JP5842379B2 - 非水系電解液二次電池 - Google Patents

非水系電解液二次電池 Download PDF

Info

Publication number
JP5842379B2
JP5842379B2 JP2011106017A JP2011106017A JP5842379B2 JP 5842379 B2 JP5842379 B2 JP 5842379B2 JP 2011106017 A JP2011106017 A JP 2011106017A JP 2011106017 A JP2011106017 A JP 2011106017A JP 5842379 B2 JP5842379 B2 JP 5842379B2
Authority
JP
Japan
Prior art keywords
carbonate
aqueous electrolyte
negative electrode
mass
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011106017A
Other languages
English (en)
Other versions
JP2012049106A (ja
Inventor
浩之 徳田
浩之 徳田
細川 明美
明美 細川
脩平 澤
脩平 澤
大橋 洋一
洋一 大橋
古田土 稔
稔 古田土
浩二 深水
浩二 深水
布施 亨
亨 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2011106017A priority Critical patent/JP5842379B2/ja
Publication of JP2012049106A publication Critical patent/JP2012049106A/ja
Application granted granted Critical
Publication of JP5842379B2 publication Critical patent/JP5842379B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水系電解液二次電池に関し、詳しくは、電解質として三重結合を有する特定の環状化合物を含有する非水系電解液と負極に菱面体晶率が特定の割合を有する黒鉛からなる負極活物質を含む非水系電解液二次電池 に関する。
携帯電話、ノートパソコン等のいわゆる携帯電子機器用電源から自動車用等の駆動用車載電源や定置用大型電源等に至るまでの広範な電源としてリチウム二次電池等の非水系電解液二次電池が実用化されつつある。しかしながら、近年の電子機器の高性能化や駆動用車載電源や定置用大型電源への適用等に伴い、適用される二次電池への要求はますます高まり、二次電池の電池特性の高性能化、例えば高容量化、高温保存特性、サイクル特性等の向上を高い水準で達成することが求められている。
非水系電解液リチウム二次電池に用いる電解液は、通常、主として電解質と非水溶媒とから構成されている。非水溶媒の主成分としては、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート;γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステルなどが用いられている。
また、これらの非水系電解液を用いた電池の負荷特性、サイクル特性、保存特性、低温特性等の電池特性を改良するために、種々の非水溶媒や電解質、助剤等の添加剤も提案されている。例えば、負極活物質に炭素を用いた非水電解質において、ビニレンカーボネート及びその誘導体や、ビニルエチレンカーボネート誘導体を使用することにより、二重結合を有する環状カーボネートが負極と優先的に反応して負極表面に良質の被膜を形成し、これにより電池の保存特性とサイクル特性が向上することが特許文献1および2に開示されている。
また、例えば負極活物質に人造黒鉛を用いた非水電解質において、特定のエチレンカーボネート誘導体と、三重結合含有化合物及び/又はペンタフルオロフェニルオキシ化合物とを併用することにより、ガス発生が少なく、サイクル特性が改善されることが特許文献3に開示されている。
特開平8−45545号公報 特開平4−87156号公報 WO2006−077763号公報
上記のように近年の二次電池の高性能化への要求が高まる中、リチウム二次電池の特性の向上、すなわち、高容量化、高温保存特性、サイクル特性等の向上が求められている。
このような背景の下、特許文献1、2には、負極活物質に炭素を用い、非水電解質として二重結合を有する環状カーボネートを用いた非水電解液二次電池では、電極表面を保護して保存特性やサイクル特性等の電池耐久性を向上させることが記載されている。しかしながら、充電状態の電池を高温で放置したり、連続充放電サイクルを行うと、正極上で不飽和環状カーボネートまたはその誘導体が酸化分解して炭酸ガスを発生するという問題が
あった。このような使用環境下で炭酸ガスが発生すると、例えば、電池の安全弁が作動したり、電池が膨張する等により電池自体が使用不能になる場合がある。
また、正極上での不飽和環状カーボネートの酸化分解は、炭酸ガスの発生以外にも固体状の分解物の生成という問題も引き起こす。このような固形分解物の生成は、電極層やセパレータの目詰まりを引き起こしてリチウムイオンの移動を阻害したり、あるいは固形分解物が電極活物質表面に残存してリチウムイオンの挿入脱離反応を阻害する場合がある。その結果、例えば、連続充放電サイクル時に充放電容量が徐々に低下する、電池の高温保存または連続充放電サイクル後に充放電容量が初期に比べて低下する、あるいは負荷特性が低下する場合がある。
また、正極上での不飽和環状カーボネートの酸化分解は、近年の高性能な二次電池設計の下では特に深刻な問題となる。すなわち、この酸化分解は、正極活物質がリチウムを挿入脱離する電位であるリチウムの酸化還元電位が上昇すると顕著になる傾向にある。例えば、現在市販されている二次電池の満充電時の電池電圧である4.2Vよりも高電圧で動作させようとすると、これらの酸化反応は特に顕著に引き起こされる。
また、特許文献3に記載されている、負極活物質に人造黒鉛を用い、非水電解質として三重結合含有化合物などを用いた非水電解液二次電池では、サイクル特性を改善するために非水電解質として三重結合含有化合物などを用いているが、高容量化のために電極密度を高くすると、電解液との反応性が大きく、サイクル特性が向上し難い課題がある。
そこで、本発明は、近年の二次電池に要求される性能を達成しようとする際に発現する上記の種々の問題を解消し、特に、サイクル・保存等の耐久特性が改善された非水系電解液二次電池を提供すること にある。
発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、非水系電解液二次電池に使用する負極が、アルゴンイオンレーザーラマンスペクトル法における1580cm−1のピーク強度に対する1360cm−1のピーク強度の比として定義されるラマンR値が0.1以上である炭素質材料を少なくとも1種類以上含有する負極活物質を含み、且つ、非水系電解液が、下記一般式(1)で表される化合物よりなる群から選択された少なくとも一種以上を含むことにより、サイクル・保存等の耐久特性が改善された非水系電解液二次電池が実現できることを見出し、本発明を完成させるに至った。
即ち、本発明の要旨は以下の通りである。
リチウム塩とこれを溶解する非水系溶媒を含有してなる非水系電解液と、リチウムイオンを吸蔵放出可能な負極、並びに正極を備えた非水系電解液二次電池であって、
前記負極は、アルゴンイオンレーザーラマンスペクトル法における1580cm−1のピーク強度に対する1360cm−1のピーク強度の比として定義されるラマンR値が0.1以上である炭素質材料を少なくとも1種類以上含有する負極活物質を含み、且つ、前記非水系電解液が下記一般式(1)で表される化合物を含有していることを特徴とする非水系電解液二次電池、に存する。
Figure 0005842379
(式中、XとZはCR 、C=O、C=N−R、C=P−R、O、S、N−R、P−Rを表し、同一でも異なっていてもよい。YはCR 、C=O、S=O、S(=O)、P(=O)−R、P(=O)−OR を表す。式中、R及びR は水素、ハロゲン、または、官能基を有してもよい炭素数1から20の炭化水素基であり、互いに同一であっても異なっていてもよい。Rは官能基を有してもよい炭素数1から20の炭化水素基である。R は、Li、NR または、官能基を有してもよい炭素数1
から20の炭化水素基である。Rは官能基を有してもよい炭素数1から20の炭化水素基であり、互いに同一であっても異なっていてもよい。nおよびmは0以上の整数を表す。Wは上記Rと同義の範囲であり、Wは上記Rと互いに同一であっても異なっていてもよい。)
また、前記炭素質材料は、層間距離d002が0.335nm以上、0.339nm以下であることを特徴とすることが好ましく、
また、前記炭素質材料は、炭素を核黒鉛に被覆した炭素質材料、黒鉛を核黒鉛に被覆した炭素質材料、天然炭素質材料からなる群から選ばれる1種以上を含むことが好ましく、
また、前記一般式(1)で表される化合物は、(2)式で表される化合物であることが好ましく、
Figure 0005842379
(YはC=O、S=O、S(=O)、P(=O)−R 、P(=O)−OR を表す。R は官能基を有してもよい炭素数1から20の炭化水素基である。Rは、Li、
NR または、官能基を有してもよい炭素数1から20の炭化水素基である。R
官能基を有してもよい炭素数1から20の炭化水素基であり、互いに同一であっても異なっていてもよい。)
また、前記非水系電解液は、(A)LiαXO(X=周期表第2または3周期の13、15、16族の何れかの元素、α=1〜2、n=1〜3、m=1〜2)で表される化合物を含有することが好ましく、
また、前記非水系電解液は、(B)下記一般式(3)で表される化合物を含有することが好ましく、
Figure 0005842379
(上記一般式(3)中、Aはアルカリ金属を表し、Mは、遷移金属、周期表の13族、14族、または15族元素、bは1〜3、mは1〜3、nは0〜6、qは0または1をそれぞれ表し、Rは、炭素数1から10のアルキレン、炭素数1から10のハロゲン化アルキレン、炭素数6から20のアリーレン、または炭素数6から20のハロゲン化アリーレン(これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を有していてもよく、またm個存在するRはそれぞれが結合してもよい。)であり、Rは、ハロゲン、炭素数1から10のアルキル、炭素数1から10のハロゲン化アルキル、炭素数6から20のアリール、炭素数6から20のハロゲン化アリール、またはX(これらのアルキル及びアリールはその構造中に置換基、ヘテロ原子を有していてもよく、またn個存在するRはそれぞれが結合して環を形成してもよい。)であり、X、X、Xは、O、S、またはNRであり、R、Rは、それぞれが独立で、水素、炭素数1から10のアルキル、炭素数1から10のハロゲン化アルキル、炭素数6から20のアリール、または炭素数6から20のハロゲン化アリール(これらのアルキル及びアリールはその構造中に置換基、ヘテロ原子を有していてもよく、または複数個存在するR、Rはそれぞれが結合して環を形成していてもよい。)である。)
また、前記非水系電解液は、(C)炭素−炭素不飽和結合またはフッ素原子の少なくとも1つを有するカーボネートを含有することが好ましい。
本発明により、特に高電圧化や高容量化されたリチウム二次電池設計において電池のサイクル・保存等の耐久特性が改善された非水系電解液電池が提供される。この理由は、下記のように推測される。
本発明は、炭素−炭素三重結合が他の官能基やヘテロ元素を介することなく、単結合にて環構造に結合した化合物を非水系電解液に用い、かつラマンR値(以下、ラマン値と記載することもある)が0.1以上である炭素粒子からなる負極活物質を非水系電解液電池に使用することを特徴の一つとしている。通常、特許文献1〜2に代表されるように、電極表面を保護して保存特性やサイクル特性等の電池耐久性を向上させる材料の多くは環状構造の化合物であり、更に多重結合性部位を有している。本発明者等はこの点に着目し、環構造中の官能基やヘテロ元素の結合部位、多重結合が環構造に結合する部位、および多重結合部分の電子軌道の混成状態について詳細に検討を行ったところ、例えば、環状化合物を構成する環骨格の一部が多重結合である化合物よりも、多重結合が環構造に結合をされている化合物の方が正極との安定性に優れること、加えて、炭素−炭素三重結合性の置換基が環構造に結合している方が、炭素−炭素二重結合よりも負極表面に安定な電極保護被膜を形成しやすい。一方、特許文献3に記載されているような、炭素−炭素三重結合を有する化合物であっても鎖状化合物である場合は、重合度が伸びにくく、電極保護被膜としての安定性が得られないことから、著しい電池耐久性の向上効果が確認されない(例えば実施例6及び比較例7参照)。
また、炭素−炭素多重結合を含む環状化合物の負極表面での分解や重合等による被膜生成過程は、負極活物質の表面物性にも強く依存する。炭素質負極の表面物性を規定するパ
ラメータの一つとしては、アルゴンイオンレーザーラマンスペクトル法における1580cm−1のピーク強度に対する1360cm−1のピーク強度の比として定義されるラマンR値が挙げられる。発明者等はラマンR値と炭素質負極上の分解生成物について詳細に検討を行ったところ、ラマンR値が0.1以上である炭素質材料と共に一般式(1)で表される化合物を用いると、電池耐久特性に優れた相乗効果が得られる知見を得た。この理由は現在のところ明らかとなっていないが、一般式(1)の化合物の分解反応性と重合性がラマンR値で規定される負極表面物性に強く依存しており、負極表面において極めて安定な電極保護被膜が形成され、一般式(1)の化合物以外の電解液成分による副分解反応が抑制されて、特に電池のサイクル・保存等の耐久特性が改善された非水系電解液電池が提
供されると推測される。
以下、本発明の実施の形態について詳細に説明するが、本発明はこれらに限定されるものではなく、任意に変形して実施することができる。
1.負極
本発明の非水系電解液二次電池に用いる負極は、リチウムイオンを吸蔵放出可能な負極であり、特定の負極活物質を含むものである。以下に負極に使用される負極活物質について述べる。
<負極活物質>
本発明の構成要素の一つである負極活物質としては、アルゴンイオンレーザーラマンスペクトル法における1580cm−1のピーク強度に対する1360cm−1のピーク強度の比として定義されるラマンR値が0.1以上の炭素質材料であり、この条件を満たせばよく、それ以外には 特に制限はされない。ここで、本発明におけるラマンR値が0.
1以上である炭素質材料とは以下に定義されるものである。
(ラマン値)
負極活物質のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上、好ましくは0.03以上、更に好ましくは0.1以上であり、また、通常1.5以下であり、好ましくは1.2以下、更に好ましくは1以下、特に好ましくは0.5以下であり、最も好ましくは0.35以下である。
ラマンR値が小さすぎると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなり、充電受入性が低下する虞がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く場合がある。特に、ラマンR値が0.1以上であると、負極表面に好適な被膜を形成し、これにより保存特性やサイクル特性、負荷特性を向上させることができる。
一方、ラマンR値が大きすぎると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く場合がある。
また、負極活物質の1580cm−1付近のラマン半値幅は特に制限されないが、通常10cm−1以上、好ましくは15cm−1以上であり、また、通常100cm−1以下、好ましくは80cm−1以下、更に好ましくは60cm−1以下、特に好ましくは40cm−1以下である。
ラマン半値幅が小さすぎると、粒子表面の結晶性が高くなり過ぎて、充放電に伴ってLiが層間に入るサイトが少なくなる傾向がある。即ち、充電受入性が低下する傾向がある。また、集電体に塗布した後、プレスすることによって負極を高密度化した場合に電極板と平行方向に結晶が配向しやすくなり、負荷特性の低下を招く傾向がある。一方、ラマン
半値幅が大きすぎると、粒子表面の結晶性が低下し、非水系電解液との反応性が増し、効率の低下やガス発生の増加を招く傾向がある。
ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPの強度Iと、1360cm−1付近のピークPの強度Iとを測定し、その強度比R(R=I/I)を算出する。該測定で算出されるラマンR値を、本発明の負極活物質のラマンR値と定義する。また、得られるラマンスペクトルの1580cm−1付近のピークPの半値幅を測定し、これを本発明の負極活物質のラマン半値幅と定義する。
また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
さらに、本発明で用いる負極活物質としては以下の物性を有するものであることが望ましい。
(d値)
本発明で定義される炭素質材料は、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、好ましくは0.335nm以上、0.340nm未満の炭素のことである。ここで、d値はより好ましくは0.339nm以下、更に好ましくは0.337nm以下である。d値が大きすぎると結晶性が低下し、初期不可逆容量が増加する場合がある。一方0.335nmは黒鉛の理論値である。
上記炭素質材料としては、天然炭素質材料及び 人造炭素質材料などが挙げられる。好
ましくは、炭素質材料が、炭素を核黒鉛に被覆した炭素質材料、黒鉛を核黒鉛に被覆した炭素質材料、及び天然炭素質材料からなる群から選ばれる1種以上を含む。天然炭素質材料としては、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛等が挙げられる。人造炭素質材料としては、ピッチ原料を高温熱処理して製造した、コークス、ニードルコークス、高密度炭素材料等の黒鉛質粒子が挙げられる。より好ましくは、低コストと電極作製のし易さの点で、球形化した天然炭素質材料である。
(X線パラメータ)
負極活物質の学振法によるX線回折で求めた黒鉛粒子の結晶子サイズ(Lc)、(La)は、30nm以上であることが好ましく、中でも100nm以上であることが更に好ましい。結晶子サイズがこの範囲であれば、負極活物質に充電可能なリチウム量が多くなり、高容量を得易いので好ましい。
(体積基準平均粒径)
負極活物質の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)が、通常1μm以上、好ましくは3μm以上、更に好ましくは5μm以上、特に好ましくは7μm以上であり、また、通常100μm以下、好ましくは50μm以下、更に好ましくは40μm以下、特に好ましくは30μm以下である。
体積基準平均粒径が小さすぎると、不可逆容量が増大して、初期の電池容量の損失を招
くことになる場合がある。また、平均粒径が大きすぎると、塗布により電極を作製する際に、不均一な塗面になりやすく、電池製造工程上望ましくない場合がある。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なう。該測定で求められるメジアン径を、本発明の負極活物質の体積基準平均粒径と定義する。
(BET比表面積)
負極活物質のBET比表面積は、BET法を用いて測定した比表面積の値であり、通常0.1m・g−1以上、好ましくは0.7m ・g−1以上、更に好ましくは1.0
・g−1以上、特に好ましくは1.5m ・g−1以上であり、また、通常100
・g−1以下、好ましくは25m・g−1以下、更に好ましくは15m ・g
−1以下、特に好ましくは10m・g−1以下である。
BET比表面積の値が小さすぎると、負極材料として用いた場合の充電時にリチウムの受け入れ性が悪くなりやすく、リチウムが電極表面で析出しやすくなり、安定性が低下する可能性がある。一方、BET比表面積の値が大きすぎると、負極材料として用いた時に非水系電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい傾向がある。
BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明の負極活物質のBET比表面積と定義する。
(タップ密度)
負極活物質のタップ密度は、通常0.1g・cm−3以上、好ましくは0.5g・cm−3以上、更に好ましくは0.7g・cm−3以上、特に好ましくは1g・cm−3以上であり、また、通常2g・cm−3以下、好ましくは1.8g・cm−3以下、更に好ましくは1.6g・cm−3以下である。タップ密度が小さすぎると、負極として用いた場合に充填密度が上がり難く、高容量の電池を得ることができない傾向がある。また、タップ密度が大きすぎると、電極中の粒子間の空隙が少なくなり過ぎ、粒子間の導電性が確保され難くなり、好ましい電池特性が得られにくい傾向がある。
タップ密度の測定は、目開き300μmの篩を通過させて、20cm のタッピング
セルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明の負極活物質のタップ密度として定義する。
(配向比)
負極活物質の配向比は、通常0.005以上、好ましくは0.01以上、更に好ましくは0.015以上であり、また、通常0.67以下である。配向比が小さすぎると、高密度充放電特性が低下する傾向がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭
素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明の負極活物質の配向比と定義する。
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
(アスペクト比)
負極活物質の黒鉛粒子のアスペクト比(長径/短径)は、通常0.05以上、好ましくは0.07以上、更に好ましくは0.1以上、特に好ましくは0.14以上、また、通常20以下、好ましくは15以下、更に好ましくは10以下、特に好ましくは7以下の範囲である。
アスペクト比が小さすぎる又は大きすぎると、粒子形状が平板状若しくは針状となるため電極中で集電体に対して平行に配向し易く、Li挿入に伴う膨張が一方向になるため導電パス切れが起きサイクル特性が悪化する傾向がある。
これに対し、アスペクト比が上記範囲であれば、高容量化のために電極密度を高くした場合、黒鉛粒子が球形や立方体に近い形状になり、黒鉛粒子が潰れ難く、集電体からの剥離などが起き難くサイクル特性が向上するので好ましい。
更に黒鉛粒子間空隙が大きくなり易く、粒子間のLi拡散が早くなりレート特性の向上が期待できるので好ましい。更にまた、黒鉛粒子が潰れ難いため負極中で黒鉛粒子が配向し難く、充放電に伴う電極の膨張を抑制でき、活物質間の導電パスが保持されるのでサイクル特性が向上するので好ましい。
また、電極膨張を抑制できるので電池内部の空間を確保し易く、酸化分解による少量のガス発生が生じても、電池内部に空間があるので内圧の上昇が少なく、電池の膨張等が起き難いので好ましい。
なお、球形化黒鉛粒子のアスペクト比の測定は、負極を用いて以下の手順で行なうことができる。
負極表面の写真を撮影(若しくは、集電体の膜面に対して平行な面で研磨や切断し、その断面写真を撮影)をし、撮影された写真の画像解析により、黒鉛粒子表面(断面)の長径(最も長い径)を50点以上測定する。また、負極を集電体の膜面に対して垂直に切断、研磨し、その断面写真を撮影し、撮影された写真の画像解析により、黒鉛粒子断面の短径(粒子の厚み)を50点以上測定する。測定された長径及び短径のそれぞれについて平均値を求め、これら平均長径と平均短径との比を、アスペクト比(長径/短径)とする。
また、負極活物質が負極の形態を維持していない(例えば粉末状)場合、負極活物質粒子をガラスなどの基体となる平板に並べた状態で樹脂包埋し、平板に対し平行な面で研磨や切断し、その断面写真から前述の通り長径を測定する。同様に黒鉛粒子断面の短径を測定し、アスペクト比を求めることができる。
ここで、極板化した粒子は、通常は平板に対して粒子の厚み方向が垂直になるように並ぶ傾向があることから、上記の方法により、粒子に特徴的な長径と短径を得ることが出来る。
なお、粒子の断面(若しくは表面)写真は、一般的には、走査型電子顕微鏡(Scanning
Electron Microscope:SEM)を用いて撮影する。但し、SEM写真では球形化黒鉛の形状を特定できない場合には、偏光顕微鏡又は透過型電子顕微鏡(Transmission Electron Microscope:TEM)を用いて、上述と同様に断面(表面)写真を撮影することにより、アスペクト比を求めることができる。
上記範囲のアスペクト比を有する球形化黒鉛粒子を得る方法は、特に限定されないが、例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し黒鉛粒子に与える装置を用いることが好ましい。具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置を用いることが好ましい。また、炭素材料を循環させることによって機械的作用を繰り返して与える機構を有するもの、若しくは、循環機構を有しないが装置を複数台連結させ処理する機構を有するものであるのが好ましい。好ましい装置の一例として、(株)奈良機械製作所製のハイブリダイゼーションシステムなどを挙げることができる。
<負極の構成と作製法>
電極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを後述する集電体に塗布、乾燥した後にプレスすることによって形成することができる。
(集電体)
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔である。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
(集電体と負極活物質層との厚さの比)
集電体と負極活物質層の厚さの比は特に制限されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下がさらに好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上がさらに好ましく、1以上が特に好ましい。集電体と負極活物質層の厚さの比が大きすぎると、高電流密度充放電時に集電体がジュール熱による発熱を生じる傾向がある。また、集電体と負極活物質層の厚さの比が小さすぎると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する傾向がある。
(結着材)
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、ポリイミド、セルロース、ニトロセルロース
等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が大きすぎると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く傾向がある。また、バインダーの割合が小さすぎると、負極電極の強度低下を招く傾向がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。
(スラリー形成溶媒)
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(増粘剤)
増粘剤は、通常、負極活物質層を作製する際のスラリーの粘度を調整するために使用される。増粘剤としては、特に制限されないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
さらに増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が少なすぎると、著しく塗布性が低下する傾向がある。また、増粘剤の割合が多すぎると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する傾向がある。
(電極密度)
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がさらに好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が大きすぎると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く傾向がある。また、密度が小さすぎると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する傾向がある。
(負極板の厚さ)
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、負極板から金属箔(集電体)厚さを差し引いた負極活物質層 の厚さは通常15μm
以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
(負極板の表面被覆)
また、上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
2.非水系電解液
2−1.電解質
<リチウム塩>
電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
例えば、LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;
LiWOF等のタングステン酸リチウム類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
CHSOLi、CHFSOLi、CHFSOLi、CF
SOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類;
LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN(
FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
その他、LiPF(CF、LiPF(C、LiPF(CFSO
、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;等が挙げられる。
中でも、LiPF、LiBF、LiSbF、LiTaF、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、LiBFCF、LiBF、LiPF(CF、LiPF(C等が出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましい。
非水系電解液中のこれらのリチウム塩や、後述する(A)及び(B)で表されるリチウム塩の濃度は、本発明の効果を損なわない限り、その含有量は特に制限されないが、電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、非水系電解液中のリチウム塩の総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、さらに好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、さらに好ましくは2.0mol/L以下である。この範囲であれば、低温特性、サイクル特性、高温特性等の効果が向上する。一方でリチウムの総モル濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。
2−2.溶媒
非水溶媒としては、飽和環状カーボネート、フッ素原子を有する環状カーボネート、鎖状カーボネート、環状及び鎖状カルボン酸エステル、エーテル化合物、スルホン系化合物等を使用することが可能である。
<飽和環状カーボネート>
飽和環状カーボネートとしては、炭素数2〜4のアルキレン基を有するものが挙げられる。具体的には、炭素数2〜4の飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の配合量の下限は、非水溶媒100体積%中、5体積%以上、より好ましくは10体積%以上である。この範囲とすることで、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また上限は
、95体積%以下、より好ましくは90体積%以下、さらに好ましくは85体積%以下である。この範囲とすることで、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の負荷特性を良好な範囲としやすくなる。
また、飽和環状カーボネートの2種以上を任意の組み合わせで用いる場合の好ましい組合せの一つは、エチレンカーボネートとプロピレンカーボネートの組み合わせである。この場合のエチレンカーボネートとプロピレンカーボネートの体積比は、99:1〜10:90が好ましく、特に好ましくは95:5〜10:60である。更に、非水溶媒全体に占めるプロピレンカーボネートの量を、0.1体積%以上、好ましくは1体積%以上、より好ましくは2体積%以上、また上限は、通常20体積%以下、好ましくは8体積%以下、より好ましくは5体積%以下である。この範囲でプロピレンカーボネートを含有すると、エチレンカーボネートとジアルキルカーボネート類との組み合わせの特性を維持したまま、更に低温特性が優れるので好ましい。
<フッ素原子を有する環状カーボネート>
フッ素原子を有する環状カーボネート(以下、フッ素化環状カーボネートともいう)としては、フッ素原子を有する環状カーボネートであれば、特に制限はない。
フッ素化環状カーボネートとしては、炭素原子数2〜6のアルキレン基を有する環状カーボネートの誘導体が挙げられ、例えばエチレンカーボネート誘導体である。エチレンカーボネート誘導体としては、例えば、エチレンカーボネート又はアルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられ、中でもフッ素原子が1〜8個のものが好ましい。
具体的には、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート等が挙げられる。
中でも、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート及び4,5−ジフルオロ−4,5−ジメチ
ルエチレンカーボネートよりなる群から選ばれる少なくとも1種が、高イオン伝導性を与え、かつ好適に界面保護被膜を形成する点でより好ましい。
フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。フッ素化環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、非水系溶媒100体積%中、好ましくは0.01体積%以上、より好ましくは0.1体積%以上、さらに好ましくは0.2体積%以上であり、また、好ましくは95体積%以下、より好ましくは90体積%以下である。この範囲であれば、非水系電解液電池が十分なサイクル特性向上効果を発現しやすく、高温保存特性の低下や、ガス発生量の増加により、放電容量維持率が低下することを回避しやすい。
尚、フッ素原子を有する環状カーボネートは、溶媒のみならず下記1−4−3に記載の「(C)炭素−炭素不飽和結合またはフッ素原子の少なくとも1つを有するカーボネート」としても有効な機能を発現する。フッ素原子を有する環状カーボネート溶媒兼助剤とし
て用いる場合の配合量に明確な境界は存在せず、後に記載する配合量をそのまま踏襲できる。
<鎖状カーボネート>
鎖状カーボネートとしては、炭素数3〜7のものが好ましい。
具体的には、炭素数3〜7の鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
また、フッ素原子を有する鎖状カーボネート類(以下、フッ素化鎖状カーボネートともいう)も好適に用いることができる。フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。
フッ素化ジメチルカーボネート誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
フッ素化ジエチルカーボネート誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。
鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カーボネートの配合量は、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上である。このように下限を設定することにより、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。また、
鎖状カーボネートは、非水溶媒100体積%中、90体積%以下、より好ましくは85体積%以下であることが好ましい。このように上限を設定することにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。
特定の鎖状カーボネートに対して、環状カーボネート及び/またはフッ素原子を有する環状カーボネートを特定の配合量で組み合わせることにより、電池性能を著しく向上させることができる。
例えば、特定の鎖状カーボネートとしてジメチルカーボネート、またはエチルメチルカーボネート、またはジエチルカーボネートを選択した場合、環状カーボネート及び/またはフッ素原子を有する環状カーボネートの配合量が10体積%以上、好ましくは15体積%以上、80体積%以下、好ましくは50体積%以下、さらに好ましくは35体積%以下、ジメチルカーボネート、またはエチルメチルカーボネート、またはジエチルカーボネートの配合量が20体積%以上、好ましくは50体積%以上、さらに好ましくは65体積%以上、90体積%以下、好ましくは85体積%以下であることが好ましい。このような配合量を選択することで、電解質の低温析出温度を低下させながら、非水系電解液の粘度も低下させてイオン伝導度を向上させ、低温でも高出力を得ることができる。
特定の鎖状カーボネートを2種類以上併用することも好ましい。特定の鎖状カーボネートにジメチルカーボネートとエチルメチルカーボネートを併用して用いる場合、環状カーボネート及び/またはフッ素原子を有する環状カーボネートの配合量が10体積%以上、好ましくは15体積%以上、60体積%以下、ジメチルカーボネートの配合量が10体積%以上、70体積%以下、エチルメチルカーボネートの配合量が10体積%以上、80体積%以下であるものが特に好ましい。また、特定の鎖状カーボネートにジメチルカーボネートとジエチルカーボネートを併用して用いる場合、環状カーボネート及び/またはフッ素原子を有する環状カーボネートの配合量が10体積%以上、好ましくは15体積%以上、60体積%以下、ジメチルカーボネートの配合量が10体積%以上、70体積%以下、ジエチルカーボネートの配合量が10体積%以上、70体積%以下であるものが特に好ましい。更に、特定の鎖状カーボネートにエチルメチルカーボネートとジエチルカーボネートを併用して用いる場合、環状カーボネート及び/またはフッ素原子を有する環状カーボネートの配合量が10体積%以上、好ましくは15体積%以上、60体積%以下、エチルメチルカーボネートの配合量が10体積%以上、80体積%以下、ジエチルカーボネートの配合量が10体積%以上、70体積%以下であるものが特に好ましい。
また、上記環状カーボネート及び/またはフッ素原子を有する環状カーボネートとしては、エチレンカーボネート、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5- ジフルオロエチレンカーボネート及び4,5−ジフルオロ−4,5−ジメチルエチレンカーボネートが好ましい。
<環状カルボン酸エステル>
環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3〜12のものが挙げられる。具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルの配合量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上である。このように下限を設定することにより、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、好ましくは50体積%以下、より好ましくは40体積%以下である。このように上限を設定することにより、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系
電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
<鎖状カルボン酸エステル>
鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3〜7のものが挙げられる。具体的には、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。
鎖状カルボン酸エステルの配合量は、通常、非水溶媒100体積%中、好ましくは10体積%以上、より好ましくは15体積%以上である。このように下限を設定することで、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、鎖状カルボン酸エステルの配合量は、非水溶媒100体積%中、好ましくは60体積%以下、より好ましくは50体積%以下である。このように上限を設定することで、負極抵抗の増大を抑制し、非水系電解液電池の大電流放電特性、サイクル特性を良好な範囲としやすくなる。
<エーテル系化合物>
エーテル系化合物としては、一部の水素がフッ素にて置換されていてもよい炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが好ましい。
炭素数3〜10の鎖状エーテルとしては、ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチ
ル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタンメトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタンジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
炭素数3〜6の環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ素化化合物が挙げられる。
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
エーテル系化合物の配合量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上、また、好ましくは70体積%以下、より好ましくは60体積%以下、さらに好ましくは50体積%以下である。この範囲であれば、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来
するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。
<スルホン系化合物>
スルホン系化合物としては、炭素数3〜6の環状スルホン、及び炭素数2〜6の鎖状スルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。
環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めてスルホラン類ともいう)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
中でも、2−メチルスルホラン、3−メチルスルホラン、2−フルオロスルホラン、3−フルオロスルホラン、2,2−ジフルオロスルホラン、2,3−ジフルオロスルホラン、2,4−ジフルオロスルホラン、2,5−ジフルオロスルホラン、3,4−ジフルオロスルホラン、2−フルオロ−3−メチルスルホラン、2−フルオロ−2−メチルスルホラン、3−フルオロ−3−メチルスルホラン、3−フルオロ−2−メチルスルホラン、4−フルオロ−3−メチルスルホラン、4−フルオロ−2−メチルスルホラン、5−フルオロ−3−メチルスルホラン、5−フルオロ−2−メチルスルホラン、2−フルオロメチルスルホラン、3−フルオロメチルスルホラン、2−ジフルオロメチルスルホラン、3−ジフルオロメチルスルホラン、2−トリフルオロメチルスルホラン、3−トリフルオロメチルスルホラン、2−フルオロ−3−(トリフルオロメチル)スルホラン、3−フルオロ−3−(トリフルオロメチル)スルホラン、4−フルオロ−3−(トリフルオロメチル)スルホラン、5−フルオロ−3−(トリフルオロメチル)スルホラン等が、イオン伝導度が高く入出力が高い点で好ましい。
また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、n−プロピルエチルスルホン、ジ−n−プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、ペンタフルオロエチル−n−ブチルスルホン、ペンタフルオロエチル−t−ブチルスルホン等が挙げられる。
中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、イソプロピルメチルスルホン、n−ブチルメチルスルホン、t−ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル−n−プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、トリフルオロメチル−n−ブチルスルホン、トリフルオロメチル−t−ブチルスルホン等がイオン伝導度が高く入出力が高い点で好ましい。
スルホン系化合物の配合量は、通常、非水溶媒100体積%中、好ましくは5体積%以上、より好ましくは10体積%以上、さらに好ましくは15体積%以上であり、また、好ましくは40体積%以下、より好ましくは35体積%以下、さらに好ましくは30体積%以下である。この範囲であれば、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液電池の充放電を高電流密度で行う場合に、充放電容量維持率が低下するといった事態を回避しやすい。
2−3.一般式(1)で表される化合物
本発明は、リチウム塩とこれを溶解する非水系溶媒を含有してなる非水系電解液と、リチウムイオンを吸蔵放出可能な負極、並びに正極を備えた非水系電解液二次電池であって、非水系電解液中に下記一般式(1)で表される化合物よりなる群から少なくとも一種以上を含有することを特徴としている。
Figure 0005842379
上記式中、XとZはCR 、C=O、C=N−R、C=P−R 、O、S、N−
、P−R を表し、同一でも異っていてもよい。YはCR 、C=O、S=O、S(=O)、P(=O)−R、P(=O)−OR を表す。式中、R及びR は水素、ハロゲン、または、官能基を有しても良い炭素数1から20の炭化水素基であり、互いに同一であっても異っていてもよい。Rは官能基を有してもよい炭素数1から20の炭化水素基である。Rは、Li、NR または、官能基を有してもよい炭素数1から20の炭化水素基である。Rは官能基を有してもよい炭素数1から20の炭化水素基であり、互いに同一であっても異っていても良い。nおよびmは0以上の整数を表す。Wは上記Rと同義の範囲であり、Wは上記Rと互いに同一であっても異なっていてもよい。
<一般式(1)で表される化合物>
式中、XとZは、一般式(1)に記載の範囲であれば特に限定されないが、CR
O、S、N−Rがより好ましい。また、Yも一般式(1)に記載の範囲であれば特に限定されないが、C=O、S=O、S(=O) 、P(=O)−R、P(=O)−OR
がより好ましい。RとR は、一般式(1)に記載の範囲であれば特に限定されないが、好ましくは、水素、フッ素、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基があげられる。
およびR は、一般式(1)に記載の範囲であれば特に限定されないが、好まし
くは、置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素、置換基を有してもよい芳香族炭化水素・芳香族ヘテロ環があげられる。
は、一般式(1)に記載の範囲であれば特に限定されないが、好ましくは、Li、置換基を有してもよい飽和脂肪族炭化水素、置換基を有してもよい不飽和脂肪族炭化水素、置換基を有してもよい芳香族炭化水素・芳香族ヘテロ環があげられる。
置換基を有してもよい飽和脂肪族炭化水素、置換基を有してもよい不飽和脂肪族炭化水素、置換基を有してもよい芳香族炭化水素・芳香族ヘテロ環の、置換基としては特に限定はされないが、好ましくは、ハロゲン、カルボン酸、炭酸、スルホン酸、リン酸、亜リン酸等の置換基を有してもよい飽和脂肪族炭化水素基、置換基を有してもよい不飽和脂肪族炭化水素基、置換基を有してもよい芳香族炭化水素基のエステル等があげられ、さらに好ましくは、ハロゲン、最も好ましくはフッ素があげられる。
好ましい飽和脂肪族炭化水素として、具体的には、メチル基、エチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、1−フルオロエチル基、2−フルオロエチル基、1,1−ジフルオロエチル基、1,2−ジフルオロエチル基、2,2−ジフルオロエチル基、1,1、2−トリフルオロエチル基、1,2、2−トリフルオロエチル基、2、2、2−トリフルオロエチル基フェニル基、シクロペンチル基、シクロヘキシル基があげられる。
好ましい不飽和脂肪族炭化水素としては、具体的には、エテニル基、1−フルオロエテニル基、2−フルオロエテニル基、1−メチルエテニル基、2−プロペニル基、2−フルオロ−2−プロペニル基、3−フルオロ−2−プロペニル基、エチニル基、2−フルオロエチニル基、2−プロピニル基、3−フルオロ−2プロピニル基、があげられる。
好ましい芳香族炭化水素としては、フェニル基、2−フルオロフェニル基、3−フルオロフェニル基、2、4−ジフルオロフェニル基、2、6−ジフルオロフェニル基、3、5−ジフルオロフェニル基、2、4、6−トリフルオロフェニル基、があげられる。
好ましい芳香族ヘテロ環としては、2−フラニル基、3−フラニル基、2−チオフェニル基、3−チオフェニル基、1−メチル−2−ピロリル基、1−メチル−3−ピロリル基、があげられる。
これらの中でも、メチル基、エチル基、フルオロメチル基、トリフルオロメチル基、2−フルオロエチル基、2、2、2−トリフルオロエチル基、エテニル基、エチニル基、フェニル基、がより好ましい。
さらに好ましくは、メチル基、エチル基、エチニル基、があげられる好ましい。
nおよびmは一般式(1)に記載の範囲であれば特に限定されないが、好ましくは、0または1であり、さらに好ましくは、n=m=1またはn=1、m=0である。また、分子量は、好ましくは50以上である。また、好ましくは500以下である。この範囲であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。以下にこれら好ましい化合物の具体例を示す。
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
これらの中でも、その反応性と安定性の両面からRが水素、フッ素またはエチニル基であることが好ましい。他の置換基である場合、反応性が低下し、期待する特性が低下する恐れが有る。また、フッ素以外のハロゲンで有る場合は、反応性が高すぎて副反応が増加する恐れが有る。
また、Rにおけるフッ素またはエチニル基の数は合わせて2つ以内で有ることが好ましい。これらの数が多すぎると、電解液との相溶性が悪化する恐れがあり、また、反応性が高すぎて副反応が増加する恐れが有る。
また、これらの中でも、n=1、m=0が好ましい。双方が0である場合、環のひずみから安定性が悪化し、反応性が高くなりすぎて副反応が増加する恐れが有る。また、n=2以上、またはn=1であっても、m=1以上で有る場合、環状より鎖状である方が安定となる恐れがあり、初期の特性を示さない恐れが有る。
さらに、式中、XとZは、CR またはOがより好ましい。これら以外の場合、反応性が高すぎて副反応が増加する恐れが有る。
また、分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。この範囲であれば、非水系電解液に対する一般式(1)の溶解性をさらに確保しやすく、本発明の効果が十分にさらに発現されやすい。
これらのうち、さらに好ましい化合物の具体例を以下に示す。
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
Figure 0005842379
さらに好ましくは、Rが全て水素である場合である。この場合、期待される特性を維持しつつ、副反応が最も抑制される可能性が高い。また、YがC=OまたはS=Oの場合、XおよびZのいずれか一方がOである事が、YがS(=O)、P(=O)−R 、P
(=O)−OR の場合XとZが共にOまたはCHであるか、XとZのいずれか一
方がOであり、もう一方がCHで有ることが好ましい。YがC=OまたはS=Oの場合、XとZが共にCHであると、反応性が高すぎて副反応が増加する恐れが有る。
これらの化合物の具体的を以下に示す。
Figure 0005842379
一般式(1)の化合物のうち、一般式(2)であらわされる化合物が、工業的な製造の容易さの観点から、好ましい。
Figure 0005842379
上記式(2)中YはC=O、S=O、S(=O)、P(=O)−R 、P(=O)
−OR を表す。R は官能基を有してもよい炭素数1から20の炭化水素基である。Rは、Li、NR または、官能基を有してもよい炭素数1から20の炭化水素基である。Rは官能基を有してもよい炭素数1から20の炭化水素基であり、互いに同一であっても異っていてもよい。
これら、好ましい条件を持つ化合物としては、具体的には以下に示す。
Figure 0005842379
一般式(1)であらわされる化合物は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。また、一般式(1)であらわされる化合物の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。一般式(1)であらわされる化合物の配合量は、非水系電解液100質量%中、好ましくは、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。この範囲であれば、非水系電解液二次電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなることで放電容量維持率が低下する、といった事態を回避しやすい。一方で少なすぎると、本発明における効果が十分に発揮しにくい場合があり、また多すぎると、抵抗が増加して出力や負荷特性が低下する場合がある。
なお、一般式(1)で表される化合物は、既知の方法により合成したものを用いても、市販のものを用いてもよい。
2−4.(A)〜(C)の化合物
本発明の非水系電解液は、一般式(1)で表される化合物とともに、(A)〜(C)の化合物を少なくとも1種類以上含有することが好ましい。これらの化合物を併用することによって、電極表面に保護能力の高い良質な複合皮膜が形成され、非水系電解液電池のサイクル特性及び保存特性が大きく改善される。特に高電圧条件下において、その改善効果が顕著である。
本発明の非水系電解液は、(A)、(B)、(C)のそれぞれの化合物をすべて含んでいても、或いは(A)に属する複数の化合物を含んでいてもよく、(B)に属する複数の化合物を含んでいてもよく、(C)に属する複数の化合物を含んでいてもよい。
2−4−1.(A)LiαXOで表される化合物
本発明の非水系電解液は、一般式(1)で表される化合物とともに、LiαXOで表される化合物(以下、(A)の化合物ともいう)を含有することが好ましい。Xは、周期表第2または3周期の13、15、16族の何れかの元素であり、α=1〜2、n=1〜3、m=1〜2を表している。
Xがリンまたは硫黄が好ましく、具体的には、LiPOF、LiPO、LiSOF等が挙げられる。なお、(A)の化合物は、リチウム塩であるが、「2−1.電解質」に記載のリチウム塩は含まれないものとする。
本発明の非水系電解液全体に対する(A)の化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常15質量%以下、好ましくは12質量%以下、より好ましくは10質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。一方で多すぎる場合は、低温において析出して電池特性を低下させる場合があり、少なすぎる場合は、低温特性やサイクル特性、高温保存特性等の向上効果が十分に発現しない場合がある。
(A)の化合物を電解液中に含有させる場合の電解液の調製は、別途公知の手法で合成した(A)の化合物を含む電解液に添加する方法や、電解液中で(A)の化合物を発生させる方法が挙げられる。例えば、LiPOの場合、後述する活物質や極板等の電池構成要素中に水を共存させておき、LiPFを含む電解液を用いて電池を組み立てる際に系中でLiPOを発生させることができる。
上記の非水系電解液、および非水系電解液電池中における(A)の化合物の含有量を測
定する手法としては、特に制限がなく、公知の手法であれば任意に用いることができるが、例えばLiPOの場合、イオンクロマトグラフィーや、F核磁気共鳴分光法(以下、NMRと省略する場合がある)等を用いて測定することができる。
2−4−2.(B)一般式(3)で表される化合物
本発明の非水系電解液は、一般式(1)で表される化合物とともに、一般式(3)で表される化合物(以下、(B)の化合物ともいう)を含有することが好ましい。
Figure 0005842379
(上記一般式(3)中、Aはアルカリ金属を表し、Mは、遷移金属、周期表の13族、14族、または15族元素、bは1〜3、mは1〜3、nは0〜6、qは0または1をそれぞれ表し、Rは、炭素数1から10のアルキレン、炭素数1から10のハロゲン化アルキレン、炭素数6から20のアリーレン、または炭素数6から20のハロゲン化アリーレン(これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を有していてもよく、またm個存在するRはそれぞれが結合してもよい。)であり、Rは、ハロゲン、炭素数1から10のアルキル、炭素数1から10のハロゲン化アルキル、炭素数6から20のアリール、炭素数6から20のハロゲン化アリール、またはX(これらのアルキル及びアリールはその構造中に置換基、ヘテロ原子を有していてもよく、またn個存在するRはそれぞれが結合して環を形成してもよい。)であり、X、X、Xは、O、S、またはNRであり、R、Rは、それぞれが独立で、水素、炭素数1から10のアルキル、炭素数1から10のハロゲン化アルキル、炭素数6から20のアリール、または炭素数6から20のハロゲン化アリール(これらのアルキル及びアリールはその構造中に置換基、ヘテロ原子を有していてもよく、または複数個存在するR、Rはそれぞれが結合して環を形成していてもよい。)である。)
具体的には、リチウムビス(オキサラト)ボレート、カリウムビス(オキサラト)ボレート、ナトリウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート、カリウムジフルオロオキサラトボレート、ナトリウムジフルオロオキサラトボレート、リチウムトリス(オキサラト)ホスフェート、カリウムトリス(オキサラト)ホスフェート、ナトリウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、カリウムジフルオロビス(オキサラト)ホスフェート、ナトリウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロオキサラトホスフェート、カリウムテトラフルオロオキサラトホスフェート、ナトリウムテトラフルオロオキサラトホスフェート、リチウムビス(マロナト)ボレート、カリウムビス(マロナト)ボレート、ナトリウムビス(マロナト)ボレート、リチウムジフルオロマロナトボレート、カリウムジフルオロマロナトボレート、ナトリウムジフルオロマロナトボレート、リチウムトリス(マロナト)ホスフェート、カリウムトリス(マロナト)ホスフェート、ナトリウムトリス(マロナト)ホスフェート、リチウムジフルオロビス(マロナト)ホスフェート、カリウムジフルオロビス(マロナト)ホスフェート、ナトリウムジフルオロビス(マロナト)ホスフェート、リチウムテトラフルオロマロナトホスフェート、カリウムテトラフルオロマロナトホスフェート、ナトリウムテトラフルオロマロナトホスフェート、リチウムオキサラトマロナトボレート、カリウムオキサラトマロナトボレート、ナトリウムオ
キサラトマロナトボレート、リチウム(ビスオキサラト)(マロナト)ホスフェート、リチウム(オキサラト)(ビスマロナト)ホスフェート、ナトリウム(ビスオキサラト)(マロナト)ホスフェート、ナトリウム(オキサラト)(ビスマロナト)ホスフェート、カリウム(ビスオキ
サラト)(マロナト)ホスフェート、カリウム(オキサラト)(ビスマロナト)ホスフェート、
リチウムジフルオロ(オキサラト)(マロナト)ホスフェート、カリウムジフルオロ(オキサラト)(マロナト)ホスフェート、ナトリウムジフルオロ(オキサラト)(マロナト)ホスフェート、が挙げられる。
中でも、下記に示す、リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、及びリチウムトリス(オキサラト)ホスフェートが特に好ましい。なお、(B)の化合物は、リチウム塩も含まれる、「1−1.電解質」に記載のリチウム塩は含まれないものとする。
また、一般式(3)で表される化合物で表される化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
Figure 0005842379
本発明の非水系電解液全体に対する(B)の化合物の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、また、通常15質量%以下、好ましくは12質量%以下、より好ましくは10質量%以下の濃度で含有させる。上記範囲を満たした場合は、出力特性、負荷特性、低温特性、サイクル特性、高温保存特性等の効果がより向上する。一方で多すぎる場合は、低温において析出して電池特性を低下させる場合があり、少なすぎる場合は、低温特性やサイクル特性、高温保存特性等の向上効果が十分に発現しない場合がある。
尚、(A)及び(B)で表されるリチウム塩は、上記「2−1.電解質」にて記載されたリチウム塩と共に、単独で用いても、2種以上を併用してもよい。2種以上を併用する
場合の好ましい一例は、LiPFとLiBFや、LiPFとFSOLi、LiPF
とLiPO、LiPFとLiN(FSO、LiPFとLiN(CFSO、LiPFとリチウムビスオキサラトボレート、LiPFとリチウムジフルオロオキサラトボレート、LiPFとリチウムテトラフルオロオキサラトホスフェート、LiPFとリチウムジフルオロビスオキサラトフォスフェート、LiPFとリチウムトリス(オキサラト)ホスフェート、LiPFとFSOLiとLiPO、LiPFとFSOLiとリチウムビスオキサラトボレート、LiPFとFSOLiとリチウムテトラフルオロオキサラトホスフェート、LiPFとFSOLiとリチウムジフルオロビスオキサラトフォスフェート、LiPFとFSOLiとリチウムトリス(オキサラト)ホスフェート、LiPFとLiPOとリチウムビスオキサラトボレート、LiPFとLiPOとリチウムテトラフルオロオキサラトホスフェート、LiPFとLiPOとリチウムジフルオロビスオキサラトフォスフェート、LiPFとLiPOとリチウムトリス(オキサラト)ホスフェート等の併用であり、負荷特性やサイクル特性を向上させる効果がある。
これらの中では、LiPFとFSOLi、LiPFとLiPO、LiPFとリチウムビスオキサラトボレート、LiPFとリチウムテトラフルオロオキサラトホスフェート、LiPFとリチウムトリス(オキサラト)ホスフェート、LiPFとリチウムジフルオロビスオキサラトフォスフェート、LiPFとFSOLiとLiPO、LiPFとFSOLiとリチウムビスオキサラトボレート、LiPFとLiPOとリチウムビスオキサラトボレート、LiPFとFSOLiとリチウムトリス(オキサラト)ホスフェート、LiPFとFSOLiとリチウムジフルオロビスオキサラトフォスフェート、LiPFとLiPOとリチウムトリス(オキサラト)ホスフェート、LiPFとLiPOとリチウムジフルオロビスオキサラトフォスフェートの併用がその効果が顕著である理由から特に好ましい。
LiPFとLiBF、FSOLi、LiPO、LiN(FSO、LiN(CFSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトホスフェート、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビスオキサラトフォスフェート等を併用する場合、非水系電解液全体100質量%に対するLiBF、FSOLi、LiPO、LiN(FSO、LiN(CFSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムトリス(オキサラト)ホスフェート、リチウムテトラフルオロオキサラトホスフェート、リチウムジフルオロビスオキサラトフォスフェート等の配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、一方その上限は通常12質量%以下、好ましくは10質量%以下である。一方、LiPFとLiPOの併用の場合においても非水系電解液全体100質量%に対するLiPOの配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液に対して、通常0.001質量%以上、好ましくは0.01質量%以上であり、一方その上限は、通常10質量%以下、好ましくは5質量%以下である。この範囲であれば、出力特性、負荷特性、低温特性、サイクル特性、高温特性等の効果が向上する。一方で多すぎる場合は、低温において析出して電池特性を低下させる場合があり、少なすぎる場合は、低温特性やサイクル特性、高温保存特性等の向上効果が低下する場合がある。
ここで、LiPOを電解液中に含有させる場合の電解液の調製は、別途公知の手法で合成したLiPOをLiPFを含む電解液に添加する方法や後述する活物質や極板等の電池構成要素中に水を共存させておき、LiPFを含む電解液を用いて電池
を組み立てる際に系中でLiPOを発生させる方法が挙げられ、本発明においてはいずれの手法を用いても良い。
上記の非水系電解液、および非水系電解液電池中におけるLiPOの含有量を測定する手法としては、特に制限がなく、公知の手法であれば任意に用いることができるが、具体的にはイオンクロマトグラフィーや、F核磁気共鳴分光法(以下、NMRと省略する場合がある)等が挙げられる。
2−4−3.(C)炭素−炭素不飽和結合またはフッ素原子の少なくとも1つを有するカーボネート
本発明の非水系電解液は、一般式(1)で表される化合物とともに、炭素−炭素不飽和結合またはフッ素原子の少なくとも1つを有するカーボネート(以下、(C)の化合物ともいう)を含有することが好ましい。(C)の化合物は、炭素−炭素不飽和結合またはフッ素原子を有するカーボネートであれば特に限定されず、鎖状であっても、環状であってもよい。ただし、一般式(1)で表される化合物はこれに含まれないものとする。
C)の化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
<炭素−炭素不飽和結合を有する環状カーボネート>
炭素−炭素不飽和結合を有する環状カーボネート(以下、不飽和環状カーボネートともいう)としては、環状カーボネートの骨格内に不飽和結合を有するビニレンカーボネート類、或いは芳香環または炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類等が挙げられる。
ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート等が挙げられる。
芳香環または炭素−炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート等が挙げられる。
不飽和環状カーボネートとしては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5-ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5-ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネートが好ましく、ビニレンカーボネート及びビニルエチレンカーボネートが特に好ましい。これらは安定な界面保護被膜を形成するので、より好適に用いられる。
また、不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
<炭素−炭素不飽和結合を有する鎖状カーボネート>
炭素−炭素不飽和結合を有する鎖状カーボネート(以下、不飽和鎖状カーボネートともいう)としては、炭素−炭素不飽和結合を有する鎖状カーボネート類、或いは芳香環を有する置換基で置換された鎖状カーボネート類等が挙げられる。
炭素−炭素不飽和結合を有する鎖状炭化水素を有する鎖状カーボネート類としては、
メチルビニルカーボネート、エチルビニルカーボネート、ジビニルカーボネート、メチル−1−プロペニルカーボネート、エチル−1−プロペニルカーボネート、ジ−1−プロペニルカーボネート、メチル(1−メチルビニル)カーボネート、エチル(1−メチルビニル)カーボネート、ジ(1−メチルビニル)カーボネート、メチル−2−プロペニルカーボネート、エチル−2−プロペニルカーボネート、ジ(2−プロペニル)カーボネート、1−ブテニルメチルカーボネート、1−ブテニルエチルカーボネート、ジ(1−ブテニル)カーボネート、メチル(1−メチル−1−プロペニル)カーボネート、エチル(1−メチル−1−プロペニル)カーボネート、ジ(1−メチル−1−プロペニル)カーボネート、メチル−1−エチルビニルカーボネート、エチル−1−エチルビニルカーボネート、ジ−1−エチルビニルカーボネート、メチル(2−メチル−1−プロペニル)カーボネート、エチル(2−メチル−1−プロペニル)カーボネート、ジ(2−メチル−1−プロペニル)カーボネート、2−ブテニルメチルカーボネート、2−ブテニルエチルカーボネート、ジ−2−ブテニルカーボネート、メチル(1−メチル−2−プロペニル)カーボネート、エチル(1−メチル−2−プロペニル)カーボネート、ジ(1−メチル−2−プロペニル)カーボネート、メチル(2−メチル−2−プロペニル)カーボネート、エチル(2−メチル−2−プロペニル)カーボネート、ジ(2−メチル−2−プロペニル)カーボネート、メチル(1,2−ジメチル−1−プロペニル)カーボネート、エチル(1,2−ジメチル−1−プロペニル)カーボネート、ジ(1,2−ジメチル−1−プロペニル)カーボネート、エチニルメチルカーボネート、エチルエチニルカーボネート、ジエチニルカーボネート、メチル−1−プロピニルカーボネート、エチル−1−プロピニルカーボネート、ジ−1−プロピニルカーボネート、メチル−2−プロピニルカーボネート、エチル−2−プロピニルカーボネート、ジ−2−プロピニルカーボネート、1−ブチニルメチルカーボネート、1−ブチニルエチルカーボネート、ジ−1−ブチニルカーボネート、2−ブチニルメチルカーボネート、2−ブチニルエチルカーボネート、ジ−2−ブチニルカーボネート、メチル(1−メチル−2−プロピニル)カーボネート、エチル(1−メチル−2−プロピニル)カーボネート、ジ(1−メチル−2−プロピニル)カーボネート、3−ブチニルメチルカーボネート、3−ブチニルエチルカーボネート、ジ−3−ブチニルカーボネート、メチル(1,1−ジメチル−2−プロピニル)カーボネート、エチル(1,1−ジメチル−2−プロピニル)カーボネート、ジチル(1,1−ジメチル−2−プロピニル)カーボネート、メチル(1,3−ジメチル−2−プロピニル)カーボネート、エチル(1,3−ジメチル−2−プロピニル)カーボネート、ジチル(1,3−ジメチル−2−プロピニル)カーボネート、メチル(1,2,3−トリメチル−2−プロピニル)カーボネート、エチル(1,2,3−トリメチル−2−プロピニル)カーボネート、ジチル(1,2,3−トリメチル−2−プロピニル)カーボネート、等が挙げられる。
芳香環を有する置換基で置換された鎖状カーボネート類としては、
メチルフェニルカーボネート、エチルフェニルカーボネート、フェニルビニルカーボネート、アリルフェニルカーボネート、エニチルフェニルカーボネート、2−プロペニルフェニルカーボネート、ジフェニルカーボネート、メチル(2−メチルフェニル)カーボネート、エチル(2−メチルフェニル)カーボネート、(2−メチルフェニル)ビニルカーボネート、アリル(2−メチルフェニル)カーボネート、エニチル(2−メチルフェニル)カーボネート、2−プロペニル(2−メチルフェニル)カーボネート、ジ(2−メチルフェニル)カーボネート、メチル(3−メチルフェニル)カーボネート、エチル(3−メ
チルフェニル)カーボネート、(3−メチルフェニル)ビニルカーボネート、アリル(3−メチルフェニル)カーボネート、エニチル(3−メチルフェニル)カーボネート、2−プロペニル(3−メチルフェニル)カーボネート、ジ(3−メチルフェニル)カーボネート、メチル(4−メチルフェニル)カーボネート、エチル(4−メチルフェニル)カーボネート、(4−メチルフェニル)ビニルカーボネート、アリル(4−メチルフェニル)カーボネート、エニチル(4−メチルフェニル)カーボネート、2−プロペニル(4−メチルフェニル)カーボネート、ジ(4−メチルフェニル)カーボネート、ベンジルメチルカーボネート、ベンジルエチルカーボネート、ベンジルフェニルカーボネート、ベンジルビニルカーボネート、べンジル−2−プロペニルカーボネート、ベンジルエチニルカーボネート、ベンジル−2−プロピニルカーボネート、ジベンジルカーボネート、メチル(2−シクロヘキシルフェニル)カーボネート、メチル(3−シクロヘキシルフェニル)カーボネート、メチル(4−シクロヘキシルフェニル)カーボネート、エチル(2−シクロヘキシルフェニル)カーボネート、ジ(2−シクロヘキシルフェニル)カーボネート、等が挙げられる。
不飽和鎖状カーボネートとしては、上記の中でも、メチルビニルカーボネート、エチルビニルカーボネート、ジビニルカーボネート、アリルメチルカーボネート、アリルエチルカーボネート、ジアリルカーボネート、2−プロピニルメチルカーボネート、2−プロピニルエチルカーボネート、1−メチル−2−プロピニルメチルカーボネート、1−メチル−2−プロピニルエチルカーボネート、1,1−ジメチル−2−プロピニルメチルカーボネート、ジプロピニルカーボネート、2−ブチニルメチルカーボネート、1−メチル−2−ブチニルメチルカーボネート、1,1−ジメチル−2−ブチニルメチルカーボネート、ジブチニルカーボネート、メチルフェニルカーボネート、エチルフェニルカーボネート、フェニルビニルカーボネート、アリルフェニルカーボネート、ジフェニルカーボネート、ベンジルメチルカーボネート、ベンジルエチルカーボネート、ベンジルフェニルカーボネート、アリルベンジルカーボネート、ジベンジルカーボネート、2−プロピニルフェニルカーボネート、2−ブチニルフェニルカーボネートが好ましく、メチルビニルカーボネート、エチルビニルカーボネート、ジビニルカーボネート、アリルメチルカーボネート、アリルエチルカーボネート、ジアリルカーボネート、2−プロピニルメチルカーボネート、1−メチル−2−プロピニルメチルカーボネート、1,1−ジメチル−2−プロピニルメチルカーボネート、ジプロピニルカーボネート、2−ブチニルメチルカーボネート、1−メチル−2−ブチニルメチルカーボネート、1,1−ジメチル−2−ブチニルメチルカーボネート、ジブチニルカーボネート、メチルフェニルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネートが特に好ましい。これらは安定な界面保護被膜を形成するので、より好適に用いられる。
また、不飽和鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
<フッ素化カーボネート>
フッ素原子を有するカーボネートとして、フッ素原子を有する鎖状カーボネート(以下、フッ素化鎖状カーボネートともいう)、及びフッ素原子を有する環状カーボネート(以下、フッ素化環状カーボネートともいう)のどちらも用いることができる。
なお、非水電解液の溶媒としてフッ素原子を有する鎖状或いは環状カーボネートについて上述しているが、助剤として用いることもできる。
フッ素化鎖状カーボネートのフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体
等が挙げられる。
フッ素化ジメチルカーボネート誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
フッ素化ジエチルカーボネート誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。
フッ素化鎖状カーボネートとしては、特に2,2,2−トリフルオロエチルメチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネートが好ましい。
また、フッ素化鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
フッ素化環状カーボネートとしては、炭素原子数2〜6のアルキレン基を有する環状カーボネートの誘導体が挙げられ、例えばエチレンカーボネート誘導体である。エチレンカーボネート誘導体としては、例えば、エチレンカーボネート又はアルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられ、中でもフッ素原子が1〜8個のものが好ましい。
具体的には、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート等が挙げられる。
フッ素化環状カーボネートとしては、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート及び4,5−
ジフルオロ−4,5−ジメチルエチレンカーボネートよりなる群から選ばれる少なくとも1種が特に好ましい。これらは高イオン伝導性を与え、かつ好適に界面保護被膜を形成する。
また、フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
<炭素−炭素不飽和結合及びフッ素原子の両方を有する環状カーボネート>
炭素−炭素不飽和結合及びフッ素原子の両方を有する環状カーボネート(以下、フッ素化不飽和環状カーボネートともいう)としては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、等が挙げられる。
芳香環又は炭素−炭素不飽和結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−5−ビニルエチレンカーボネート、4,4−ジフルオロ−5−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。
フッ素化不飽和環状カーボネートとしては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−5−ビニルエチレンカーボネート、4,4−ジフルオロ−5−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが好ましい。これらは安定な界面保護被膜を形成するので、より好適に用いられる。
また、フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
<炭素−炭素不飽和結合及びフッ素原子の両方を有する鎖状カーボネート>
炭素−炭素不飽和結合及びフッ素原子の両方を有する鎖状カーボネート(以下、フッ素化不飽和鎖状カーボネートともいう)としては、1−フルオロビニルメチルカーボネート、2−フルオロビニルメチルカーボネート、1,2−ジフルオロビニルメチルカーボネート、エチル−1−フルオロビニルカーボネート、エチル−2−フルオロビニルカーボネート、エチル−1,2−ジフルオロビニルカーボネート、ビス(1−フルオロビニル)カーボネート、ビス(2−フルオロビニル)カーボネート、ビス(1,2−ジフルオロビニル)カーボネート、1−フルオロ−1−プロペニルメチルカーボネート、2−フルオロ−1−プロペニルメチルカーボネート、3−フルオロ−1−プロペニルメチルカーボネート、1、2−ジフルオロ−1−プロペニルメチルカーボネート、1,3−ジフルオロ−1−プロペニルメチルカーボネート、2,3−ジフルオロ−1−プロペニルメチルカーボネート、3,3−ジフルオロ−1−プロペニルメチルカーボネート、1−フルオロ−2−プロペ
ニルメチルカーボネート、2−フルオロ−2−プロペニルメチルカーボネート、3−フルオロ−2−プロペニルメチルカーボネート、1,1−ジフルオロ−2−プロペニルメチルカーボネート、1,2−ジフルオロ−2−プロペニルメチルカーボネート、1,3−ジフルオロ−2−プロペニルメチルカーボネート、2,3−ジフルオロ−2−プロペニルメチルカーボネート、フルオロエチニルメチルカーボネート、3−フルオロ−1−プロピニルメチルカーボネート、1−フルオロ−2−プロピニルメチルカーボネート、3−フルオロ−2−プロピニルメチルカーボネート、等があげられる。
また、フッ素化不飽和鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
(C)の化合物の分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、50以上、250以下が好ましい。不飽和環状カーボネートの場合、より好ましくは80以上、150以下、フッ素化不飽和環状カーボネートの場合は、より好ましくは100以上、200以下である。この範囲であれば、非水系電解液に対する炭素−炭素不飽和結合を有する環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。
(C)の化合物は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。
不飽和環状カーボネートの場合の配合量は、非水系溶媒100質量%中、好ましくは、0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは5質量以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。
フッ素化鎖状カーボネート或いはフッ素化環状カーボネートの場合の配合量は、溶媒として[0068]にて記載した配合量をそのまま踏襲できるが、特に非水系溶媒100質量%中、50質量%未満が好ましい。更に、助剤として用いる場合には、後述するフッ素化不飽和環状カーボネート、或いは、フッ素化不飽和鎖状カーボネートの配合量と同じようにしてもよい。
フッ素化不飽和環状カーボネート或いは、フッ素化不飽和鎖状カーボネートの場合の配合量は、通常、非水系電解液100質量%中、好ましくは、0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。
この範囲内であれば、非水系電解液電池が十分なサイクル特性向上効果を発現しやすく、また、高温保存特性が低下し、ガス発生量が多くなり、放電容量維持率が低下するといった事態を回避しやすい。
また、一般式(1)で表される化合物と(C)の化合物の配合量の割合は、特に限定されないが、(C)の化合物が不飽和結合を有するカーボネートの場合、不飽和結合を有するカーボネートの合計含有質量を[M]、一般式(1)で表される化合物の合計含有質量を[M(1)]としたときに、通常、[M(1)]/[M]が100〜0.01、より好まし
くは20〜0.05、さらに好ましくは10〜0.1である。
1−5.助剤
本発明で規定する非水系電解液電池において、目的に応じて適宜助剤を用いてもよい。助剤としては、以下に示される、過充電防止剤、その他の助剤、等が挙げられる。
<過充電防止剤>
本発明の非水系電解液において、非水系電解液電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
過充電防止剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。過充電防止剤は、非水系電解液100質量%中、好ましくは、0.1質量%以上であり、また、5質量%以下である。この範囲でれば、過充電防止剤の効果を十分に発現させやすく、また、高温保存特性等の電池の特性が低下するといった事態も回避しやすい。過充電防止剤は、より好ましくは0.2質量%以上、さらに好ましくは0.3質量%以上、特に好ましくは0.5質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは2質量%以下である。
<その他の助剤>
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、1−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホラン、スルホレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、2−メチルブチロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3−メチルクロトノニトリル、2−メチル−2−ブテン二トリル、2−ペンテンニトリル、2−メチル−2−ペンテンニトリル、3−メチル−2−ペンテンニトリル、2−ヘキセンニ
トリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2−フルオロプロピオニトリル、3−フルオロプロピオニトリル、2 ,2−ジフルオロプロピオニトリル、2,3−ジフルオロプロピオニトリル、3 ,3−ジフルオロプロ
ピオニトリル、2 ,2 ,3−トリフルオロプロピオニトリル、3 ,3 ,3−トリフルオロプロピオニトリル、3,3’−オキシジプロピオニトリル、3,3’−チオジプロピオニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル、ペンタフルオロプロピオニトリル等のシアノ基を1つ有する化合物;マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert−ブチルマロノニトリル、メチルスクシノニトリル、2,2−ジメチルスクシノニトリル、2,3−ジメチルスクシノニトリル、トリメチルスクシノニトリル、テトラメチルスクシノニトリル3,3’−(エチレンジオキシ)ジプロピオニトリル、3,3’−(エチレンジチオ)ジプロピオニトリル等のシアノ基を2つ有する化合物;1,12−ジイソシアナトドデカン、1,11−ジイソシアナトウンデカン、1,10−ジイソシアナトデカン、1,9‐ジイソシアナトノナン、1,8−ジイソシアナトオクタン、1,7−イソシアナトヘプタン、1,6−ジイソシアナトヘキサン等のイソシアネート基を2つ有する化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤は、非水系電解液100質量%中、好ましくは、0.01質量%以上であり、また、5質量%以下である。この範囲であれば、その他助剤の効果が十分に発現させやすく、高負荷放電特性等の電池の特性が低下するといった事態も回避しやすい。その他の助剤の配合量は、より好ましくは0.1質量%以上、さらに好ましくは0.2質量%以上であり、また、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。
以上に記載してきた非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調整し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。
3.電池構成
本発明の非水系電解液電池は、非水系電解液電池の中でも二次電池用、例えばリチウム二次電池用の電解液として用いるのに好適である。以下、本発明の非水系電解液を用いた非水系電解液電池について説明する。
本発明の非水系電解液二次電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵・放出可能な負極及び正極と、上記の本発明の非水系電解液とを備える。
4.正極
<正極活物質>
以下に正極に使用される正極活物質について述べる。
(組成)
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO等のリチウム・コバルト複合酸化物、、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、等が挙げられる。また、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられ、具体例としては、リチウム・ニッケル・コバルト・アルミ複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物等が挙げられる。これらの中でも、電池特性が良好であるため、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物が好ましい。
置換されたものの具体例としては、例えば、Li1+aNi0.5Mn0.5、Li1+aNi0.8Co0.2、Li1+aNi0.85Co0.10Al0.05、Li1+aNi0.33Co0.33Mn0.33、Li1+aNi0.45Mn0.45Co0.1、Li1+aNi0.475Mn0.475Co0.05、Li1+aMn1.8Al0.2、Li1+aMn、Li1+aMn1.5Ni0.5、xLiMnO・(1−x)Li1+aMO(M=遷移金属であり、例えば、Li、Ni、Mn及びCoからなる群より選ばれる金属など)等が挙げられる(a;0<a≦3.0)。これらの置換金属元素の組成式中での比率は、それを用いた電池の電池特性や材料のコストなどの関係により適宜調節される。
リチウム含有遷移金属リン酸化合物は、LixMPO(M=周期表の第4周期の4族〜11族の遷移金属からなる群より選ばれた一種の元素、xは0<x<1.2)で表すことができ、上記遷移金属(M)としては、V, Ti, Cr, Mg, Zn, Ca, Cd, Sr, Ba, Co, Ni,
Fe, MnおよびCuからなる群より選ばれる少なくとも一種の元素であることが好ましく、Co,Ni,Fe,Mnからなる群より選ばれる少なくとも一種の元素であることがより好ましい
。例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、LiMnPO等のリン酸マンガン類、LiNiPO等のリン酸ニッケル類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
これらの中でも、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類が、高温・充電状態での金属溶出が起こりにくく、また安価であるために好適に用いられる。
なお、上述の「LixMPOを基本組成とする」とは、その組成式で表される組成のものだけでなく、結晶構造におけるFe等のサイトの一部を他の元素で置換したものも含むことを意味する。さらに、化学量論組成のものだけでなく、一部の元素が欠損等した非化学量論組成のものも含むことを意味する。置換する他の元素はAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の元素であることが好ましい。上記他元素置換を
行う場合は、0.1mol%以上5mol%以下が好ましく、さらに好ましくは0.2mol%以上2.5mol%以
下である。
上記正極活物質は、単独で用いてもよく、2種以上を併用してもよい。
また、本発明のリチウム遷移金属系化合物粉体は、異元素が導入されてもよい。異元素としては、B、Na、Mg、Al、K、Ca、Ti、V、Cr、Fe、Cu、Zn、Sr、Y、Zr、Nb、Ru、Rh、Pd、Ag、In、Sn、Sb、Te、Ba、Ta、Mo、W、Re、Os、Ir、Pt、Au、Pb、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、N、F、Cl、Br、Iの何れか1種以上の中から選択される。これらの異元素は、リチウム遷移金属系化合物の結晶構造内に取り込まれていてもよく、あるいは、リチウム遷移金属系化合物の結晶構造内に取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物として偏在していてもよい。
(表面被覆)
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により該正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。
表面付着物質の量としては、該正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合があるため、本組成範囲が好ましい。
本発明においては、正極活物質の表面に、これとは異なる組成の物質が付着したものをも「正極活物質」という。
(形状)
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電材との混合においても、均一に混合されやすいため好ましい。
(メジアン径d50
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは1.0μm以上、最も好ましくは2μm以上であり、上限は、好ましくは20μm以下、より好ましくは18μm以下、さらに好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ該正極活物質を2種類以上混合することで、正極作成時の充填性をさらに向上させることができる。
なお、本発明では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA−920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
(平均一次粒子径)
一次粒子が凝集して二次粒子を形成している場合には、該正極活物質の平均一次粒子径としては、好ましくは0.03μm以上、より好ましくは0.05μm以上、さらに好ましくは0.08μm以上であり、特に好ましくは0.1μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、本発明では、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
<正極の構成と作製法>
以下に、正極の構成について述べる。本発明において、正極は、正極活物質と結着材とを含有する正極活物質層を、集電体上に形成して作製することができる。正極活物質を用いる正極の製造は、常法により行うことができる。即ち、正極活物質と結着材、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成されることにより正極を得ることができる。
正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは95質量%以下、より好ましくは93質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、下限として好ましくは1.5g/cm3以上、より好ましくは2g/cm3、さらに好ましくは2.2g/cm3以上であり、上限としては、好ましくは4.0g/cm3以下、
より好ましくは3.8g/cm3以下、さらに好ましくは3.6g/cm3以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
(導電材)
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また上限は、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
(結着材)
正極活物質層の製造に用いる結着材としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中の結着材の割合は、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは3質量%以上であり、上限は、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着材の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
(増粘剤)
増粘剤は、通常、正極活物質層の製造に用いるスラリーの粘度を調製するために使用することができる。特に水系媒体を用いる場合、増粘剤と、スチレン−ブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。さらに増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.5質量%以上、よ
り好ましくは0.6質量%以上であり、また、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
(集電体)
正極集電体の材質としては特に制限されず、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また上限は、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電子接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
(正極板の厚さ)
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、正極板から金属箔(集電体)厚さを差し引いた正極活物質層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、上限としては、好ましくは500μm以下、より好ましくは450μm以下である。
(正極板の表面被覆)
また、上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
5.セパレータ
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
セパレータのガーレ値はフィルム厚さ方向の空気の通り抜け難さを表し、100mlの空気が該フィルムを通過するのに必要な秒数で表現するため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚さ方向の連通性が良いことを意味し、その数値が大きい方がフィルムの厚さ方向の連通性が悪いことを意味する。連通性とは、フィルム厚さ方向の孔のつながり度合いである。本発明のセパレータのガーレ値が低ければ、様々な用途に使用することが出来る。例えば非水系リチウム二次電池のセパレータとして使用した場合、ガーレ値が低いということは、リチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。セパレータのガーレ値は、任意ではあるが、好ましくは10〜1000秒/100mlであり、より好ましくは15〜800秒/100mlであり、更に好ましくは20〜500秒/100mlである。ガーレ値が1000秒/100ml以下であれば、実質的には電気抵抗が低く、セパレータとしては好ましい。
6.電池設計
<電極群>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
<外装ケース>
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
<保護素子>
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
<外装体>
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体は、特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
7.電池性能
本発明で得られた電池は、特に制限なく用いることができるが、好ましくは高電圧化や高容量化された電池に用いることができる。
高電圧化とは、例えばリチウムイオン二次電池の場合、通常4.25V以上、好ましくは4.3以上である。
また、高容量化とは、例えば18650型電池の場合、通常2600mAh以上、好ましくは2800mAh以上、より好ましくは、3000mAh以上である。
以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
本実施例で用いる一般式(1)の化合物は、下記の方法により合成した。
[化合物α]
原料1)は、非特許文献(Journal of Organic Cehmistry,56(3),1083−1088(1991))の方法に従って合成を行った。次いで、非特許文献(Europian journal of organic chemistry,2009(20),2836−2844)に準じる方法により、化合物αを得た。
Figure 0005842379
[化合物β]
窒素気流下、塩化メチレンに原料1)を溶解し、原料3)の塩化メチレン溶液を滴下し
た。室温で3時間攪拌後、水を加えて反応を停止し、有機層を飽和重曹水・水で洗浄した後、硫酸マグネシウムで乾燥後、減圧条件で溶媒を除去し中間体1)を得た。この中間体1)をアセトニトリルに溶解させ、氷冷しながら、触媒量の塩化ルテニウムを溶解させた水溶液、過ヨウ素酸ナトリウムを順に加え、1時間攪拌した。ジエチルエーテル、飽和重
曹水を加え、有機層に抽出した。硫酸ナトリウムを用いて乾燥したのちシリカゲルカラムクロマトグラフィーにて精製し、化合物βを得た。
Figure 0005842379
[化合物γ]
窒素気流下、テトラヒドロフラン原料1)を溶解させ、トリエチルアミンを加え塩基性にした後、原料4)のテトラヒドロフラン溶液を滴下した。その後、室温で2時間攪拌し
、析出した白色粉末をろ別後、減圧条件で溶媒を除去し、化合物γを得た。
Figure 0005842379
<実施例A>
実施例1〜3
[負極の作製]
以下の物性を有する球形化された天然黒鉛混合物を負極活物質として用いた。具体的には、上記の方法にて測定した負極活物質のラマンR値が0.21、格子面(002面)のd値(層間距離)が0.336nm、である球形化された天然炭素質材料混合物を用いた。ここで、球形化された天然炭素質材料混合物には、球形化天然黒鉛粒子と球形化天然黒鉛粒子の1000℃熱処理物を1対1の質量割合で混合した混合物を用いた。
前記負極活物質98質量部に、増粘剤及びバインダーとして、それぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ18μmの銅箔に塗布して乾燥し、プレス機で電極密度1.7g/cmに圧延し、切り出したものを負極として用いた。
[正極の作製]
正極活物質としてLiCoOを90質量%と、導電材としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチル
ピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延し、切り出したものを正極として用いた。
[電解液の調製]
乾燥アルゴン雰囲気下、エチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合物(体積比30:70)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、表1に記載の割合で化合物を混合し電解液として用いた。
[リチウム二次電池の作製]
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、表1に記載の電解液をそれぞれ袋内に注入し、真空封止を行い、シート状電池を作製し電池とした。
[慣らし運転]
上記のように作製されたリチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で慣らし運転を行った。慣らし運転を行った電池を、25℃において0.2Cに相当する電流で定電流−定電圧充電(以下適宜、「CCCV充電」という)(0.05Cカット)で充電した後、0.2Cに相当する電流で定電流放電を実施して初期放電容量を求めた。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、5Cとはその5倍の電流値を、また0.2Cとはその1/5の電流値を表す。
[サイクル特性の評価]
慣らし運転が完了したリチウム二次電池を、45℃において、0.5Cの定電流で充電後、0.5Cの定電流で放電する過程を1サイクルとして、100サイクル実施した。(100サイクル目の放電容量)÷(1サイクル目の放電容量)×100の計算式から、容量維持率を求めた。
[高温保存特性の評価]
慣らし運転が終了した電池を25℃において、0.2Cに相当する電流で定電流−定電圧(0.05Cカット)で充電した後、これを85℃で24時間保存した。電池を室温まで冷却させた後、エタノール浴中に浸して体積を測定し、高温保存前後の体積変化から発生したガス量を求めた。
実施例4
負極活物質として次に記す球形化天然黒鉛に炭素を被覆した複合体と球形化天然黒鉛の混合物を用いた以外は、実施例1と同じ正極、電解液(化合物含む)を用い電池を組み立て、同様に電池特性を求めた。具体的には、上記の方法にて測定した負極活物質のラマンR値が0.22、格子面(002面)のd値(層間距離)が0.336nm、である、球形化天然黒鉛に炭素を被覆した複合体と球形化天然黒鉛からなる混合物を用いた。
ここで、球形化天然黒鉛に炭素を被覆した複合体には、炭素前駆体を焼成後に3質量%(被覆率)となるように球形化天然黒鉛に被覆し、1300℃焼成した材料を用いた。更に、前記炭素被覆した複合体に球形化天然黒鉛を1対1の質量割合で混合した混合物を負極活物質として用いた。
上記負極活物質を用いて、実施例1に記載の同じ方法で負極を作成した。
上記負極と、表1に記載の電解液を用いた以外は、実施例1と同じ正極を用い電池を組み
立て、同様に電池特性を求めた。
実施例5
負極活物質として次に記す球形化天然黒鉛に黒鉛を被覆した菱面体晶率が7%の複合体と菱面体晶率が21%の球形化天然黒鉛の混合物を用いた以外は、実施例1と同じ正極、電解液(化合物含む)を用い電池を組み立て、同様に電池特性を求めた。具体的には、上記の方法にて測定した負極活物質のラマンR値が0.17、格子面(002面)のd値(層間距離)が0.336nm、である、球形化天然黒鉛に黒鉛を被覆した複合体と球形化天然黒鉛からなる混合物を用いた。
ここで、球形化天然黒鉛に黒鉛を被覆した複合体には、炭素前駆体を焼成後に15質量%(被覆率)となるように球形化天然黒鉛に被覆し、3000℃焼成した材料を用いた。更に、前記黒鉛被覆した複合体に球形化天然黒鉛を6対4の質量割合で混合した混合物を負極活物質として用いた。
上記負極活物質を用いて、実施例1に記載の同じ方法で負極を作成した。
上記負極、及び表1に記載の電解液を用いた以外は、実施例1と同じ正極を用い電池を組み立て、同様に電池特性を求めた。
比較例1、2
表1に記載の電解液に含まれる化合物を変えた以外は、実施例1と同じ負極、正極を用い電池を組み立て、同様に電池特性を求めた。
上記実施例及び比較例で得られた負極活物質の粉体物性及び電解液に含まれる化合物並びに電池特性を表1に示す。
Figure 0005842379
表1から明らかなように、ラマン値が本発明の範囲内である負極を用いた電池において、一般式(1)の化合物を含有する非水系電解液を用いた場合(実施例1〜5)は、一般
式(1)の化合物を含有しない非水系電解液を用いた場合(比較例1、2)に比べて、サイクル容量維持率と高温保存時のガス発生量抑制に優れる。また、一般式(1)以外の化合物と共に、一般式(1)以外の化合物が導入されている場合であっても、上記電池耐久性に優れることも分かる。このように優れたサイクル容量維持率及び低いガス発生量を発揮する理由は、充放電時に非水系電解液中の一般式(1)の化合物が、特定のラマン値を
有する負極活物質を用いた負極表面上で、電池特性の低下を防ぐことが可能な、極めて安定な負極表面保護層を形成していることと推測される。
<実施例B>
実施例6〜9
[負極の作製]
負極活物質として次に記す球形化天然黒鉛に炭素を被覆した複合体を用いた。具体的には、上記の方法にて測定した負極活物質のラマンR値が0.32、格子面(002面)のd値(層間距離)が0.3355nmである球形化天然黒鉛に炭素を被覆した複合体を用いた。ここで、球形化天然黒鉛に炭素を被覆した複合体には、炭素前駆体を焼成後に3質量%(被覆率)となるように球形化天然黒鉛に被覆し、1100℃焼成した材料を用いた。
前記負極活物質98質量部に、増粘剤及びバインダーとして、それぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ18μmの銅箔に塗布して乾燥し、プレス機で電極密度1.45g/cmに圧延し、切り出したものを負極として用いた。
[正極の作製]
正極活物質としてLi(Ni1/3Mn1/3Co1/3)Oを90質量%と、導電材
としてのアセチレンブラック5質量%と、結着材としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを、正極として用いた。
[電解液の調製]
乾燥アルゴン雰囲気下、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの混合物(体積比30:30:40)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、表2に記載の割合で化合物を混合し、電解液を得た。
[リチウム二次電池の作製]
上記の正極、負極、及び電解液を用いて実施例1と同様の方法によりシート状電池を作製した。
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で慣らし運転を行った。慣らし運転を行った電池を、25℃において0.2Cに相当する電流で定電流−定電圧(0.05Cカット)で充電した後、0.2Cに相当する電流で定電流放電を実施して初期放電容量を求めた。
[サイクル特性の評価]
慣らし運転を行ったリチウム二次電池を、60℃において、2Cの定電流で充電後、2Cの定電流で放電する過程を1サイクルとして、500サイクル実施した。(500サイクル目の放電容量)÷(1サイクル目の放電容量)×100の計算式から、放電容量維持率を求めた。
参考例1、比較例3
以下の物性を有する球形化された黒鉛粒子を負極活物質として用いたこと以外は実施例6と同様の方法により作製した負極を用いた。具体的には、上記の方法にて測定した負極活物質のラマンR値が0.04、格子面(002面)のd値(層間距離)が0.3354nmである黒鉛粒子を用いた。
上記負極と、表2に記載の電解液を用いた以外は、実施例6と同じ正極を用い電池を組み立て、同様に電池特性を求めた。
比較例4〜6
表2に記載の電解液を用いた以外は、実施例6と同じ負極、正極を用い電池を組み立て、同様に電池特性を求めた。
上記実施例及び比較例で得られた負極活物質の粉体物性及び電解液に含まれる化合物並びに電池特性を表2に示す。
Figure 0005842379
表2から明らかなように、ラマン値が本発明の範囲内である負極を用いた電池において、一般式(1)の化合物を含有する非水系電解液を用いた場合(実施例6〜9)は、ラマ
ン値が本発明の範囲でない場合(参考例1、比較例3)や、一般式(1)の化合物を含有しない非水系電解液を用いた場合(比較例4〜6)に比べて、サイクル容量維持率に優れる。
一般式(1)と同様に炭素−炭素三重結合部位を有する化合物であっても、特許文献3に記載されているような、炭素−炭素三重結合が結合した鎖状化合物では(比較例6)、例えラマンR値が0.1以上の炭素質材料を用いてもこのような効果は確認されず、炭素−炭素三重結合が単結合にて環構造に結合している一般式(1)の化合物のみで確認される特異的な特徴であることが理解できる。更に、実施例(A)で用いた正極活物質と異なる種類の正極活物質を用いても、本発明の効果は維持される。このように優れたサイクル容量維持率を発揮する理由は、充放電時に非水系電解液中の一般式(1)の化合物が、特
定のラマン値を有する負極活物質を用いた負極表面上で、電池特性の低下を防ぐことが可能な、極めて安定な負極表面保護層を形成していることと推測される。
<実施例C>
実施例10〜12、比較例7、8
[負極の作製]
負極活物質として次に記す球形化天然黒鉛に炭素を被覆した複合体を用いた。具体的には、上記の方法にて測定した負極活物質のラマンR値が0.32、格子面(002面)のd値(層間距離)が0.3355nmである球形化天然黒鉛に炭素を被覆した複合体を用いた。ここで、球形化天然黒鉛に炭素を被覆した複合体には、炭素前駆体を焼成後に3質量%(被覆率)となるように球形化天然黒鉛に被覆し、1100℃焼成した材料を用いた。
前記負極活物質98質量部に、増粘剤及びバインダーとして、それぞれ、カルボキシメ
チルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ18μmの銅箔に塗布して乾燥し、プレス機で電極密度1.5g/cmに圧延し、切り出したものを負極として用いた。
[正極の作製]
正極活物質としてLi(Ni1/3Mn1/3Co1/3)Oを90質量%と、導電材
としてのアセチレンブラック5質量%と、結着材としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを正極として用いた。
[電解液の調製]
乾燥アルゴン雰囲気下、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの混合物(体積比30:30:40)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、表3に記載の割合で化合物を混合し、電解液を得た。
[リチウム二次電池の作製]
上記の正極、負極、及び電解液を用いて実施例1と同様の方法によりシート状電池を作製した。
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で慣らし運転を行った。慣らし運転を行った電池を、25℃において0.2Cに相当する電流で定電流−定電圧(0.05Cカット)で充電した後、0.2Cに相当する電流で定電流放電を実施して初期放電容量を求めた。
[サイクル特性の評価]
慣らし運転を行ったリチウム二次電池を、60℃において、2Cの定電流で充電後、2Cの定電流で放電する過程を1サイクルとして、300サイクル実施した。(500サイクル目の放電容量)÷(1サイクル目の放電容量)×100の計算式から、放電容量維持率を求めた。
上記負極及び正極と、表3に記載の電解液に含まれる化合物を変えた以外は、実施例1と同様にシート状のリチウム二次電池を作製し、電池特性を求めた。
Figure 0005842379
表3から明らかなように、ラマン値が本発明の範囲内である負極を用いた電池において、一般式(1)の化合物を含有する非水系電解液(実施例10〜12)は、一般式(1)
の化合物を含有する非水系電解液でないものを用いた電池(比較例7、8)に比べて、高温サイクル容量維持率に優れる。このように、一般式(1)で表される化合物であれば、どのような化合物を用いても電池耐久性に特徴的な効果を発揮する。しかし、一般式(1)と同様に環外に多重結合性部位を有する化合物であっても、環外に炭素−炭素二重結合を有する比較例7の化合物では、仮にラマン値が本発明の範囲内である負極を用したとしても、耐久性向上効果は実施例10〜12に比べて大きく劣る。このように優れたサイクル容量維持率を発揮する理由は、充放電時に非水系電解液中の一般式(1)の化合物が、
特定のラマン値を有する負極活物質を用いた負極表面上で、電池特性の低下を防ぐことが可能な有効な、極めて安定な負極表面保護層を形成していることと推測される。また、実施例(A)及び(B)よりも高い電池電圧であっても、本発明の効果は維持されることも分かる。
<実施例D>
実施例13〜16、比較例9、10
[負極の作製]
負極活物質として次に記す球形化天然黒鉛に炭素を被覆した複合体を用いた。具体的には、上記の方法にて測定した負極活物質のラマンR値が0.32、格子面(002面)のd値(層間距離)が0.3355nmである球形化天然黒鉛に炭素を被覆した複合体を用いた。ここで、球形化天然黒鉛に炭素を被覆した複合体には、炭素前駆体を焼成後に3質量%(被覆率)となるように球形化天然黒鉛に被覆し、1300℃焼成した材料を用いた。
前記負極活物質98質量部に、増粘剤及びバインダーとして、それぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ18μmの銅箔に塗布して乾燥し、プレス機で電極密度1.5g/cmに圧延し、切り出したものを負極として用いた。
[正極の作製]
正極活物質としてLi(Ni1/3Mn1/3Co1/3)Oを90質量%と、導電材
としてのアセチレンブラック5質量%と、結着材としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、予め導電助剤を塗布した厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを正極として用いた。
[電解液の調製]
乾燥アルゴン雰囲気下、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの混合物(体積比30:30:40)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、表4に記載の割合で化合物を混合し、電解液を得た。
[リチウム二次電池の作製]
上記の正極、負極、及び電解液を用いて実施例1と同様の方法によりシート状電池を作製した。
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で慣らし運転を行った。慣らし運転を行った電池を、25℃において0.2Cに相当する電流で定電流−定電圧(0.05Cカット)で充電した後、0.2Cに相当する電流で定電流放電を実施して初期放電容量を求めた。
[高温保存特性の評価]
慣らし運転を行ったリチウム二次電池を、0.2Cに相当する電流で定電流−定電圧(0.05Cカット)で充電した後、75℃で120時間保存した。電池を室温まで冷却させた後、0.2Cに相当する電流で定電流放電して放電容量を求め、(保存後の放電容量)÷(初期放電容量)×100の計算式から、容量維持率を求めた。結果を表4に示す。
Figure 0005842379
表4から明らかなように、ラマン値が本発明の範囲内である負極を用いた電池において、一般式(1)の化合物を含有する非水系電解液(実施例13〜16)は、一般式(1)
の化合物を含有する非水系電解液でないものを用いた電池(比較例9、10)に比べて、高温保存容量維持率に優れる。このように優れたサイクル容量維持率を発揮する理由は、充放電時に非水系電解液中の一般式(1)の化合物が、特定のラマン値を有する負極活物
質を用いた負極表面上で、電池特性の低下を防ぐことが可能な有効な、極めて安定な負極表面保護層を形成していることと推測される。
<実施例E>
実施例17、比較例13、14
[負極の作製]
負極活物質として次に記す球形化天然黒鉛に炭素を被覆した複合体を用いた。具体的には、上記の方法にて測定した負極活物質のラマンR値が0.32、格子面(002面)のd値(層間距離)が0.3355nmである球形化天然黒鉛に炭素を被覆した複合体を用いた。ここで、球形化天然黒鉛に炭素を被覆した複合体には、炭素前駆体を焼成後に3質量%(被覆率)となるように球形化天然黒鉛に被覆し、1300℃焼成した材料を用いた。
前記負極活物質98質量部に、増粘剤及びバインダーとして、それぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ18μmの銅箔に塗布して乾燥し、プレス機で電極密度1.5g/cmに圧延し、切り出したものを負極として用いた。
[正極の作製]
正極活物質としてLi(Ni1/3Mn1/3Co1/3)Oを90質量%と、導電材
としてのアセチレンブラック5質量%と、結着材としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合して、スラリー化した。得られたスラリーを、予め導電助剤を塗布した厚さ15μmのアルミ箔に塗布して乾燥し、プレス機で圧延したものを正極として用いた。
[電解液の調製]
乾燥アルゴン雰囲気下、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの混合物(体積比30:30:40)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、表3に記載の割合で化合物を混合し、電解液を得た。
[リチウム二次電池の作製]
上記の正極、負極、及び電解液を用いて実施例1と同様の方法によりシート状電池を作製した。
[初期放電容量の評価]
リチウム二次電池を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において0.2Cに相当する定電流で慣らし運転を行った。慣らし運転を行った電池を、25℃において0.2Cに相当する電流で定電流−定電圧(0.05Cカット)で充電した後、0.2Cに相当する電流で定電流放電を実施して初期放電容量を求めた。
[サイクル特性の評価]
慣らし運転を行った電池を、60℃において、2Cの定電流で充電後、2Cの定電流で放電する過程を1サイクルとして、300サイクル実施した。(300サイクル目の放電容量)÷(1サイクル目の放電容量)×100の計算式から、放電容量維持率を求めた。評価結果を表5に示す。
実施例18、比較例11、12、15
[電解液の調製]
乾燥アルゴン雰囲気下、モノフルオロエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの混合物(体積比30:30:40)に乾燥したLiPFを1mol/Lの割合となるように溶解して基本電解液を調製した。この基本電解液に、表3に記載の割合で化合物を混合した。
[リチウム二次電池の作製]
上記の正極、負極、及び電解液を用いて実施例15と同様の方法によりシート状電池を作製し、電池特性評価を行った。
Figure 0005842379
表5から明らかなように、ラマン値が本発明の範囲内である負極を用いた電池において、一般式(1)の化合物を含有する非水系電解液(実施例17、18)は、一般式(1)
の化合物を含有する非水系電解液でないものを用いた電池(比較例11〜15)に比べて、高温サイクル容量維持率に優れる。しかし、環内に二重結合を有する化合物(比較例11)や、一般式(1)と同様に環外に多重結合性部位を有する化合物であっても環外に炭素−炭素二重結合を有する化合物(比較例12、13)や、一般式(1)と同様に炭素−炭素三重結合部位を有する化合物であっても、特許文献3に記載されている炭素−炭素三重結合が結合した鎖状化合物(比較例14)では、例えラマンR値が0.1以上の炭素質材料と併用してもこのような効果は確認されず、炭素−炭素三重結合が単結合にて環構造に結合している一般式(1)の化合物のみで確認される特異的な特徴であることが理解できる。このように優れたサイクル容量維持率を発揮する理由は、充放電時に非水系電解液中の一般式(1)の化合物が、特定のラマン値を有する負極活物質を用いた負極表面上で
、電池特性の低下を防ぐことが可能な、極めて安定な負極表面保護層を形成していることと推測される。また、実施例(A)〜(D)の電池電圧よりも更に高い状態であっても、本発明の効果は維持される。
本発明の負極と非水系電解液の組合せによれば、非水系電解液二次電池は、高温保存試験やサイクル試験といった耐久試験後においても、容量維持率が高く優れており有用である。そのため、本発明の負極活物質及び非水系電解液並びにこれを用いた非非水系電解液二次電池は、公知の各種の用途に用いることが可能である。具体例としては、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、負荷平準化用電源、自然エネルギー貯蔵電源等が挙げられる。

Claims (7)

  1. リチウム塩とこれを溶解する非水系溶媒を含有してなる非水系電解液と、リチウムイオンを吸蔵放出可能な負極、並びに正極を備えた非水系電解液二次電池であって、
    前記負極は、アルゴンイオンレーザーラマンスペクトル法における1580cm−1のピーク強度に対する1360cm−1のピーク強度の比として定義されるラマンR値が0.1以上である炭素質材料を少なくとも1種類以上含有する負極活物質を含み、
    且つ、前記非水系電解液が下記一般式(2)で表される化合物を含有していることを特徴とする非水系電解液二次電池。
    Figure 0005842379
    YはC=O、S=O、S(=O) 、P(=O)−R 、P(=O)−OR を表す。R は官能基を有してもよい炭素数1から20の炭化水素基である。R は、Li、
    NR または、官能基を有してもよい炭素数1から20の炭化水素基である。R
    官能基を有してもよい炭素数1から20の炭化水素基であり、互いに同一であっても異なっていてもよい。
  2. 前記炭素質材料は、層間距離d002が0.335nm以上、0.339nm以下であることを特徴とする、請求項1に記載の非水系電解液二次電池。
  3. 前記炭素質材料は、炭素を核黒鉛に被覆した炭素質材料、黒鉛を核黒鉛に被覆した炭素質材料、天然炭素質材料からなる群から選ばれる1種以上を含むことを特徴とする、請求項1または2に記載の非水系電解液二次電池。
  4. 前記一般式(2)で表される化合物が、下記式(4)〜(9)で表される化合物の少なくとも1種であることを特徴とする、請求項1〜3の何れか1項に記載の非水系電解液二
    次電池。
    Figure 0005842379
  5. 前記非水系電解液は、(A)LiαXO(X=周期表第2または3周期の13、15、16族の何れかの元素、α=1〜2、n=1〜3、m=1〜2)で表される化合物を含有することを特徴とする、請求項1〜4の何れか1項に記載の非水系電解液二次電池。
  6. 前記非水系電解液は、(B)下記一般式(3)で表されるオキサラート化合物を含有することを特徴とする、請求項1〜5何れか1項に記載の非水系電解液二次電池。
    Figure 0005842379
    (上記一般式(3)中、Aはアルカリ金属を表し、Mは、遷移金属、周期表の13族、14族、または15族元素、bは1〜3、mは1〜3、nは0〜6、qは0または1をそれぞれ表し、Rは、炭素数1から10のアルキレン、炭素数1から10のハロゲン化アルキレン、炭素数6から20のアリーレン、または炭素数6から20のハロゲン化アリーレン(これらのアルキレン及びアリーレンはその構造中に置換基、ヘテロ原子を有していてもよく、またm個存在するRはそれぞれが結合してもよい。)であり、Rは、ハロゲン、炭素数1から10のアルキル、炭素数1から10のハロゲン化アルキル、炭素数6から20のアリール、炭素数6から20のハロゲン化アリール、またはX(これらのアルキル及びアリールはその構造中に置換基、ヘテロ原子を有していてもよく、またn個存在するRはそれぞれが結合して環を形成してもよい。)であり、X、X、Xは、O、S、またはNRであり、R、Rは、それぞれが独立で、水素、炭素数1から10のアルキル、炭素数1から10のハロゲン化アルキル、炭素数6から20のアリール、または炭素数6から20のハロゲン化アリール(これらのアルキル及びアリールはその構造中に置換基、ヘテロ原子を有していてもよく、または複数個存在するR、Rはそれぞれが結合して環を形成していてもよい。)である。)
  7. 前記非水系電解液は、(C)炭素−炭素不飽和結合またはフッ素原子の少なくとも1つを有するカーボネートを含有することを特徴とする、請求項1〜6の何れか1項に記載の非水系電解液二次電池。
JP2011106017A 2010-05-12 2011-05-11 非水系電解液二次電池 Active JP5842379B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106017A JP5842379B2 (ja) 2010-05-12 2011-05-11 非水系電解液二次電池

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010110398 2010-05-12
JP2010110398 2010-05-12
JP2010169176 2010-07-28
JP2010169176 2010-07-28
JP2011106017A JP5842379B2 (ja) 2010-05-12 2011-05-11 非水系電解液二次電池

Publications (2)

Publication Number Publication Date
JP2012049106A JP2012049106A (ja) 2012-03-08
JP5842379B2 true JP5842379B2 (ja) 2016-01-13

Family

ID=45903715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106017A Active JP5842379B2 (ja) 2010-05-12 2011-05-11 非水系電解液二次電池

Country Status (1)

Country Link
JP (1) JP5842379B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5799752B2 (ja) * 2010-10-29 2015-10-28 三菱化学株式会社 非水系電解液二次電池
JP5854279B2 (ja) * 2012-09-07 2016-02-09 トヨタ自動車株式会社 非水電解液二次電池の製造方法
JP6120069B2 (ja) * 2013-06-21 2017-04-26 トヨタ自動車株式会社 非水電解液二次電池の製造方法
CN112421020B (zh) * 2020-11-25 2022-03-01 宁德新能源科技有限公司 正极材料及使用其的电化学装置和电子设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3534391B2 (ja) * 1998-11-27 2004-06-07 三菱化学株式会社 電極用炭素材料及びそれを使用した非水系二次電池
JP2001155768A (ja) * 1999-11-30 2001-06-08 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた二次電池
JP4190162B2 (ja) * 2001-03-01 2008-12-03 三井化学株式会社 非水電解液、それを用いた二次電池、および電解液用添加剤
JP2005340157A (ja) * 2004-04-26 2005-12-08 Sanyo Electric Co Ltd 非水電解質二次電池
JP2006019274A (ja) * 2004-06-30 2006-01-19 Samsung Sdi Co Ltd リチウム二次電池
WO2006077763A1 (ja) * 2005-01-20 2006-07-27 Ube Industries, Ltd. 非水電解液及びそれを用いたリチウム二次電池
JP5160744B2 (ja) * 2006-03-10 2013-03-13 三洋電機株式会社 非水電解質二次電池
JP2008091236A (ja) * 2006-10-03 2008-04-17 Sanyo Electric Co Ltd 非水電解質二次電池
KR102522750B1 (ko) * 2007-04-05 2023-04-17 미쯔비시 케미컬 주식회사 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
JP2008258013A (ja) * 2007-04-05 2008-10-23 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP5338151B2 (ja) * 2008-06-16 2013-11-13 三菱化学株式会社 非水系電解液及び非水系電解液電池
JP5651931B2 (ja) * 2008-06-18 2015-01-14 三菱化学株式会社 電池用非水系電解液および非水系電解液電池

Also Published As

Publication number Publication date
JP2012049106A (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
JP6485485B2 (ja) 非水系電解液及び非水系電解液二次電池
KR101930558B1 (ko) 비수계 전해액 및 비수계 전해액 2차 전지
KR101837785B1 (ko) 비수계 전해액 2차 전지
JP6128242B2 (ja) 非水系電解液用添加剤
JP6167470B2 (ja) 非水系電解液電池
JP6036298B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液電池
JP2018142556A (ja) 非水系電解液及びそれを用いた非水系電解液電池
WO2012035821A1 (ja) 非水系電解液及び非水系電解液二次電池
JP2017178859A (ja) リチウム塩及びその混合物、並びにこれらを用いた非水系電解液及び蓄電デバイス
JP5799752B2 (ja) 非水系電解液二次電池
JP6031868B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2014146558A (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP5842379B2 (ja) 非水系電解液二次電池
JP5948756B2 (ja) 非水系電解液及び非水系電解液電池
JP6167729B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2013109930A (ja) 非水系電解液、および非水系電解液二次電池
JP5857434B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP5760665B2 (ja) 非水系電解液及び非水系電解液電池
JP5948755B2 (ja) 非水系電解液及び非水系電解液電池
JP6003036B2 (ja) 非水系電解液二次電池
JP2019040676A (ja) 非水系電解液及び非水系電解液二次電池
JP5760809B2 (ja) 非水系電解液及び非水系電解液電池
JP2012089413A (ja) 非水系電解液電池
JP2015088278A (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2012089412A (ja) 密閉型非水系電解液電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5842379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350