JP5879421B2 - Manufacturing method of organic light emitting device - Google Patents

Manufacturing method of organic light emitting device Download PDF

Info

Publication number
JP5879421B2
JP5879421B2 JP2014223905A JP2014223905A JP5879421B2 JP 5879421 B2 JP5879421 B2 JP 5879421B2 JP 2014223905 A JP2014223905 A JP 2014223905A JP 2014223905 A JP2014223905 A JP 2014223905A JP 5879421 B2 JP5879421 B2 JP 5879421B2
Authority
JP
Japan
Prior art keywords
light emitting
group
organic light
electrode
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014223905A
Other languages
Japanese (ja)
Other versions
JP2015072915A (en
Inventor
広貴 佐久間
広貴 佐久間
荒谷 介和
介和 荒谷
佐々木 洋
洋 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014223905A priority Critical patent/JP5879421B2/en
Publication of JP2015072915A publication Critical patent/JP2015072915A/en
Application granted granted Critical
Publication of JP5879421B2 publication Critical patent/JP5879421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、有機発光素子の製造方法に関する。   The present invention relates to a method for manufacturing an organic light emitting device.

有機LEDの製造方法は真空蒸着法と塗布法に大別される。そのうち、塗布法は大面積の成膜が容易、材料の利用効率が高いなどの利点がある。塗布法を用いるためには有機LEDの層数を少なくする必要があり、発光層を単層にすることが求められている。   The manufacturing method of the organic LED is roughly divided into a vacuum deposition method and a coating method. Among them, the coating method has advantages such as easy formation of a large area and high material utilization efficiency. In order to use the coating method, it is necessary to reduce the number of layers of the organic LED, and it is required to make the light emitting layer a single layer.

これまでに単層の発光層を有する有機白色発光素子としては、電極間に、少なくとも(a)ポリマーと(b)発光中心形成化合物とを含有する組成物よりなる単層発光層を挿入した有機EL素子であって、前記組成物中には電子輸送性のものとホール輸送性のものがバランスよく包含されており、前記ポリマーはそれ自体の発光色が青色またはそれよりも短波長を示すものであり、前記発光中心形成化合物はその2種以上が前記ポリマー中に分子分散した状態で存在しており、それぞれの発光中心形成化合物はそれぞれ単独で発光し、有機EL素子全体としての発色光は白色光に見えるように前記発光中心形成化合物を2種以上組合せて使用していることを特徴とする単層型白色発光有機EL素子が特許文献1にて報告されている。   As an organic white light emitting device having a single light emitting layer, an organic white light emitting layer composed of a composition containing at least (a) a polymer and (b) an emission center forming compound is inserted between electrodes. An EL device, in which the composition contains an electron transporting material and a hole transporting material in a well-balanced manner, and the polymer has an emission color of blue or a shorter wavelength than that of the polymer. The luminescent center forming compound is present in a state where two or more of the luminescent center forming compounds are molecularly dispersed in the polymer, and each luminescent center forming compound emits light alone, and the colored light as the whole organic EL element is Patent Document 1 reports a single-layer white light-emitting organic EL device using two or more kinds of the luminescent center-forming compounds in combination so as to look white light.

特開平9−63770号公報JP-A-9-63770

従来の有機発光素子では赤色ドーパント,緑色ドーパント及び青色ドーパントが相分離せず、ドーパント量の制御を容易に行いつつ、白色発光することが難しいという問題があった。   In the conventional organic light emitting device, the red dopant, the green dopant, and the blue dopant are not phase-separated, and there is a problem that it is difficult to emit white light while easily controlling the amount of the dopant.

本発明の目的は、ドーパント量の制御を容易に行える有機発光素子の製造方法を提供することである。   The objective of this invention is providing the manufacturing method of the organic light emitting element which can control the amount of dopants easily.

上記課題を解決するために、本発明は、第一の電極と、第二の電極と、前記第一の電極と前記第二の電極との間に配置された発光層とを有する有機発光素子の製造方法であって、前記発光層はホスト材料、赤色ドーパント及び青色ドーパントを含み、前記赤色ドーパントは前記第一の電極側へ移動するための第一の機能性基を含み、塗布法により前記発光層を形成する。   In order to solve the above-described problems, the present invention provides an organic light-emitting device having a first electrode, a second electrode, and a light-emitting layer disposed between the first electrode and the second electrode. The light emitting layer contains a host material, a red dopant, and a blue dopant, the red dopant contains a first functional group for moving to the first electrode side, and is applied by a coating method. A light emitting layer is formed.

本発明により、ドーパント量の制御を容易に行いながら、白色発光が得られる有機発光素子の製造方法を提供できる。上記した以外の課題,構成及び効果は以下の実施形態の説明により明らかにされる。   According to the present invention, it is possible to provide a method for manufacturing an organic light emitting device capable of obtaining white light emission while easily controlling the amount of dopant. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

白色発光素子中の各材料のエネルギーダイアグラムである。It is an energy diagram of each material in a white light emitting element. 本発明における有機発光素子の一実施の形態における断面図である。It is sectional drawing in one Embodiment of the organic light emitting element in this invention.

以下、図面等により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

従来の塗布法で作製した有機発光素子では、緑色ドーパント濃度が0.02モル%、赤色ドーパント濃度が0.02モル%および0.015モル%と非常に低く、ドーパントの濃度制御が難しくなる。また、各ドーパント間のエネルギー移動、発光領域でのキャリア閉じ込めが不十分であることなどのため、十分な発光効率を得られていない。   In an organic light-emitting device manufactured by a conventional coating method, the green dopant concentration is very low, such as 0.02 mol%, and the red dopant concentration is 0.02 mol% and 0.015 mol%, which makes it difficult to control the dopant concentration. In addition, sufficient light emission efficiency cannot be obtained due to energy transfer between the dopants and insufficient carrier confinement in the light emitting region.

図2は、本発明の一実施形態に係る有機白色発光素子の断面図である。この有機白色発光素子は、第一の電極としての上部電極12と、第二の電極としての下部電極11と、有機層13とを有する。図2の下側から下部電極11,有機層13,上部電極12の順に配置されており、図2の有機白色発光素子は下部電極11側から発光層3の発光を取り出すボトムエミッション型である。ここで、下部電極11は陽極となる透明電極、上部電極12は陰極となる反射電極である。有機層13は発光層3のみの単層構造、あるいは電子注入層9,電子輸送層8,正孔輸送層2及び正孔注入層1のいずれか一層以上を含む多層構造でも構わない。図1における有機発光素子に駆動回路,筐体などが備えられることで光源装置となる。   FIG. 2 is a cross-sectional view of an organic white light emitting device according to an embodiment of the present invention. This organic white light emitting element has an upper electrode 12 as a first electrode, a lower electrode 11 as a second electrode, and an organic layer 13. The lower electrode 11, the organic layer 13, and the upper electrode 12 are arranged in this order from the lower side of FIG. 2, and the organic white light emitting element of FIG. 2 is a bottom emission type that takes out light emitted from the light emitting layer 3 from the lower electrode 11 side. Here, the lower electrode 11 is a transparent electrode serving as an anode, and the upper electrode 12 is a reflecting electrode serving as a cathode. The organic layer 13 may have a single layer structure including only the light emitting layer 3 or a multilayer structure including any one or more of the electron injection layer 9, the electron transport layer 8, the hole transport layer 2 and the hole injection layer 1. The organic light emitting device in FIG. 1 is provided with a drive circuit, a housing, and the like, thereby forming a light source device.

発光層3はホスト分子及びドーパント分子を含む。ドーパント分子は、赤色ドーパント,緑色ドーパント及び青色ドーパントを含む。発光層3の形成用材料は、ホスト分子,赤色ドーパント,緑色ドーパント及び青色ドーパントを含む。ただし、白色光となるのであれば、発光層3の形成用材料として、ホスト分子,赤色ドーパント及び青色ドーパントを含んだものであっても構わない。発光層3内では各ドーパント材料が各領域に偏って存在しており、擬似的な積層構造を形成している。まず、発光層の構成について説明する。   The light emitting layer 3 includes host molecules and dopant molecules. The dopant molecule includes a red dopant, a green dopant, and a blue dopant. The material for forming the light emitting layer 3 includes a host molecule, a red dopant, a green dopant, and a blue dopant. However, as long as it becomes white light, the material for forming the light emitting layer 3 may include a host molecule, a red dopant, and a blue dopant. In the light emitting layer 3, each dopant material is biased to each region, and forms a pseudo laminated structure. First, the structure of the light emitting layer will be described.

<相分離>
単層の発光層で白色発光させるために赤色ドーパント,緑色ドーパント及び青色ドーパントを混合した場合、周囲に異なる色のドーパントが存在する。励起エネルギーはある確率で隣接する分子へと移動する。例えば、青色ドーパントに隣接して緑色ドーパントまたは赤色ドーパントが存在する場合には、励起エネルギーが青色ドーパントから緑色ドーパントまたは赤色ドーパントの低エネルギー側へと移動してしまい、白色発光が困難となる。そのため、発光層内で自発的に各ドーパントを相分離させ、低エネルギーのドーパントが隣接しないようにすることで、塗布型の白色発光素子においても高効率な白色発光が可能となる。この場合、高いドーパント濃度においても白色発光を得ることができる。自発的に相分離させる方法として、本発明では、適切な機能性基を各発光ドーパントに付加することで実現した。
<Phase separation>
When a red dopant, a green dopant, and a blue dopant are mixed in order to emit white light in a single light emitting layer, different color dopants are present in the surroundings. Excitation energy moves to adjacent molecules with a certain probability. For example, when a green dopant or a red dopant is present adjacent to a blue dopant, the excitation energy moves from the blue dopant to the low energy side of the green dopant or the red dopant, making white light emission difficult. Therefore, each dopant is spontaneously phase-separated in the light emitting layer so that low energy dopants are not adjacent to each other, so that even in a coating type white light emitting element, highly efficient white light emission is possible. In this case, white light emission can be obtained even at a high dopant concentration. As a method of spontaneous phase separation, the present invention is realized by adding an appropriate functional group to each light-emitting dopant.

<ホスト材料>
ホスト材料として、カルバゾール誘導体,フルオレン誘導体またはアリールシラン誘導体などを用いることが好ましい。効率の良い発光を得るためには青色ドーパントの励起エネルギーよりも、ホスト材料の励起エネルギーが十分大きいことが好ましい。なお、励起エネルギーは発光スペクトルを用いて測定される。
<Host material>
As the host material, it is preferable to use a carbazole derivative, a fluorene derivative, an arylsilane derivative, or the like. In order to obtain efficient light emission, it is preferable that the excitation energy of the host material is sufficiently larger than the excitation energy of the blue dopant. The excitation energy is measured using an emission spectrum.

<赤色ドーパント>
赤色ドーパント材料5の主骨格としては、例えばルブレン,(E)−2−(2−(4−(dimethylamino)styryl)−6−methyl−4H−pyran−4−ylidene)malononitrile(DCM)およびその誘導体,イリジウム錯体(Bis(1−phenylisoquinoline)(acetylacetonate)iridium(III)など),オスミウム錯体,ユーロピウム錯体があげられる。中でも発光特性の面で(化1)で示されるイリジウム錯体がより好ましく、さらにアセチルアセトナート部位を有するものがより好ましい。式中X1はNを含む芳香族ヘテロ環を表し、X2は芳香族炭化水素環または芳香族ヘテロ環を表す。
<Red dopant>
Examples of the main skeleton of the red dopant material 5 include rubrene, (E) -2- (2- (4- (dimethylamino) styryl) -6-methyl-4H-pyran-4-ylidene) malononitrile (DCM) and its derivatives. Iridium complexes (such as Bis (1-phenylisoquinoline) (acetylacetonate) iridium (III)), osmium complexes, and europium complexes. Among them, the iridium complex represented by (Chemical Formula 1) is more preferable in terms of light emission characteristics, and more preferable is one having an acetylacetonate moiety. In the formula, X1 represents an aromatic heterocycle containing N, and X2 represents an aromatic hydrocarbon ring or an aromatic heterocycle.

X1で表わされる芳香族ヘテロ環としては、キノリン環,イソキノリン環,ピリジン環,キノキサリン環,チアゾール環,ピリミジン環,ベンゾチアゾール環,オキサゾール環,ベンゾオキサゾール環,インドール環,イソインドール環などがあげられる。X2で表わされる芳香族炭化水素環または芳香族ヘテロ環としては、ベンゼン環,ナフタレン環,アントラセン環,チオフェン環,ベンゾチオフェン環,フラン環,ベンゾフラン環,フルオレン環などがあげられる。上部電極が陰極、下部電極が陽極である場合には、赤色ドーパントは発光層上部(表面側)にあることが好ましい。ここで、赤色ドーパントは上部電極側へ移動するための第一の機能性基を有する。これにより、赤色ドーパントは発光層3における上部電極側に偏在,局在化することになる。成膜時に膜表面に移動させるためにアセチルアセトナート部位に付加する第一の機能性基Y1またはY2としては、例えばフルオロアルキル基,パーフルオロアルキル基,アルキル基(ただし、Cの数は10以上とする。),パーフルオロポリエーテル基,シロキシ基(−Si−O−Si−)があげられる。赤色ドーパント材料5はこれらの機能性基を一つでも有していれば良いが、複数種類有していても構わない。これらの基は(化2)および(化3)のように主骨格に直接導入してもよいが、(化4)のようにアミド結合やエステル結合などを介して導入してもかまわない。   Examples of the aromatic heterocycle represented by X1 include quinoline ring, isoquinoline ring, pyridine ring, quinoxaline ring, thiazole ring, pyrimidine ring, benzothiazole ring, oxazole ring, benzoxazole ring, indole ring and isoindole ring. . Examples of the aromatic hydrocarbon ring or aromatic heterocycle represented by X2 include a benzene ring, naphthalene ring, anthracene ring, thiophene ring, benzothiophene ring, furan ring, benzofuran ring, and fluorene ring. When the upper electrode is a cathode and the lower electrode is an anode, the red dopant is preferably on the light emitting layer (on the surface side). Here, the red dopant has a first functional group for moving to the upper electrode side. As a result, the red dopant is unevenly distributed and localized on the upper electrode side in the light emitting layer 3. Examples of the first functional group Y1 or Y2 added to the acetylacetonate site for transfer to the film surface during film formation include a fluoroalkyl group, a perfluoroalkyl group, and an alkyl group (however, the number of C is 10 or more) And perfluoropolyether groups and siloxy groups (—Si—O—Si—). The red dopant material 5 may have at least one of these functional groups, but may have a plurality of types. These groups may be directly introduced into the main skeleton as in (Chemical Formula 2) and (Chemical Formula 3), but may be introduced through an amide bond or an ester bond as in (Chemical Formula 4).

<緑色ドーパント>
緑色ドーパント材料6の主骨格としては、例えばクマリンおよびその誘導体,イリジウム錯体(Tris(2−phenylpyridine)iridium(III):以下Ir(ppy)3、など)があげられる。上部電極が陰極、下部電極が陽極である場合には、緑色ドーパントは発光層下部にあることが好ましい。ここで、緑色ドーパントは下部電極または正孔輸送層へ引き寄せられるための第二の機能性基を有する。成膜時に下地層に引き寄せるための第二の機能性基は、下地層の種類によって異なる。下地層が正孔輸送層である場合には、正孔輸送層と同様の構造を導入する、例えばフェニルアミノ基,オキサゾール基,カルバゾール基,ヒドラゾン部位があげられる。緑色ドーパント材料6はこれらの機能性基を一つでも有していれば良いが、複数種類有していても構わない。また、下地層がITOや金属といった電極である場合には、例えばヒドロキシ基(−OH),チオール基(−SH),カルボキシル基(−COOH),スルホ基(−SO3H),I,Br,Cl,F,SCN,CN,NH2,NO2,ビピリジル基があげられる。緑色ドーパント材料6はこれらの機能性基を一つでも有していれば良いが、複数種類有していても構わない。これらの基は、(化5)のように主骨格に直接導入してもよいが、分子の大きさを考慮しアルキル鎖などを介して導入してもかまわない。
<Green dopant>
Examples of the main skeleton of the green dopant material 6 include coumarin and derivatives thereof, and iridium complexes (Tris (2-phenylpyridine) iridium (III): hereinafter Ir (ppy) 3, etc.). When the upper electrode is a cathode and the lower electrode is an anode, the green dopant is preferably in the lower part of the light emitting layer. Here, the green dopant has a second functional group to be attracted to the lower electrode or the hole transport layer. The second functional group for attracting the underlying layer during film formation varies depending on the type of the underlying layer. In the case where the underlayer is a hole transport layer, examples thereof include a phenylamino group, an oxazole group, a carbazole group, and a hydrazone site that introduce a structure similar to that of the hole transport layer. The green dopant material 6 may have at least one of these functional groups, but may have a plurality of types. When the underlayer is an electrode such as ITO or metal, for example, a hydroxy group (—OH), a thiol group (—SH), a carboxyl group (—COOH), a sulfo group (—SO 3 H), I, Br , Cl, F, SCN, CN , NH 2, NO 2, bipyridyl group. The green dopant material 6 may have at least one of these functional groups, but may have a plurality of types. These groups may be directly introduced into the main skeleton as shown in (Chemical Formula 5), but may be introduced via an alkyl chain in consideration of the size of the molecule.

<青色ドーパント>
青色ドーパント材料7の主骨格としては例えばペリレン,イリジウム錯体(Bis(3,5−difluoro−2−(2−pyridyl)phenyl−(2−carboxypyridyl)iridium(III)):FIrpicなど)があげられる。青色ドーパントには特に機能性基を付加しなくてもよいが、より積極的に相分離をさせるために、下地層と親和性の悪い構造を導入してもよい。
<Blue dopant>
Examples of the main skeleton of the blue dopant material 7 include perylene and iridium complexes (Bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III)): FIrpic and the like). A functional group need not be added to the blue dopant, but a structure having a poor affinity with the underlayer may be introduced in order to more positively perform phase separation.

<キャリアの閉じ込め>
赤色ドーパント材料5,緑色ドーパント材料6及び青色ドーパント材料7が自発的に相分離し、図1に示す擬似的な積層構造を形成した場合を考える。各ドーパントの配置は各ドーパントの最高被占軌道(HOMO)と最低空軌道(LUMO)エネルギーから、キャリア伝導を考慮して陽極側から緑/青/赤とした。HOMOエネルギーは光電子分光法よって測定される。また、LUMOエネルギーは、吸収スペクトルからHOMO−LUMOのエネルギー差を求め算出する方法や、逆光電子分光法によって直接測定する方法によって測定される。ホスト材料のHOMOとLUMOとのエネルギー差が大きく、各ドーパントのHOMOおよびLUMOがその間に位置し適当なドーパント濃度である場合、各ドーパントの準位をホッピングすることでキャリア伝導が行われる。青色ドーパント材料7のLUMOエネルギーの絶対値が緑色ドーパント材料6のLUMOエネルギーの絶対値よりも十分大きい場合、青色ドーパント材料7のLUMO上を伝搬してきた電子は、緑色ドーパント材料6のLUMOへのホッピング確率が低くなるため、青色ドーパントへと閉じ込められる。また、青色ドーパント材料7と緑色ドーパント材料6とのHOMOエネルギー差が比較的小さい場合、緑色ドーパント材料6のHOMO上を伝搬してきた正孔は、青色ドーパント材料7のHOMOへのホッピングによって伝搬できる。その結果、伝搬してきたキャリア(電子・正孔)は青色ドーパント材料7上で再結合し、そのまま青色発光するか、励起エネルギーが緑色ドーパント材料6へ移動し緑色発光する。一方、赤色ドーパント材料5と電子注入層9との間で正孔の閉じ込めが可能であり、電子が注入され、再結合することで赤色発光が得られる。そして、青色ドーパント材料7または緑色ドーパント材料6から励起エネルギーが移動した場合でも赤色発光が得られる。
<Containment of carrier>
Consider a case where the red dopant material 5, the green dopant material 6 and the blue dopant material 7 spontaneously phase-separate to form a pseudo laminated structure shown in FIG. The arrangement of each dopant is green / blue / red from the anode side in consideration of carrier conduction from the highest occupied orbital (HOMO) and lowest unoccupied orbital (LUMO) energy of each dopant. HOMO energy is measured by photoelectron spectroscopy. The LUMO energy is measured by a method for calculating and calculating an energy difference of HOMO-LUMO from an absorption spectrum, or a method for directly measuring by reverse photoelectron spectroscopy. When the energy difference between HOMO and LUMO of the host material is large and HOMO and LUMO of each dopant are located between them and have an appropriate dopant concentration, carrier conduction is performed by hopping the level of each dopant. When the absolute value of the LUMO energy of the blue dopant material 7 is sufficiently larger than the absolute value of the LUMO energy of the green dopant material 6, electrons that have propagated on the LUMO of the blue dopant material 7 are hopped into the LUMO of the green dopant material 6 Since the probability is low, it is confined to the blue dopant. Further, when the HOMO energy difference between the blue dopant material 7 and the green dopant material 6 is relatively small, holes that have propagated on the HOMO of the green dopant material 6 can be propagated by hopping the blue dopant material 7 to the HOMO. As a result, the propagated carriers (electrons and holes) recombine on the blue dopant material 7 and emit blue light as it is, or the excitation energy moves to the green dopant material 6 to emit green light. On the other hand, holes can be confined between the red dopant material 5 and the electron injection layer 9, and red light is obtained by injecting and recombining electrons. And even when excitation energy moves from the blue dopant material 7 or the green dopant material 6, red light emission is obtained.

このように、本発明では、各ドーパントの近傍にキャリアを閉じ込めることができるため、各色の発光効率が高くなり、その結果高効率の白色発光素子が実現できる。   Thus, in the present invention, since carriers can be confined in the vicinity of each dopant, the luminous efficiency of each color is increased, and as a result, a highly efficient white light-emitting element can be realized.

以下、そのほかの要件について説明する。ただし、前述したように正孔注入層1,正孔輸送層2,電子輸送層8,電子注入層9に関しては、無い構成でも構わない。   Other requirements will be described below. However, as described above, the hole injection layer 1, the hole transport layer 2, the electron transport layer 8, and the electron injection layer 9 may be omitted.

正孔注入層1としてはPEDOT(ポリ(3,4−エチレンジオキシチオフェン)):PSS(ポリスチレンスルホネート)等の導電性高分子が好ましい。その他にも、ポリピロール系やトリフェニルアミン系のポリマー材料を用いることができる。また、低分子材料系と組合せてよく用いられる、フタロシアニン類化合物やスターバーストアミン系化合物も適用可能である。   The hole injection layer 1 is preferably a conductive polymer such as PEDOT (poly (3,4-ethylenedioxythiophene)): PSS (polystyrene sulfonate). In addition, polypyrrole-based or triphenylamine-based polymer materials can be used. Further, phthalocyanine compounds and starburst amine compounds that are often used in combination with low molecular weight materials are also applicable.

正孔輸送層2としては、スターバーストアミン系化合物やスチルベン誘導体,ヒドラゾン誘導体,チオフェン誘導体などを用いることができる。また、これらの材料に限られるものではなく、これらの材料を2種以上併用しても差し支えない。   As the hole transport layer 2, a starburst amine compound, a stilbene derivative, a hydrazone derivative, a thiophene derivative, or the like can be used. Further, the present invention is not limited to these materials, and two or more of these materials may be used in combination.

電子輸送層8は発光層3に電子を供給する層である。この電子輸送層8の材料としては、例えば、ビス(2−メチル−8−キノリノラト)−4−(フェニルフェノラト)アルミニウム(以下、BAlq)や、トリス(8−キノリノラト)アルミニウム(以下、Alq3),オキサジアゾール誘導体,トリアゾール誘導体,フラーレン誘導体,フェナントロリン誘導体,キノリン誘導体などを用いることができる。   The electron transport layer 8 is a layer that supplies electrons to the light emitting layer 3. Examples of the material for the electron transport layer 8 include bis (2-methyl-8-quinolinolato) -4- (phenylphenolato) aluminum (hereinafter referred to as BAlq) and tris (8-quinolinolato) aluminum (hereinafter referred to as Alq3). , Oxadiazole derivatives, triazole derivatives, fullerene derivatives, phenanthroline derivatives, quinoline derivatives, and the like can be used.

また、電子注入層9は、陰極から電子輸送層への電子注入効率を向上させるために用いる。具体的には、弗化リチウム,弗化マグネシウム,弗化カルシウム,弗化ストロンチウム,弗化バリウム,酸化マグネシウム,酸化アルミニウムが望ましい。また、もちろんこれらの材料に限られるわけではなく、また、これらの材料を2種以上併用しても差し支えない。   The electron injection layer 9 is used to improve the electron injection efficiency from the cathode to the electron transport layer. Specifically, lithium fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, magnesium oxide, and aluminum oxide are desirable. Of course, the material is not limited to these materials, and two or more of these materials may be used in combination.

下部電極11に用いる陽極材料としては、透明性と高い仕事関数を有する材料であれば用いることができ、ITO,IZOなどの導電性酸化物や、薄いAgなどの仕事関数の大きい金属が適用可能である。電極のパターン形成は、一般的にはガラス等の基板上にホトリソグラフィーなどを用いて行うことができる。   As the anode material used for the lower electrode 11, any material having transparency and a high work function can be used. Conductive oxides such as ITO and IZO and metals having a large work function such as thin Ag can be applied. It is. In general, the electrode pattern can be formed on a substrate such as glass by using photolithography.

上部電極12に用いる陰極材料は、発光層3からの光を反射するための反射電極であり、具体的にはLiFとAlの積層体やMg:Ag合金などが好適に用いられる。また、これらの材料に限定されるものではなく、例えばLiFの代わりとして、Cs化合物,Ba化合物,Ca化合物などを用いることができる。   The cathode material used for the upper electrode 12 is a reflective electrode for reflecting light from the light emitting layer 3, and specifically, a laminate of LiF and Al, an Mg: Ag alloy, or the like is preferably used. Moreover, it is not limited to these materials, For example, Cs compound, Ba compound, Ca compound etc. can be used instead of LiF.

塗液はホスト材料,赤色ドーパント,緑色ドーパント及び青色ドーパントを適切な溶媒に溶解させたものである。緑色ドーパントが存在しない場合、塗液は、溶媒,ホスト材料,赤色ドーパント及び青色ドーパントを有する。ここで用いる溶媒は、例えばトルエンなど芳香族炭化水素系溶媒、テトラヒドロフランなどのエーテル系溶媒、アルコール類,フッ素系溶媒など各材料が溶解するものであればよい。また、各材料の溶解度や、乾燥速度の調整のために前述の溶媒を複数混合した混合溶媒でもかまわない。例えば、沸点の異なる溶媒を2種類(第一の溶媒及び第二の溶媒)用意し、そのうち高沸点である第二の溶媒を赤色ドーパントに対し貧溶媒とすることで赤色ドーパントの膜表面への移動を促進できる。溶媒の溶解度は液体クロマトグラム法によって測定される。   The coating liquid is obtained by dissolving a host material, a red dopant, a green dopant, and a blue dopant in an appropriate solvent. When the green dopant is not present, the coating liquid has a solvent, a host material, a red dopant, and a blue dopant. The solvent used here may be any solvent that dissolves each material such as an aromatic hydrocarbon solvent such as toluene, an ether solvent such as tetrahydrofuran, alcohols, and a fluorine solvent. Further, a mixed solvent in which a plurality of the above-mentioned solvents are mixed for adjusting the solubility of each material and the drying speed may be used. For example, two types of solvents having different boiling points (first solvent and second solvent) are prepared, and the second solvent having a high boiling point is used as a poor solvent for the red dopant. Can move. The solubility of the solvent is measured by a liquid chromatogram method.

発光層を成膜するための塗布法としては、スピンコート法,キャスト法,ディップコート法,スプレーコート法,スクリーン印刷法,インクジェット印刷法などを挙げることができる。これらの方法のうち一つを用いて、発光層を形成する。   Examples of the coating method for forming the light emitting layer include spin coating, casting, dip coating, spray coating, screen printing, and ink jet printing. The light emitting layer is formed using one of these methods.

ここまでボトムエミッション型の素子構造を例示して説明してきたが、上部電極が陰極、下部電極が陽極であれば、上部電極を透明電極としたトップエミッション型の素子構造でも構わない。   The bottom emission type element structure has been described above by way of example. However, if the upper electrode is a cathode and the lower electrode is an anode, a top emission type element structure in which the upper electrode is a transparent electrode may be used.

以下に具体的な実施例を示して、本願発明の内容をさらに詳細に説明する。以下の実施例は本願発明の内容の具体例を示すものであり、本願発明がこれらの実施例に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。   The present invention will be described in more detail with reference to specific examples. The following examples show specific examples of the contents of the present invention, and the present invention is not limited to these examples, but by those skilled in the art within the scope of the technical idea disclosed in this specification. Various changes and modifications are possible.

(実施例1)
<例示化合物1の合成>
本発明にかかる第一の実施例である白色発光素子を作るため、始めに本発明の主要な構成部材である構造式(1)に示す赤色ドーパント材料の合成を行った。
Example 1
<Synthesis of Exemplified Compound 1>
In order to make the white light emitting device of the first embodiment according to the present invention, first, a red dopant material represented by the structural formula (1) which is a main constituent member of the present invention was synthesized.

((化6)の合成)
(化2)および(化3)の合成に必要な中間体である(化6)は下記手順に従って合成した。
(Synthesis of (Chemical Formula 6))
(Chemical 6), which is an intermediate necessary for the synthesis of (Chemical 2) and (Chemical 3), was synthesized according to the following procedure.

200mlの3口フラスコにフェニルイソキノリン0.718gのエトキシエタノール30ml溶液と塩化イリジウム0.418gの水10ml溶液を入れ混合した。その後窒素雰囲気下、120℃で10h還流し、その後室温まで冷却した。溶液を蒸発乾固し、得られた固形分をアルコールにて洗浄し、(化6)を得た。 A 200 ml three-necked flask was mixed with a solution of 0.718 g of phenylisoquinoline in 30 ml of ethoxyethanol and a solution of 0.418 g of iridium chloride in 10 ml of water. Thereafter, the mixture was refluxed at 120 ° C. for 10 hours under a nitrogen atmosphere and then cooled to room temperature. The solution was evaporated to dryness, and the resulting solid was washed with alcohol to obtain (Chemical Formula 6).

((化2)の合成)
(化2)は以下の手順に従って合成した。
(Synthesis of (Chemical Formula 2))
(Chemical Formula 2) was synthesized according to the following procedure.

200mlの3口フラスコに中間体A0.959g,2,2−ジメチル−6,6,7,7,8,8,8−ヘプタフルオロ−3,5−オクタンジオン0.512g,炭酸ナトリウム0.25g,エトキシエタノール30mlを加え、窒素雰囲気下、115℃で10h還流し、その後室温まで冷却した。溶液を蒸発乾固し、得られた固形分を、水およびヘキサンにて洗浄した。酢酸エチル/ヘキサン混合溶媒を移動相として、シリカゲルカラムクロマトグラフィを行い、(化2)を得た。(化2)の分子量は質量分析装置によって計測すると897であった。   Intermediate A 0.959 g, 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedione 0.512 g, sodium carbonate 0.25 g in a 200 ml three-necked flask Then, 30 ml of ethoxyethanol was added, and the mixture was refluxed at 115 ° C. for 10 hours under a nitrogen atmosphere, and then cooled to room temperature. The solution was evaporated to dryness and the resulting solid was washed with water and hexane. Silica gel column chromatography was performed using an ethyl acetate / hexane mixed solvent as a mobile phase to obtain (Chemical Formula 2). The molecular weight of (Chemical Formula 2) was 897 as measured by a mass spectrometer.

(化2)をジクロロメタンに溶解させ、蛍光スペクトルの評価を行ったところ、ピーク波長が617nmの赤色発光を示した。   When (Chemical Formula 2) was dissolved in dichloromethane and the fluorescence spectrum was evaluated, it showed red emission with a peak wavelength of 617 nm.

(化2)とホスト分子としてmCPを用いて、スピンコート法によって混合膜を石英基板上に形成した。溶媒はTHFを用い、固形分の濃度を1wt.%、mCPに対し例示化合物1を10wt.%とした。得られた塗布膜の水に対する接触角測定を行ったところ、92.1°となった。接触角測定はθ/2法,接線法またはカーブフィッティング法によって行われる。参照試料として同時に作製した、mCPおよび(化2)の単独膜の接触角はそれぞれ80.6°,96.7°となった。混合比に対し接触角の変化量が大きいことから、(化2)はmCP中に均一分散しているのではなく、表面により多く分布していると考えられる。   A mixed film was formed on a quartz substrate by spin coating using (Chemical Formula 2) and mCP as a host molecule. The solvent was THF, the solid content concentration was 1 wt.%, And the exemplified compound 1 was 10 wt.% With respect to mCP. When the contact angle measurement with respect to the water of the obtained coating film was performed, it was 92.1 degrees. The contact angle measurement is performed by the θ / 2 method, the tangent method, or the curve fitting method. The contact angles of the single films of mCP and (Chemical Formula 2) produced at the same time as the reference samples were 80.6 ° and 96.7 °, respectively. Since the amount of change in the contact angle with respect to the mixing ratio is large, it is considered that (Chemical Formula 2) is not uniformly dispersed in the mCP but distributed more on the surface.

((化3)の合成)
(化3)は以下の手順に従って合成した。
(Synthesis of (Chemical Formula 3))
(Chemical Formula 3) was synthesized according to the following procedure.

200mlの3口フラスコに(化6)0.959g,1,1,1,2,2,3,3,7,7,8,8,9,9,9−テトラデカフルオロ−4,6−ノナンジオン0.706g,炭酸ナトリウム0.25g,ブトキシエタノール30mlを加え、窒素雰囲気下、150℃で20h還流し、その後室温まで冷却した。溶液を蒸発乾固し、得られた固形分を、ジクロロメタンに溶解させ濾過したのち、ろ液をジクロロメタン/水で分液,洗浄し、ジクロロメタン溶液を取り出し、蒸発乾固させる。得られた固形分をヘキサンにて洗浄したのち、ジクロロメタンを移動相として、アルミナカラムクロマトグラフィを行い、(化3)を得た。   In a 200 ml three-necked flask, 0.959 g, 1,1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluoro-4,6- Nonanedione (0.706 g), sodium carbonate (0.25 g) and butoxyethanol (30 ml) were added, and the mixture was refluxed at 150 ° C. for 20 hours under a nitrogen atmosphere, and then cooled to room temperature. The solution is evaporated to dryness, and the resulting solid is dissolved in dichloromethane and filtered. The filtrate is separated and washed with dichloromethane / water, and the dichloromethane solution is taken out and evaporated to dryness. After the obtained solid content was washed with hexane, alumina column chromatography was performed using dichloromethane as a mobile phase to obtain (Chemical Formula 3).

<有機発光素子の作製>
本発明の第一の実施例として図2に示す構造の白色発光素子を作製した。下部電極にはITO電極、正孔注入層にはPEDOTをスピンコート法にて形成した。正孔輸送層にはポリマー系の材料を用いた。有機発光層はホスト材料としてmCP(1,3−ビス(カルバゾル−9−イル)ベンゼン)、青色ドーパントにはイリジウム錯体(Bis(3,5−difluoro−2−(2−pyridyl)phenyl−(2−carboxypyridyl)iridium(III)))、赤色ドーパントには前記合成した(化2)を用いた。それぞれの材料の重量比は100:5:1とした。これらのホスト材料,青色ドーパント材料及び赤色ドーパント材料をTHFに溶解させて塗液を作製した。塗液の固形成分濃度は1wt.%に設定した。塗液における固形成分に対する赤色ドーパントの濃度は0.46モル%であった。赤色ドーパントの濃度は液体クロマトグラフによって計測される。この塗液を用いて、スピンコート法により有機発光層を形成した。続いて電子輸送層としてBAlqおよびAlq3の層を真空蒸着法で形成した。次にLiFとAlの積層体を上部電極として形成し、目的の有機発光素子を作製した。
<Preparation of organic light emitting device>
As a first example of the present invention, a white light emitting device having the structure shown in FIG. 2 was produced. An ITO electrode was formed on the lower electrode, and PEDOT was formed on the hole injection layer by spin coating. A polymer material was used for the hole transport layer. The organic light emitting layer is mCP (1,3-bis (carbazol-9-yl) benzene) as a host material, and the blue dopant is iridium complex (Bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2 -Carboxyridyl) iridium (III))), and the above synthesized (Chemical Formula 2) was used as a red dopant. The weight ratio of each material was 100: 5: 1. These host material, blue dopant material and red dopant material were dissolved in THF to prepare a coating solution. The solid component concentration of the coating liquid was set to 1 wt. The density | concentration of the red dopant with respect to the solid component in a coating liquid was 0.46 mol%. The concentration of red dopant is measured by a liquid chromatograph. Using this coating liquid, an organic light emitting layer was formed by spin coating. Subsequently, BAlq and Alq3 layers were formed as an electron transport layer by a vacuum deposition method. Next, a laminate of LiF and Al was formed as the upper electrode, and the target organic light emitting device was produced.

作製した有機発光素子に電圧を印加したところ、赤色ドーパントおよび青色ドーパント双方からの発光がELスペクトルから確認され、白色発光が確認できた。一方、赤色ドーパントにフルオロアルキル基を含まない材料を用い同一条件で有機発光素子を作製したところ、青色発光の強度が低下し、赤色発光の強度が増加することを確認した。   When voltage was applied to the produced organic light emitting device, light emission from both the red dopant and the blue dopant was confirmed from the EL spectrum, and white light emission was confirmed. On the other hand, when an organic light emitting device was produced under the same conditions using a material containing no fluoroalkyl group as a red dopant, it was confirmed that the intensity of blue light emission decreased and the intensity of red light emission increased.

(実施例2)
第2の実施例について述べる。発光層を形成するための塗液として、ホスト材料としてmCP、青色ドーパントとしてBis(3,5−difluoro−2−(2−pyridyl)phenyl−(2−carboxypyridyl)iridium(III)、赤色ドーパントとして(化2)、緑色ドーパントとして(化5)またはIr(ppy)3をTHFに溶解させたものを用いた。それ以外は、実施例1と同様である。
(Example 2)
A second embodiment will be described. As a coating liquid for forming a light emitting layer, mCP as a host material, Bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III) as a blue dopant, and ( The same as in Example 1 except that the green dopant (Chemical Formula 5) or Ir (ppy) 3 dissolved in THF was used as the green dopant.

緑色ドーパントとして(化5)を用いて作製した有機白色発光素子に電圧を印加したところ、赤色ドーパント、緑色ドーパント及び青ドーパントからの発光が確認できた。一方、緑色ドーパントにIr(ppy)3を用いた場合には、青色ドーパント及び緑色ドーパントの赤色ドーパントに対する発光強度が低くなった。 When a voltage was applied to the organic white light-emitting device produced using (Chemical Formula 5) as the green dopant, light emission from the red dopant, the green dopant, and the blue dopant was confirmed. On the other hand, when Ir (ppy) 3 was used as the green dopant, the emission intensity of the blue dopant and the green dopant with respect to the red dopant was low.

1 正孔注入層
2 正孔輸送層
3 発光層
4 ホスト材料
5 赤色ドーパント材料
6 緑色ドーパント材料
7 青色ドーパント材料
8 電子輸送層
9 電子注入層
10 基板
11 下部電極
12 上部電極
13 有機層
DESCRIPTION OF SYMBOLS 1 Hole injection layer 2 Hole transport layer 3 Light emitting layer 4 Host material 5 Red dopant material 6 Green dopant material 7 Blue dopant material 8 Electron transport layer 9 Electron injection layer 10 Substrate 11 Lower electrode 12 Upper electrode 13 Organic layer

Claims (14)

第一の電極と、
第二の電極と、
前記第一の電極と前記第二の電極との間に配置された発光層とを有する有機発光素子の製造方法であって、
前記発光層はホスト材料、赤色ドーパント及び青色ドーパントを含み、
前記赤色ドーパントは前記第一の電極側へ移動するための第一の機能性基を含み、
塗布法により前記発光層を形成する有機発光素子の製造方法。
A first electrode;
A second electrode;
A method for producing an organic light emitting device having a light emitting layer disposed between the first electrode and the second electrode,
The light emitting layer includes a host material, a red dopant, and a blue dopant,
The red dopant includes a first functional group for moving to the first electrode side,
A method for producing an organic light emitting device, wherein the light emitting layer is formed by a coating method.
請求項1に記載の有機発光素子の製造方法において、
前記塗布法により形成された前記発光層において、前記赤色ドーパントが前記第一の電極側に移動する有機発光素子の製造方法。
In the manufacturing method of the organic light emitting element of Claim 1,
The manufacturing method of the organic light emitting element with which the said red dopant moves to the said 1st electrode side in the said light emitting layer formed by the said apply | coating method.
請求項1に記載の有機発光素子の製造方法において、
前記塗布法により形成された前記発光層において、前記赤色ドーパントが濃度勾配を有する有機発光素子の製造方法。
In the manufacturing method of the organic light emitting element of Claim 1,
A method for manufacturing an organic light emitting device, wherein the red dopant has a concentration gradient in the light emitting layer formed by the coating method.
請求項1に記載の有機発光素子の製造方法において、
前記塗布法により形成された前記発光層において、前記赤色ドーパントが前記第一の電極側に偏在する有機発光素子の製造方法。
In the manufacturing method of the organic light emitting element of Claim 1,
The manufacturing method of the organic light emitting element with which the said red dopant is unevenly distributed in the said 1st electrode side in the said light emitting layer formed by the said apply | coating method.
請求項1に記載の有機発光素子の製造方法において、
前記第一の機能性基は、フルオロアルキル基,パーフルオロアルキル基,アルキル基(Cの数は10以上),パーフルオロポリエーテル基及びシロキシ基のうちから選ばれる1つ以上の機能性基である有機発光素子の製造方法。
In the manufacturing method of the organic light emitting element of Claim 1,
The first functional group is one or more functional groups selected from a fluoroalkyl group, a perfluoroalkyl group, an alkyl group (the number of C is 10 or more), a perfluoropolyether group, and a siloxy group. A method for manufacturing an organic light emitting device.
請求項1に記載の有機発光素子の製造方法において、
前記赤色ドーパントは下記(化1)で表されるイリジウム錯体である有機発光素子の製造方法。
(式中X1はNを含む芳香族ヘテロ環を表し、X2は芳香族炭化水素環または芳香族ヘテロ環を表す。Y1及びY2はフルオロアルキル基,パーフルオロアルキル基,アルキル基,パーフルオロポリエーテル基またはシロキシ基を表す。)
In the manufacturing method of the organic light emitting element of Claim 1,
The said red dopant is a manufacturing method of the organic light emitting element which is an iridium complex represented by following (Formula 1).
(Wherein X1 represents an aromatic heterocycle containing N, and X2 represents an aromatic hydrocarbon ring or an aromatic heterocycle. Y1 and Y2 represent a fluoroalkyl group, a perfluoroalkyl group, an alkyl group, and a perfluoropolyether. Represents a group or a siloxy group.)
請求項1に記載の有機発光素子の製造方法において、
前記青色ドーパントの励起エネルギーよりも、前記ホスト材料の励起エネルギーが大きい有機発光素子の製造方法。
In the manufacturing method of the organic light emitting element of Claim 1,
A method for manufacturing an organic light emitting device, wherein the excitation energy of the host material is larger than the excitation energy of the blue dopant.
請求項1に記載の有機発光素子の製造方法において、
前記発光層は緑色ドーパントを含み、
前記緑色ドーパントは前記第二の電極へ引き寄せられるための第二の機能性基を有する有機発光素子の製造方法。
In the manufacturing method of the organic light emitting element of Claim 1,
The light emitting layer includes a green dopant;
The method for producing an organic light-emitting element having a second functional group for attracting the green dopant to the second electrode.
請求項8に記載の有機発光素子の製造方法において、
前記第二の機能性基はヒドロキシ基(−OH),チオール基(−SH),カルボキシル基(−COOH),スルホ基(−SO3H),I,Br,Cl,F,SCN,CN,NH2,NO2及びビピリジル基のうちから選ばれる1つ以上の機能性基である有機発光素子の製造方法。
In the manufacturing method of the organic light emitting element of Claim 8,
The second functional group is a hydroxy group (—OH), a thiol group (—SH), a carboxyl group (—COOH), a sulfo group (—SO 3 H), I, Br, Cl, F, SCN, CN, A method for producing an organic light-emitting device, which is one or more functional groups selected from NH 2 , NO 2 and bipyridyl groups.
請求項8に記載の有機発光素子の製造方法において、
前記第二の電極と前記発光層との間に正孔輸送層が配置され、
前記第二の機能性基はフェニルアミノ基,オキサゾール基,カルバゾール基及びヒドラゾン部位のうちから選ばれる1つ以上の機能性基である有機発光素子の製造方法。
In the manufacturing method of the organic light emitting element of Claim 8,
A hole transport layer is disposed between the second electrode and the light emitting layer;
The method for producing an organic light emitting device, wherein the second functional group is one or more functional groups selected from a phenylamino group, an oxazole group, a carbazole group, and a hydrazone site.
請求項8に記載の有機発光素子の製造方法において、
前記青色ドーパントの最低空軌道エネルギーの絶対値は前記緑色ドーパントの最低空軌道エネルギーの絶対値よりも大きい有機発光素子の製造方法。
In the manufacturing method of the organic light emitting element of Claim 8,
The method of manufacturing an organic light emitting device, wherein an absolute value of the lowest empty orbit energy of the blue dopant is larger than an absolute value of the lowest empty orbit energy of the green dopant.
第一の電極と、
第二の電極と、
前記第一の電極と前記第二の電極との間に配置された発光層とを有する有機発光素子の製造方法であって、
前記発光層はホスト材料、赤色ドーパント及び青色ドーパントを含み、
前記赤色ドーパントは、フルオロアルキル基,パーフルオロアルキル基,アルキル基(Cの数は10以上),パーフルオロポリエーテル基及びシロキシ基のうちの1つを有し、
塗布法により前記発光層を形成する工程を有し、
前記塗布法により形成された前記発光層において、前記赤色ドーパントが前記第一の電極側に移動する有機発光素子の製造方法。
A first electrode;
A second electrode;
A method for producing an organic light emitting device having a light emitting layer disposed between the first electrode and the second electrode,
The light emitting layer includes a host material, a red dopant, and a blue dopant,
The red dopant has one of a fluoroalkyl group, a perfluoroalkyl group, an alkyl group (the number of C is 10 or more), a perfluoropolyether group, and a siloxy group,
Forming the light emitting layer by a coating method ;
The manufacturing method of the organic light emitting element with which the said red dopant moves to the said 1st electrode side in the said light emitting layer formed by the said apply | coating method.
第一の電極と、
第二の電極と、
前記第一の電極と前記第二の電極との間に配置された発光層とを有する有機発光素子の製造方法であって、
前記発光層はホスト材料、赤色ドーパント及び青色ドーパントを含み、
前記赤色ドーパントは、フルオロアルキル基,パーフルオロアルキル基,アルキル基(Cの数は10以上),パーフルオロポリエーテル基及びシロキシ基のうちの1つを有し、
塗布法により前記発光層を形成する工程を有し、
前記塗布法により形成された前記発光層において、前記赤色ドーパントが濃度勾配を有する有機発光素子の製造方法。
A first electrode;
A second electrode;
A method for producing an organic light emitting device having a light emitting layer disposed between the first electrode and the second electrode,
The light emitting layer includes a host material, a red dopant, and a blue dopant,
The red dopant has one of a fluoroalkyl group, a perfluoroalkyl group, an alkyl group (the number of C is 10 or more), a perfluoropolyether group, and a siloxy group,
Forming the light emitting layer by a coating method ;
A method for manufacturing an organic light emitting device , wherein the red dopant has a concentration gradient in the light emitting layer formed by the coating method.
第一の電極と、
第二の電極と、
前記第一の電極と前記第二の電極との間に配置された発光層とを有する有機発光素子の製造方法であって、
前記発光層はホスト材料、赤色ドーパント及び青色ドーパントを含み、
前記赤色ドーパントは、フルオロアルキル基,パーフルオロアルキル基,アルキル基(Cの数は10以上),パーフルオロポリエーテル基及びシロキシ基のうちの1つを有し、
塗布法により前記発光層を形成する工程を有し、
前記塗布法により形成された前記発光層において、前記赤色ドーパントが前記第一の電極側に偏在する有機発光素子の製造方法。
A first electrode;
A second electrode;
A method for producing an organic light emitting device having a light emitting layer disposed between the first electrode and the second electrode,
The light emitting layer includes a host material, a red dopant, and a blue dopant,
The red dopant has one of a fluoroalkyl group, a perfluoroalkyl group, an alkyl group (the number of C is 10 or more), a perfluoropolyether group, and a siloxy group,
Forming the light emitting layer by a coating method ;
The manufacturing method of the organic light emitting element with which the said red dopant is unevenly distributed in the said 1st electrode side in the said light emitting layer formed by the said apply | coating method.
JP2014223905A 2014-11-04 2014-11-04 Manufacturing method of organic light emitting device Expired - Fee Related JP5879421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014223905A JP5879421B2 (en) 2014-11-04 2014-11-04 Manufacturing method of organic light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014223905A JP5879421B2 (en) 2014-11-04 2014-11-04 Manufacturing method of organic light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013028548A Division JP5645984B2 (en) 2013-02-18 2013-02-18 Organic light emitting layer material, organic light emitting layer forming coating liquid using organic light emitting layer material, organic light emitting element using organic light emitting layer forming coating liquid, and light source device using organic light emitting element

Publications (2)

Publication Number Publication Date
JP2015072915A JP2015072915A (en) 2015-04-16
JP5879421B2 true JP5879421B2 (en) 2016-03-08

Family

ID=53015132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014223905A Expired - Fee Related JP5879421B2 (en) 2014-11-04 2014-11-04 Manufacturing method of organic light emitting device

Country Status (1)

Country Link
JP (1) JP5879421B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3902981B2 (en) * 2002-06-04 2007-04-11 キヤノン株式会社 Organic light emitting device and display device
JP4548121B2 (en) * 2005-01-14 2010-09-22 セイコーエプソン株式会社 Method for manufacturing light emitting device
KR20070009306A (en) * 2005-07-15 2007-01-18 삼성에스디아이 주식회사 White organic light-emitting devices
KR20110033249A (en) * 2008-06-26 2011-03-30 이 아이 듀폰 디 네모아 앤드 캄파니 Organic light-emitting diode luminaires
US20110266524A1 (en) * 2009-10-29 2011-11-03 E. I. Du Pont De Nemours And Company Organic light-emitting diode luminaires
US20110260141A1 (en) * 2009-10-29 2011-10-27 E.I. Du Pont De Nemours And Company Organic light-emitting diode luminaires

Also Published As

Publication number Publication date
JP2015072915A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP4945645B2 (en) Organic light emitting layer material, organic light emitting layer forming coating liquid using organic light emitting layer material, organic light emitting element using organic light emitting layer forming coating liquid, and light source device using organic light emitting element
TWI544057B (en) Organic luminescent materials, coating solution using same for organic emitting layer, organic light emitting device using coating solution and light source device using organic light emitting device
JP5011401B2 (en) Organic light emitting layer material, organic light emitting layer forming coating liquid using organic light emitting layer material, organic light emitting element using organic light emitting layer forming coating liquid, and light source device using organic light emitting element
KR20160030402A (en) Organic electroluminescent element, electronic device, light emitting device, and light emitting material
TWI599557B (en) Organic electroluminescent device, light-emitting device using the same, display device and illuminating device
JP5931193B2 (en) Organic light emitting layer material, organic light emitting layer forming coating liquid using organic light emitting layer material, organic light emitting element using organic light emitting layer forming coating liquid, light source device using organic light emitting element, and manufacturing method thereof
JP5668071B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT
JP5337896B2 (en) Organic light emitting layer forming material, organic light emitting layer forming coating liquid using organic light emitting layer forming material, organic light emitting element using organic light emitting layer forming coating liquid, and light source device using organic light emitting element
JP5645984B2 (en) Organic light emitting layer material, organic light emitting layer forming coating liquid using organic light emitting layer material, organic light emitting element using organic light emitting layer forming coating liquid, and light source device using organic light emitting element
JP5205527B2 (en) Organic light emitting layer material, organic light emitting layer forming coating liquid using organic light emitting layer material, organic light emitting element using organic light emitting layer forming coating liquid, and light source device using organic light emitting element
JP5879421B2 (en) Manufacturing method of organic light emitting device
JP5998235B2 (en) Manufacturing method of organic light emitting device
JP5703350B2 (en) Organic light emitting layer material, organic light emitting layer forming coating liquid using organic light emitting layer material, organic light emitting element using organic light emitting layer forming coating liquid, and light source device using organic light emitting element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R151 Written notification of patent or utility model registration

Ref document number: 5879421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees