JP5934133B2 - Composite foam - Google Patents

Composite foam Download PDF

Info

Publication number
JP5934133B2
JP5934133B2 JP2013061372A JP2013061372A JP5934133B2 JP 5934133 B2 JP5934133 B2 JP 5934133B2 JP 2013061372 A JP2013061372 A JP 2013061372A JP 2013061372 A JP2013061372 A JP 2013061372A JP 5934133 B2 JP5934133 B2 JP 5934133B2
Authority
JP
Japan
Prior art keywords
foam
resin
foaming
sheet
tatami
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013061372A
Other languages
Japanese (ja)
Other versions
JP2013173366A (en
Inventor
文剛 永森
文剛 永森
川崎 章平
章平 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2013061372A priority Critical patent/JP5934133B2/en
Publication of JP2013173366A publication Critical patent/JP2013173366A/en
Application granted granted Critical
Publication of JP5934133B2 publication Critical patent/JP5934133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Floor Finish (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、畳構成部材に用いられる複合発泡体に関する。 The present invention relates to a composite foam for use in tatami arrangement member.

昨今の住宅設計においてバリアフリーを中心とした床面のフラット構造が注目されている。この構造の主なメリットとしては床面の段差を解消することで、動作補助器具の使用を容易にさせる。このように高齢者や障害者にとっての活動障害を取り除く設計がユニバーサルデザインとしても主流を占めつつある。しかし、和室と洋室が混在する場合には、構造躯体自体に段差が無くても、床仕上材、例えばフローリングと畳とでは厚さが違うことから段差の調整が必要となる。躯体自体のレベリングを調整する方法もあるが、この場合は構造的にレベルを合わせるためにコストがかかったり、リフォームの際に制約が発生する。従って、ここで床構造を考える場合、床仕上材自体の厚さを調整してレベル調整できることが理想的と考えられる。ただし、フローリングの厚みは一般的に20mm以下であるが、畳は55mmまでと多種多様である。従って、フローリングの厚みに対して畳の厚さを合わせる必要があり、従来の畳よりも比較的に薄い畳に注目が集中している。   In recent housing design, the flat structure of the floor centered on barrier-free has attracted attention. The main merit of this structure is that it eliminates the steps on the floor and makes it easier to use motion assisting devices. In this way, the design that removes the obstacles to activities for the elderly and the disabled is becoming the mainstream as a universal design. However, when a Japanese-style room and a Western-style room coexist, even if there is no step in the structural frame itself, it is necessary to adjust the level difference because the floor finishing material, for example, flooring and tatami, have different thicknesses. There is also a method of adjusting the leveling of the housing itself, but in this case, it is costly to match the level structurally, and there are restrictions in reforming. Therefore, when considering the floor structure here, it is considered ideal that the level can be adjusted by adjusting the thickness of the floor finishing material itself. However, the thickness of the flooring is generally 20 mm or less, but the tatami mats are various up to 55 mm. Therefore, it is necessary to match the thickness of the tatami with the thickness of the flooring, and attention is focused on a tatami mat that is relatively thinner than the conventional tatami mat.

しかし、一般的に畳の厚さが薄くなるほど、剛性が小さくなり曲がりやすくなる。つまり、一般的な畳の特徴として室内環境の水分を吸放出すると畳自体は伸縮するが、表裏の状況が違えば反り易くなる。そこで、吸水性が小さい樹脂系素材を芯材に用いる例が注目されている。樹脂系素材は一般的な薄畳の芯材で用いられている合板やインシュレーションボードなどの繊維板等と比較して吸水性が小さく湿気に対しての伸縮作用は低減できる為、プラスチックダンボールなどの素材が使われているケースがある。ただし、この場合、薄い為に剛性が弱く、畳表が張りにくかったり、熱の影響を受けやすくなり熱伸縮がもたらす変形が問題となっている。つまり、畳の芯材として剛性と、熱・湿気に依存する伸縮係数が薄畳の加工・製品品質を安定させるためのパラメータとして重要視される。加えて、最近増加している床暖房設備を考慮した場合、熱効率の観点からも薄畳は厚畳と比べて高効率であるが、上述したように大きな線膨張係数を持つ芯材を用いた場合は表裏の温度差によって反りが生じる。それに対し例えば、特許文献1にあるようなポリスチレン系樹脂発泡体にガラス繊維を含む線膨張係数が低く、弾性率が高いポリオレフィン系シートを積層した薄畳芯材や、特許文献2にあるようなポリオレフィン系樹脂発泡体に延伸させたポリオレフィ系シートを積層し、線膨張係数を低減させた複合パネルが提案されている。しかし、特許文献1記載の薄畳芯材は、i)面材の硬度が大きく切断しにくい為に畳の加工がし難い点やii)発泡工程とは別に面材を貼り合わせる工程が必要な為に製造コストがかかる。特許文献2記載の複合パネルはiii)線膨張係数が理論的に延伸方向へしか向上しない点や、iv)このように分子配列が延伸方向に並んでいる為に、延伸方向に対して直角方向へ切断しにくい。また、特許文献3特許には、セルのアスペクト比Dz/Dxyの平均値1.1〜4.0を有するポリオレフィン系樹脂発泡体シートに延伸シートを積層してなる複合積層体が記載されている。この積層体の製造方法において、延伸シートは発泡シートとほとんど同じかもしくは低い融点を有するために、v)発泡工程と同じ工程で両シートを積層すると、発泡剤分解温度が融点以上である為に延伸シートが融解し分子配列が崩れてしまう。Vi)特許文献4には、気泡のアスペクト比Dz /Dxyの
平均値1.2〜2.2を有する熱可塑性樹脂発泡シートに、ガラス繊維シートまたは炭素繊維シートからなる補強シートを積層してなる積層発泡シートが記載されているが、これは、積層工程におけるハンドリング性が著しく損なわれ、繊維材料の飛散等が発生し、製造工程上の制約が大きくなるという問題を有する。また、紙や繊維板の積層により、曲げ剛性を向上させる手段も考えられるが、vii)この方法では前述の通り吸水性が発生するために、多湿乾燥し易い状況では寸法変化に関する問題が発生しやすい。その場合、合成樹脂等の吸水性が小さなシートを積層したり、熱可塑性樹脂をコーティングする方法も考えられるが、床加工の際に縫い穴が発生するため、樹脂層に開口部分が生じる為、耐吸水性は確保困難である。
特開平10−311131号公報 特許第3429749号公報 特許第3354924号公報 特許第3124267号公報
However, in general, the thinner the tatami mat, the smaller the rigidity and the easier it is to bend. That is, as a general feature of tatami mats, when the moisture in the indoor environment is absorbed and released, the tatami mats expand and contract, but they tend to warp if the front and back are different. Therefore, an example in which a resin-based material having low water absorption is used as a core material has attracted attention. Resin-based materials have low water absorption compared to fiberboards such as plywood and insulation boards used in general thin tatami cores, and can reduce the expansion and contraction action against moisture. There are cases where materials are used. However, in this case, since it is thin, its rigidity is weak, and it is difficult to stretch the tatami surface, and deformation caused by thermal expansion and contraction due to heat is a problem. In other words, rigidity as a tatami core material and the expansion and contraction coefficient depending on heat and moisture are regarded as important parameters for stabilizing the processing and product quality of thin tatami mats. In addition, considering the recently increased floor heating facilities, thin tatami mats are more efficient than thick tatami mats from the viewpoint of thermal efficiency, but as described above, a core material having a large linear expansion coefficient was used. In this case, warping occurs due to the temperature difference between the front and back sides. On the other hand, for example, there is a thin tatami core material obtained by laminating a polyolefin-based sheet having a low coefficient of linear expansion containing glass fiber and a high elastic modulus, as in Patent Document 1, There has been proposed a composite panel in which a polyolefin sheet is laminated on a polyolefin resin foam to reduce the linear expansion coefficient. However, the thin tatami core material described in Patent Document 1 requires i) that the hardness of the face material is large and difficult to cut, and that tatami processing is difficult, and ii) a step of attaching the face material separately from the foaming step. Therefore, manufacturing cost is high. In the composite panel described in Patent Document 2, iii) the linear expansion coefficient is theoretically improved only in the stretching direction, and iv) the molecular arrangement is aligned in the stretching direction in this way, so that the direction perpendicular to the stretching direction. Difficult to cut into. Patent Document 3 describes a composite laminate in which a stretched sheet is laminated on a polyolefin resin foam sheet having an average cell aspect ratio Dz / Dxy of 1.1 to 4.0. . In this laminate manufacturing method, since the stretched sheet has almost the same or lower melting point as the foamed sheet, v) When both sheets are laminated in the same step as the foaming step, the foaming agent decomposition temperature is higher than the melting point. The stretched sheet melts and the molecular arrangement collapses. Vi) Patent Document 4 is formed by laminating a reinforcing sheet made of a glass fiber sheet or a carbon fiber sheet on a thermoplastic resin foam sheet having an average aspect ratio Dz / Dxy of bubbles of 1.2 to 2.2. Although a laminated foam sheet is described, this has a problem that handling properties in the lamination process are remarkably impaired, scattering of the fiber material occurs, and restrictions on the production process increase. In addition, although means to improve the bending rigidity can be considered by laminating paper and fiberboard, vii) Since this method generates water absorption as described above, there is a problem with dimensional change in situations where it is easy to dry with high humidity. Cheap. In that case, a method of laminating sheets with low water absorption, such as a synthetic resin, or a method of coating a thermoplastic resin is also conceivable, but since a sewing hole is generated during floor processing, an opening portion is generated in the resin layer. It is difficult to ensure water absorption resistance.
Japanese Patent Laid-Open No. 10-311131 Japanese Patent No. 3429749 Japanese Patent No. 3354924 Japanese Patent No. 312267

本発明の目的は、上記従来の畳用芯材の諸問題を克服することができる畳構成部材として使用できる複合発泡体を提供することである。
An object of the present invention is to provide a composite foam that can be used as tatami structure member which can overcome the above problems of the conventional tatami core material.

本発明は、樹脂板状発泡体の少なくとも片面に面材が積層されてなりかつ薄畳の芯材に用いられる複合発泡体であって、該面材は、繊維長10〜30mm、繊維径5〜20μmのガラス繊維10〜100g/mと、パルプ10〜80g/mと、無機物の粉体10〜70g/mと、樹脂製バインダー5〜100g/mとを含み、該樹脂板状発泡体は、内在するセルのアスペクト比〔Dz(板状体厚み方向に平行な最大径)/Dxy(板状体幅または長さ方向に平行な最大径)〕の平均値が1.1〜4.0であり、且つ、発泡倍率が3〜20倍である、ポリオレフィン系樹脂発泡体であり、同発泡体は面内の二次元方向(xy方向)へは発泡せず、厚み方向(z方向)にのみ発泡していることを特徴とする複合発泡体である。
The present invention is a composite foam in which a face material is laminated on at least one surface of a resin plate-like foam and is used for a thin tatami core material, the face material having a fiber length of 10 to 30 mm, a fiber diameter 5 to 20 μm glass fiber 10 to 100 g / m 2 , pulp 10 to 80 g / m 2 , inorganic powder 10 to 70 g / m 2 , and resin binder 5 to 100 g / m 2 The resin plate foam has an aspect ratio [Dz (maximum diameter parallel to the plate thickness direction) / Dxy (maximum diameter parallel to the plate width or length direction)] of the inherent cell. average value is 1.1 to 4.0, and expansion ratio is 3 to 20 times, a polyolefin resin foam, the foam is foamed to a two-dimensional directions in the plane (xy direction) without a composite foam, characterized in that it is foamed only in the thickness direction (z-direction).

本発明において、面材は樹脂発泡体と熱融着していると、一体成形できるので望ましい。   In the present invention, it is desirable that the face material is heat-sealed with the resin foam because it can be integrally formed.

上記面材を樹脂発泡体と一体成形することにより、発泡性シートを加熱発泡させる際の面内方向への発泡を抑制し、内在するセルのアスペクト比Dz/Dxyの平均値が1.1〜4.0の発泡体が容易に製造可能となる。   By integrally molding the above face material with the resin foam, foaming in the in-plane direction when the foamable sheet is heated and foamed is suppressed, and the average value of the aspect ratio Dz / Dxy of the underlying cells is 1.1 to 1.1. 4.0 foam can be easily manufactured.

本発明において、面材の表面は合成樹脂層で被覆されてなることが好ましい。   In the present invention, the surface of the face material is preferably covered with a synthetic resin layer.

本発明による複合発泡体は薄畳の畳芯材として好適に用いることができる。   The composite foam according to the present invention can be suitably used as a thin tatami mat core material.

まず、本発明による複合発泡体を構成する樹脂板状発泡体ついて説明をする。   First, the resin plate-like foam constituting the composite foam according to the present invention will be described.

樹脂板状発泡体に使用される樹脂成分は特に限定されるわけではないが、特に、ポリオレフィン系樹脂、スチレン系樹脂、ウレタン系樹脂、ハロゲン系樹脂、EVA、ポリカーボネート、ABS、などが好ましい。断面形状は特に限定されるものではないが、プラスチックダンボールタイプの形状であったり、リブ形状を内挿していてもかまわない。特に好ましくは、軽量性及び加工性(切断性)の観点から内部にセル形状を備える発泡体が良い。   The resin component used for the resin plate-like foam is not particularly limited, but polyolefin resin, styrene resin, urethane resin, halogen resin, EVA, polycarbonate, ABS, and the like are particularly preferable. The cross-sectional shape is not particularly limited, but it may be a plastic cardboard type shape or a rib shape may be inserted. Particularly preferred is a foam having a cell shape inside from the viewpoints of lightness and workability (cutability).

また、発泡体の樹脂としては特にポリオレフィン系樹脂を使用することがリサイクル性などの環境配慮の点から好ましく、使用される樹脂はポリオレフィン系としてオレフィン系モノマーの単独重合体もしくは共重合体であればよく、特に限定されるものではないが、例えば、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン等のポリエチレン、プロピレンホモポリマー、プロピレンランダムポリマー、プロピレンブロックポリマー等のポリプロピレン、ポリブテン、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン三元共重合体、エチレン−ブテン共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エステル共重合体等のエチレンを主成分とする共重合体などが好適に用いられるが、なかでもポリエチレンやポリプロピレンが特に好適に用いられる。これらのポリオレフィン系樹脂は、単独で用いられても良いし、2種類以上が併用されても良い。   In addition, it is particularly preferable to use a polyolefin resin as the foam resin from the viewpoint of environmental considerations such as recyclability. If the resin used is a polyolefin-based homopolymer or copolymer of an olefin monomer Well, not particularly limited, for example, polyethylene such as low density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene such as propylene homopolymer, propylene random polymer, propylene block polymer, polybutene, ethylene- Copolymers mainly composed of ethylene such as propylene copolymer, ethylene-propylene-diene terpolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer Are preferably used, but But polyethylene and polypropylene are particularly preferably used. These polyolefin resin may be used independently and 2 or more types may be used together.

また、上記ポリオレフィン系樹脂は、ポリオレフィン系樹脂に対し30重量%未満の他の樹脂が添加されているポリオレフィン系樹脂組成物であっても良い。上記他の樹脂としては、特に限定されるものではないが、例えば、ポリスチレンやスチレン系エラストマー等が挙げられる。これらの他の樹脂は、単独で用いられても良いし、2種類以上が併用されても良い。   The polyolefin resin may be a polyolefin resin composition in which other resin of less than 30% by weight is added to the polyolefin resin. Although it does not specifically limit as said other resin, For example, a polystyrene, a styrene-type elastomer, etc. are mentioned. These other resins may be used alone or in combination of two or more.

ポリオレフィン系樹脂に対する他の樹脂の添加量が30重量%以上であると、軽量、耐薬品性、柔軟性、弾性等のポリオレフィン系樹脂が有する優れた特性が阻害されることがあり、また、発泡時に必要な溶融粘度を確保することが困難となることがある。   If the amount of other resin added to the polyolefin resin is 30% by weight or more, the excellent properties of the polyolefin resin such as light weight, chemical resistance, flexibility, and elasticity may be hindered. Sometimes it may be difficult to ensure the necessary melt viscosity.

さらに、上記ポリオレフィン系樹脂は、変性用モノマーが添加されているポリオレフィン系樹脂組成物であっても良い。上記変性用モノマーとしては、特に限定されるものではないが、例えば、ジオキシム化合物、ビスマレイミド化合物、ジビニルベンゼン、アリル系多官能モノマー、(メタ)アクリル系多官能モノマー、キノン化合物等が挙げられる。これらの変性用モノマーは、単独で用いられても良いし、2種類以上が併用されても良い。   Furthermore, the polyolefin resin may be a polyolefin resin composition to which a modifying monomer is added. The modifying monomer is not particularly limited, and examples thereof include dioxime compounds, bismaleimide compounds, divinylbenzene, allyl polyfunctional monomers, (meth) acrylic polyfunctional monomers, and quinone compounds. These modifying monomers may be used alone or in combination of two or more.

特にポリオレフィン系樹脂発泡体は、圧縮性能を高める上で内在するセルのアスペクト比〔Dz(板状体厚み方向に平行な最大径)/Dxy(板状体幅または長さ方向に平行な最大径)〕の平均値が1.1〜4.0であり、発泡倍率が3〜20倍であることが好ましく、その結果、圧縮弾性率が5MPa以上と飛躍的に高められる。   In particular, the polyolefin resin foam has an aspect ratio [Dz (maximum diameter parallel to the thickness of the plate-like body) / Dxy (maximum diameter parallel to the plate-like body width or length direction) to enhance the compression performance. )] Is 1.1 to 4.0, and the expansion ratio is preferably 3 to 20 times. As a result, the compression modulus is dramatically increased to 5 MPa or more.

本発明の発泡体を規定するセルのアスペクト比〔Dz(板状体厚み方向に平行な最大径)/Dxy(板状体幅または長さ方向に平行な最大径)〕の平均値は、1.1〜4.0、好ましくは1.3〜2.5である。   The average value of the aspect ratio [Dz (maximum diameter parallel to the plate thickness direction) / Dxy (maximum diameter parallel to the plate width or length direction)] of the cells defining the foam of the present invention is 1 .1 to 4.0, preferably 1.3 to 2.5.

図1(a) は発泡体を示す斜視図であり、図1(b) は図1(a) 中のA部の拡大図である。上記アスペクト比〔Dz(板状体厚み方向に平行な最大径)/Dxy(板状体幅または長さ方向に平行な最大径)〕の平均値とは、図1に示す発泡体(1) 内部のセル(3) における定方向最大径の比の個数(算術)平均値を意味し、以下の方法で測定される。   FIG. 1 (a) is a perspective view showing a foam, and FIG. 1 (b) is an enlarged view of a portion A in FIG. 1 (a). The average value of the aspect ratio [Dz (maximum diameter parallel to plate thickness direction) / Dxy (maximum diameter parallel to plate width or length direction)] is the foam (1) shown in FIG. Means the number (arithmetic) average value of the ratio of the maximum directional diameter in the internal cell (3) and is measured by the following method.

アスペクト比(Dz/Dxy)の平均値の測定方法:発泡体(1) の厚み方向(z方向と呼ぶ)に平行な任意の断面(2)の10倍の拡大写真を撮り、無作為に選ばれた少なくとも50個のセル(3) の定方向最大径を下記2方向で測定し、各アスペクト比(Dz/Dxy)の個数(算術)平均値を算出する。   Measuring method of average value of aspect ratio (Dz / Dxy): Take a magnified photograph 10 times the arbitrary cross section (2) parallel to the thickness direction of foam (1) (referred to as z direction), and select randomly The fixed direction maximum diameter of at least 50 cells (3) is measured in the following two directions, and the number (arithmetic) average value of each aspect ratio (Dz / Dxy) is calculated.

Dz:発泡体(1) 中のセル(3) のZ方向に平行な最大径Dxy:発泡体(1) 中のセル(3) の板状体幅方向または板状体長さ方向、即ち、z方向に垂直な面方向(xy方向と呼ぶ)に平行な最大径である。   Dz: Maximum diameter parallel to the Z direction of the cell (3) in the foam (1) Dxy: Plate width direction or plate length direction of the cell (3) in the foam (1), that is, z It is the maximum diameter parallel to the surface direction perpendicular to the direction (referred to as the xy direction).

上記アスペクト比〔Dz(板状体厚み方向に平行な最大径)/Dxy(板状体幅または長さ方向に平行な最大径)〕の平均値を1.1〜4.0(好ましくは1.3〜2.5)とすることにより、発泡体(1) 中のセル(3) は発泡体(1) の厚み方向に長軸を有する紡錘形のセル(3) となる。従って、発泡体(1) が厚み方向に圧縮力を受けた場合、圧縮力は紡錘形のセル(3) の長軸方向に負荷されることになるので、発泡体(1) は厚み方向に高い圧縮強度(圧縮弾性率)を発現し得るものとなる。   The average value of the aspect ratio [Dz (maximum diameter parallel to the plate-like body thickness direction) / Dxy (maximum diameter parallel to the plate-like body width or length direction)] is 1.1 to 4.0 (preferably 1). 3 to 2.5), the cell (3) in the foam (1) becomes a spindle-shaped cell (3) having a long axis in the thickness direction of the foam (1). Therefore, when the foam (1) receives a compressive force in the thickness direction, the compressive force is applied in the longitudinal direction of the spindle-shaped cell (3), so the foam (1) is high in the thickness direction. The compressive strength (compression elastic modulus) can be expressed.

上記アスペクト比〔Dz(板状体厚み方向に平行な最大径)/Dxy(板状体幅または長さ方向に平行な最大径)〕の平均値が1.1未満であると、セル(3)の形状がほぼ球形となって、上記紡錘形のセル(3) に起因する圧縮強度(圧縮弾性率)向上効果が十分に得られないので、耐クリープ性や弾性回復力が乏しくなったり、へたり現象が発生する。逆に上記アスペクト比〔Dz(板状体厚み方向に平行な最大径)/Dxy(板状体幅または長さ方向に平行な最大径)〕の平均値が4.0を超えると、発泡体(1) の圧縮強度(圧縮弾性率)が高くなり過ぎて、振動吸収性が低下したり、歪みに対して高い応力が必要となるため、このような発泡体(1) を畳芯材とする畳の上を歩いたり、畳の上に座った時に痛い感触を覚えることになる。   When the average value of the aspect ratio [Dz (maximum diameter parallel to the plate-like body thickness direction) / Dxy (maximum diameter parallel to the plate-like body width or length direction)] is less than 1.1, the cell (3 ) Is almost spherical, and the effect of improving the compressive strength (compression elastic modulus) due to the spindle-shaped cell (3) cannot be obtained sufficiently, resulting in poor creep resistance and elastic recovery. Phenomenon occurs. Conversely, when the average value of the aspect ratio [Dz (maximum diameter parallel to the plate-like body thickness direction) / Dxy (maximum diameter parallel to the plate-like body width or length direction)] exceeds 4.0, the foam Since the compressive strength (compression elastic modulus) of (1) becomes too high, vibration absorption decreases, and high stress against strain is required. When you walk on the tatami mat or sit on the tatami mat, you will feel painful.

また、発泡体(1) 内部のセル(3) のDxyの平均値は、特に限定されるものではないが、好ましくは500μm以上、より好ましくは800μm以上である。   Further, the average value of Dxy of the cells (3) inside the foam (1) is not particularly limited, but is preferably 500 μm or more, more preferably 800 μm or more.

一般的に、セル径が小さいとセル壁の厚みが薄くなって発泡体が座屈を生じ易くなるため、発泡体(1) 上に重量物を置いた場合、へたり現象や凹み等が発生し易くなるが、発泡体(1) 内部のセル(3) のDxyの平均値を500μm以上とすることにより、上記座屈に起因するへたり現象や凹み等の発生を効果的に抑制することができる。   In general, if the cell diameter is small, the cell wall becomes thin and the foam tends to buckle.Therefore, when a heavy object is placed on the foam (1), a sag phenomenon or a dent occurs. However, by making the average value of Dxy of the cell (3) in the foam (1) to be 500 μm or more, it is possible to effectively suppress the occurrence of sag and dent due to the above buckling. Can do.

本発明において、発泡体を規定する発泡倍率は3〜20倍である。この発泡倍率は以下の方法で測定される。   In the present invention, the expansion ratio that defines the foam is 3 to 20 times. This expansion ratio is measured by the following method.

発泡倍率の測定方法;発泡体より板状の試料をカッターで切り出した後、JIS K−6767「ポリエチレンフォーム試験方法」に準拠して、見かけ密度を測定し、その逆数を発泡倍率とする。   Method for measuring foaming ratio: After cutting a plate-like sample from the foam with a cutter, the apparent density is measured according to JIS K-6767 “Testing method for polyethylene foam”, and the reciprocal number is taken as the foaming ratio.

発泡体の発泡倍率が3倍未満であると、圧縮強度(圧縮弾性率)が高くなり過ぎたり、製品がコスト高となって実用性が低下し、逆に発泡体の発泡倍率が20倍を超えると、セル壁の厚みが薄くなって、圧縮強度(圧縮弾性率)が不十分となる。   If the foaming ratio of the foam is less than 3 times, the compressive strength (compression modulus) becomes too high, the cost of the product is high, and the practicality is lowered. Conversely, the foaming ratio of the foam is 20 times. When exceeding, the thickness of a cell wall will become thin and compressive strength (compression elastic modulus) will become inadequate.

つぎに、発泡体の製法について、説明をする。   Next, a method for producing the foam will be described.

上記のような紡錘形のセルを持つ発泡体を製造するには、特に限定されないが、リサイクル性、生産性の観点から以下の方法が好適に用いられる。   Although it does not specifically limit in manufacturing the foam which has the above spindle-shaped cells, The following methods are used suitably from a viewpoint of recyclability and productivity.

一般に、ポリオレフィン系樹脂組成物から成る発泡体は、化学発泡法によって得られる発泡体と物理発泡法によって得られる発泡体とに大別される。本発明においては上記いずれの発泡体であっても良いが、発泡操作の容易な化学発泡法によって得られる発泡体が好ましい。   In general, foams made of a polyolefin-based resin composition are roughly classified into foams obtained by a chemical foaming method and foams obtained by a physical foaming method. In the present invention, any of the above-mentioned foams may be used, but a foam obtained by a chemical foaming method with easy foaming operation is preferred.

化学発泡法による発泡体は、加熱により分解ガスを発生する熱分解型化学発泡剤を予めポリオレフィン系樹脂組成物中に分散させておき、同組成物を一旦シート状の発泡性原反に賦形した後、加熱して上記発泡剤より発生するガスによりポリオレフィン系樹脂組成物を発泡させる方法で製造され得る。   The foam by chemical foaming is pre-dispersed in a polyolefin resin composition with a pyrolytic chemical foaming agent that generates decomposition gas when heated, and the composition is once shaped into a sheet-like foamable raw material. Then, the polyolefin resin composition can be produced by a method of heating and foaming the polyolefin resin composition with a gas generated from the foaming agent.

上記熱分解型化学発泡剤としては、特に限定されるものではないが、例えば、アゾジカルボンアミド(ADCA)、ベンゼンスルホニルヒドラジド、ジニトロソペンタメチレンテトラミン、トルエンスルホニルヒドラジド、4,4−オキシビス(ベンゼンスルホニルヒドラジド)等が好適に用いられるが、なかでもADCAがより好ましい。これらの熱分解型化学発泡剤は、単独で用いられても良いし、2種類以上が併用されても良い。   The pyrolytic chemical foaming agent is not particularly limited. For example, azodicarbonamide (ADCA), benzenesulfonyl hydrazide, dinitrosopentamethylenetetramine, toluenesulfonyl hydrazide, 4,4-oxybis (benzenesulfonyl) Hydrazide) and the like are preferably used, and ADCA is more preferable among them. These pyrolytic chemical foaming agents may be used alone or in combination of two or more.

物理発泡法による発泡体は、高圧下でポリオレフィン系樹脂組成物中に物理発泡剤を一旦溶解し、同組成物を常圧下に戻したときに発生するガスによりポリオレフィン系樹脂組成物を発泡させる方法で製造され得る。   The foam by the physical foaming method is a method in which a physical foaming agent is once dissolved in a polyolefin resin composition under high pressure, and the polyolefin resin composition is foamed by a gas generated when the composition is returned to normal pressure. Can be manufactured.

上記物理発泡剤としては、特に限定されるものではないが、例えば、水、二酸化炭素、窒素、有機溶剤などが好適に用いられる。これらの物理発泡剤は、単独で用いられても良いし、2種類以上が併用されても良い。   Although it does not specifically limit as said physical foaming agent, For example, water, a carbon dioxide, nitrogen, an organic solvent etc. are used suitably. These physical foaming agents may be used independently and 2 or more types may be used together.

発泡体を製造するより具体的な方法は下記の通りである。主成分としてのポリオレフィン系樹脂と前述した変性用モノマーや他の樹脂とを溶融混練して得られる変性ポリオレフィン系樹脂組成物100重量部に、上記熱分解型化学発泡剤2〜20重量部を添加分散させ、同組成物を一旦シート状に賦形して発泡性シートを作製した後、この発泡性シートの両面に面方向の発泡を抑制する面材例えば不織布を張り合わせておく。次いで発泡性シートを熱分解型化学発泡剤の分解温度以上の温度まで加熱して発泡させる方法を採ることにより、所望の発泡体を成形することができる。   A more specific method for producing the foam is as follows. Add 2 to 20 parts by weight of the above pyrolyzable chemical foaming agent to 100 parts by weight of the modified polyolefin resin composition obtained by melting and kneading the above-mentioned polyolefin resin as the main component and the above-mentioned modifying monomers and other resins. After dispersing and forming the foamed sheet by once shaping the composition into a sheet, a face material that suppresses foaming in the surface direction, such as a nonwoven fabric, is pasted on both sides of the foamable sheet. Subsequently, a desired foam can be shape | molded by taking the method of heating and foaming a foamable sheet to the temperature more than the decomposition temperature of a thermal decomposition type chemical foaming agent.

ポリオレフィン系樹脂を変性用モノマーで変性することにより、賦形された発泡性シートは、架橋度が低いにも拘らず、常圧で発泡し得るものとなる。尚、ここで言う架橋度とはゲル分率を意味し、架橋度が低いとはゲル分率が25重量%以下であることを言う。上記ゲル分率は、試料の初期重量に対する、試料を120℃の熱キシレン中で24時間溶解させた後の未溶解分(ゲル分)の乾燥重量の百分率で求められる。   By modifying the polyolefin-based resin with a modifying monomer, the shaped foamable sheet can be foamed at normal pressure despite its low degree of crosslinking. In addition, the crosslinking degree said here means a gel fraction, and a low crosslinking degree means that a gel fraction is 25 weight% or less. The said gel fraction is calculated | required by the percentage of the dry weight of the undissolved part (gel part) after dissolving a sample in 120 degreeC hot xylene with respect to the initial weight of a sample for 24 hours.

上記発泡性シートは、電子線で架橋させた架橋シートや熱分解型化学架橋剤で架橋させた架橋シートに比較して、架橋度(ゲル分率)が低く且つ常圧で加熱発泡するため、発泡体のセルが上記架橋シートから得られる発泡体のセルに比べて大きくなり、セル壁が厚くなる。従って、圧縮強度や耐座屈性等の機械的物性に優れる発泡体となり、畳芯材として好適なものとなる。   The foamable sheet has a low degree of crosslinking (gel fraction) and is heated and foamed at normal pressure as compared with a crosslinked sheet crosslinked with an electron beam and a crosslinked sheet crosslinked with a pyrolytic chemical crosslinking agent. The cell of the foam becomes larger than the cell of the foam obtained from the crosslinked sheet, and the cell wall becomes thick. Therefore, it becomes a foam excellent in mechanical properties such as compressive strength and buckling resistance, and is suitable as a tatami core material.

また、発泡体は、架橋度が小さいことから、加熱することで再溶融が可能であり、リサイクル性に富むものである。このことにより、材料の再利用、転用が可能となる。   In addition, since the foam has a small degree of crosslinking, it can be remelted by heating and is highly recyclable. This makes it possible to reuse and divert materials.

発泡性シートの賦形方法は、特に限定されるものではなく、押出成形法、プレス成形法、ブロー成形法、カレンダリング成形法、射出成形法等のプラスチックの成形加工で一般的に行われている成形方法のいずれであっても良いが、なかでも例えばスクリュー押出機より吐出されるポリオレフィン系樹脂組成物を直接シート状に賦形する押出成形法が生産性に優れていることから好ましい。この方法により、一定寸法幅の連続した発泡性シートを得ることができる。   The forming method of the foamable sheet is not particularly limited, and is generally performed by plastic molding such as extrusion molding, press molding, blow molding, calendering, injection molding, and the like. Any of the molding methods may be used, but among them, for example, an extrusion molding method in which a polyolefin resin composition discharged from a screw extruder is directly formed into a sheet shape is preferable because of its excellent productivity. By this method, a continuous foamable sheet having a constant width can be obtained.

発泡性シートから化学発泡法によって発泡体を作製する方法は、通常、熱分解型化学発泡剤の分解温度以上の温度からポリオレフィン系樹脂の熱分解温度未満の温度までの温度範囲で行われる。   A method of producing a foam from a foamable sheet by a chemical foaming method is usually performed in a temperature range from a temperature higher than the decomposition temperature of the thermal decomposition type chemical foaming agent to a temperature lower than the thermal decomposition temperature of the polyolefin resin.

上記発泡は連続式発泡装置を用いて行われることが好ましい。連続式発泡装置を用いて発泡を行う方法としては、特に限定されるものではないが、例えば、加熱炉の出口側で発泡体を引取りながら連続的に発泡性シートを発泡させる引取り式発泡機、ベルト式発泡機、縦型もしくは横型発泡炉、熱風恒温槽等を用いて発泡を行う方法や、オイルバス、メタルバス、ソルトバス等の熱浴中で発泡を行う方法等が挙げられる。   The foaming is preferably performed using a continuous foaming apparatus. The method of foaming using a continuous foaming device is not particularly limited. For example, take-off foaming in which a foamable sheet is continuously foamed while taking a foam on the outlet side of a heating furnace. Examples thereof include a foaming method using a machine, a belt type foaming machine, a vertical or horizontal foaming furnace, a hot air thermostatic bath, a foaming method in a hot bath such as an oil bath, a metal bath, and a salt bath.

こうして得られる発泡体の前記アスペクト比〔Dz(板状体厚み方向に平行な最大径)/Dxy(板状体幅または長さ方向に平行な最大径)〕の平均値を1.1〜4.0とする方法としては、特に限定されるものではないが、例えば、発泡中の発泡性シートの面内方向(xy方向)の発泡力を抑制し得る強度を有する面材を発泡前の発泡性シートの少なくとも片面に積層する方法が好ましい。   The average value of the aspect ratio [Dz (maximum diameter parallel to plate thickness direction) / Dxy (maximum diameter parallel to plate width or length direction)] of the foam obtained in this way is 1.1 to 4. 0.0 is not particularly limited, but, for example, foam before foaming is used for a face material having a strength capable of suppressing the foaming force in the in-plane direction (xy direction) of the foamable sheet being foamed. A method of laminating at least one side of the adhesive sheet is preferable.

つぎに、本発明による畳構成部材において発泡体の少なくとも片面に積層される上記面材について、説明をする。   Next, the face material laminated on at least one surface of the foam in the tatami structural member according to the present invention will be described.

発泡前の発泡性シートの少なくとも片面に上記面材を積層することにより、発泡時における発泡性シートの面内の二次元方向(xy方向)の発泡を抑制し、厚み方向(z方向)にのみ発泡させることが可能となって、得られる発泡体内部のセルは厚み方向にその長軸を配向した紡錘形のセルとなる。   By laminating the face material on at least one surface of the foamable sheet before foaming, foaming in the two-dimensional direction (xy direction) in the surface of the foamable sheet during foaming is suppressed, and only in the thickness direction (z direction). It becomes possible to foam, and the cell inside the obtained foam becomes a spindle-shaped cell in which the major axis is oriented in the thickness direction.

本発明において用いられる面材は、繊維長1〜50mm(好ましくは10〜30mm)および繊維径5〜30μm(好ましくは5〜20μm)を有するガラス繊維5〜200g/m(好ましくは10〜100g/m)と、パルプ10〜200g/m(好ましくは20〜80g/m)とを含むものである。 上記面材は、厚さ0.1〜2.0mm(好ましくは0.3〜1.0mm)、坪量30〜500g/m(好ましくは50〜200g/m)および密度0.05〜1g/cm(好ましくは0.1〜0.5g/cm)、 無機物の粉体を0〜100g/m(好ましくは10〜70g/m)および熱可塑樹脂繊維0〜20g/m(好ましくは1〜5g/m)、オレフィン系、ハロゲン系またはアクリル系等の樹脂製バインダー5〜150g/m(好ましくは5〜100g/m)とを含んでいてもよい。また、耐水性を向上する点から上記面材に合成樹脂層を設けることが望ましい。 The face material used in the present invention is 5 to 200 g / m 2 (preferably 10 to 100 g) of glass fiber having a fiber length of 1 to 50 mm (preferably 10 to 30 mm) and a fiber diameter of 5 to 30 μm (preferably 5 to 20 μm). / M 2 ) and pulp 10 to 200 g / m 2 (preferably 20 to 80 g / m 2 ). The face material has a thickness of 0.1 to 2.0 mm (preferably 0.3 to 1.0 mm), a basis weight of 30 to 500 g / m 2 (preferably 50 to 200 g / m 2 ), and a density of 0.05 to 1 g / cm 3 (preferably 0.1~0.5g / cm 3), a powder of inorganic 0~100g / m 2 (preferably 10~70g / m 2) and the thermoplastic resin fibers 0~20g / m 2 (preferably 1 to 5 g / m 2 ), olefin-based, halogen-based or acrylic resin binder 5 to 150 g / m 2 (preferably 5 to 100 g / m 2 ). Moreover, it is desirable to provide a synthetic resin layer on the face material from the viewpoint of improving water resistance.

上記発泡体の少なくとも片面に、上記面材を積層して複合発泡体を得る方法は、特に限定されるものではなく、例えば、加熱による熱融着法であっても良いし、接着剤を用いた接着法であっても良いが、生産性に優れる熱融着法を採用することが望まれる。 熱融着の加熱条件や加圧条件は、使用する面材の種類によっても異なるため一義的には定められないが、一般的には、面材成分の融点未満の加熱温度で、0.01〜0.5MPa程度の加圧下で熱融着を行うことが好ましい。特に上記発泡体の発泡成形工程と同じタイミングで積層されることが、成形工程の簡略化の上で好ましい。   The method of obtaining the composite foam by laminating the face material on at least one surface of the foam is not particularly limited, and may be, for example, a heat fusion method by heating or using an adhesive. However, it is desirable to adopt a heat fusion method that is excellent in productivity. Although the heating conditions and pressure conditions for heat fusion differ depending on the type of the face material to be used, they are not uniquely determined, but in general, at a heating temperature lower than the melting point of the face material component, It is preferable to perform heat fusion under a pressure of about ~ 0.5 MPa. In particular, it is preferable to laminate at the same timing as the foam molding process of the foam in terms of simplifying the molding process.

以下に、畳の上面材、下面材、裏打ち材、畳表について説明をする。   Below, the upper surface material, lower surface material, backing material, and tatami surface of the tatami mat will be described.

上面材、下面材、裏打ち材:畳芯材に積層し畳床材を構成する部材で、畳としての機能を向上させるために用いられる。その機能を以下に例示するが、これらに限定されるものではない。   Upper surface material, lower surface material, backing material: A member that is laminated on a tatami core material to constitute a tatami flooring material, and is used to improve the function as a tatami mat. Although the function is illustrated below, it is not limited to these.

・クッション性(座り心地、寝心地、歩行感の向上)
・難燃、不燃性(耐火、防火)
・吸放湿性(部屋の湿気の吸着脱離、調湿)
・吸着性(VOC(揮発性有機化合物)等の有害物質の吸着、部屋の脱臭)
・遮音、制振性・防虫、防カビ性・厚み調整(畳表を裏面に回り込ませた部分(框部)で畳裏面全体と段差が生じないように、予め切り込みを入れて使用する目的で積層するものや、所望の薄畳厚みにするために積層するもの)
・防水性・断熱性・熱伝導性(特に床暖房畳等において)
・不陸性(微小な床凹凸の吸収)
・ 傷付き防止、保護・局所荷重の分散・透水、ガス透過・滑り止め
上記の機能を与えるため、上面材、下面材、裏打ち材を必要に応じて的確な場所に配置する。一つの材料に2つ以上の機能を付与させることも可能であり、設計指針に応じて適宜決定される。これらはいずれも形状は特に限定されないが、シート状であることが望ましい。以下に材料を例示するが、以下のものに限定はされない。厚みも特に限定されないが、上面材、下面材では好ましくは0.5〜5mm、裏打ち材では好ましくは0.1〜1mmである。
・ Cushioning (improving sitting, sleeping, and walking)
・ Flame retardant, non-flammable (fireproof, fireproof)
-Moisture absorption / release (adsorption / desorption of moisture in the room, humidity control)
・ Adsorption (adsorption of harmful substances such as VOC (volatile organic compounds), deodorization of rooms)
・ Sound insulation, vibration-damping / insect-proofing, mold-proofing / thickness adjustment (laminated for the purpose of cutting in advance so that there is no step with the entire back of the tatami at the part where the tatami surface is wrapped around the back (the buttock)) To be layered to achieve the desired thin tatami thickness)
・ Waterproofness, heat insulation, thermal conductivity (especially in floor heating tatami mats)
・ Unevenness (absorption of minute floor irregularities)
・ Scratch prevention, protection, dispersion of local load, water permeability, gas permeation, anti-slip In order to provide the above functions, the upper surface material, lower surface material, and backing material should be placed in appropriate locations as necessary. It is also possible to give two or more functions to one material, and it is determined as appropriate according to the design guidelines. Any of these is not particularly limited in shape, but is preferably in the form of a sheet. Examples of materials are given below, but are not limited to the following. Although the thickness is not particularly limited, it is preferably 0.5 to 5 mm for the upper surface material and the lower surface material, and preferably 0.1 to 1 mm for the backing material.

・木質繊維板(ハードボード、インシュレーションボード、MDF(中密度木質繊維板)、合板(ベニヤ)等)
・合成樹脂シート、合成樹脂発泡体(無架橋ポリオレフィン(ポリエチレン、ポリプロピレン等)、架橋ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリウレタン、ポリスチレン、エラストマー等)
・織布(クロス等)、不織布、寒冷紗(ニードルパンチ、フェルト、スパンボンド等。素材は合成樹脂(ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリアミド等)、天然繊維(麻、絹、綿等)、ガラスウール、ロックウール、セラミックウール、ヤシ繊維等)
・紙シート(厚紙(例えばMFシート(丸三製紙))、和紙、ダンボール、再生紙等)
・構造体シート(ハニカム、プラスチックダンボール等)
・金属板(アルミニウム、鉄、ステンレス製のシート、箔、網等)
・裏打ちシート(ポリオレフィンクロス、割布、組布等またはこれらに紙をラミネートしたもの)
・難燃・不燃シート(不燃性フェルト(ロックウール、セラミックウール、ガラスウール等をフェルト状に成形したもの)、耐炎繊維不織布(活性炭や特殊アクリル樹脂を焼成した繊維)等)
・防虫、防黴シート(ヒノキチオール配合シート)
・吸着、脱臭シート(活性炭、木炭、ゼオライト混合シート)
・吸放湿シート・無機材ボード(ケイ酸カルシウム等)
上記上面材、下面材、裏打ち材は、本発明の畳芯材に必要に応じて固定化される。固定化の方法は特に限定されない。糸による縫着、接着剤による接着、粘着テープ等による固定等が挙げられる。
・ Wood fiber board (hard board, insulation board, MDF (medium density wood fiber board), plywood (veneer), etc.)
・ Synthetic resin sheet, synthetic resin foam (non-crosslinked polyolefin (polyethylene, polypropylene, etc.), crosslinked polyolefin (polyethylene, polypropylene, etc.), polyurethane, polystyrene, elastomer, etc.)
-Woven fabric (cloth, etc.), non-woven fabric, cold water (needle punch, felt, spunbond, etc.) Materials are synthetic resins (polyethylene terephthalate, polyethylene, polypropylene, polyamide, etc.), natural fibers (hemp, silk, cotton, etc.), glass wool , Rock wool, ceramic wool, palm fiber, etc.)
・ Paper sheets (thick paper (for example, MF sheet (Marusan Paper)), Japanese paper, cardboard, recycled paper, etc.)
・ Structure sheets (honeycomb, plastic cardboard, etc.)
・ Metal plate (aluminum, iron, stainless steel sheet, foil, net, etc.)
・ Backing sheet (polyolefin cloth, split cloth, braided cloth, etc., or paper laminated on them)
・ Flame-retardant and non-combustible sheets (non-combustible felt (rock wool, ceramic wool, glass wool, etc. formed into a felt shape), flame-resistant non-woven fabric (fiber obtained by firing activated carbon or special acrylic resin), etc.)
・ Insect repellent, antifungal sheet (hinokitiol-containing sheet)
・ Adsorption, deodorization sheet (activated carbon, charcoal, zeolite mixed sheet)
・ Hygroscopic sheet ・ Inorganic board (Calcium silicate etc.)
The upper surface material, the lower surface material, and the backing material are fixed to the tatami core material of the present invention as necessary. The immobilization method is not particularly limited. Examples include sewing with a thread, bonding with an adhesive, and fixing with an adhesive tape.

畳表:イグサ、ポリオレフィン、和紙等の原料より作られる。これらの原料は目的に応じて適宜選択される。畳表の固定方法も特に限定されない。糸による縫着、ホッチキスによるタッカー止め、接着剤による接着、粘着テープ等による固定等が挙げられる。   Tatami mat: Made from raw materials such as rush, polyolefin and Japanese paper. These raw materials are appropriately selected according to the purpose. The method for fixing the tatami table is not particularly limited. Examples include sewing with a thread, tacking with a stapler, adhesion with an adhesive, and fixing with an adhesive tape.

本発明による複合発泡体は、樹脂板状体の少なくとも片面に、繊維長1〜50mmおよび繊維径5〜30μmを有するガラス繊維5〜200g/mと、パルプ10〜200g/mと、無機物の粉体0〜100g/mと、樹脂製バインダー5〜150g/mとを含む面材が積層されてなるものであり、これにより線膨張係数の改善を達成でき、畳構成部材として用いる場合は畳加工性を向上させることができる。また、発泡体は、内在するセルのアスペクト比〔Dz(板状体厚み方向に平行な最大径)/Dxy(板状体幅または長さ方向に平行な最大径)〕の平均値が1.1〜4.0であり、且つ、発泡倍率が3〜20倍である、ポリオレフィン系樹脂発泡体であり、発泡前の発泡性板状体の少なくとも片面に上記面材を積層し発泡時における発泡性シートの面内の二次元方向(xy方向)の発泡を抑制し、厚み方向(z方向)にのみ発泡させることで得られたものであるので、重量を軽減しつつ更に加工性を改善でき、加えて、環境性も配慮し、特許文献1記載のパネルと同じレベルの線膨張性能を維持しつつ加工性(切断性)を向上でき、ポリオレフィン系樹脂発泡体に延伸させたポリオレフィン系シートを積層してなる特許文献2の複合パネルに比べて、線膨張係数の異方性とその絶対値が改善できた。 すなわち、1℃から80℃の間では伸縮係数は特許文献2の複合パネルでは平均で長手方向に2.0×10−5/℃、幅方向に3.0×10−5/℃程度であったが、本発明による複合発泡体では長手方向に0.1〜1×10−5、幅方向にも0.1〜1×10−5であった。 Composite foam according to the invention, on at least one surface of a resin plate member, a glass fiber 5 to 200 g / m 2 having a fiber length 1~50mm and fiber diameter 5 to 30 [mu] m, the pulp 10 to 200 g / m 2, inorganic a powder 0~100g / m 2, are those surface material comprising a resinous binder 5 to 150 g / m 2 is laminated, thereby can achieve the improvement of the linear expansion coefficient, it is used as a mat component In the case, tatami mat workability can be improved. The foam has an average aspect ratio of cells [Dz (maximum diameter parallel to the plate thickness direction) / Dxy (maximum diameter parallel to the plate width or length direction)] of 1. It is a polyolefin resin foam having a foaming ratio of 1 to 4.0 and a foaming ratio of 3 to 20, and foaming at the time of foaming by laminating the face material on at least one surface of the foamable plate before foaming. Since it is obtained by suppressing foaming in the two-dimensional direction (xy direction) within the surface of the adhesive sheet and foaming only in the thickness direction (z direction), workability can be further improved while reducing weight In addition, considering the environmental properties, a polyolefin sheet that can be improved in workability (cutability) while maintaining the same level of linear expansion performance as the panel described in Patent Document 1, and stretched to a polyolefin resin foam To the composite panel of Patent Document 2 that is laminated Base, the anisotropic and its absolute value of the linear expansion coefficient could be improved. That is, between 1 ° C. and 80 ° C., the expansion coefficient of the composite panel of Patent Document 2 is about 2.0 × 10 −5 / ° C. in the longitudinal direction and 3.0 × 10 −5 / ° C. in the width direction on average. It was, but a composite foam according to the present invention longitudinally 0.1 to 1 × 10 -5, was 0.1 to 1 × 10 -5 to width direction.

上記複合発泡体でも吸水性は発生するが、それに伴う伸縮性は、面材としてポリエチレンラミネートクラフト紙を積層したものの1/10以下に過ぎない。   The composite foam also absorbs water, but its elasticity is only 1/10 or less of that obtained by laminating polyethylene laminated kraft paper as a face material.

請求項3の発明による複合発泡体は、面材の表面が合成樹脂層で被覆されてなるものであるので、軽い上に、水分の吸収性を更に改善できる。また、畳への加工性も損なわない。   Since the composite foam according to the invention of claim 3 is formed by covering the surface of the face material with a synthetic resin layer, it is light and can further improve moisture absorption. Moreover, the processability to a tatami is not impaired.

請求項4記載の発明による複合発泡体は、特許文献1、2、3のパネルと比べて畳の加工性を向上することで製作コストが低減でき、また、同時に線膨張係数を向上させて畳の形状安定性に関する品質を高めることができる。。   The composite foam according to the invention of claim 4 can reduce the manufacturing cost by improving the processability of the tatami compared with the panels of Patent Documents 1, 2, and 3, and at the same time, the linear expansion coefficient is improved to improve the tatami. The quality regarding the shape stability of can be improved. .

本発明をさらに詳しく説明するため以下に実施例を挙げるが、本発明はこれら実施例のみに限定されるものではない。   In order to describe the present invention in more detail, examples are given below, but the present invention is not limited to these examples.

(実施例1)
1.ポリオレフィン系樹脂発泡体の作製
(1)変性ポリオレフィン系樹脂の調製変性ポリオレフィン系樹脂を調製するために、同方向回転2軸スクリュー押出機(型式「BT40型」、プラスチック工学研究所社製)を用いた。この押出機は、セルフワイピング2条スクリューを備え、そのL/Dは35、D(直径)は39mmである。シリンダーバレルは押出機の上流から下流側にかけて第6バレルに区分され、成形ダイは3穴ストランドダイであり、第4バレルには揮発分を回収するための真空ベントが設置されている。以下の操作においては、第1バレルの温度を180℃、第2バレルから第6バレルの温度および3穴ストランドダイの温度を220℃に設定し、スクリュー回転数を150rpmに設定した。
Example 1
1. Preparation of polyolefin resin foam (1) Preparation of modified polyolefin resin To prepare a modified polyolefin resin, a co-rotating twin screw extruder (model “BT40”, manufactured by Plastic Engineering Laboratory Co., Ltd.) is used. It was. This extruder is equipped with a self-wiping double thread, and its L / D is 35 and D (diameter) is 39 mm. The cylinder barrel is divided into a sixth barrel from the upstream side to the downstream side of the extruder, the forming die is a three-hole strand die, and a vacuum vent for collecting volatile matter is installed in the fourth barrel. In the following operations, the temperature of the first barrel was set to 180 ° C., the temperature from the second barrel to the sixth barrel and the temperature of the 3-hole strand die were set to 220 ° C., and the screw rotation speed was set to 150 rpm.

上記2軸スクリュー押出機の第1バレル後端に備えられたホッパーから、ポリオレフィン系樹脂としてランダムポリマー型のポリプロピレン樹脂(商品名「EX6」、MFR1.8g/10分、密度0.9g/cm3 、日本ポリケム社製)を10kg/時間の供給量で押出機内に投入した。次に、第3バレルから、ジビニルベンゼン(変性用モノマー)および2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3(有機過酸化物)の混合物を押出機内に注入し、これらを均一に溶融混練して、変性ポリプロピレン樹脂を調製した。次いで、この変性ポリプロピレン樹脂を3穴ストランドダイから吐出した後、水冷し、ペレタイザーで切断して、変性ポリプロピレン樹脂のペレットを得た。変性用モノマーおよび有機過酸化物の注入量は、ポリプロピレン樹脂100重量部に対し、変性用モノマー0.5重量部および有機過酸化物0.1重量部であった。また、押出機内で発生した揮発分は真空ベントにより真空吸引した。   From the hopper provided at the rear end of the first barrel of the above twin screw extruder, a random polymer type polypropylene resin (trade name “EX6”, MFR 1.8 g / 10 min, density 0.9 g / cm 3, Nippon Polychem Co., Ltd.) was fed into the extruder at a supply rate of 10 kg / hour. Next, a mixture of divinylbenzene (modifying monomer) and 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3 (organic peroxide) is injected into the extruder from the third barrel. These were uniformly melt-kneaded to prepare a modified polypropylene resin. Next, the modified polypropylene resin was discharged from a three-hole strand die, cooled with water, and cut with a pelletizer to obtain modified polypropylene resin pellets. The amount of the modifying monomer and the organic peroxide injected was 0.5 part by weight of the modifying monomer and 0.1 part by weight of the organic peroxide with respect to 100 parts by weight of the polypropylene resin. Moreover, the volatile matter generated in the extruder was vacuumed by a vacuum vent.

(2)発泡性シートの作製
上記で得られた変性ポリプロピレン樹脂に未変性ポリプロピレン樹脂および発泡剤を添加するために、同方向回転2軸スクリュー押出機(型式「TEX−44型」、日本製鋼所社製)を用いた。この押出機は、セルフワイピング2条スクリューを備え、そのL/Dは45.5、D(直径)は47mmである。シリンダーバレルは押出機の上流から下流側にかけて第1バレルから第12バレルに区分され、第12バレルの先端部には成形ダイとしてTダイが設定されている。また、発泡剤を供給するために、第6バレルにはサイドフィーダーが設置されており、第11バレルには揮発分を回収するための真空ベントが設置されている。以下の操作においては、第1バレルを常時冷却し、第1ゾーン(第2バレルから第4バレル)の温度を150℃、第2ゾーン(第5バレルから第8バレル)の温度を170℃、第3ゾーン(第9バレルから第12バレル)の温度を180℃、第4ゾーン(Tダイおよびアダプター部)の温度を160℃に設定し、スクリュー回転数を40rpmに設定した。
(2) Production of expandable sheet In order to add unmodified polypropylene resin and a foaming agent to the modified polypropylene resin obtained above, a co-rotating twin screw extruder (model “TEX-44 type”, Nippon Steel Works) Used). This extruder is equipped with a self-wiping twin screw, and its L / D is 45.5 and D (diameter) is 47 mm. The cylinder barrel is divided from the first barrel to the twelfth barrel from the upstream side to the downstream side of the extruder, and a T die is set as a forming die at the tip of the twelfth barrel. Further, in order to supply the foaming agent, a side feeder is installed in the sixth barrel, and a vacuum vent for collecting volatile components is installed in the eleventh barrel. In the following operation, the first barrel is always cooled, the temperature of the first zone (second barrel to fourth barrel) is 150 ° C., the temperature of the second zone (fifth barrel to eighth barrel) is 170 ° C., The temperature of the third zone (9th barrel to 12th barrel) was set to 180 ° C., the temperature of the fourth zone (T die and adapter part) was set to 160 ° C., and the screw rotation speed was set to 40 rpm.

上記2軸スクリュー押出機の第1バレル後端に備えられたホッパーから、前工程(1)で得られたペレット状の変性ポリプロピレン樹脂および未変性のホモポリマー型のポリプロピレン樹脂(商品名「FY4」、MFR5.0g/10分、密度0.9g/cm3 、日本ポリケム社製)を、それぞれ10kg/時間(合計20kg/時間)の供給量で押出機内に投入した。また、第6バレルに設けられたサイドフィーダーから、発泡剤としてアゾジカルボンアミド(ADCA)を1.0kg/時間の速度で供給量で押出機内に投入し、これらを均一に溶融混練して、発泡性ポリプロピレン樹脂組成物を調製した。   From the hopper provided at the rear end of the first barrel of the above twin screw extruder, the pellet-like modified polypropylene resin obtained in the previous step (1) and the unmodified homopolymer type polypropylene resin (trade name “FY4”) , MFR 5.0 g / 10 min, density 0.9 g / cm 3, manufactured by Nippon Polychem Co., Ltd.) was fed into the extruder at a supply rate of 10 kg / hr (total 20 kg / hr). Also, azodicarbonamide (ADCA) as a foaming agent is introduced into the extruder at a supply rate of 1.0 kg / hour from the side feeder provided in the sixth barrel, and these are uniformly melt-kneaded and foamed. A functional polypropylene resin composition was prepared.

次いで、この樹脂組成物をTダイから押し出し、幅1100mm、厚み0.7mmの発泡性シートを作製した。   Next, this resin composition was extruded from a T die to produce a foamable sheet having a width of 1100 mm and a thickness of 0.7 mm.

(3)積層用面材
得られた発泡性シートの両面に、繊維長13mmおよび繊維径10μmを有するガラス繊維50g/mと、パルプ30g/mと、アクリル系のバインダー樹脂45g/mと、無機系粉体を50g/mを含み、厚さ0.5mm、坪量180g/mおよび密度0.33g/cmの面材を準備した。
(3) Laminating face material On both surfaces of the obtained foamable sheet, glass fiber 50 g / m 2 having a fiber length of 13 mm and a fiber diameter of 10 μm, pulp 30 g / m 2 , and acrylic binder resin 45 g / m 2 A face material containing 50 g / m 2 of inorganic powder, having a thickness of 0.5 mm, a basis weight of 180 g / m 2 and a density of 0.33 g / cm 3 was prepared.

(4)発泡
上記のように積層により面材付き発泡性シートを得るのと同じタイミングで、230℃の加熱炉中で約10分間加熱して、発泡させ、厚み7mmの面材付き発泡体を作製した。
(4) Foaming At the same timing as obtaining the foamable sheet with face material by laminating as described above, it is heated in a heating furnace at 230 ° C. for about 10 minutes to foam, and a foam with face material having a thickness of 7 mm is obtained. Produced.

比較例1〜5
1)ガラス繊維面材が積層された厚さ7mm、発泡倍率約15倍の熱可塑性樹脂発泡体(三井化学社製、商品名「プレグロン」)、
2)坪量15g/m2のポリエステル系不織布が積層された厚さ7mm、発泡倍率15の硬質オレフィン系発泡体からなるシート、
3)厚さ0.3mm、倍率9倍程度の延伸を行ったポリエチレンシートを積層した厚さ7mm、発泡倍率15の硬質オレフィン系発泡体からなるシート、
4)坪量250g/m2のクラフト紙を積層した硬質オレフィン系発泡体からなるシート、
5)繊維長25mm、坪量50g/m2のガラス繊維で構成された面材を積層した厚さ7mm、発泡倍率15の硬質オレフィン系発泡体を用意した。
Comparative Examples 1-5
1) Thermoplastic resin foam (made by Mitsui Chemicals, trade name “Preglon”) having a thickness of 7 mm and a foaming magnification of about 15 times laminated with glass fiber face materials,
2) A sheet made of a rigid olefin foam having a thickness of 7 mm and a foaming ratio of 15 times , on which a polyester nonwoven fabric having a basis weight of 15 g / m 2 is laminated,
3) A sheet made of a rigid olefin-based foam having a thickness of 7 mm and a foaming ratio of 15 times , in which a polyethylene sheet stretched to a thickness of 0.3 mm and a magnification of about 9 times is laminated,
4) A sheet made of a hard olefin-based foam laminated with kraft paper having a basis weight of 250 g / m 2 ;
5) A hard olefin foam having a thickness of 7 mm and a foaming ratio of 15 times was prepared by laminating face materials made of glass fibers having a fiber length of 25 mm and a basis weight of 50 g / m 2 .

性能評価試験
実施例および比較例の板状体について下記の項目の測定を行った。その結果を表1に示す。
Performance Evaluation Test The following items were measured for the plate-like bodies of Examples and Comparative Examples. The results are shown in Table 1.

イ)曲げ弾性率測定:JIS-K-7221準拠の方法で実施した。すなわち、試験体幅10mm、支持スパン112mm、荷重圧子R=5mm、荷重速度10mm/minにて万能荷重試験機にて弾性率を測定した。 A) Flexural modulus measurement: Measured according to JIS-K-7221. That is, the elastic modulus was measured with a universal load tester at a specimen width of 10 mm, a support span of 112 mm, a load indenter R = 5 mm, and a load speed of 10 mm / min.

ロ)線膨張係数:長さ100mmサイズのサンプルを10℃以上の温度差で変化させてその時の寸法変化を測定し、その伸縮量と温度差から線膨張係数を算出した。 B) Linear expansion coefficient: A sample having a length of 100 mm was changed at a temperature difference of 10 ° C. or more, and the dimensional change at that time was measured. The linear expansion coefficient was calculated from the expansion / contraction amount and the temperature difference.

ハ)畳加工性:実際に芯材から床材を製作して薄畳の加工が可能かどうか確認を行った。表1中、○は良好、×は不良を意味する。 C) Tatami workability: We actually manufactured flooring from core material and confirmed whether thin tatami can be processed. In Table 1, o means good and x means bad.

ニ)形状安定性:温度50℃、湿度80%の条件下でサンプルを24時間放置し反り量を測定した。 D) Shape stability: The sample was allowed to stand for 24 hours under conditions of a temperature of 50 ° C. and a humidity of 80%, and the amount of warpage was measured.

ホ)切断性:カッターにて切断が可能か確認した。表1中、○は良好、×は不良を意味する。 E) Cutting property: It was confirmed that cutting was possible with a cutter. In Table 1, o means good and x means bad.

へ)手触り感:素手で触れてみて、感触を確認した。表1中、○は良好、×は不良を意味する。

Figure 0005934133

F) Feeling of touch: I touched with bare hands and confirmed the feel. In Table 1, o means good and x means bad.
Figure 0005934133

表1から明らかなように、実施例の板状体はいずれの項目においても良好な結果を示した。   As is apparent from Table 1, the plate-like bodies of the examples showed good results in all items.

発泡体を示す斜視図である。It is a perspective view which shows a foam. は図1(a) 中のA部の拡大図である。FIG. 2 is an enlarged view of a portion A in FIG.

Claims (3)

樹脂板状発泡体の少なくとも片面に面材が積層されてなりかつ薄畳の芯材に用いられる複合発泡体であって、該面材は、繊維長10〜30mm、繊維径5〜20μmのガラス繊維10〜100g/mと、パルプ10〜80g/mと、無機物の粉体10〜70g/mと、樹脂製バインダー5〜100g/mとを含み、該樹脂板状発泡体は、内在するセルのアスペクト比〔Dz(板状体厚み方向に平行な最大径)/Dxy(板状体幅または長さ方向に平行な最大径)〕の平均値が1.1〜4.0であり、且つ、発泡倍率が3〜20倍である、ポリオレフィン系樹脂発泡体であり、同発泡体は面内の二次元方向(xy方向)へは発泡せず、厚み方向(z方向)にのみ発泡していることを特徴とする複合発泡体。 A composite foam in which a face material is laminated on at least one surface of a resin plate-like foam and is used for a core material of a thin tatami mat. The face material has a fiber length of 10 to 30 mm and a fiber diameter of 5 to 20 μm. Glass fiber 10 to 100 g / m 2 , pulp 10 to 80 g / m 2 , inorganic powder 10 to 70 g / m 2 , and resin binder 5 to 100 g / m 2 , The resin plate-like foam has an average cell aspect ratio [Dz (maximum diameter parallel to the plate thickness direction) / Dxy (maximum diameter parallel to the plate width or length direction)] of 1 a .1~4.0, and expansion ratio is 3 to 20 times, a polyolefin resin foam, the foam is not foamed to the two-dimensional directions in the plane (xy direction), thickness A composite foam characterized by being foamed only in the direction (z direction). 面材と樹脂発泡体が熱融着されてなることを特徴とする請求項1記載の複合発泡体。   The composite foam according to claim 1, wherein the face material and the resin foam are heat-sealed. 面材の表面が合成樹脂層で被覆されてなることを特徴とする請求項1または2記載の複合発泡体。
The composite foam according to claim 1 or 2, wherein the surface of the face material is coated with a synthetic resin layer.
JP2013061372A 2013-03-25 2013-03-25 Composite foam Active JP5934133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013061372A JP5934133B2 (en) 2013-03-25 2013-03-25 Composite foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013061372A JP5934133B2 (en) 2013-03-25 2013-03-25 Composite foam

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007151083A Division JP2008303593A (en) 2007-06-07 2007-06-07 Tatami mat forming member and thin tatami mat using the same

Publications (2)

Publication Number Publication Date
JP2013173366A JP2013173366A (en) 2013-09-05
JP5934133B2 true JP5934133B2 (en) 2016-06-15

Family

ID=49266744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013061372A Active JP5934133B2 (en) 2013-03-25 2013-03-25 Composite foam

Country Status (1)

Country Link
JP (1) JP5934133B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543390B2 (en) * 1988-02-03 1996-10-16 本州製紙株式会社 Inorganic sheet for resin foam insulation
JPH05311852A (en) * 1992-05-13 1993-11-22 Nippon Steel Chem Co Ltd Incombustible 'tatami' @(3754/24)straw matting)
JPH07109814A (en) * 1993-10-15 1995-04-25 Sumitomo Forestry Co Ltd Dimension stabilized tatami mat
JP3351599B2 (en) * 1993-12-07 2002-11-25 オリベスト株式会社 Foam board
JPH09310284A (en) * 1996-05-17 1997-12-02 Oji Paper Co Ltd Nonwoven sheet for surface material
JP3434167B2 (en) * 1997-05-09 2003-08-04 三井化学株式会社 Tatami floor component for thin tatami mat and thin tatami mat using the same
JP3124267B2 (en) * 1998-08-28 2001-01-15 積水化学工業株式会社 Laminated foamed sheet, molded product thereof, and method for producing laminated foamed sheet
JP3429749B2 (en) * 2000-02-10 2003-07-22 積水化学工業株式会社 Tatami mat core made of polyolefin resin composite foam and thin tatami mat using the same
JP2005187964A (en) * 2003-12-25 2005-07-14 Nittetsu Mining Co Ltd Foamed heat-insulating board surface paper and foamed heat-insulating board, and method for producing those
JP2008303593A (en) * 2007-06-07 2008-12-18 Sekisui Chem Co Ltd Tatami mat forming member and thin tatami mat using the same

Also Published As

Publication number Publication date
JP2013173366A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
CN107108936B (en) Covering panel and method for producing a covering panel
KR102493850B1 (en) Coextruded, crosslinked polyolefin foam with tpu cap layers
KR102393714B1 (en) Method of making coextruded, crosslinked polyolefin foam with tpu cap layers
JP2021008119A (en) Composite material product including film with tie layer
JP2018529548A (en) Thermoplastic sheet and article having variable lofting capability
US11091918B2 (en) Covering panel and process of producing covering panels
JP6904962B2 (en) Exterior panel and method of manufacturing exterior panel
US8075989B2 (en) Perforated laminated polymeric foam articles
JP4874592B2 (en) Spacer for floor base material and manufacturing method thereof
JP2008303593A (en) Tatami mat forming member and thin tatami mat using the same
JP5934133B2 (en) Composite foam
JP3429749B2 (en) Tatami mat core made of polyolefin resin composite foam and thin tatami mat using the same
JP2007046227A (en) Substrate material for non-wood-based floor finishing material
JP2001310432A (en) Laminated composite foam
JP4921716B2 (en) Pinup flameproof panel
JP4220831B2 (en) Floor base material, floor structure and building using the same
JP3429713B2 (en) Tatami flooring
JP4751572B2 (en) Thermoplastic resin foam and soundproofing heating flooring
JP7254658B2 (en) tatami floor
JP2006123283A (en) Decorative sheet-laminated foam and top plate using it
JP2005320704A (en) Thin tatami
JP4286590B2 (en) Underfloor spacer, floor heating structure and building using the same
JP2003048288A (en) Composite foam, tatami core constituted of foam and thin tatami with tatami core
JP2001150616A (en) Laminated composite and method of manufacturing the same
JP2022161651A (en) Floor material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150413

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R151 Written notification of patent or utility model registration

Ref document number: 5934133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151