weight reduction of the vehicle, and the parts that make up the body are also lightweight. Efforts to make it happen are constantly being made.
弁ばねについては、その耐疲労性を更に高めることで弁ばねのコンパクト化が可能であり、更にはエンジンの軽量化に寄与することが可能である。そのため、弁ばねの耐疲労性を改善するための提案がなされている。 As for the valve spring, it is possible to make the valve spring more compact by further improving its fatigue resistance, and it is possible to contribute to the weight reduction of the engine. Therefore, proposals have been made to improve the fatigue resistance of valve springs.
例えば特許文献1には、所定の成分組成を有し、表面に浸炭硬化層(0.05〜1.00mm)を備えていると共に、表面から0.02mmの位置における硬さを所定の範囲(650〜1000Hv)とすることによって、耐疲労性を向上させる技術が開示されている。 For example, Patent Document 1 has a predetermined component composition, has a carburized hardened layer (0.05 to 1.00 mm) on the surface, and has a hardness at a position of 0.02 mm from the surface within a predetermined range ( 650-1000 Hv), a technique for improving fatigue resistance is disclosed.
上記特許文献1の耐疲労性は5000万回レベルであるが、近年の自動車は更なる軽量化や高出力化が進行しており、それに伴って、更に優れた耐疲労性を有するコイルばねが要求されている。 Although the fatigue resistance of the above-mentioned Patent Document 1 is about 50 million times, recent automobiles have been further reduced in weight and output, and accordingly, a coil spring having further excellent fatigue resistance has been developed. It is requested.
本発明は上記のような事情に着目してなされたものであって、その目的は、耐疲労性に優れたコイルばね、およびこのような耐疲労性に優れたコイルばねの製造方法を提供することにある。 The present invention has been made paying attention to the above circumstances, and an object thereof is to provide a coil spring excellent in fatigue resistance and a method of manufacturing such a coil spring excellent in fatigue resistance. There is.
上記課題を解決し得た本発明とは、C:0.40〜0.70%(%は「質量%」の意味、化学成分組成について以下同じ)、Si:1.50〜3.50%、Mn:0.30〜1.50%、Cr:0.10〜1.50%、V:0.50〜1.00%、Al:0.01%以下(0%を含まない)を含有し、残部が鉄および不可避不純物である鋼からなり、表層から0.3mm深さ位置における旧オーステナイト結晶の平均結晶粒度番号が11.0以上であると共に、前記旧オーステナイト結晶の粒度番号差は、最大頻度の粒度番号に比べて3未満の範囲内にあり、且つ、表層から深さ0.30〜1.00mmの浸炭硬化層を備えると共に、表層から深さ方向(1/4)×直径の位置におけるビッカース硬さの平均値が600以上であることに要旨を有する。 The present invention that has solved the above problems is C: 0.40 to 0.70% (% means “mass%”, the same applies to the chemical composition), Si: 1.50 to 3.50% , Mn: 0.30 to 1.50%, Cr: 0.10 to 1.50%, V: 0.50 to 1.00%, Al: 0.01% or less (not including 0%) The balance is made of iron and steel, which is an inevitable impurity, and the average grain size number of the prior austenite crystals at a depth of 0.3 mm from the surface layer is 11.0 or more, and the grain size number difference of the prior austenite crystals is It is within the range of less than 3 compared to the maximum frequency particle size number, and is provided with a carburized hardened layer having a depth of 0.30 to 1.00 mm from the surface layer, and the depth direction (1/4) × diameter from the surface layer. Summary that the average value of Vickers hardness at the position is 600 or more A.
更に上記コイルばねの化学成分組成として、Ni:1.50%以下(0%を含まない)および/またはNb:0.50%以下(0%を含まない)を含むことも好ましい実施態様である。 Furthermore, it is also a preferred embodiment that the chemical component composition of the coil spring includes Ni: 1.50% or less (not including 0%) and / or Nb: 0.50% or less (not including 0%). .
上記のような耐疲労性に優れたコイルばねを製造するにあたっては、真空浸炭処理を1000℃以上とすることが推奨される。 In manufacturing the coil spring having excellent fatigue resistance as described above, it is recommended that the vacuum carburizing treatment be performed at 1000 ° C. or higher.
本発明によれば、化学成分組成、および旧オーステナイト結晶粒度を適切に制御すると共に、コイルばね表層からの浸炭硬化層の深さ、およびビッカース硬さを適切に制御することで、耐疲労性に優れたコイルばねを提供できる。また本発明の方法によれば、上記耐疲労性に優れたコイルばねを提供できる。 According to the present invention, the chemical composition and the prior austenite grain size are appropriately controlled, and the depth of the carburized hardened layer from the coil spring surface layer and the Vickers hardness are appropriately controlled, thereby improving fatigue resistance. An excellent coil spring can be provided. Moreover, according to the method of the present invention, a coil spring having excellent fatigue resistance can be provided.
本発明者らは、従来よりも更に耐疲労性を向上させ、後記する実施例における破断寿命試験で6,000万回を超える結果を奏する優れた耐疲労性を有するコイルばねを提供すべく、様々な角度から検討した。特許文献1では、C添加量を高めると共に、金属組織を制御しているが、それだけでは6,000万回レベルの破断寿命が得られなかった(特許文献1の実施例4、および該実施例を模擬した表2のNo.8)。 In order to provide a coil spring having excellent fatigue resistance, the fatigue resistance of the present invention is further improved than before, and results in exceeding 60 million times in the fracture life test in the examples described below. We examined from various angles. In Patent Document 1, while increasing the amount of C added and controlling the metallographic structure, it was not possible to obtain a fracture life of 60 million times (Example 4 of Patent Document 1 and the Example). No. 8 in Table 2 that simulates the above.
そこで本発明者らは、より優れた耐疲労性を達成すべく、化学成分組成、および金属組成等について検討した結果、コイルばねの靭性と強度が、コイルばね使用中の疲労折損に影響を及ぼしており、これらを適切に制御することで、耐疲労性を大幅に向上できるとの知見を得た。 Therefore, as a result of studying the chemical composition, the metal composition, and the like in order to achieve better fatigue resistance, the present inventors have found that the toughness and strength of the coil spring have an effect on fatigue breakage during use of the coil spring. We obtained knowledge that fatigue resistance can be greatly improved by appropriately controlling these.
まず、コイルばねの強度を高めるためには、コイルばねを形成している鋼の表層(以下、単に「表層」という)からある程度の浸炭硬化層の深さと、鋼内部(1/4×コイルばねを形成している鋼線の直径D、以下「1/4×D」と表記することがある。)のビッカース硬さを十分に確保する必要がある。浸炭硬化層の深さやビッカース硬度を十分に確保するためには浸炭処理時の温度を高くする必要があるが、高温で浸炭処理しただけでは、破断寿命を向上させることができなかった。その理由は、高温で浸炭処理をすると、旧オーステナイトの結晶粒が粗大化したり、該旧オーステナイトの結晶粒度のバラツキ(粒度番号差があること:以下「混粒」ということがある)が生じてコイルばねの靭性が著しく低下し、かえって破断寿命が悪化するからである。 First, in order to increase the strength of the coil spring, the depth of the carburized hardened layer from the steel surface layer (hereinafter simply referred to as “surface layer”) forming the coil spring and the inside of the steel (1/4 × coil spring) It is necessary to sufficiently secure the Vickers hardness of the steel wire forming the diameter D, which may be hereinafter referred to as “1/4 × D”. In order to sufficiently secure the depth of the carburized hardened layer and the Vickers hardness, it is necessary to increase the temperature during the carburizing process. However, the fracture life cannot be improved only by carburizing at a high temperature. The reason for this is that when carburizing at a high temperature, the crystal grains of the prior austenite become coarse or the crystal grain size of the prior austenite varies (there is a difference in grain size number: hereinafter referred to as “mixed grain”). This is because the toughness of the coil spring is remarkably lowered and the fracture life is deteriorated.
このような問題について、本発明者らが鋭意研究を重ねた結果、鋼の化学成分組成を適切に制御することで、上記問題を解決できることがわかった。特に化学成分組成のうち、V量を高めることで、高温で浸炭処理しても旧オーステナイトの結晶粒度の粗大化を抑制し、更に混粒も抑制できることがわかった。 As a result of intensive studies by the present inventors on such problems, it has been found that the above problems can be solved by appropriately controlling the chemical composition of the steel. In particular, it was found that by increasing the amount of V in the chemical component composition, coarsening of the crystal grain size of the prior austenite can be suppressed even when carburizing at high temperature, and mixed grains can also be suppressed.
そして本発明では以下の化学成分組成を満足することを前提として、更に浸炭層深さ、ビッカース硬度、旧オーステナイト結晶粒度も適切に制御することで、耐疲労性向上に必要な強度と靭性のバランスを保つことが可能となり、上記優れた耐疲労性を有するコイルばねを提供できることを見出し、本発明に至った。 And on the premise that the following chemical composition is satisfied in the present invention, the balance between strength and toughness required for improving fatigue resistance is further achieved by appropriately controlling the carburized layer depth, Vickers hardness, and prior austenite grain size. As a result, the present inventors have found that a coil spring having excellent fatigue resistance can be provided.
以下、本発明のコイルばねの化学成分組成について説明する。 Hereinafter, the chemical component composition of the coil spring of the present invention will be described.
C:0.40〜0.70%
Cは、高い応力が負荷されるコイルばねの強度、およびコイルばねの1/4×D位置のビッカース硬度を確保するために有用な元素である。こうした効果を発揮させるためには、C含有量は0.40%以上、好ましくは0.45%以上、より好ましくは0.50%以上である。しかしながらC含有量が過剰になると、靭性が低下すると共に、コイルばねの表面疵が増大して耐疲労性が低下する。そのためC含有量は、0.70%以下、好ましくは0.65%以下、より好ましくは0.60%以下である。
C: 0.40 to 0.70%
C is an element useful for ensuring the strength of a coil spring to which a high stress is applied and the Vickers hardness at the 1/4 × D position of the coil spring. In order to exert such an effect, the C content is 0.40% or more, preferably 0.45% or more, more preferably 0.50% or more. However, when the C content is excessive, the toughness is lowered and the surface flaw of the coil spring is increased to reduce the fatigue resistance. Therefore, the C content is 0.70% or less, preferably 0.65% or less, more preferably 0.60% or less.
Si:1.50〜3.50%
Siは、Cと同様、ビッカース硬度の確保に有用な元素であり、またコイルばねの強度を向上させ、耐疲労性、耐へたり性を向上させるのに有効な元素である。こうした効果を発揮させるためには、Si含有量は1.50%以上、好ましくは1.80%以上、より好ましくは2.10%以上である。しかしながらSi含有量が過剰になると、靭性が悪くなり、コイルばねの製造過程における冷間加工性や熱間加工性が低下して製品歩留まりが悪化したり、熱処理による脱炭が助長されて耐疲労性が低下する。そのためSi含有量は、3.50%以下、好ましくは3.30%以下、より好ましくは3.10%以下である。
Si: 1.50 to 3.50%
Si, like C, is an element useful for ensuring Vickers hardness, and is an element effective for improving the strength of the coil spring and improving fatigue resistance and sag resistance. In order to exert such an effect, the Si content is 1.50% or more, preferably 1.80% or more, more preferably 2.10% or more. However, when the Si content is excessive, the toughness is deteriorated, the cold workability and hot workability in the manufacturing process of the coil spring are lowered, the product yield is deteriorated, and the decarburization by the heat treatment is promoted, and the fatigue resistance is increased. Sex is reduced. Therefore, the Si content is 3.50% or less, preferably 3.30% or less, more preferably 3.10% or less.
Mn:0.30〜1.50%
Mnは、焼入れ性を高めてコイルばねの強度を向上させるのに有効な元素である。また耐疲労性に有害な鋼中のSをMnSとして固定してその害を低減する作用を有する。こうした効果を発揮させるためには、Mn含有量は0.30%以上、好ましくは0.40%以上、より好ましくは0.50%以上である。しかしながらMn含有量が過剰になると、靭性が悪くなるばかりでなく、冷間加工性や疲労強度が低下する。そのため、Mn含有量は1.50%以下、好ましくは1.20%以下、より好ましくは0.90%以下である。
Mn: 0.30 to 1.50%
Mn is an element effective for enhancing the hardenability and improving the strength of the coil spring. Moreover, it has the effect | action which fixes S in steel harmful to fatigue resistance as MnS, and reduces the damage. In order to exert such an effect, the Mn content is 0.30% or more, preferably 0.40% or more, more preferably 0.50% or more. However, when the Mn content is excessive, not only the toughness is deteriorated but also cold workability and fatigue strength are lowered. Therefore, the Mn content is 1.50% or less, preferably 1.20% or less, more preferably 0.90% or less.
Cr:0.10〜1.50%
Crは、Mnと同様に焼入れ性を高めてコイルばねの強度を向上させるのに有効な元素である。またCrは、Cの活量を低下させて熱間圧延時や熱処理時の脱炭を防止する効果も有する。こうした効果を発揮させるためには、Cr含有量は0.10%以上、好ましくは0.15%以上、より好ましくは0.20%以上である。しかしながらCr含有量が過剰になると、真空浸炭処理でのC拡散係数が著しく低下するため、所望の浸炭硬化層の形成が困難となり、耐疲労性が低下する。また所望の浸炭硬化層を確保するために浸炭温度を高くすると、旧オーステナイト結晶が粗大化すると共に、混粒が生じて、耐疲労性が悪化する。そのため、Cr含有量は、1.50%以下、好ましくは1.20%以下、より好ましくは0.90%以下である。
Cr: 0.10 to 1.50%
Cr, like Mn, is an element effective for improving the hardenability and improving the strength of the coil spring. Cr also has the effect of reducing the activity of C and preventing decarburization during hot rolling or heat treatment. In order to exhibit such an effect, the Cr content is 0.10% or more, preferably 0.15% or more, more preferably 0.20% or more. However, when the Cr content is excessive, the C diffusion coefficient in the vacuum carburizing process is remarkably lowered, so that it becomes difficult to form a desired carburized hardened layer and the fatigue resistance is lowered. Further, when the carburizing temperature is increased in order to secure a desired carburized hardened layer, the prior austenite crystal is coarsened and mixed grains are produced, resulting in deterioration of fatigue resistance. Therefore, the Cr content is 1.50% or less, preferably 1.20% or less, more preferably 0.90% or less.
V:0.50〜1.00%
Vは、旧オーステナイト結晶粒を微細化させるのに有効な元素である。特にVは所望の浸炭硬化層を確保するために浸炭温度を高くした際に問題となる旧オーステナイト結晶の粗大化や混粒の発生を抑制するのに有効な元素である。こうした効果を発揮させるためには、V含有量は0.50%以上、好ましくは0.53%以上、より好ましくは0.56%以上である。しかしながらV含有量が過剰になると、V炭化物を多く形成し、延性の低下をもたらし、冷間加工性や耐疲労性が悪化する。そのため、V含有量は、1.00%以下、好ましくは0.90%以下、より好ましくは0.80%以下である。
V: 0.50 to 1.00%
V is an element effective for refining the prior austenite crystal grains. In particular, V is an element effective for suppressing coarsening of old austenite crystals and generation of mixed grains, which are problematic when the carburizing temperature is increased to secure a desired carburized hardened layer. In order to exert such an effect, the V content is 0.50% or more, preferably 0.53% or more, more preferably 0.56% or more. However, when the V content is excessive, a large amount of V carbide is formed, resulting in a decrease in ductility, and cold workability and fatigue resistance are deteriorated. Therefore, the V content is 1.00% or less, preferably 0.90% or less, more preferably 0.80% or less.
Al:0.01%以下(0%を含まない)
Alは、脱酸元素であるが、過剰に含まれるとAlNなどの介在物を形成する。これらの介在物は、コイルばねの耐疲労性を著しく低減させる。そのため、Al含有量は、0.01%以下、好ましくは0.008%以下、より好ましくは0.006%以下まで低減させる必要がある。
Al: 0.01% or less (excluding 0%)
Al is a deoxidizing element, but when it is contained in excess, inclusions such as AlN are formed. These inclusions significantly reduce the fatigue resistance of the coil spring. Therefore, the Al content needs to be reduced to 0.01% or less, preferably 0.008% or less, more preferably 0.006% or less.
本発明のコイルばねを構成する鋼の基本的な化学成分組成は上記の通りであり、残部成分は実質的に鉄である。ここで「実質的に」とは、スクラップを含めた鋼原料や製鉄・製鋼工程、更には製鋼予備処理工程などで不可避的に混入してくる微量元素の混入を、本発明の特徴を損なわない範囲で許容するという意味である。例えば不可避不純物としてP(0.015%以下)やS(0.015%以下)が例示される。 The basic chemical composition of the steel constituting the coil spring of the present invention is as described above, and the remaining component is substantially iron. Here, “substantially” does not impair the features of the present invention by mixing trace elements that are inevitably mixed in steel raw materials including scrap, iron making / steel making processes, and further steelmaking pretreatment processes. It means to allow in the range. For example, P (0.015% or less) and S (0.015% or less) are exemplified as inevitable impurities.
本発明では、更に他の元素として、必要に応じて下記の範囲でNiおよびNbの両方、あるいは一方を含んでいてもよい。含有させる元素の種類に応じて、コイルばねの特性が更に向上する。 In the present invention, as other elements, both Ni and Nb or one of them may be contained within the following range as required. Depending on the type of element to be contained, the characteristics of the coil spring are further improved.
Ni:1.50%以下(0%を含まない)
Niは、Cによって高強度化したコイルばねの靭性を向上させるのに有効な元素である。こうした効果を発揮させるためには、Ni含有量は、好ましくは0.05%以上、より好ましくは0.10%以上である。しかしながらNi含有量が過剰になると、残留オーステナイトが過度に生成し、耐疲労性が低下する。そのため、Ni含有量は、好ましくは1.50%以下、より好ましくは1.20%以下、更に好ましくは0.90%以下である。
Ni: 1.50% or less (excluding 0%)
Ni is an element effective for improving the toughness of the coil spring whose strength is increased by C. In order to exert such an effect, the Ni content is preferably 0.05% or more, more preferably 0.10% or more. However, when the Ni content is excessive, retained austenite is excessively generated and fatigue resistance is lowered. Therefore, the Ni content is preferably 1.50% or less, more preferably 1.20% or less, and still more preferably 0.90% or less.
Nb:0.50%以下(0%を含まない)
Nbは、熱間圧延、および焼入れ焼戻し処理において結晶粒を微細化する作用があり、延性を向上させるのに有効な元素である。こうした効果を発揮させるためには、Nb含有量は、好ましくは0.01%以上、より好ましくは0.02%以上である。しかしながらNb含有量が過剰になると、V炭化物が過剰に生成して延性を悪化させ、冷間加工性や疲労強度が低下する。そのため、Nb含有量は、好ましくは0.50%以下、より好ましくは0.40%以下、更に好ましくは0.30%以下である。
Nb: 0.50% or less (excluding 0%)
Nb has an effect of refining crystal grains in hot rolling and quenching and tempering treatments, and is an element effective for improving ductility. In order to exert such an effect, the Nb content is preferably 0.01% or more, more preferably 0.02% or more. However, when the Nb content is excessive, V carbides are excessively generated to deteriorate ductility, and cold workability and fatigue strength are reduced. Therefore, the Nb content is preferably 0.50% or less, more preferably 0.40% or less, and still more preferably 0.30% or less.
耐疲労性を向上させるには、化学成分組成を上記のように適切に制御するだけでなく、更に金属組織(旧オーステナイト結晶の制御)や浸炭硬化層、ビッカース硬さを適切に制御することも重要である。 In order to improve fatigue resistance, not only the chemical composition is appropriately controlled as described above, but also the metal structure (control of old austenite crystals), carburized hardened layer, and Vickers hardness are appropriately controlled. is important.
旧オーステナイト結晶の平均結晶粒度番号:11.0以上
コイルばねの表層から0.3mm深さ位置における旧オーステナイト結晶の結晶粒度番号を微細化し、靭性を向上させることで、耐疲労性を大幅に向上できる。こうした効果を発揮させるためには、旧オーステナイト結晶の平均結晶粒度番号は11.0以上、好ましくは12.0以上、より好ましくは13.0以上である。一方、靭性向上の観点からは旧オーステナイト結晶の平均結晶粒度番号の上限は特に限定されないが、製造容易性や合金コストを考慮すると、概ね15.0以下が好ましく、より好ましくは14.0以下である。
Average grain size number of prior austenite crystals: 11.0 or more Fatigue resistance is greatly improved by refining the grain size number of prior austenite crystals at a depth of 0.3 mm from the surface layer of the coil spring and improving toughness. it can. In order to exert such an effect, the average grain size number of the prior austenite crystal is 11.0 or more, preferably 12.0 or more, more preferably 13.0 or more. On the other hand, from the viewpoint of improving toughness, the upper limit of the average grain size number of the prior austenite crystal is not particularly limited. However, in consideration of manufacturability and alloy cost, it is preferably approximately 15.0 or less, more preferably 14.0 or less. is there.
旧オーステナイト結晶の粒度番号差:最大頻度の粒度番号に比べて3未満の範囲内
上記表層から0.3mm深さ位置において測定した旧オーステナイト結晶の結晶粒度番号のばらつきが大きいと、上記平均粒度番号を満足していても靭性が著しく低下し、冷間加工性や耐疲労性が悪化する。したがって本発明では、測定した各旧オーステナイト結晶の結晶粒度番号は、更に最大頻度の粒度番号との差を3未満、好ましくは2以下、より好ましくは1以下とする必要がある。なお、本発明ではこのような粒度番号差の条件を満たす場合を「混粒がない」という。
Difference in grain size number of prior austenite crystals: within a range of less than 3 compared to the most frequent grain size number When the variation in grain size number of the prior austenite crystals measured at a depth of 0.3 mm from the surface layer is large, the average grain size number Even if the above is satisfied, the toughness is remarkably lowered and the cold workability and fatigue resistance are deteriorated. Therefore, in the present invention, the measured grain size number of each prior austenite crystal needs to be further different from the maximum frequency grain size number by less than 3, preferably 2 or less, more preferably 1 or less. In the present invention, a case where the condition of such a particle number difference is satisfied is referred to as “no mixed particles”.
本発明では上記オーステナイト結晶粒の平均結晶粒度番号を満足し、更に混粒を抑制することで、耐疲労性を改善できる。 In the present invention, fatigue resistance can be improved by satisfying the average grain size number of the austenite crystal grains and further suppressing mixed grains.
浸炭硬化層:コイルばねの表層から深さ0.30〜1.00mm
適切な浸炭硬化層は耐疲労性の向上に有効である。すなわち、コイルばねの表面側を十分に硬化することによって、高負荷応力で繰り返し使用する場合に、ばね表面を起点とする折損の発生を抑制できる。このような効果を発揮するには、少なくともコイルばねの表層から深さ0.30mm以上、好ましくは0.40mm以上、より好ましくは0.50mm以上の浸炭硬化層が形成されている必要がある。しかしながら浸炭硬化層が過剰になると、炭化物が粗大に析出するため、かえって耐疲労性が悪化する。そのため浸炭硬化層は、コイルばねの表層から深さ1.00mm以下、好ましくは0.90mm以下、より好ましくは0.80mm以下とする必要がある。
Carburized hardened layer: 0.30 to 1.00mm deep from the surface layer of the coil spring
A suitable carburized hardened layer is effective in improving fatigue resistance. That is, by sufficiently curing the surface side of the coil spring, it is possible to suppress the occurrence of breakage starting from the spring surface when it is repeatedly used with a high load stress. In order to exert such an effect, it is necessary to form a carburized hardened layer having a depth of 0.30 mm or more, preferably 0.40 mm or more, more preferably 0.50 mm or more from the surface layer of the coil spring. However, when the carburized hardened layer becomes excessive, the carbide precipitates coarsely, so that the fatigue resistance deteriorates. Therefore, the carburized hardened layer needs to have a depth of 1.00 mm or less, preferably 0.90 mm or less, more preferably 0.80 mm or less from the surface layer of the coil spring.
表層から深さ方向(1/4)×直径Dの位置におけるビッカース硬さの平均値:600以上
コイルばねの鋼内部の適切なビッカース硬さ(Hv)は耐疲労性の向上に有効である。すなわち、コイルばねの内部硬さが低いと、高負荷応力で繰り返し使用する場合に、ばねに加わる応力が弾性限度以内でも、コイルばねに塑性変形が生じ、必要とされるばね応力を発揮できなくなり、耐疲労性が低下する。そのため、耐疲労性向上の観点からは少なくともコイルばねの表層から深さ方向(1/4)×D位置におけるビッカース硬さの平均値は、600以上、好ましくは670以上、更に好ましくは690以上である。ビッカース硬さの平均値の上限は特に限定されないが、硬くなりすぎると靭性が低下してかえって耐疲労性が低下することがあるため、上記ビッカース硬さの平均値は好ましくは750以下、より好ましくは730以下である。
Average value of Vickers hardness at position of depth direction (1/4) × diameter D from the surface layer: 600 or more Appropriate Vickers hardness (Hv) inside the steel of the coil spring is effective in improving fatigue resistance. In other words, if the internal hardness of the coil spring is low, when it is used repeatedly with high load stress, even if the stress applied to the spring is within the elastic limit, the coil spring will be plastically deformed and the required spring stress will not be exhibited. , Fatigue resistance decreases. Therefore, from the viewpoint of improving fatigue resistance, the average value of Vickers hardness at least in the depth direction (1/4) × D position from the surface layer of the coil spring is 600 or more, preferably 670 or more, more preferably 690 or more. is there. The upper limit of the average value of Vickers hardness is not particularly limited, but if it becomes too hard, the toughness may decrease and the fatigue resistance may decrease, so the average value of the Vickers hardness is preferably 750 or less, more preferably Is 730 or less.
上記のような耐疲労性に優れたコイルばねを製造するにあたっては、その製造条件も適切に制御することが望ましい。特に上記所定の浸炭硬化層の深さ、およびビッカース硬さ(平均値)を確保するためには、真空浸炭処理時の温度を制御することが有効である。以下、本発明のコイルばねを製造する際の好ましい条件について説明する。 In manufacturing the coil spring having excellent fatigue resistance as described above, it is desirable to appropriately control the manufacturing conditions. In particular, in order to ensure the depth of the predetermined carburized hardened layer and the Vickers hardness (average value), it is effective to control the temperature during the vacuum carburizing process. Hereinafter, preferable conditions for manufacturing the coil spring of the present invention will be described.
本発明のコイルばねは、上記所定の化学成分組成を満足する鋼を溶製、熱間鍛造、熱間圧延して所望の線径の線材とし、皮削り、パテンティング、伸線、オイルテンパーの後、ばねに成形し、これに真空浸炭処理を施すことによって製造できる。この後、疲労特性を更に向上させるために、必要に応じてショットピーニングやセッチングなどを施してもよい。 The coil spring of the present invention is made of steel satisfying the above-mentioned predetermined chemical composition, melted, hot forged, hot rolled to obtain a wire with a desired wire diameter, and is used for cutting, patenting, wire drawing, and oil tempering. Thereafter, it can be manufactured by forming it into a spring and subjecting it to a vacuum carburizing treatment. Thereafter, in order to further improve the fatigue characteristics, shot peening or setting may be performed as necessary.
上記溶製、熱間鍛造、熱間圧延条件は特に限定されず、一般的な製造条件を採用すればよい。例えば上記所定の化学成分組成を満足する鋼塊を溶鉱炉で溶製した後、この鋳塊を分塊圧延して所定サイズのビレットを作製し、加工性に影響する変形抵抗の抑制と旧オーステナイト結晶粒の粗大化抑制の観点から例えば900℃〜1100℃程度に加熱した後、所望の圧下率で熱間圧延し、所望の線形の線材とすればよい。その後、線材表面の脱酸層を所望の厚さで皮削り処理して除去すると共に、皮削り処理によって生じる加工硬化層の除去と、伸線性に優れた組織(例えばパーライト)を得るために、パテンティング処理やIH(高周波加熱)設備での軟化焼鈍処理等をおこなう。 The melting, hot forging, and hot rolling conditions are not particularly limited, and general production conditions may be employed. For example, a steel ingot that satisfies the above-mentioned predetermined chemical composition is melted in a blast furnace, and then the ingot is rolled into a predetermined size to produce a billet of a predetermined size, which suppresses deformation resistance that affects workability and prior austenite crystals From the viewpoint of suppressing the coarsening of grains, for example, after heating to about 900 ° C. to 1100 ° C., hot rolling may be performed at a desired reduction rate to obtain a desired linear wire. Thereafter, the deoxidized layer on the surface of the wire rod is removed by skinning at a desired thickness, and the work hardened layer produced by the skinning treatment is removed and in order to obtain a structure excellent in wire drawing (for example, pearlite) Performs patenting treatment and softening annealing treatment in IH (high frequency heating) equipment.
その後、伸線加工して所望の線径とした後、オイルテンパー処理を施してばね用素線とする。次いで所望のコイル径、自由高さ、巻数でばねに成形する。このように浸炭処理前にばね形状に成形する理由は、浸炭硬化層を形成するための浸炭焼入れ・焼戻し後は、鋼表層部(浸炭硬化層)が硬く、延性が低くなり、コイルばねに形成することが難しいためである。 Then, after drawing to a desired wire diameter, an oil temper treatment is performed to obtain a spring wire. Then, it is formed into a spring with a desired coil diameter, free height, and number of turns. The reason why it is formed into a spring shape before carburizing treatment is that after carburizing and tempering to form a carburized hardened layer, the steel surface layer (carburized hardened layer) is hard and ductile, resulting in a coil spring. Because it is difficult to do.
ばね形状に成形した後、真空浸炭処理を施すが、本発明では上記所定の浸炭硬化層深さ、およびビッカース硬さを得るためには1000℃以上の高温浸炭温度で真空浸炭処理をする必要がある。浸炭温度が1000℃よりも低いと、所望の浸炭硬化層やビッカース硬さが得られず、耐疲労性が低下する。好ましい浸炭温度は1020℃以上、より好ましくは1040℃以上である。しかしながら浸炭温度が高すぎると、炭化物が粗大に析出したり、硬くなりすぎて靭性が低下し、耐疲労性が低下することがある。そのため、浸炭温度は好ましくは1100℃以下、より好ましくは1080℃以下である。 After forming into a spring shape, vacuum carburizing treatment is performed. In the present invention, in order to obtain the above-mentioned predetermined carburized hardened layer depth and Vickers hardness, it is necessary to perform vacuum carburizing treatment at a high temperature carburizing temperature of 1000 ° C. or higher. is there. When the carburizing temperature is lower than 1000 ° C., a desired carburized hardened layer and Vickers hardness cannot be obtained, and fatigue resistance is lowered. A preferable carburizing temperature is 1020 ° C. or higher, more preferably 1040 ° C. or higher. However, if the carburizing temperature is too high, carbides may precipitate coarsely or become too hard to reduce toughness and fatigue resistance. Therefore, the carburizing temperature is preferably 1100 ° C. or lower, more preferably 1080 ° C. or lower.
次に浸炭処理を施す。浸炭処理時に脱炭が多く、また処理温度のばらつきが大きくなると、コイルばねの疲労強度が低下する。そのため本発明では脱炭や温度ばらつきを抑制する観点から、真空浸炭処理をおこなう。また真空浸炭処理を1000℃以上の温度でおこなうことで、均一な浸炭硬化層を上記所望の厚さで形成できる。浸炭時間、および拡散時間は特に限定されず、上記所望の浸炭硬化層が形成される程度でよく、例えば浸炭時間1分〜10分、拡散時間1分〜10分でよい。 Next, carburizing treatment is performed. If the decarburization is large during the carburizing process and the variation in the processing temperature increases, the fatigue strength of the coil spring decreases. Therefore, in the present invention, vacuum carburization is performed from the viewpoint of suppressing decarburization and temperature variation. Moreover, a uniform carburized hardened layer can be formed with the said desired thickness by performing a vacuum carburizing process at the temperature of 1000 degreeC or more. The carburizing time and the diffusion time are not particularly limited, and may be such that the desired carburized hardened layer is formed. For example, the carburizing time may be 1 minute to 10 minutes, and the diffusion time may be 1 minute to 10 minutes.
上記浸炭処理後、A1変態点以下の温度までガス冷却、若しくは油焼入れをする。その後、再加熱処理(例えば830℃〜850℃で10〜30分)を施すことも望ましく、これによって旧オーステナイト結晶粒の更なる微細化を達成できる。 After the carburization, gas cooled to a temperature below the A 1 transformation point, or the oil quenching. Thereafter, it is also desirable to perform a reheating treatment (for example, at 830 ° C. to 850 ° C. for 10 to 30 minutes), whereby further refinement of the prior austenite crystal grains can be achieved.
得られたコイルばねは、更に耐疲労性の向上を目的として、必要に応じて一般的なショットピーニングやセッチングを施してもよい。 The obtained coil spring may be subjected to general shot peening or setting as necessary for the purpose of further improving fatigue resistance.
本発明のコイルばねを製造するにあたり、上記以外の条件については特に限定されず、一般的な製造条件を採用すればよい。 In manufacturing the coil spring of the present invention, conditions other than those described above are not particularly limited, and general manufacturing conditions may be employed.
このようにして得られたコイルばねは上記したようにエンジン用弁ばねやトランスミッション用ばねなどの各種用途において、耐疲労性に優れたコイルばねとして利用できる。 The coil spring thus obtained can be used as a coil spring excellent in fatigue resistance in various applications such as an engine valve spring and a transmission spring as described above.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
下記表1に示す化学組成の鋼A〜H(残部は、鉄および不可避不純物)となるように鋼材を真空溶解炉にて溶製し熱間鍛造して155mm角のビレットを作製した。このビレットを1000℃に加熱し、熱間圧延して直径8.0mmのばね用線材を作製した。このばね用線材を軟化焼鈍(660℃で2時間保持)してから、該ばね用線材の表層部0.15mmを皮削りして脱炭層を除去した。その後、該ばね用線材を中性ガス雰囲気中で温度900℃以上に加熱して一旦オーステナイト化した。次いで、該ばね用線材に鉛パテンティング処理(加熱温度980℃、鉛炉温度:620℃)を実施し、組織をパーライト変態させた。その後、該ばね用線材を線径4.1mmまで冷間伸線加工し、各線材成分に適した条件でオイルテンパー処理(加熱温度:900℃〜1000℃、焼入油温度:60℃、焼戻し温度:400〜500℃)を行い、ばね用素線を作製した。このばね用素線を用いて冷間ばね成形(コイルの平均径24.60mm、自由高さ46.55mm、有効巻数5.75)してばねを得た。 A steel material was melted in a vacuum melting furnace so as to become steels A to H having chemical compositions shown in Table 1 (the balance was iron and inevitable impurities), and hot forged to produce a 155 mm square billet. The billet was heated to 1000 ° C. and hot-rolled to produce a spring wire having a diameter of 8.0 mm. The spring wire was soft annealed (held at 660 ° C. for 2 hours), and then the surface layer portion 0.15 mm of the spring wire was shaved to remove the decarburized layer. Thereafter, the spring wire was heated to a temperature of 900 ° C. or higher in a neutral gas atmosphere to be once austenite. Subsequently, lead patenting treatment (heating temperature: 980 ° C., lead furnace temperature: 620 ° C.) was performed on the wire for spring to transform the structure into pearlite. Thereafter, the wire for spring is cold-drawn to a wire diameter of 4.1 mm and treated with an oil temper under conditions suitable for each wire component (heating temperature: 900 ° C. to 1000 ° C., quenching oil temperature: 60 ° C., tempering) Temperature: 400 to 500 ° C.) to produce a spring wire. Using this spring wire, a cold spring was formed (coil average diameter 24.60 mm, free height 46.55 mm, effective number of turns 5.75) to obtain a spring.
次に、得らればねを下記表2に記載の「浸炭温度」に加熱し、真空浸炭処理(浸炭時間5分、拡散時間3分)を施した。その後、該ばねを950℃で15分間保持した後、50℃に保持した油中に浸漬して焼入れし、その後、焼戻し(350℃、90分間)を施した。得られたばねに3段ショットピーニングを行い(1段目から徐々に投射する粒径を小さくした)、続いてホットセッチング(230℃、τmax=1600MPa相当)を行った。得られたコイルばね(試験材No.1〜13)について以下の測定、および試験を行った。 Next, the obtained spring was heated to the “carburizing temperature” described in Table 2 below, and vacuum carburized (carburizing time 5 minutes, diffusion time 3 minutes). Thereafter, the spring was held at 950 ° C. for 15 minutes, then immersed in oil kept at 50 ° C. and quenched, and then tempered (350 ° C., 90 minutes). The obtained spring was subjected to three-stage shot peening (the particle diameter projected gradually from the first stage was reduced), and then hot setting (230 ° C., τ max = 1600 MPa equivalent) was performed. The following measurements and tests were performed on the obtained coil springs (test materials No. 1 to 13).
(浸炭硬化層の深さ)
浸炭硬化層の深さは、コイルばねの炭素濃度を測定することにより特定した。具体的には図1に示すようにコイルばねを形成する鋼線の横断面の中心点から90度間隔でラインを4本引き、各ライン上の炭素(C)%濃度が添加した炭素(C)%と同等となる深さを測定した。測定値を表中の「浸炭硬化層の深さ」欄に記入した。本発明では浸炭硬化層の深さが0.30mm〜1.00mmの範囲内にある場合を合格とした。
(Depth of carburized hardened layer)
The depth of the carburized hardened layer was specified by measuring the carbon concentration of the coil spring. Specifically, as shown in FIG. 1, four lines are drawn at 90 ° intervals from the center point of the cross section of the steel wire forming the coil spring, and carbon (C)% concentration added on each line (C ) A depth equivalent to% was measured. The measured value was entered in the “depth of carburized hardened layer” column in the table. In this invention, the case where the depth of a carburized hardened layer exists in the range of 0.30 mm-1.00 mm was set as the pass.
(1/4×D位置のビッカース硬さ)
コイルばねの硬さ(Hv)はビッカース硬度計を用いて測定した。具体的には図1に示すようにコイルばねを形成する鋼線の横断面の1/4×直径Dの位置(d/4)を90度間隔で引いた4本のライン上で測定し(試験荷重10kgf)、その平均値を求めた。平均値を表中の「ビッカース硬さ」欄に記載した。本発明ではビッカース硬さが600以上を合格とした。
(Vickers hardness at 1/4 x D position)
The hardness (Hv) of the coil spring was measured using a Vickers hardness tester. Specifically, as shown in FIG. 1, measurement is performed on four lines obtained by subtracting the position (d / 4) of ¼ × diameter D of the cross section of the steel wire forming the coil spring at intervals of 90 degrees ( The test load was 10 kgf), and the average value was obtained. The average value was described in the “Vickers hardness” column in the table. In the present invention, a Vickers hardness of 600 or more was considered acceptable.
(旧オーステナイト結晶の平均結晶粒度番号)
コイルばねの旧オーステナイト結晶の結晶粒度の測定方法は以下の通りである。具体的にはまず、図2に示すようにコイルばねの横断面の中心点から45度間隔で8等分した区画を決める。そして夫々の区画内においてコイルばねを形成する鋼線の表層から中心部に向かって0.3mm深さ位置における旧オーステナイト結晶の結晶粒度をJIS G 0551に基づいて光学顕微鏡(倍率400倍)で観察(1視野当たりのサイズ:250μm×200μm)を行い、測定した。平均測定値を表中の「旧γ結晶の平均結晶粒度番号」欄に記載した。本発明では、旧オーステナイト結晶の平均結晶粒度番号が11.0以上を合格とした。
(Average grain size number of old austenite crystals)
The measuring method of the crystal grain size of the prior austenite crystal of the coil spring is as follows. Specifically, first, as shown in FIG. 2, a section divided into eight equal parts at intervals of 45 degrees from the center point of the cross section of the coil spring is determined. In each section, the grain size of the prior austenite crystal at a depth of 0.3 mm from the surface layer of the steel wire forming the coil spring toward the center is observed with an optical microscope (400 times magnification) based on JIS G 0551. (Size per field of view: 250 μm × 200 μm) was performed and measured. The average measured value was described in the column “average grain size number of old γ crystal” in the table. In the present invention, the average grain size number of the prior austenite crystals is 11.0 or more.
(旧オーステナイト結晶の粒度番号差)
コイルばねの旧オーステナイト結晶の粒度番号差の判断方法は以下の通りである。上記測定した各旧オーステナイト結晶の結晶粒度番号について、最大頻度の粒度番号との差が3以上異なった結晶粒が存在する場合を混粒ありと判断した。表中の「混粒」欄に、混粒が存在する場合は「あり」と記載し、混粒が存在しなかった場合は「なし」と記載した。
(Difference in grain number of old austenite crystals)
The method for judging the difference in the grain size numbers of the prior austenite crystals of the coil spring is as follows. Regarding the crystal grain size number of each of the prior austenite crystals measured above, the case where there was a crystal grain having a difference of 3 or more from the maximum frequency grain size number was judged to be mixed. In the “mixed grain” column of the table, “Yes” is described when mixed grains are present, and “None” is described when mixed grains are not present.
(耐疲労性:疲労試験)
得られた各試験材に最大せん断応力(τmax)588±441MPaのせん断応力を負荷し、6,000万回までの疲労試験を行った。試験材にせん断応力を6,000万回まで負荷できた場合(すなわち折損しなかった場合)は、「A」判定(耐疲労性に優れる)とし、表中に「>6000」と記載した。また試験材にせん断応力を6,000万回負荷できなかった場合(すなわち、途中で折損した場合)は、「F」判定(耐疲労性に劣る)とし、表中に破断が生じた回数を記載した。
(Fatigue resistance: fatigue test)
Each test material obtained was subjected to a fatigue test up to 60 million times with a maximum shear stress (τ max ) of 588 ± 441 MPa. When the shear stress could be applied to the test material up to 60 million times (that is, when it was not broken), it was determined as “A” (excellent in fatigue resistance), and described as “> 6000” in the table. If the test material could not be subjected to a shear stress of 60 million times (that is, it was broken in the middle), it was determined as “F” (inferior in fatigue resistance), and the number of times the fracture occurred in the table was determined. Described.
これらの結果から次のように考察することができる。No.1〜7は、本発明で規定する要件(化学成分組成、結晶粒度、浸炭硬化層の深さ、ビッカース硬さ)を満足する例である。No.1〜7のコイルばねは、いずれも高負荷応力下での破断寿命が長く(A判定)、耐疲労性に優れていることがわかる。 These results can be considered as follows. No. Examples 1 to 7 are examples that satisfy the requirements defined in the present invention (chemical component composition, crystal grain size, carburized hardened layer depth, Vickers hardness). No. It can be seen that the coil springs 1 to 7 all have a long fracture life under high load stress (A judgment) and are excellent in fatigue resistance.
これに対し、No.8〜13は、本発明で規定する化学成分組成や、好ましい製造条件を満足しなかったため、所定の結晶粒度、浸炭硬化層の深さ、ビッカース硬度などを確保できず、耐疲労性に劣る結果(F判定)となった例である。 In contrast, no. Nos. 8 to 13 did not satisfy the chemical composition defined in the present invention and preferred production conditions, and therefore the predetermined crystal grain size, the depth of the carburized hardened layer, the Vickers hardness, etc. could not be secured, and the fatigue resistance was poor. This is an example of (F determination).
No.8、9は同じ鋼種を用いた例であり、これらは、特許文献1の実施例No.4(特許文献1の鋼種A、浸炭条件L)を模擬した例である。No.8、9は、V添加量が少なく、またCr添加量が多い例であり、Cの拡散係数が著しく低下したため浸炭硬化層が浅かった。特にNo.8は、浸炭温度も低かったため、十分な浸炭硬化層の深さを確保できず、耐疲労性が悪かった。またNo.9は、本発明の推奨する浸炭温度で処理したが、V添加量が少なかったため、旧オーステナイト結晶の微細化効果が十分に得られず、混粒も生じて耐疲労性が劣った。 No. Nos. 8 and 9 are examples using the same steel type. This is an example of simulating No. 4 (steel type A, carburizing condition L of Patent Document 1). No. Nos. 8 and 9 are examples in which the V addition amount is small and the Cr addition amount is large, and the carburized hardened layer was shallow because the diffusion coefficient of C was remarkably lowered. In particular, no. Since the carburizing temperature of No. 8 was low, a sufficient depth of the carburized hardened layer could not be secured, and the fatigue resistance was poor. No. No. 9 was treated at the carburizing temperature recommended by the present invention, but since the amount of V added was small, the effect of refining the prior austenite crystal was not sufficiently obtained, and mixed grains were produced, resulting in poor fatigue resistance.
No.10は、V添加量が少ないため、所定の浸炭温度で処理すると混粒が生じ、耐疲労性が劣った。 No. No. 10 had a small amount of V added, so that when it was processed at a predetermined carburizing temperature, mixed grains were generated and fatigue resistance was inferior.
No.11は、C、Siの添加量が少なく、また浸炭処理温度が低い例である。この例では所定のビッカース硬さが得られず、耐疲労性が劣った。 No. 11 is an example in which the addition amount of C and Si is small and the carburizing temperature is low. In this example, the predetermined Vickers hardness was not obtained, and the fatigue resistance was inferior.
No.12、13は、浸炭温度が低かったため、所定の浸炭硬化層深さが得られず、耐疲労性が劣った。 No. Nos. 12 and 13 had a low carburizing temperature, so that a predetermined carburized hardened layer depth was not obtained, and fatigue resistance was inferior.
Claims (3)
Si:1.50〜3.50%、
Mn:0.30〜1.50%、
Cr:0.10〜0.90%、
V:0.50〜1.00%、および
Al:0.01%以下(0%を含まない)を含有し、
残部が鉄および不可避不純物である鋼からなり、
表層から0.3mm深さ位置における旧オーステナイト結晶の平均結晶粒度番号が11.0以上であると共に、前記旧オーステナイト結晶の粒度番号差は、最大頻度の粒度番号に比べて3未満の範囲内にあり、且つ、表層から深さ0.50〜1.00mmの浸炭硬化層を備えると共に、表層から深さ方向(1/4)×直径の位置におけるビッカース硬さの平均値が600以上であることを特徴とするコイルばね。 C: 0.40 to 0.70% (% means “mass%”, the same applies to the chemical composition)
Si: 1.50 to 3.50%,
Mn: 0.30 to 1.50%,
Cr: 0.10 to 0 . 90 %,
V: 0.50 to 1.00%, and Al: 0.01% or less (not including 0%),
The balance consists of steel, which is iron and inevitable impurities,
The average grain size number of the prior austenite crystal at a depth of 0.3 mm from the surface layer is 11.0 or more, and the grain number difference of the prior austenite crystal is within a range of less than 3 compared to the maximum frequency grain number. There is a depth of 0. 0 from the surface. 5 provided with a carburized hardened layer of 0~1.00Mm, coil spring average value of Vickers hardness at the position in the depth direction (1/4) × diameter from the surface layer is characterized in that 600 or more.
Ni:1.50%以下(0%を含まない)、および/または
Nb:0.50%以下(0%を含まない)を含む請求項1に記載のコイルばね。 Furthermore,
The coil spring according to claim 1, comprising Ni: 1.50% or less (not including 0%) and / or Nb: 0.50% or less (not including 0%).
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013143514A JP5941439B2 (en) | 2013-07-09 | 2013-07-09 | Coil spring and manufacturing method thereof |
US14/903,975 US20160160306A1 (en) | 2013-07-09 | 2014-07-08 | Coil spring, and method for manufacturing same |
PCT/JP2014/068123 WO2015005311A1 (en) | 2013-07-09 | 2014-07-08 | Coil spring, and method for manufacturing same |
KR1020167000388A KR101789944B1 (en) | 2013-07-09 | 2014-07-08 | Coil spring, and method for manufacturing same |
CN201480039266.5A CN105358726B (en) | 2013-07-09 | 2014-07-08 | Helical spring and its manufacture method |
EP14823237.4A EP3020841B1 (en) | 2013-07-09 | 2014-07-08 | Coil spring, and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013143514A JP5941439B2 (en) | 2013-07-09 | 2013-07-09 | Coil spring and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015017288A JP2015017288A (en) | 2015-01-29 |
JP5941439B2 true JP5941439B2 (en) | 2016-06-29 |
Family
ID=52279991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013143514A Active JP5941439B2 (en) | 2013-07-09 | 2013-07-09 | Coil spring and manufacturing method thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US20160160306A1 (en) |
EP (1) | EP3020841B1 (en) |
JP (1) | JP5941439B2 (en) |
KR (1) | KR101789944B1 (en) |
CN (1) | CN105358726B (en) |
WO (1) | WO2015005311A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106939372B (en) * | 2017-02-14 | 2018-12-18 | 江西昌河航空工业有限公司 | A kind of manufacturing method of spring |
JP7165522B2 (en) * | 2018-07-10 | 2022-11-04 | 日本発條株式会社 | Compression coil spring and its manufacturing method |
CN113474574B (en) | 2019-02-26 | 2024-04-09 | 贝卡尔特公司 | Helical compression spring for an actuator for opening and closing a door or tailgate of a motor vehicle |
WO2021002074A1 (en) * | 2019-07-01 | 2021-01-07 | 住友電気工業株式会社 | Steel wire and spring |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5545267A (en) * | 1993-03-12 | 1996-08-13 | Nippon Steel Corporation | Steel product for induction-hardened shaft component and shaft component using the same |
JPH0959745A (en) * | 1995-08-24 | 1997-03-04 | Daido Steel Co Ltd | Steel free from coarsening of crystalline grain |
JP2003213372A (en) * | 2002-01-25 | 2003-07-30 | Sumitomo Denko Steel Wire Kk | Steel wire for spring and spring |
US8007716B2 (en) * | 2003-03-28 | 2011-08-30 | Kabushiki Kaisha Kobe Seiko Sho | Steel wire for high strength spring excellent in workability and high strength |
CN101321884A (en) * | 2006-03-31 | 2008-12-10 | 新日本制铁株式会社 | Heat-treatment steel for high-strength spring |
JP5476597B2 (en) * | 2010-03-04 | 2014-04-23 | 株式会社神戸製鋼所 | Seamless steel pipe for high-strength hollow springs |
JP5693126B2 (en) * | 2010-10-06 | 2015-04-01 | 日産自動車株式会社 | Coil spring and manufacturing method thereof |
JP5711539B2 (en) * | 2011-01-06 | 2015-05-07 | 中央発條株式会社 | Spring with excellent corrosion fatigue strength |
JP5064590B1 (en) * | 2011-08-11 | 2012-10-31 | 日本発條株式会社 | Compression coil spring and method of manufacturing the same |
-
2013
- 2013-07-09 JP JP2013143514A patent/JP5941439B2/en active Active
-
2014
- 2014-07-08 CN CN201480039266.5A patent/CN105358726B/en active Active
- 2014-07-08 WO PCT/JP2014/068123 patent/WO2015005311A1/en active Application Filing
- 2014-07-08 US US14/903,975 patent/US20160160306A1/en not_active Abandoned
- 2014-07-08 KR KR1020167000388A patent/KR101789944B1/en active IP Right Grant
- 2014-07-08 EP EP14823237.4A patent/EP3020841B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR20160018720A (en) | 2016-02-17 |
US20160160306A1 (en) | 2016-06-09 |
KR101789944B1 (en) | 2017-10-25 |
JP2015017288A (en) | 2015-01-29 |
WO2015005311A1 (en) | 2015-01-15 |
CN105358726A (en) | 2016-02-24 |
EP3020841B1 (en) | 2018-08-22 |
EP3020841A1 (en) | 2016-05-18 |
CN105358726B (en) | 2017-06-09 |
EP3020841A4 (en) | 2017-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5332646B2 (en) | Manufacturing method of carburizing steel with excellent cold forgeability | |
JP5693126B2 (en) | Coil spring and manufacturing method thereof | |
US20090283181A1 (en) | Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring | |
US20170058376A1 (en) | Rolled material for high strength spring, and wire for high strength spring | |
JP6794012B2 (en) | Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance | |
WO2015194411A1 (en) | Steel for mechanical structure for cold working, and method for producing same | |
JP5941439B2 (en) | Coil spring and manufacturing method thereof | |
JP4097151B2 (en) | High strength spring steel wire and high strength spring with excellent workability | |
JP6460883B2 (en) | Manufacturing method of heat-treated steel wire with excellent workability | |
CN103998640B (en) | There is spring wire rod and the steel wire of excellent corrosion protection, spring steel wire, and the method manufacturing spring | |
JP2012237052A (en) | Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same | |
JP2012052218A (en) | Spring steel wire, method for producing the same, and spring | |
JP6453693B2 (en) | Heat treated steel wire with excellent fatigue characteristics | |
JP6208611B2 (en) | High strength steel with excellent fatigue properties | |
JP4133515B2 (en) | Spring steel wire with excellent sag and crack resistance | |
JP2016074951A (en) | Manufacturing method of case hardened steel | |
US10526675B2 (en) | Method for manufacturing steel for high-strength hollow spring | |
JP2011208262A (en) | Method for producing case hardening steel having high fatigue strength | |
JP3872364B2 (en) | Manufacturing method of oil tempered wire for cold forming coil spring | |
JP2020100861A (en) | Machine component for automobiles made of steel material for induction hardening excellent in static torsional strength and torsional fatigue strength | |
JP2001049337A (en) | Production of high strength spring excellent in fatigue strength | |
JP2014227581A (en) | Oil temper wire and method of producing oil temper wire | |
JP7156021B2 (en) | Steel for carburized steel parts | |
JP5633426B2 (en) | Steel for heat treatment | |
JP6394844B1 (en) | Shaft member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160520 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5941439 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |