JP5801642B2 - Heat pump hot water supply system - Google Patents

Heat pump hot water supply system Download PDF

Info

Publication number
JP5801642B2
JP5801642B2 JP2011169473A JP2011169473A JP5801642B2 JP 5801642 B2 JP5801642 B2 JP 5801642B2 JP 2011169473 A JP2011169473 A JP 2011169473A JP 2011169473 A JP2011169473 A JP 2011169473A JP 5801642 B2 JP5801642 B2 JP 5801642B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat exchanger
heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011169473A
Other languages
Japanese (ja)
Other versions
JP2013032883A (en
Inventor
則通 村井
則通 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011169473A priority Critical patent/JP5801642B2/en
Publication of JP2013032883A publication Critical patent/JP2013032883A/en
Application granted granted Critical
Publication of JP5801642B2 publication Critical patent/JP5801642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、圧縮機、第1熱交換器、膨張弁、第2熱交換器、及び、給湯用水を加熱する給湯熱交換器から構成されるヒートポンプ回路を備えているヒートポンプ給湯システムに関する。   The present invention relates to a heat pump hot water supply system including a heat pump circuit including a compressor, a first heat exchanger, an expansion valve, a second heat exchanger, and a hot water supply heat exchanger for heating hot water.

上記のようなヒートポンプ給湯システムは、圧縮機を駆動させてヒートポンプ回路にて冷媒を循環させて、冷房運転や暖房運転等の空調運転を行うとともに、給湯熱交換器において冷媒にて給湯に用いる給湯用水を加熱する給湯運転をも行うことができるものである。これにより、ヒートポンプ回路の冷媒という単一の熱源を用いて、省エネルギー化を図りながら、空調と給湯とを行うことができるシステムとなっている。   The heat pump hot water supply system as described above drives a compressor and circulates a refrigerant in a heat pump circuit to perform an air conditioning operation such as a cooling operation or a heating operation, and also uses hot water used for hot water supply with a refrigerant in a hot water supply heat exchanger. The hot water supply operation which heats water can also be performed. Thereby, it is a system which can perform air conditioning and hot water supply, aiming at energy saving using the single heat source called the refrigerant | coolant of a heat pump circuit.

このようなヒートポンプ給湯システムでは、空調と給湯とが同時に要求される場合があり、このような場合でも、空調と給湯との両者の要求を満たすことが求められている。そこで、従来、第1熱交換器として室内熱交換器が備えられ、第2熱交換器として室外熱交換器が備えられ、冷房運転、暖房運転、及び、給湯運転の単独運転に加えて、冷房運転と給湯運転とを同時に行う冷房・給湯同時運転と、暖房運転と給湯運転とを同時に行う暖房・給湯同時運転とを行うものがある(例えば、特許文献1参照。)。この特許文献1に記載のシステムでは、ヒートポンプ回路における冷媒の循環状態を、圧縮機、給湯熱交換器、室外熱交換器を経由させ又は室外熱交換器を経由させず、膨張弁、室内熱交換器の順に冷媒を循環させる冷房・給湯循環状態と、圧縮機、給湯熱交換器、室内熱交換器、膨張弁、室外熱交換器の順に冷媒を循環させる暖房・給湯循環状態とに切換可能に構成されている。そして、冷房・給湯同時運転では、ヒートポンプ回路における冷媒の循環状態を冷房・給湯循環状態に切り換え、暖房・給湯同時運転では、ヒートポンプ回路における冷媒の循環状態を暖房・給湯循環状態に切り換えている。   In such a heat pump hot water supply system, air conditioning and hot water supply may be required at the same time, and even in such a case, it is required to satisfy both the requirements of air conditioning and hot water supply. Therefore, conventionally, an indoor heat exchanger is provided as the first heat exchanger, and an outdoor heat exchanger is provided as the second heat exchanger. In addition to the single operation of the cooling operation, the heating operation, and the hot water supply operation, There is one that performs a cooling / hot water supply simultaneous operation in which an operation and a hot water supply operation are performed simultaneously, and a heating / hot water supply simultaneous operation in which a heating operation and a hot water supply operation are performed simultaneously (see, for example, Patent Document 1). In the system described in Patent Document 1, the circulation state of the refrigerant in the heat pump circuit passes through the compressor, the hot water supply heat exchanger, the outdoor heat exchanger, or does not pass through the outdoor heat exchanger. It is possible to switch between a cooling / hot water circulation state in which the refrigerant is circulated in the order of the heater and a heating / hot water circulation state in which the refrigerant is circulated in the order of the compressor, the hot water heat exchanger, the indoor heat exchanger, the expansion valve, and the outdoor heat exchanger. It is configured. In the simultaneous cooling and hot water supply operation, the refrigerant circulation state in the heat pump circuit is switched to the cooling and hot water supply circulation state, and in the simultaneous heating and hot water supply operation, the refrigerant circulation state in the heat pump circuit is switched to the heating and hot water supply circulation state.

特開2005−106360号公報JP 2005-106360 A

上記特許文献1に記載のシステムでは、暖房と給湯とが同時に要求された場合には、ヒートポンプ回路における冷媒の循環状態を、圧縮機、給湯熱交換器、室内熱交換器、膨張弁、室外熱交換器の順に冷媒を循環させる暖房・給湯循環状態に切り換えて、暖房・給湯同時運転を行うことで、暖房と給湯との両者を同時に行いたいという使用者の要求に応えようとするものである。しかしながら、特許文献1に記載のシステムでは、暖房・給湯同時運転を行う場合に、暖房負荷を賄えない、或いは、暖房負荷を賄うようにすれば給湯できなくなり、使用者の要求を満たすことができなくなるという問題点があった。   In the system described in Patent Document 1, when heating and hot water supply are requested at the same time, the refrigerant circulation state in the heat pump circuit is changed to a compressor, a hot water heat exchanger, an indoor heat exchanger, an expansion valve, and outdoor heat. By switching to the heating and hot water supply circulation state in which the refrigerant is circulated in the order of the exchanger, and simultaneously performing the heating and hot water supply operation, it is intended to meet the user's request to perform both heating and hot water supply simultaneously. . However, in the system described in Patent Document 1, when performing heating and hot water supply simultaneous operation, the heating load cannot be covered, or if the heating load is covered, the hot water cannot be supplied and the user's request can be satisfied. There was a problem that it was impossible.

この問題点について説明する。
暖房・給湯運転では、ヒートポンプ回路における冷媒の循環状態を暖房・給湯循環状態に切り換え、圧縮機、給湯熱交換器、室内熱交換器、膨張弁、室外熱交換器の順に直列的に冷媒を循環させる。したがって、給湯熱交換器には常時冷媒が供給されており、室内熱交換器には、給湯熱交換器にて湯水を加熱して温度が低下した冷媒が供給されることになる。したがって、室内熱交換器に供給される冷媒の温度低下により、室内に供給される空気を十分に加熱することができず、要求されている暖房負荷を賄えなくなる。また、特許文献1に記載のシステムでは、暖房・給湯運転において、要求されている給湯負荷に応じて、給湯熱交換器に供給する給湯用水の流量を調整しているので、給湯負荷が大きくなり、給湯熱交換器に供給する給湯用水の流量を増加させると、室内熱交換器に供給される冷媒の温度は更に低下することになり、暖房自体が行えなくなる可能性がある。逆に、暖房負荷を賄うために、給湯熱交換器への給湯用水の供給を停止すると、給湯熱交換器にて給湯用水を加熱できず、給湯を行えなくなる。
This problem will be described.
In the heating / hot water supply operation, the refrigerant circulation state in the heat pump circuit is switched to the heating / hot water circulation state, and the refrigerant is circulated in the order of the compressor, hot water heat exchanger, indoor heat exchanger, expansion valve, and outdoor heat exchanger. Let Therefore, the hot water supply heat exchanger is always supplied with the refrigerant, and the indoor heat exchanger is supplied with the refrigerant whose temperature is lowered by heating the hot water with the hot water supply heat exchanger. Therefore, due to the temperature drop of the refrigerant supplied to the indoor heat exchanger, the air supplied to the room cannot be heated sufficiently and the required heating load cannot be covered. Moreover, in the system described in Patent Document 1, the flow rate of hot water supplied to the hot water supply heat exchanger is adjusted according to the required hot water supply load in the heating / hot water supply operation, so the hot water supply load increases. When the flow rate of hot water supplied to the hot water supply heat exchanger is increased, the temperature of the refrigerant supplied to the indoor heat exchanger further decreases, and there is a possibility that heating itself cannot be performed. Conversely, if the hot water supply water supply to the hot water supply heat exchanger is stopped to cover the heating load, the hot water supply heat exchanger cannot heat the hot water supply water and the hot water supply cannot be performed.

本発明は、かかる点に着目してなされたものであり、その目的は、冷房と給湯との両者を同時に行うだけでなく、暖房と給湯との両者についても同時に行うことができ、空調と給湯との両者を同時に行いたいという使用者の要求に応えることができるヒートポンプ給湯システムを提供する点にある。   The present invention has been made paying attention to such points, and its purpose is not only to perform both cooling and hot water supply at the same time, but also to perform both heating and hot water supply at the same time. It is in providing a heat pump hot-water supply system that can meet the user's request to perform both of them simultaneously.

この目的を達成するために、本発明に係るヒートポンプ給湯システムの特徴構成は、圧縮機、第1熱交換器、膨張弁、第2熱交換器、及び、給湯用水を加熱する給湯熱交換器から構成されるヒートポンプ回路を備えているヒートポンプ給湯システムにおいて、
前記ヒートポンプ回路における冷媒の循環状態について、前記圧縮機、前記給湯熱交換器、前記膨張弁、前記第1熱交換器の順に冷媒を循環させる冷房・給湯循環状態と、前記給湯熱交換器と前記第1熱交換器とを並列状態で接続して、前記圧縮機、前記給湯熱交換器及び前記第1熱交換器の両者、前記膨張弁、前記第2熱交換器の順に冷媒を循環させる暖房・給湯循環状態とに切換可能な循環状態切換手段と、前記ヒートポンプ回路における冷媒の循環状態を前記循環状態切換手段により前記冷房・給湯循環状態に切り換える冷房・給湯同時運転、及び、前記ヒートポンプ回路における冷媒の循環状態を前記循環状態切換手段により前記暖房・給湯循環状態に切り換える暖房・給湯同時運転を実行可能な運転制御手段と、その運転制御手段が前記暖房・給湯同時運転を行う場合に、並列状態に接続された前記給湯熱交換器と前記第1熱交換器との両者に前記圧縮機からの冷媒を分配させる分配割合を、前記第1熱交換器よりも前記給湯熱交換器に優先して分配させる給湯優先モードと、前記給湯熱交換器よりも前記第1熱交換器に優先して分配させる空調優先モードとに切換自在なモード切換手段とを備え
前記循環状態切換手段は、前記冷房・給湯循環状態として、前記給湯熱交換器と前記第2熱交換器とを直列状態で接続して、前記圧縮機、前記給湯熱交換器、前記第2熱交換器、前記膨張弁、前記第1熱交換器の順に冷媒を循環させる直列用冷房・給湯循環状態と、前記給湯熱交換器と前記第2熱交換器とを並列状態で接続して、前記圧縮機、前記給湯熱交換器及び前記第2熱交換器の両者、前記膨張弁、前記第1熱交換器の順に冷媒を循環させる並列用冷房・給湯循環状態とに切換自在に構成されている点にある。
In order to achieve this object, the characteristic configuration of the heat pump hot water supply system according to the present invention includes a compressor, a first heat exchanger, an expansion valve, a second heat exchanger, and a hot water supply heat exchanger that heats hot water supply water. In a heat pump hot water supply system comprising a configured heat pump circuit,
Regarding the circulation state of the refrigerant in the heat pump circuit, a cooling / hot water circulation state in which refrigerant is circulated in the order of the compressor, the hot water supply heat exchanger, the expansion valve, and the first heat exchanger, the hot water supply heat exchanger, and the Heating by connecting the first heat exchanger in parallel and circulating the refrigerant in the order of the compressor, the hot water supply heat exchanger and the first heat exchanger, the expansion valve, and the second heat exchanger. A circulating state switching means switchable to a hot water circulation state, a cooling / hot water simultaneous operation for switching the refrigerant circulation state in the heat pump circuit to the cooling / hot water circulation state by the circulation state switching means, and the heat pump circuit Operation control means capable of performing simultaneous heating / hot water supply operation for switching the circulation state of the refrigerant to the heating / hot water supply circulation state by the circulation state switching means, and the operation control means When performing the heating and hot water supply simultaneous operation, the distribution ratio for distributing the refrigerant from the compressor to both the hot water supply heat exchanger and the first heat exchanger connected in parallel is defined as the first heat. Mode switching means switchable between a hot water supply priority mode in which the hot water supply heat exchanger is distributed over the exchanger, and an air conditioning priority mode in which the hot water heat exchanger is distributed with priority over the first heat exchanger. It equipped with a door,
The circulation state switching means connects the hot water supply heat exchanger and the second heat exchanger in series in the cooling / hot water supply circulation state, and the compressor, the hot water supply heat exchanger, the second heat exchange An in-line cooling / hot water circulation state in which refrigerant is circulated in the order of the exchanger, the expansion valve, and the first heat exchanger, and the hot water heat exchanger and the second heat exchanger are connected in parallel, The compressor, the hot water supply heat exchanger, and the second heat exchanger, the expansion valve, and the first heat exchanger are configured to be switched to a parallel cooling / hot water supply circulation state in which refrigerant is circulated in this order . In the point.

本特徴構成によれば、運転制御手段が、循環状態切換手段によりヒートポンプ回路における冷媒の循環状態を冷房・給湯循環状態に切り換えて冷房・給湯同時運転を行うことができる。循環状態切換手段が冷房・給湯循環状態に切り換えると、圧縮機、給湯熱交換器、膨張弁、第1熱交換器の順に冷媒を循環させるので、給湯熱交換器では、冷媒にて給湯用水を加熱できながら、第1熱交換器では、室内に供給する空気を冷媒にて冷却することができる。このようにして、運転制御手段が冷房・給湯同時運転を行うことで、冷房と給湯との両者を同時に行いたいという使用者の要求に応えることができる。
また、循環状態切換手段が直列用冷房・給湯循環状態に切り換えた場合に、給湯熱交換器と第2熱交換器とを直列状態で接続して、圧縮機、給湯熱交換器、第2熱交換器、膨張弁、第1熱交換器の順に冷媒を循環させるので、給湯熱交換器だけでなく、第2熱交換器にも冷媒を供給させて第2熱交換器において冷媒から熱を放熱させることで、ヒートポンプ回路を効率よく作動させることができる。また、循環状態切換手段が並列用冷房・給湯循環状態に切り換えた場合に、給湯熱交換器と第2熱交換器とを並列状態で接続して、圧縮機、給湯熱交換器及び第2熱交換器の両者、膨張弁、第1熱交換器の順に冷媒を循環させるので、給湯熱交換器だけでなく、第2熱交換器にも冷媒を供給させて第2熱交換器において冷媒から熱を放熱させることで、ヒートポンプ回路を効率よく作動させることができる。
そして、循環状態切換手段は、例えば、給湯熱交換器に供給される給湯用水の給水温度、給湯熱交換器を通過した冷媒の給湯用熱交出口温度、及び、第2熱交換器に通風される流体の通風流体温度に基づいて、直列用冷房・給湯循環状態と並列用冷房・給湯循環状態との間で切換を行うことができる。したがって、給湯熱交換器だけでなく、第2熱交換器にも冷媒を供給させる場合に、給水温度、給湯用熱交出口温度、及び、通風流体温度等の温度条件に基づいて、直列用冷房・給湯循環状態と並列用冷房・給湯循環状態との間で切り換えることで、給湯熱交換器及び第2熱交換器における冷媒からの放熱を適切に行うことができ、ヒートポンプ回路を効率よく作動させることを適切に行うことができる。
According to this characteristic configuration, the operation control means can switch the refrigerant circulation state in the heat pump circuit to the cooling / hot water circulation state by the circulation state switching means and perform the cooling / hot water supply simultaneous operation. When the circulation state switching means switches to the cooling / hot water circulation state, the refrigerant is circulated in the order of the compressor, the hot water heat exchanger, the expansion valve, and the first heat exchanger. Therefore, in the hot water heat exchanger, In the first heat exchanger, the air supplied to the room can be cooled with the refrigerant while being heated. In this way, the operation control means performs the cooling and hot water supply simultaneous operation, so that the user's request to perform both cooling and hot water supply simultaneously can be met.
Further, when the circulation state switching means is switched to the series cooling / hot water supply circulation state, the hot water supply heat exchanger and the second heat exchanger are connected in series, and the compressor, the hot water supply heat exchanger, the second heat exchange are connected. Since the refrigerant is circulated in the order of the exchanger, the expansion valve, and the first heat exchanger, the refrigerant is supplied not only to the hot water heat exchanger but also to the second heat exchanger, and heat is radiated from the refrigerant in the second heat exchanger. By doing so, the heat pump circuit can be operated efficiently. Further, when the circulation state switching means switches to the parallel cooling / hot water supply circulation state, the hot water supply heat exchanger and the second heat exchanger are connected in parallel, and the compressor, the hot water supply heat exchanger, and the second heat exchange are connected. Since the refrigerant is circulated in the order of both the exchanger, the expansion valve, and the first heat exchanger, the refrigerant is supplied not only to the hot water supply heat exchanger but also to the second heat exchanger, and heat is generated from the refrigerant in the second heat exchanger. The heat pump circuit can be efficiently operated by dissipating heat.
Then, the circulation state switching means is ventilated to, for example, the feed water temperature of hot water supplied to the hot water heat exchanger, the hot water outlet temperature of the refrigerant passing through the hot water heat exchanger, and the second heat exchanger. Switching between the series cooling / hot water circulation state and the parallel cooling / hot water circulation state can be performed based on the ventilation fluid temperature of the fluid. Therefore, in the case where the refrigerant is supplied not only to the hot water supply heat exchanger but also to the second heat exchanger, the cooling for the series is performed based on the temperature conditions such as the supply water temperature, the hot water supply heat exchange outlet temperature, and the ventilation fluid temperature. -By switching between the hot water supply circulation state and the parallel cooling / hot water supply circulation state, heat can be appropriately radiated from the refrigerant in the hot water supply heat exchanger and the second heat exchanger, and the heat pump circuit is operated efficiently. Can be done appropriately.

運転制御手段が、循環状態切換手段によりヒートポンプ回路における冷媒の循環状態を暖房・給湯循環状態に切り換えて暖房・給湯同時運転を行うことができる。循環状態切換手段が暖房・給湯循環状態に切り換えると、給湯熱交換器と第1熱交換器とを並列状態で接続して、圧縮機、給湯熱交換器及び第1熱交換器の両者、膨張弁、第2熱交換器の順に冷媒を循環させるので、給湯熱交換器では、冷媒にて給湯用水を加熱できるとともに、第1熱交換器では、室内に供給する空気を冷媒にて加熱することができる。しかしながら、給湯熱交換器と第1熱交換器とを並列状態で接続しているので、圧縮機からの冷媒を給湯熱交換器と第1熱交換器とに分配されるに当たり、その分配割合によっては、給湯熱交換器において給湯用水を十分加熱できなくなる、又は、第1熱交換器において室内に供給する空気を十分加熱できなくなる。そこで、本特徴構成によれば、運転制御手段が暖房・給湯同時運転を行う場合には、圧縮機からの冷媒を給湯熱交換器と第1熱交換器とに分配させる分配割合を調整して、給湯優先モードと空調優先モードとに切換自在なモード切換手段が備えられている。   The operation control means can perform the heating / hot water supply simultaneous operation by switching the circulation state of the refrigerant in the heat pump circuit to the heating / hot water supply circulation state by the circulation state switching means. When the circulation state switching means switches to the heating / hot water supply circulation state, the hot water supply heat exchanger and the first heat exchanger are connected in parallel, and both the compressor, the hot water supply heat exchanger and the first heat exchanger are expanded. Since the refrigerant is circulated in the order of the valve and the second heat exchanger, the hot water supply heat exchanger can heat the hot water supply water with the refrigerant, and the first heat exchanger can heat the air supplied to the room with the refrigerant. Can do. However, since the hot water supply heat exchanger and the first heat exchanger are connected in parallel, the refrigerant from the compressor is distributed to the hot water supply heat exchanger and the first heat exchanger according to the distribution ratio. In the hot water supply heat exchanger, the hot water supply water cannot be heated sufficiently, or in the first heat exchanger, the air supplied to the room cannot be heated sufficiently. Therefore, according to this feature configuration, when the operation control means performs heating and hot water supply simultaneous operation, the distribution ratio for distributing the refrigerant from the compressor to the hot water supply heat exchanger and the first heat exchanger is adjusted. Further, mode switching means is provided that can be switched between a hot water supply priority mode and an air conditioning priority mode.

給湯優先モードでは、圧縮機からの冷媒を給湯熱交換器と第1熱交換器とに分配させる分配割合を第1熱交換器よりも給湯熱交換器に優先して分配させる分配割合としており、給湯熱交換器において給湯用水を十分加熱して要求されている給湯負荷を賄うことができる。しかも、圧縮機からの冷媒が給湯熱交換器に優先して供給されるものの、残りの冷媒が第1熱交換器に供給されるので、第1熱交換器においてもその残りの冷媒にて室内に供給する空気を加熱して暖房することができる。また、空調優先モードでは、圧縮機からの冷媒を給湯熱交換器と第1熱交換器とに分配させる分配割合を給湯熱交換器よりも第1熱交換器に優先して分配させる分配割合としており、第1熱交換器において室内に供給する空気を十分に加熱して要求されている暖房負荷を賄うことができる。しかも、圧縮機からの冷媒が第1熱交換器に優先して供給されるものの、残りの冷媒が給湯熱交換器に供給されるので、給湯熱交換器においてもその残りの冷媒にて給湯用水を加熱して給湯を行うことができる。
このように、給湯優先モードでは、要求されている給湯負荷を賄うことができながら、暖房も行うことができ、逆に、空調優先モードでは、要求されている暖房負荷を賄うことができながら、給湯も行うことができる。そして、例えば、使用者が暖房と給湯とのどちらを優先させるかを選択することで、その使用者の選択に応じて、モード切換手段が給湯優先モードと空調優先モードとの間で切換を行うことができる。したがって、使用者の要求に応じて、暖房を優先させるか又は給湯を優先させるかを切り換えながら、暖房と給湯との両者を同時に行いたいという使用者の要求に応えることができる。
In the hot water supply priority mode, the distribution ratio for distributing the refrigerant from the compressor to the hot water supply heat exchanger and the first heat exchanger is set to be a distribution ratio that distributes the hot water supply heat exchanger in preference to the first heat exchanger. In the hot water supply heat exchanger, the hot water supply water can be sufficiently heated to cover the required hot water supply load. In addition, although the refrigerant from the compressor is preferentially supplied to the hot water supply heat exchanger, the remaining refrigerant is supplied to the first heat exchanger. The air supplied to can be heated by heating. In the air conditioning priority mode, the distribution ratio for distributing the refrigerant from the compressor to the hot water supply heat exchanger and the first heat exchanger is distributed as the distribution ratio for the first heat exchanger over the hot water supply heat exchanger. In the first heat exchanger, the air supplied to the room can be sufficiently heated to cover the required heating load. In addition, although the refrigerant from the compressor is preferentially supplied to the first heat exchanger, the remaining refrigerant is supplied to the hot water supply heat exchanger. Can be heated to supply hot water.
Thus, in the hot water supply priority mode, heating can be performed while being able to cover the required hot water supply load, and conversely, in the air conditioning priority mode, while being able to cover the required heating load, Hot water can also be supplied. Then, for example, by selecting whether the user gives priority to heating or hot water supply, the mode switching means switches between the hot water supply priority mode and the air conditioning priority mode according to the user's selection. be able to. Therefore, according to a user's request | requirement, the user's request | requirement of performing both heating and hot_water | molten_metal supply simultaneously can be responded, switching between giving priority to heating or hot water supply.

本発明に係るヒートポンプ給湯システムの更なる特徴構成は、前記給湯優先モードでは、前記分配割合が、前記第1熱交換器にて取得される熱出力により要求されている空調負荷よりも小さく設定された制限空調負荷を賄うための給湯優先用分配割合に設定されており、前記空調優先モードでは、前記分配割合が、前記第1熱交換器にて取得される熱出力により要求されている空調負荷を賄うための空調優先用分配割合に設定されている点にある。   A further characteristic configuration of the heat pump hot water supply system according to the present invention is that, in the hot water supply priority mode, the distribution ratio is set smaller than an air conditioning load required by a heat output acquired by the first heat exchanger. In the air conditioning priority mode, the distribution ratio is requested by the heat output acquired by the first heat exchanger. It is in the point set to the distribution ratio for air conditioning priority to cover the.

本特徴構成によれば、給湯優先モードでは、分配割合が給湯優先用分配割合に設定されているので、要求されている給湯負荷を賄うとともに、暖房負荷についても制限空調負荷分を賄うことができる。また、空調優先モードでは、分配割合が空調優先用分配割合に設定されているので、要求されている暖房負荷を賄うとともに、その余剰分にて給湯負荷を賄うように割り当てることができる。このように、給湯優先モードと空調優先モードとの夫々に適した分配割合が設定されており、給湯優先モードと空調優先モードとの夫々において適切な運転を行うことができる。   According to this feature configuration, in the hot water supply priority mode, the distribution ratio is set to the distribution ratio for hot water supply priority, so that the required hot water supply load can be covered and the heating load can also cover the limited air conditioning load. . In the air conditioning priority mode, since the distribution ratio is set to the air conditioning priority distribution ratio, it is possible to cover the required heating load and to allocate the surplus hot water supply load. Thus, the distribution ratio suitable for each of the hot water supply priority mode and the air conditioning priority mode is set, and an appropriate operation can be performed in each of the hot water supply priority mode and the air conditioning priority mode.

本発明に係るヒートポンプ給湯システムの更なる特徴構成は、前記圧縮機を駆動させるエンジンと、そのエンジンの排熱にて前記給湯用水を加熱する排熱熱交換器とが備えられている点にある。   A further characteristic configuration of the heat pump hot water supply system according to the present invention is provided with an engine that drives the compressor, and an exhaust heat exchanger that heats the hot water supply water by exhaust heat of the engine. .

本特徴構成によれば、エンジンにて圧縮機を駆動させてヒートポンプ回路にて冷媒を循環させることで、冷房・給湯同時運転や暖房・給湯同時運転等の各種の運転を行うことができる。そして、エンジンにて圧縮機を駆動させる場合に、そのエンジンの排熱にて給湯用水を加熱する排熱熱交換器を備えているので、エンジンの排熱を有効に活用して給湯用水を加熱することができ、省エネ性の向上を図ることができる。
また、暖房・給湯同時運転を行う場合に、モード切換手段が空調優先モードに切り換えると、圧縮機からの冷媒が第1熱交換器に優先して供給されるので、給湯熱交換器において残りの冷媒にて給湯用水を加熱するだけでは要求されている給湯負荷を賄うことができない可能性がある。この場合に、給湯用水を、給湯熱交換器だけでなく、排熱熱交換器においても加熱することができ、暖房・給湯同時運転を行う場合に、モード切換手段が空調優先モードに切り換えても、要求されている給湯負荷を賄うことができる。
According to this characteristic configuration, various operations such as a cooling / hot water supply simultaneous operation and a heating / hot water supply simultaneous operation can be performed by driving the compressor with the engine and circulating the refrigerant with the heat pump circuit. When the compressor is driven by the engine, it has a waste heat heat exchanger that heats the hot water supply water with the exhaust heat of the engine, so the exhaust heat of the engine is effectively used to heat the hot water supply water. It is possible to improve energy saving.
When the mode switching means switches to the air conditioning priority mode when performing simultaneous heating and hot water supply operation, refrigerant from the compressor is supplied with priority over the first heat exchanger. There is a possibility that the required hot water supply load cannot be covered only by heating the hot water supply water with the refrigerant. In this case, the hot water supply water can be heated not only in the hot water supply heat exchanger but also in the exhaust heat exchanger, and when performing simultaneous heating and hot water supply operation, even if the mode switching means is switched to the air conditioning priority mode. The required hot water supply load can be covered.

本発明に係るヒートポンプ給湯システムの更なる特徴構成は、前記給湯熱交換器を通過した前記給湯用水を前記排熱熱交換器に供給するように構成されている点にある。   A further characteristic configuration of the heat pump hot water supply system according to the present invention is that the hot water supply water that has passed through the hot water supply heat exchanger is supplied to the exhaust heat exchanger.

本特徴構成によれば、まず、給湯熱交換器において冷媒にて給湯用水を加熱することができ、更に、その加熱された給湯用水を排熱熱交換器においてエンジンの排熱にて加熱することができるので、給湯用水を高温まで加熱することができる。したがって、給湯熱交換器において冷媒にて高温まで給湯用水を加熱しなくてもよいので、凝縮圧力が高くなり圧縮機の駆動力が大きくなるという問題を生じることなく、給湯用水を高温まで加熱することができ、高温の給湯用水が要求されている場合でも、その要求に適切に応えることができる。   According to this configuration, first, the hot water supply water can be heated with the refrigerant in the hot water supply heat exchanger, and further, the heated hot water supply water is heated with the exhaust heat of the engine in the exhaust heat exchanger. Therefore, the hot water supply water can be heated to a high temperature. Therefore, the hot water supply water does not have to be heated to a high temperature with the refrigerant in the hot water supply heat exchanger, so that the hot water supply water is heated to a high temperature without causing a problem that the condensing pressure increases and the driving force of the compressor increases. Even when high-temperature hot water supply water is required, the request can be appropriately met.

本発明に係るヒートポンプ給湯システムの更なる特徴構成は、貯湯タンクに貯留されている前記給湯用水を前記排熱熱交換器に供給し、前記排熱熱交換器を通過した前記給湯用水を前記貯湯タンクに戻す給湯用水循環手段を備え、前記運転制御手段は、給湯の要求が無くて前記エンジンにて前記圧縮機を駆動させる場合に、前記給湯用水循環手段を作動させて前記排熱熱交換器にて加熱された前記給湯用水を前記貯湯タンクに貯湯する貯湯運転を行うように構成されている点にある。   A further characteristic configuration of the heat pump hot water supply system according to the present invention is such that the hot water supply water stored in a hot water storage tank is supplied to the exhaust heat heat exchanger, and the hot water supply water that has passed through the exhaust heat heat exchanger is supplied to the hot water storage. A hot water supply water circulation means for returning to the tank, and the operation control means operates the hot water supply water circulation means to operate the exhaust heat heat exchanger when the engine is driven by the engine without a request for hot water supply. The hot water supply operation is performed in such a manner that the hot water supply water heated by the hot water is stored in the hot water storage tank.

本特徴構成によれば、空調運転のみを行う場合等、給湯の要求が無くてエンジンにて圧縮機を駆動させる場合に、運転制御手段が、給湯用水循環手段を作動させて排熱熱交換器にて加熱された給湯用水を貯湯タンクに貯湯する貯湯運転を行うことができる。これにより、空調運転のみを行う場合には、エンジンの排熱を単に放熱させるのではなく、エンジンの排熱を貯湯タンクに蓄熱しておくことができるので、例えば、給湯が要求された場合等に、貯湯タンクに蓄熱している熱を用いることができ、省エネ性の向上を図ることができる。   According to this configuration, when there is no request for hot water supply and the compressor is driven by the engine, such as when only air-conditioning operation is performed, the operation control means operates the hot water supply water circulation means to exhaust heat heat exchanger. It is possible to perform a hot water storage operation in which hot water supply water heated in is stored in a hot water storage tank. As a result, when only the air conditioning operation is performed, the exhaust heat of the engine is not simply dissipated, but the exhaust heat of the engine can be stored in the hot water storage tank. For example, when hot water supply is requested, etc. In addition, the heat stored in the hot water storage tank can be used, and energy saving can be improved.

参考例のヒートポンプ給湯システムにおける冷房・貯湯同時運転での状態を示す図 The figure which shows the state at the time of cooling and hot water storage simultaneous operation in the heat pump hot water supply system of a reference example 参考例のヒートポンプ給湯システムにおける冷房・給湯同時運転での状態を示す図 The figure which shows the state at the time of cooling and hot-water supply simultaneous operation in the heat pump hot-water supply system of a reference example 参考例のヒートポンプ給湯システムにおける暖房・貯湯同時運転での状態を示す図 The figure which shows the state in the heating and hot water storage simultaneous operation in the heat pump hot water supply system of the reference example 参考例のヒートポンプ給湯システムにおける暖房・給湯同時運転での状態を示す図 The figure which shows the state in the heating / hot-water supply simultaneous operation in the heat pump hot-water supply system of a reference example 参考例のヒートポンプ給湯システムにおける給湯運転での状態を示す図 The figure which shows the state in the hot water supply driving | operation in the heat pump hot water supply system of a reference example 実施形態のヒートポンプ給湯システムにおいて直列用冷房・給湯循環状態に切り換えた状態を示す図The figure which shows the state switched to the air_conditioning | cooling / hot-water supply circulation state for series in the heat pump hot-water supply system of 1st Embodiment. 実施形態のヒートポンプ給湯システムにおいて並列用冷房・給湯循環状態に切り換えた状態を示す図The figure which shows the state switched to the cooling / hot-water supply circulation state for parallel in the heat pump hot-water supply system of 1st Embodiment.

本発明に係るヒートポンプ給湯システムの実施形態を図面に基づいて説明する。
参考例
まず、図1〜図5は、ヒートポンプ給湯システム100の概略構成を示す図であり、冷媒R、排熱回収媒体C、給湯用水Mの通流する部位が異なっている。図1〜図5では、冷媒R、排熱回収媒体C、給湯用水Mの通流する部位を太線にて示しており、電動弁D1〜D7及び三方弁S1〜S5について、閉状態のものを黒塗りで示しており、開状態のものを白塗りで示している。
An embodiment of a heat pump hot water supply system according to the present invention will be described with reference to the drawings.
[ Reference example ]
First, FIGS. 1-5 is a figure which shows schematic structure of the heat pump hot-water supply system 100, and the site | parts through which the refrigerant | coolant R, the exhaust heat recovery medium C, and the hot water M flow flow differ. In FIG. 1 to FIG. 5, the parts through which the refrigerant R, the exhaust heat recovery medium C, and the hot water supply water M flow are shown by bold lines, and the motorized valves D1 to D7 and the three-way valves S1 to S5 are closed. It is shown in black, and the open state is shown in white.

参考例におけるヒートポンプ給湯システム100は、図1〜図5に示すように、圧縮機2を駆動するエンジン1と、圧縮機2、第1熱交換器3、膨張弁4、第2熱交換器5、及び、給湯用水Mを加熱する給湯熱交換器6から構成されるヒートポンプ回路HPとを備えている。これにより、ヒートポンプ給湯システム100は、エンジン1により圧縮機2を駆動させてヒートポンプ回路HPにて冷媒Rを循環させ、冷房運転や暖房運転の空調運転を行うとともに、給湯熱交換器6において冷媒Rにて給湯に用いる給湯用水Mを加熱する給湯運転を行うように構成されている。また、ヒートポンプ給湯システム100は、エンジン1の排熱を回収した排熱回収媒体C(例えば、エンジン冷却水)にて給湯用水Mを加熱する排熱熱交換器7を備えており、ヒートポンプ回路HPの冷媒Rだけでなく、エンジン1の排熱によっても、給湯用水Mを加熱できるように構成されている。 As shown in FIGS. 1 to 5, the heat pump hot water supply system 100 in the reference example includes an engine 1 that drives the compressor 2, a compressor 2, a first heat exchanger 3, an expansion valve 4, and a second heat exchanger 5. And a heat pump circuit HP including a hot water supply heat exchanger 6 for heating the hot water supply water M. Thereby, the heat pump hot water supply system 100 drives the compressor 2 by the engine 1 and circulates the refrigerant R in the heat pump circuit HP to perform the air conditioning operation of the cooling operation or the heating operation, and the refrigerant R in the hot water supply heat exchanger 6. The hot water supply operation for heating the hot water supply water M used for hot water supply is performed. The heat pump hot water supply system 100 includes an exhaust heat heat exchanger 7 that heats hot water supply water M with an exhaust heat recovery medium C (for example, engine cooling water) that recovers exhaust heat of the engine 1, and includes a heat pump circuit HP. The hot water supply water M can be heated not only by the refrigerant R but also by the exhaust heat of the engine 1.

第1熱交換器3は、室内機に備えられた室内熱交換器にて構成されており、図外の室内ファンにて通風される空気と冷媒Rとを熱交換させるようにしている。第2熱交換器5は、室外機に備えられた室外熱交換器にて構成されており、図外の室外ファンにて通風される外気と冷媒Rとを熱交換させるようにしている。図示のものでは、第2熱交換器5として、第1室外熱交換器5aと第2室外熱交換器5bとの2つの室外熱交換器を備えた例を示しており、第1室外熱交換器5aと第2室外熱交換器5bとが並列状態で備えられている。   The 1st heat exchanger 3 is comprised by the indoor heat exchanger with which the indoor unit was equipped, and heat-exchanges the air and the refrigerant | coolant R which are ventilated with the indoor fan outside a figure. The 2nd heat exchanger 5 is comprised by the outdoor heat exchanger with which the outdoor unit was equipped, and heat-exchanges the external air and refrigerant | coolant R which are ventilated with the outdoor fan outside a figure. The illustrated example shows an example in which two outdoor heat exchangers, a first outdoor heat exchanger 5a and a second outdoor heat exchanger 5b, are provided as the second heat exchanger 5, and the first outdoor heat exchanger is shown. 5a and the 2nd outdoor heat exchanger 5b are provided in the parallel state.

ヒートポンプ回路HPは、冷媒Rを通流させる複数の流路部位P1〜P8を備えて構成されている。流路部位としては、圧縮機2の吐出側と第2熱交換器5とを接続する第1流路部位P1と、その第1流路部位P1の途中部位と給湯熱交換器6とを接続する第2流路部位P2と、給湯熱交換器6と第1熱交換器3とを接続する第3流路部位P3と、その第3流路部位P3の途中部位と第2熱交換器5とを接続する第4流路部位P4と、第1熱交換器3と圧縮機2の流入側とを接続する第5流路部位P5と、その第5流路部位P5の途中部位と第1流路部位P1の途中部位とを接続する第6流路部位P6と、第2熱交換器5と第5流路部位P5の途中部位とを接続する第7流路部位P7とが備えられている。また、第1室外熱交換器5a及び第2室外熱交換器5bに冷媒Rを通流させるために、第1室外熱交換器5a側に冷媒Rを通流させるための第1並列流路部位P8aと第2室外熱交換器5b側に冷媒Rを通流させるための第2並列流路部位P8bとに並列状態に接続された第8流路部位P8が備えられており、この第8流路部位P8により第1室外熱交換器5aと第2室外熱交換器5bとが並列状態で接続されている。   The heat pump circuit HP includes a plurality of flow path portions P1 to P8 through which the refrigerant R flows. As the flow path part, the first flow path part P1 connecting the discharge side of the compressor 2 and the second heat exchanger 5, and the intermediate part of the first flow path part P1 and the hot water supply heat exchanger 6 are connected. The second flow path part P2, the third flow path part P3 connecting the hot water supply heat exchanger 6 and the first heat exchanger 3, the intermediate part of the third flow path part P3, and the second heat exchanger 5. , A fifth flow path part P5 connecting the first heat exchanger 3 and the inflow side of the compressor 2, an intermediate part of the fifth flow path part P5 and the first A sixth flow path part P6 that connects the middle part of the flow path part P1 and a seventh flow path part P7 that connects the second heat exchanger 5 and the middle part of the fifth flow path part P5 are provided. Yes. Further, a first parallel flow path portion for allowing the refrigerant R to flow to the first outdoor heat exchanger 5a side in order to allow the refrigerant R to flow through the first outdoor heat exchanger 5a and the second outdoor heat exchanger 5b. An eighth flow path portion P8 connected in parallel to the P8a and the second parallel flow path portion P8b for allowing the refrigerant R to flow to the second outdoor heat exchanger 5b side is provided. The first outdoor heat exchanger 5a and the second outdoor heat exchanger 5b are connected in parallel by the road portion P8.

第1流路部位P1は、その途中部位に第1電動弁D1が備えられており、冷媒Rの通流方向の下流側端部が、第1室外熱交換器5aと第2室外熱交換器5bとを並列状態で接続する第8流路部位P8に接続されている。第2流路部位P2は、その一端部が第1流路部位P1において圧縮機2との接続箇所と第1電動弁D1の配設箇所との間の部位に接続されており、その途中部位に第2電動弁D2が備えられている。第3流路部位P3の途中部位には、第3電動弁D3が備えられている。第4流路部位P4は、その一端部が第3流路部位P3において給湯熱交換器6との接続箇所と第3電動弁D3の配設箇所との間の部位に接続されており、その第3流路部位P3と第4流路部位P4との接続箇所には第1三方弁S1が備えられている。第4流路部位P4は、その途中部位に第4電動弁D4が備えられており、その他端部が第1室外熱交換器5aと第2室外熱交換器5bとを並列状態で接続する第8流路部位P8に接続されている。第5流路部位P5の途中部位には、第5電動弁D5が備えられ、第6流路部位P6の途中部位にも、第6電動弁D6が備えられている。第6流路部位P6は、その一端部が第5流路部位P5において第1熱交換器3との接続箇所と第5電動弁D5の配設箇所との間の部位に接続され、且つ、その他端部が第1流路部位P1において圧縮機2との接続箇所と第1電動弁D1の配設箇所との間の部位に接続されている。第7流路部位P7の途中部位には、第7電動弁D7が備えられている。第7流路部位P7は、その一端部が第1室外熱交換器5aと第2室外熱交換器5bとを並列状態で接続する第8流路部位P8に接続され、且つ、その他端部が第5流路部位P5において圧縮機2との接続箇所と第5電動弁D5の配設箇所との間の部位に接続されている。   The first flow path part P1 is provided with a first motor-operated valve D1 in the middle of the first flow path part P1, and the downstream end in the flow direction of the refrigerant R has the first outdoor heat exchanger 5a and the second outdoor heat exchanger. It is connected to the 8th channel part P8 which connects 5b in a parallel state. One end of the second flow path part P2 is connected to a part between the connection part of the first flow path part P1 with the compressor 2 and the place where the first electric valve D1 is disposed, and the intermediate part thereof. Is provided with a second electric valve D2. A third electric valve D3 is provided in the middle of the third flow path part P3. The fourth flow path part P4 has one end connected to a part between the connection place of the hot water supply heat exchanger 6 and the place where the third electric valve D3 is disposed in the third flow path part P3. A first three-way valve S1 is provided at a connection point between the third flow path part P3 and the fourth flow path part P4. The fourth flow path part P4 is provided with a fourth electric valve D4 in the middle part thereof, and the other end thereof is connected to the first outdoor heat exchanger 5a and the second outdoor heat exchanger 5b in parallel. It is connected to the eight flow path part P8. A fifth electric valve D5 is provided in the middle of the fifth flow path part P5, and a sixth motor operated valve D6 is also provided in the middle of the sixth flow path part P6. The sixth flow path part P6 has one end connected to a part between the connection place with the first heat exchanger 3 and the place where the fifth electric valve D5 is disposed in the fifth flow path part P5, and The other end is connected to a portion between the connection portion with the compressor 2 and the arrangement portion of the first electric valve D1 in the first flow path portion P1. A seventh electric valve D7 is provided in the middle of the seventh flow path portion P7. The seventh flow path part P7 has one end connected to an eighth flow path part P8 that connects the first outdoor heat exchanger 5a and the second outdoor heat exchanger 5b in parallel, and the other end. In the 5th flow-path part P5, it is connected to the site | part between the connection location with the compressor 2, and the arrangement | positioning location of the 5th motor operated valve D5.

ヒートポンプ給湯システム100は、ヒートポンプ回路HPに加え、エンジン1の排熱を回収した排熱回収媒体C(例えば、エンジン冷却水)を排熱熱交換器7に供給自在な排熱回路9を備えている。排熱回路9は、エンジン1の排熱を回収した排熱回収媒体Cを排熱熱交換器7に供給する排熱往き路10と、排熱熱交換器7を通過した排熱回収媒体Cをエンジン1に戻す排熱戻り路11と、エンジン1からの排熱往き路10の排熱回収媒体Cを排熱熱交換器7をバイパスして排熱戻り路11に供給する排熱バイパス路12とを備えている。また、排熱回路9は、排熱回収媒体Cが高温になり過ぎた場合に、図外の室外ファンにて通風される外気に放熱して排熱回収媒体Cの温度を低下させるために、排熱用放熱器8を備えている。この排熱放熱器8は、排熱流路13にて排熱戻り路11に対して並列状態で備えられている。
排熱往き路10と排熱バイパス路12との接続箇所に第2三方弁S2が備えられ、排熱戻り路11と排熱流路13の上流側端部との接続箇所に第3三方弁S3が備えられている。排熱戻り路11において排熱バイパス路12との接続箇所とエンジン1との接続箇所との間の部位に、排熱回路9にて排熱回収媒体Cを循環させる排熱循環ポンプ14が備えられている。
In addition to the heat pump circuit HP, the heat pump hot water supply system 100 includes an exhaust heat circuit 9 that can freely supply an exhaust heat recovery medium C (for example, engine cooling water) obtained by recovering exhaust heat of the engine 1 to the exhaust heat exchanger 7. Yes. The exhaust heat circuit 9 includes an exhaust heat return path 10 that supplies the exhaust heat recovery medium C that has recovered the exhaust heat of the engine 1 to the exhaust heat exchanger 7, and an exhaust heat recovery medium C that has passed through the exhaust heat exchanger 7. The exhaust heat return path 11 for returning the exhaust gas to the engine 1 and the exhaust heat bypass path for supplying the exhaust heat recovery medium C of the exhaust heat forward path 10 from the engine 1 to the exhaust heat return path 11 by bypassing the exhaust heat exchanger 7 12. Further, the exhaust heat circuit 9 radiates heat to the outside air ventilated by an outdoor fan (not shown) to reduce the temperature of the exhaust heat recovery medium C when the exhaust heat recovery medium C becomes too hot. An exhaust heat radiator 8 is provided. The exhaust heat radiator 8 is provided in parallel with the exhaust heat return path 11 in the exhaust heat flow path 13.
A second three-way valve S2 is provided at a connection location between the exhaust heat forward passage 10 and the exhaust heat bypass passage 12, and a third three-way valve S3 is provided at a connection location between the exhaust heat return passage 11 and the upstream end of the exhaust heat passage 13. Is provided. In the exhaust heat return path 11, an exhaust heat circulation pump 14 that circulates the exhaust heat recovery medium C in the exhaust heat circuit 9 is provided at a position between the connection position with the exhaust heat bypass path 12 and the connection position with the engine 1. It has been.

ヒートポンプ給湯システム100は、ヒートポンプ回路HP及び排熱回路9に加え、給湯用水Mを給湯熱交換器6及び排熱熱交換器7に供給自在な給湯用水回路15を備えている。給湯用水回路15は、貯湯タンク16に貯留されている給湯用水Mを給湯熱交換器6及び排熱熱交換器7に供給し、排熱熱交換器7を通過した給湯用水Mを貯湯タンク16に戻す給湯用水循環路17(給湯用水循環手段に相当する)と、貯湯タンク16に給水する給水路18と、貯湯タンク16に貯留されている給湯用水M及び排熱熱交換器7を通過した給湯用水Mを給湯栓等の給湯利用箇所に給湯する給湯路19とを備えて構成されている。   The heat pump hot water supply system 100 includes a hot water supply water circuit 15 that can supply hot water supply water M to the hot water supply heat exchanger 6 and the exhaust heat heat exchanger 7 in addition to the heat pump circuit HP and the exhaust heat circuit 9. The hot water supply water circuit 15 supplies the hot water supply water M stored in the hot water storage tank 16 to the hot water supply heat exchanger 6 and the exhaust heat exchanger 7, and the hot water supply water M that has passed through the exhaust heat heat exchanger 7 is supplied to the hot water storage tank 16. Passed through the hot water supply water circulation path 17 (corresponding to the hot water supply water circulation means), the hot water supply tank 18 for supplying water to the hot water storage tank 16, the hot water supply water M stored in the hot water storage tank 16 and the exhaust heat exchanger 7. A hot water supply channel 19 is provided for supplying hot water M to a hot water use location such as a hot water tap.

貯湯タンク16は、例えば、密閉型のタンクにて構成されており、温度が高い水(温水)は上方側に且つ温度が低い水は下方側に温度成層を形成する状態で給湯用水Mを貯留自在に構成されている。給湯用水循環路17の一端部は、貯湯タンク16の下部に接続されており、貯湯タンク16の下部から取り出した給湯用水Mを給湯熱交換器6及び排熱熱交換器7に供給自在に構成されている。また、給湯用水循環路17の他端部は、貯湯タンク16の上部に接続されており、給湯熱交換器6及び排熱熱交換器7にて加熱された給湯用水を貯湯タンク16の上部に戻すように構成されている。給湯用水循環路17には、給湯用水循環ポンプ20が備えられ、この給湯用水循環ポンプ20を作動させることで、貯湯タンク16の給湯用水Mを給湯熱交換器6及び排熱熱交換器7に供給し、排熱熱交換器7を通過した給湯用水Mを貯湯タンク16に戻すようにしている。給湯用水循環路17には、貯湯タンク16からの給湯用水Mを給湯熱交換器6をバイパスして排熱熱交換器7に供給する給湯用水バイパス路23が接続されており、その給湯用水循環路17と給湯用水バイパス路23との接続箇所に第4三方弁S4が備えられている。   The hot water storage tank 16 is configured by, for example, a sealed tank, and stores hot water M in a state where water having a high temperature (hot water) forms a temperature stratification on the upper side and water having a low temperature on the lower side. It is configured freely. One end portion of the hot water supply water circulation path 17 is connected to the lower portion of the hot water storage tank 16 so that hot water supply water M taken out from the lower portion of the hot water storage tank 16 can be supplied to the hot water supply heat exchanger 6 and the exhaust heat heat exchanger 7. Has been. The other end of the hot water supply water circulation path 17 is connected to the upper part of the hot water storage tank 16, and hot water supplied by the hot water supply heat exchanger 6 and the exhaust heat heat exchanger 7 is supplied to the upper part of the hot water storage tank 16. It is configured to return. The hot water supply water circulation path 17 is provided with a hot water supply water circulation pump 20, and by operating the hot water supply water circulation pump 20, the hot water supply water M in the hot water storage tank 16 is supplied to the hot water supply heat exchanger 6 and the exhaust heat heat exchanger 7. The hot water supply water M that has been supplied and passed through the exhaust heat exchanger 7 is returned to the hot water storage tank 16. Connected to the hot water supply water circulation path 17 is a hot water supply water bypass path 23 that bypasses the hot water supply heat exchanger 6 and supplies the hot water supply water M from the hot water storage tank 16 to the exhaust heat exchanger 7. A fourth three-way valve S4 is provided at a connection point between the passage 17 and the hot water supply water bypass passage 23.

給水路18は、給湯用水循環路17において貯湯タンク16の下部との接続箇所と給湯熱交換器6との接続箇所との間の部位に接続されており、給湯用水循環路17の一部を通して貯湯タンク16の下部に給水自在に構成されている。給湯路19は、給湯用水循環路17において排熱熱交換器7との接続箇所と貯湯タンク16の上部との接続箇所との間の部位に接続されており、排熱熱交換器7を通過した給湯用水M又は貯湯タンク16の上部から取り出した給湯用水Mを給湯利用箇所に給湯自在に構成されている。給湯用水循環路17と給湯路19との接続箇所に第5三方弁S5が備えられており、この第5三方弁S5によって、排熱熱交換器7を通過した給湯用水Mを給湯路19に供給する状態と貯湯タンク16に貯留されている給湯用水Mを取り出して給湯路19に供給する状態とに切換自在に構成されている。また、給湯路19には、給湯路19の給湯用水Mを加熱して給湯利用箇所に給湯自在とする補助加熱器21が備えられ、その補助加熱器21よりも給湯用水Mの通流方向の下流側部位に、給湯路19の給湯用水Mに給水路18の給湯用水Mを混合させる混合流路22が接続されている。この混合流路22には、給湯路19の給湯用水Mに対して、給水路18の給湯用水Mを混合させる混合量を調整自在な混合量調整弁24が備えられている。   The water supply path 18 is connected to a portion of the hot water supply water circulation path 17 between a connection point between the lower part of the hot water storage tank 16 and a connection point with the hot water supply heat exchanger 6, and passes through a part of the hot water supply water circulation path 17. The lower part of the hot water storage tank 16 is configured to supply water freely. The hot water supply passage 19 is connected to a portion of the hot water supply water circulation passage 17 between a connection location with the exhaust heat exchanger 7 and a connection location with the upper portion of the hot water storage tank 16, and passes through the exhaust heat exchanger 7. The hot water supply water M or the hot water supply water M taken out from the upper part of the hot water storage tank 16 is configured to be hot water supply to the hot water use location. A fifth three-way valve S5 is provided at a connection point between the hot-water supply water circulation path 17 and the hot-water supply path 19, and the hot-water supply water M that has passed through the exhaust heat exchanger 7 is supplied to the hot water supply path 19 by the fifth three-way valve S5. The hot water supply water M stored in the hot water storage tank 16 is taken out and supplied to the hot water supply passage 19 so as to be switchable. Further, the hot water supply passage 19 is provided with an auxiliary heater 21 that heats the hot water supply water M in the hot water supply passage 19 so as to freely supply hot water to the hot water use location, and the hot water supply water M is more permeable than the auxiliary heater 21. A mixing passage 22 for mixing the hot water supply water M in the hot water supply passage 18 with the hot water supply water M in the hot water supply passage 19 is connected to the downstream portion. The mixing flow path 22 is provided with a mixing amount adjustment valve 24 that can adjust the mixing amount for mixing the hot water supply water M in the water supply passage 18 with the hot water supply water M in the hot water supply passage 19.

ヒートポンプ給湯システム100の運転を制御する制御装置101が備えられており、この制御装置101が、エンジン1の運転、補助加熱器21の運転、排熱循環ポンプ14の作動、給湯用水循環ポンプ20の作動、第1〜第5電動弁D1〜D5の作動、及び、第1〜第5三方弁S1〜S5の作動を制御することで、ヒートポンプ給湯システム100の運転を制御している。   A control device 101 that controls the operation of the heat pump hot water supply system 100 is provided. The control device 101 operates the engine 1, operates the auxiliary heater 21, operates the exhaust heat circulation pump 14, and operates the water circulation pump 20 for hot water supply. The operation of the heat pump hot water supply system 100 is controlled by controlling the operation, the operation of the first to fifth electric valves D1 to D5, and the operation of the first to fifth three-way valves S1 to S5.

制御装置101には、ヒートポンプ回路HPにおける冷媒Rの循環状態を切換自在な循環状態切換手段102と、その循環状態切換手段102にてヒートポンプ回路HPにおける冷媒Rの循環状態を切り換えて各種の運転を行う運転制御手段103と、その運転制御手段103が暖房・給湯同時運転を行う場合に、給湯優先モードと空調優先モードとに切換自在なモード切換手段104とが備えられている。   The control device 101 includes a circulation state switching means 102 that can switch the circulation state of the refrigerant R in the heat pump circuit HP, and various operations by switching the circulation state of the refrigerant R in the heat pump circuit HP by the circulation state switching means 102. Operation control means 103 to be performed, and mode switching means 104 that can be switched between a hot water supply priority mode and an air conditioning priority mode when the operation control means 103 performs simultaneous heating and hot water supply operation.

循環状態切換手段102は、第1〜第5電動弁D1〜D5の作動、及び、第1〜第5三方弁S1〜S5の作動を制御することで、ヒートポンプ回路HPにおける冷媒Rの循環状態について、冷房・給湯循環状態と暖房循環状態と暖房・給湯循環状態と給湯循環状態とに切換自在に構成されている。   The circulation state switching means 102 controls the operation of the first to fifth electric valves D1 to D5 and the operation of the first to fifth three-way valves S1 to S5, so that the circulation state of the refrigerant R in the heat pump circuit HP. The cooling / hot water supply circulation state, the heating circulation state, the heating / hot water supply circulation state, and the hot water supply circulation state can be switched.

冷房・給湯循環状態では、図1及び図2に示すように、循環状態切換手段102が、第2電動弁D2、第3電動弁D3、及び、第5電動弁D5を開状態とするとともに、第3流路部位P3の冷媒Rをそのまま第3流路部位P3にて第1熱交換器3に供給する状態に第1三方弁S1を切り換えている。これにより、冷房・給湯循環状態では、圧縮機2、給湯熱交換器6、第3電動弁D3(膨張弁4に相当する)、第1熱交換器3の順に冷媒Rを循環させている。   In the cooling / hot water supply circulation state, as shown in FIGS. 1 and 2, the circulation state switching means 102 opens the second electric valve D2, the third electric valve D3, and the fifth electric valve D5, The first three-way valve S1 is switched to a state in which the refrigerant R in the third flow path part P3 is supplied to the first heat exchanger 3 as it is in the third flow path part P3. Thereby, in the cooling / hot water supply circulation state, the refrigerant R is circulated in the order of the compressor 2, the hot water supply heat exchanger 6, the third electric valve D 3 (corresponding to the expansion valve 4), and the first heat exchanger 3.

暖房循環状態では、図3に示すように、循環状態切換手段102が、第6電動弁D6、第3電動弁D3、第4電動弁D4、第7電動弁D7を開状態とするとともに、第3流路部位P3において第1熱交換器3側からの冷媒Rを第4流路部位P4に供給する状態に第1三方弁S1を切り換えている。これにより、暖房循環状態では、圧縮機2、第1熱交換器3、第4電動弁D4(膨張弁4に相当する)、第2熱交換器5の順に冷媒Rを循環させている。   In the heating circulation state, as shown in FIG. 3, the circulation state switching means 102 opens the sixth motor-operated valve D6, the third motor-operated valve D3, the fourth motor-operated valve D4, and the seventh motor-operated valve D7. The first three-way valve S1 is switched to a state where the refrigerant R from the first heat exchanger 3 side is supplied to the fourth flow path part P4 in the 3 flow path part P3. Thereby, in the heating circulation state, the refrigerant R is circulated in the order of the compressor 2, the first heat exchanger 3, the fourth electric valve D 4 (corresponding to the expansion valve 4), and the second heat exchanger 5.

暖房・給湯循環状態では、図4に示すように、循環状態切換手段102が、第2電動弁D2、第6電動弁D6、第3電動弁D3、第4電動弁D4、第7電動弁D7を開状態とするとともに、第3流路部位P3において給湯熱交換器6側からの冷媒Rと第1熱交換器3側からの冷媒Rとを合流させて第4流路部位P4に供給する状態に第1三方弁S1を切り換えている。これにより、暖房・給湯循環状態では、給湯熱交換器6と第1熱交換器3とを並列状態で接続して、圧縮機2、給湯熱交換器6及び第1熱交換器3の両者、第4電動弁D4(膨張弁4に相当する)、第2熱交換器5の順に冷媒Rを循環させている。   In the heating / hot water circulation state, as shown in FIG. 4, the circulation state switching means 102 is operated by the second electric valve D2, the sixth electric valve D6, the third electric valve D3, the fourth electric valve D4, and the seventh electric valve D7. And the refrigerant R from the hot water supply heat exchanger 6 side and the refrigerant R from the first heat exchanger 3 side are merged and supplied to the fourth flow path part P4 in the third flow path part P3. The first three-way valve S1 is switched to the state. Thereby, in the heating / hot water supply circulation state, the hot water supply heat exchanger 6 and the first heat exchanger 3 are connected in parallel, and both the compressor 2, the hot water supply heat exchanger 6 and the first heat exchanger 3, The refrigerant R is circulated in the order of the fourth electric valve D4 (corresponding to the expansion valve 4) and the second heat exchanger 5.

給湯循環状態では、図5に示すように、循環状態切換手段102が、第2電動弁D2、第4電動弁D4、第7電動弁D7を開状態とするとともに、第3流路部位P3において給湯熱交換器6側からの冷媒Rを第4流路部位P4に供給する状態に第1三方弁S1を切り換えている。これにより、給湯循環状態では、圧縮機2、給湯熱交換器6、第4電動弁D4(膨張弁4に相当する)、第2熱交換器5の順に冷媒Rを循環させている。   In the hot water supply circulation state, as shown in FIG. 5, the circulation state switching means 102 opens the second electric valve D2, the fourth electric valve D4, and the seventh electric valve D7, and at the third flow path part P3. The first three-way valve S1 is switched to a state in which the refrigerant R from the hot water supply heat exchanger 6 side is supplied to the fourth flow path part P4. Thereby, in the hot water supply circulation state, the refrigerant R is circulated in the order of the compressor 2, the hot water supply heat exchanger 6, the fourth electric valve D 4 (corresponding to the expansion valve 4), and the second heat exchanger 5.

運転制御手段103は、循環状態切換手段102にてヒートポンプ回路HPにおける冷媒Rの循環状態を切り換えるとともに、エンジン1の運転、第2〜第5三方弁S2〜S5の作動、排熱循環ポンプ14の作動、及び、給湯用水循環ポンプ20の作動を制御することで、冷房運転、暖房運転、給湯運転、貯湯運転等の各種の運転を行うように構成されている。そして、冷房運転又は暖房運転の空調運転の要求については、例えば、使用者が空調用リモコンを操作することで要求されており、給湯運転の要求については、例えば、給湯利用箇所の給湯栓が使用者により開操作される、或いは、使用者がリモコンを操作することで要求されている。また、運転制御手段103は、冷房運転のみ又は暖房運転のみを行う場合等、給湯の要求が無くてエンジン1にて圧縮機2を駆動させる場合に、貯湯運転を行うように構成されている。   The operation control unit 103 switches the circulation state of the refrigerant R in the heat pump circuit HP by the circulation state switching unit 102, operates the engine 1, operates the second to fifth three-way valves S2 to S5, and controls the exhaust heat circulation pump 14. By controlling the operation and the operation of the hot water circulation pump 20, various operations such as a cooling operation, a heating operation, a hot water supply operation, and a hot water storage operation are performed. And, for the request for the air conditioning operation of the cooling operation or the heating operation, for example, the user is requested by operating the air conditioner remote controller, and for the request for the hot water supply operation, for example, a hot water tap at the hot water use location is used. It is requested by the user to open or to operate the remote control by the user. Further, the operation control means 103 is configured to perform a hot water storage operation when there is no request for hot water supply and the compressor 2 is driven by the engine 1 such as when performing only a cooling operation or only a heating operation.

このようにして、運転制御手段103は、使用者の要求に応じて、冷房運転と貯湯運転とを同時に行う冷房・貯湯同時運転と、冷房運転と給湯運転とを同時に行う冷房・給湯同時運転と、暖房運転と貯湯運転とを同時に行う暖房・貯湯同時運転と、暖房運転と給湯運転とを同時に行う暖房・給湯同時運転と、単独での給湯運転との各種の運転を行うように構成されている。   In this way, the operation control means 103 performs the cooling / hot water simultaneous operation for simultaneously performing the cooling operation and the hot water storage operation, and the cooling / hot water simultaneous operation for simultaneously performing the cooling operation and the hot water supply operation according to the user's request. The system is configured to perform various operations such as simultaneous heating / hot water storage operation in which heating operation and hot water storage operation are performed simultaneously, simultaneous heating / hot water operation in which heating operation and hot water supply operation are performed simultaneously, and independent hot water supply operation. Yes.

以下、各運転での動作について説明する。
(冷房・貯湯同時運転)
冷房・貯湯同時運転では、図1に示すように、ヒートポンプ回路HPについて、運転制御手段103が、エンジン1を運転させるとともに、循環状態切換手段102にてヒートポンプ回路HPにおける冷媒Rの循環状態を冷房・給湯循環状態に切り換えている。排熱回路9については、運転制御手段103が、エンジン1、排熱熱交換器7の順に排熱回収媒体Cが循環するように、第2三方弁S2及び第3三方弁S3の状態を切り換えて排熱循環ポンプ14を作動させている。給湯用水回路15については、運転制御手段103が、貯湯タンク16の下部から取り出した給湯用水Mを、給湯熱交換器6、排熱熱交換器7の順に通過させて貯湯タンク16の上部に戻すように、第4三方弁S4及び第5三方弁S5の状態を切り換えて給湯用水循環ポンプ20を作動させている。
Hereinafter, the operation in each operation will be described.
(Simultaneous cooling and hot water storage)
In the simultaneous cooling and hot water storage operation, as shown in FIG. 1, the operation control means 103 operates the engine 1 for the heat pump circuit HP, and the circulation state switching means 102 cools the circulation state of the refrigerant R in the heat pump circuit HP.・ Switched to hot water circulation. For the exhaust heat circuit 9, the operation control means 103 switches the states of the second three-way valve S2 and the third three-way valve S3 so that the exhaust heat recovery medium C circulates in the order of the engine 1 and the exhaust heat exchanger 7. Thus, the exhaust heat circulation pump 14 is operated. With respect to the hot water supply water circuit 15, the operation control means 103 causes the hot water supply water M taken out from the lower part of the hot water storage tank 16 to pass through the hot water supply heat exchanger 6 and the exhaust heat heat exchanger 7 in this order to return to the upper part of the hot water storage tank 16. As described above, the hot water supply water circulation pump 20 is operated by switching the states of the fourth three-way valve S4 and the fifth three-way valve S5.

ヒートポンプ回路HPでは、給湯熱交換器6にて冷媒Rが給湯用水Mを加熱して放熱され、第1熱交換器3にて冷媒Rが図外の室内ファンにて通風される空気から吸熱して冷却し、その冷却された空気を室内に供給して冷房を行っている。給湯用水回路15では、貯湯タンク16の下部から取り出された給湯用水Mが、まず、給湯熱交換器6に供給されて冷媒Rにて加熱され、更に、排熱熱交換器7に供給されて排熱回収媒体Cにて加熱され、貯湯タンク16の上部に戻している。貯湯タンク16に高温の給湯用水M(例えば、60℃の温水)を貯湯している。このようにして、室内の冷房と貯湯タンク16への貯湯との両者を同時に行っている。   In the heat pump circuit HP, the refrigerant R heats the hot water supply water M in the hot water supply heat exchanger 6 to dissipate the heat, and the first heat exchanger 3 absorbs heat from the air ventilated by an indoor fan outside the figure. Then, the cooled air is supplied to the room to cool it. In the hot water supply water circuit 15, the hot water supply water M taken out from the lower part of the hot water storage tank 16 is first supplied to the hot water supply heat exchanger 6, heated by the refrigerant R, and further supplied to the exhaust heat exchanger 7. It is heated by the exhaust heat recovery medium C and returned to the upper part of the hot water storage tank 16. Hot water for hot water supply M (for example, hot water at 60 ° C.) is stored in the hot water storage tank 16. In this way, both indoor cooling and hot water storage in the hot water storage tank 16 are performed simultaneously.

(冷房・給湯同時運転)
冷房・給湯同時運転では、図2に示すように、ヒートポンプ回路HPについて、運転制御手段103が、エンジン1を運転させるとともに、循環状態切換手段102にてヒートポンプ回路HPにおける冷媒Rの循環状態を冷房・給湯循環状態に切り換えている。排熱回路9については、運転制御手段103が、エンジン1、排熱熱交換器7の順に排熱回収媒体Cが循環するように、第2三方弁S2及び第3三方弁S3の状態を切り換えて排熱循環ポンプ14を作動させている。給湯用水回路15については、運転制御手段103が、給水路18にて給水される給湯用水Mを、給湯熱交換器6、排熱熱交換器7の順に通過させて給湯路19に供給するように、第4三方弁S4及び第5三方弁S5の状態を切り換えて給湯用水循環ポンプ20を作動させている。
(Simultaneous cooling and hot water supply operation)
In the simultaneous cooling / hot-water supply operation, as shown in FIG. 2, the operation control means 103 operates the engine 1 for the heat pump circuit HP, and the circulation state switching means 102 cools the circulation state of the refrigerant R in the heat pump circuit HP.・ Switched to hot water circulation. For the exhaust heat circuit 9, the operation control means 103 switches the states of the second three-way valve S2 and the third three-way valve S3 so that the exhaust heat recovery medium C circulates in the order of the engine 1 and the exhaust heat exchanger 7. Thus, the exhaust heat circulation pump 14 is operated. With respect to the hot water supply water circuit 15, the operation control means 103 supplies the hot water supply water M supplied through the water supply passage 18 to the hot water supply passage 19 through the hot water supply heat exchanger 6 and the exhaust heat exchanger 7 in this order. In addition, the hot water supply water circulation pump 20 is operated by switching the states of the fourth three-way valve S4 and the fifth three-way valve S5.

ヒートポンプ回路HPでは、給湯熱交換器6にて冷媒Rが給湯用水Mを加熱して放熱され、第1熱交換器3にて冷媒Rが図外の室内ファンにて通風される空気から吸熱して冷却し、その冷却された空気を室内に供給して冷房を行っている。給湯用水回路15では、給水路18にて給水される給湯用水Mが、まず、給湯熱交換器6に供給されて冷媒Rにて加熱され、更に、排熱熱交換器7に供給されて排熱回収媒体Cにて加熱され、給湯路19に供給される。そして、給湯路19の給湯用水Mは、混合流路22からの給湯用水Mと混合されて給湯設定温度に調整されて給湯利用箇所に給湯される。ここで、給湯設定温度については、リモコンにて使用者が設定自在に構成されており、給湯設定温度への調整については、例えば、運転制御手段103が、図外の温度センサや流量センサ等の検出情報に基づいて、混合量調整弁24の開度を制御することで、混合流路22からの給湯用水Mが混合された給湯用水Mの温度が給湯設定温度になるように、混合流路22からの給湯用水Mの混合量を調整するようにしている。ちなみに、要求されている給湯設定温度が高い場合等、要求されている給湯負荷を賄うことができない場合には、運転制御手段103が、補助加熱器21を運転させることで、要求されている給湯負荷を賄うようにしている。
このようにして、室内の冷房と給湯利用箇所への給湯との両者を同時に行っている。また、冷房・給湯同時運転では、運転制御手段103が、給湯用水回路15について第5三方弁S5の状態を切り換えることで、例えば、排熱熱交換器7を通過した給湯用水Mと貯湯タンク16に貯湯されている高温の給湯用水Mとを混合させて給湯路19に供給することもできる。
In the heat pump circuit HP, the refrigerant R heats the hot water supply water M in the hot water supply heat exchanger 6 to dissipate the heat, and the first heat exchanger 3 absorbs heat from the air ventilated by an indoor fan outside the figure. Then, the cooled air is supplied to the room to cool it. In the hot water supply water circuit 15, the hot water supply water M supplied through the water supply passage 18 is first supplied to the hot water supply heat exchanger 6 and heated by the refrigerant R, and further supplied to the exhaust heat heat exchanger 7 to be discharged. Heated by the heat recovery medium C and supplied to the hot water supply channel 19. Then, the hot water supply water M in the hot water supply passage 19 is mixed with the hot water supply water M from the mixing flow path 22, adjusted to the hot water supply set temperature, and supplied to the hot water use location. Here, the hot water supply set temperature is configured to be freely settable by the user with a remote controller. For adjustment to the hot water supply set temperature, for example, the operation control means 103 is provided with a temperature sensor, a flow sensor, etc. Based on the detection information, the opening of the mixing amount adjusting valve 24 is controlled so that the temperature of the hot water supply water M mixed with the hot water supply water M from the mixing flow path 22 becomes the hot water supply set temperature. The mixing amount of hot water supply water M from 22 is adjusted. By the way, when the required hot water supply set temperature is high or the required hot water supply load cannot be covered, the operation control means 103 operates the auxiliary heater 21 to request the required hot water supply. I try to cover the load.
In this way, both indoor cooling and hot water supply to the hot water use location are performed simultaneously. In the simultaneous cooling and hot water supply operation, the operation control means 103 switches the state of the fifth three-way valve S5 in the hot water supply water circuit 15, for example, the hot water supply water M that has passed through the exhaust heat exchanger 7 and the hot water storage tank 16 The hot water supply water M stored in the hot water can be mixed and supplied to the hot water supply passage 19.

(暖房・貯湯同時運転)
暖房・貯湯同時運転では、図3に示すように、ヒートポンプ回路HPについて、運転制御手段103が、エンジン1を運転させるとともに、循環状態切換手段102にてヒートポンプ回路HPにおける冷媒Rの循環状態を暖房循環状態に切り換えている。排熱回路9については、運転制御手段103が、エンジン1、排熱熱交換器7の順に排熱回収媒体Cが循環するように、第2三方弁S2及び第3三方弁S3の状態を切り換えて排熱循環ポンプ14を作動させている。給湯用水回路15については、運転制御手段103が、貯湯タンク16の下部から取り出した給湯用水Mを排熱熱交換器7に供給して、排熱熱交換器7を通過した給湯用水Mを貯湯タンク16の上部に戻すように、第4三方弁S4及び第5三方弁S5の状態を切り換えて給湯用水循環ポンプ20を作動させている。
(Simultaneous operation of heating and hot water storage)
In the simultaneous heating and hot water storage operation, as shown in FIG. 3, the operation control means 103 operates the engine 1 for the heat pump circuit HP, and the circulation state switching means 102 heats the circulation state of the refrigerant R in the heat pump circuit HP. Switching to a circulating state. For the exhaust heat circuit 9, the operation control means 103 switches the states of the second three-way valve S2 and the third three-way valve S3 so that the exhaust heat recovery medium C circulates in the order of the engine 1 and the exhaust heat exchanger 7. Thus, the exhaust heat circulation pump 14 is operated. With respect to the hot water supply water circuit 15, the operation control means 103 supplies the hot water supply water M taken out from the lower part of the hot water storage tank 16 to the exhaust heat heat exchanger 7, and stores the hot water supply water M that has passed through the exhaust heat heat exchanger 7. The hot water supply water circulation pump 20 is operated by switching the state of the fourth three-way valve S4 and the fifth three-way valve S5 so as to return to the upper part of the tank 16.

ヒートポンプ回路HPでは、第1熱交換器3にて冷媒Rが図外の室内ファンにて通風される空気を加熱して放熱され、その加熱された空気を室内に供給して暖房を行い、第2熱交換器5にて冷媒Rが外気から吸熱している。給湯用水回路15では、貯湯タンク16の下部から取り出された給湯用水Mが、排熱熱交換器7に供給されて排熱回収媒体Cにて加熱され貯湯タンク16の上部に戻されて、貯湯タンク16への高温の給湯用水M(例えば、60℃の温水)の貯湯を行っている。このようにして、室内の暖房と貯湯タンク16への貯湯との両者を同時に行っている。   In the heat pump circuit HP, in the first heat exchanger 3, the refrigerant R heats the air ventilated by an indoor fan (not shown) to dissipate the heat, and the heated air is supplied indoors for heating. 2 The refrigerant R absorbs heat from the outside air in the heat exchanger 5. In the hot water supply water circuit 15, the hot water supply water M taken out from the lower part of the hot water storage tank 16 is supplied to the exhaust heat exchanger 7, heated by the exhaust heat recovery medium C, and returned to the upper part of the hot water storage tank 16 to store hot water. Hot water for hot water supply M (for example, 60 ° C. hot water) is stored in the tank 16. In this way, both indoor heating and hot water storage in the hot water storage tank 16 are performed simultaneously.

(暖房・給湯同時運転)
暖房・給湯同時運転では、図4に示すように、ヒートポンプ回路HPについて、運転制御手段103が、エンジン1を運転させるとともに、循環状態切換手段102にてヒートポンプ回路HPにおける冷媒Rの循環状態を暖房・給湯循環状態に切り換えている。排熱回路9については、運転制御手段103が、エンジン1、排熱熱交換器7の順に排熱回収媒体Cが循環するように、第2三方弁S2及び第3三方弁S3の状態を切り換えて排熱循環ポンプ14を作動させている。給湯用水回路15については、運転制御手段103が、給水路18にて給水される給湯用水Mを、給湯熱交換器6、排熱熱交換器7の順に通過させて給湯路19に供給するように、第4三方弁S4及び第5三方弁S5の状態を切り換えて給湯用水循環ポンプ20を作動させている。
(Simultaneous operation of heating and hot water supply)
In the simultaneous heating / hot water supply operation, as shown in FIG. 4, the operation control means 103 operates the engine 1 for the heat pump circuit HP, and the circulation state switching means 102 heats the circulation state of the refrigerant R in the heat pump circuit HP.・ Switched to hot water circulation. For the exhaust heat circuit 9, the operation control means 103 switches the states of the second three-way valve S2 and the third three-way valve S3 so that the exhaust heat recovery medium C circulates in the order of the engine 1 and the exhaust heat exchanger 7. Thus, the exhaust heat circulation pump 14 is operated. With respect to the hot water supply water circuit 15, the operation control means 103 supplies the hot water supply water M supplied through the water supply passage 18 to the hot water supply passage 19 through the hot water supply heat exchanger 6 and the exhaust heat exchanger 7 in this order. In addition, the hot water supply water circulation pump 20 is operated by switching the states of the fourth three-way valve S4 and the fifth three-way valve S5.

ヒートポンプ回路HPでは、第1熱交換器3にて冷媒Rが図外の室内ファンにて通風される空気を加熱して放熱され、その加熱された空気を室内に供給して暖房を行うとともに、給湯熱交換器6にて冷媒Rが給湯用水Mを加熱して放熱され、第2熱交換器5にて冷媒Rが外気から吸熱している。給湯用水回路15では、給水路18にて給水される給湯用水Mは、まず、給湯熱交換器6に供給されて冷媒Rにて加熱され、更に、排熱熱交換器7に供給されて排熱回収媒体Cにて加熱され、給湯路19に供給される。そして、上述の冷房・給湯同時運転と同様に、給湯路19の給湯用水Mは、混合流路22からの給湯用水Mと混合されて給湯設定温度に調整されて給湯利用箇所に給湯される。したがって、室内の暖房と給湯利用箇所への給湯との両者を同時に行うことができる。   In the heat pump circuit HP, in the first heat exchanger 3, the refrigerant R heats the air ventilated by an indoor fan (not shown) to dissipate heat, and the heated air is supplied to the room for heating. In the hot water supply heat exchanger 6, the refrigerant R heats the hot water supply water M to dissipate heat, and in the second heat exchanger 5, the refrigerant R absorbs heat from the outside air. In the hot water supply water circuit 15, the hot water supply water M supplied through the water supply path 18 is first supplied to the hot water supply heat exchanger 6 and heated by the refrigerant R, and further supplied to the exhaust heat exchanger 7 to be discharged. Heated by the heat recovery medium C and supplied to the hot water supply channel 19. Then, similarly to the above-described simultaneous cooling and hot water supply operation, the hot water supply water M in the hot water supply passage 19 is mixed with the hot water supply water M from the mixing flow path 22, adjusted to the hot water supply set temperature, and supplied to the hot water use location. Therefore, both indoor heating and hot water supply to the hot water use location can be performed simultaneously.

この暖房・給湯同時運転では、室内の暖房と給湯利用箇所への給湯とを同時に行うのであるが、要求されている暖房負荷が大きい等の状況によっては、その暖房負荷を賄うことができなくなる、或いは、その暖房負荷を賄うようにすれば給湯できなくなり、使用者の要求を応えることができなくなる可能性がある。
そこで、本参考例では、モード切換手段104が、給湯優先モードと空調優先モードとに切換自在に構成されている。給湯優先モードに切り換えるか、或いは、空調優先モードに切り換えるかについては、例えば、リモコン等にモード切換スイッチを備え、使用者
がそのモード切換スイッチを操作することで、給湯優先モードに切り換えるか、或いは、空調優先モードに切り換えるかを選択できるように構成されている。
In this heating and hot water supply simultaneous operation, indoor heating and hot water supply to the hot water use location are performed at the same time, but depending on the situation where the required heating load is large, it becomes impossible to cover the heating load, Alternatively, if the heating load is covered, there is a possibility that hot water cannot be supplied and the user's request cannot be met.
Therefore, in this reference example , the mode switching means 104 is configured to be switchable between the hot water supply priority mode and the air conditioning priority mode. As to whether to switch to the hot water supply priority mode or the air conditioning priority mode, for example, a remote control or the like is provided with a mode switch, and the user operates the mode switch to switch to the hot water supply priority mode, or The air conditioning priority mode can be selected.

暖房・給湯同時運転では、循環状態切換手段102にて暖房・給湯循環状態に切り換えており、圧縮機2からの冷媒Rを、並列状態に接続された第1熱交換器3と給湯熱交換器6とに分配供給することで、暖房と給湯とを同時に行うようにしている。そこで、モード切換手段104は、第2電動弁D2及び第6電動弁D6の開度を制御することで、並列状態に接続された第1熱交換器3と給湯熱交換器6との両者に圧縮機2からの冷媒Rを分配させる分配割合を、第1熱交換器3よりも給湯熱交換器6に優先して分配させる給湯優先モードと、給湯熱交換器6よりも第1熱交換器3に優先して分配させる空調優先モードとに切換自在に構成されている。   In the simultaneous heating / hot water supply operation, the circulation state switching means 102 switches to the heating / hot water circulation state, and the refrigerant R from the compressor 2 is connected to the first heat exchanger 3 and the hot water supply heat exchanger connected in parallel. In this way, heating and hot water supply are performed simultaneously. Therefore, the mode switching means 104 controls the opening degree of the second motor-operated valve D2 and the sixth motor-operated valve D6 so that both the first heat exchanger 3 and the hot water supply heat exchanger 6 connected in parallel are connected. A hot water supply priority mode in which the distribution ratio for distributing the refrigerant R from the compressor 2 is distributed over the hot water supply heat exchanger 6 over the first heat exchanger 3, and the first heat exchanger over the hot water supply heat exchanger 6. 3 is configured to be switchable to an air conditioning priority mode that is distributed with priority over 3.

給湯優先モードでは、モード切換手段104が、第6電動弁D6の開度を第2電動弁D2の開度よりも開き側に制御して、圧縮機2からの冷媒Rを第1熱交換器3よりも給湯熱交換器6に優先して供給している。この給湯優先モードでは、その分配割合について、第1熱交換器3にて取得される熱出力により要求されている空調負荷よりも小さく設定された制限空調負荷(例えば、要求されている空調負荷よりも10〜30%ダウンさせた空調負荷)を賄うための給湯優先用分配割合に設定されている。ここで、要求されている空調負荷については、現在の室内温度と冷房設定温度との温度差等に基づいて求められる。これにより、給湯優先モードでは、モード切換手段104が、並列状態に接続された第1熱交換器3と給湯熱交換器6との両者に圧縮機2からの冷媒Rを分配させる分配割合が給湯優先用分配割合になるように、第2電動弁D2及び第6電動弁D6の開度を制御している。給湯優先モードでは、要求されている給湯負荷を適切に賄うことができる給湯を行うことができながら、残りの冷媒Rにて室内に供給する空気を加熱して、要求されている暖房負荷よりも小さいものの、制限空調負荷を賄うことができる暖房を行うことができる。   In the hot water supply priority mode, the mode switching means 104 controls the opening degree of the sixth motor-operated valve D6 to be more open than the opening degree of the second motor-operated valve D2, so that the refrigerant R from the compressor 2 is supplied to the first heat exchanger. The hot water supply heat exchanger 6 is supplied in preference to the hot water supply heat exchanger 6. In this hot water supply priority mode, the limited air conditioning load (for example, the requested air conditioning load is set smaller than the air conditioning load requested by the heat output acquired by the first heat exchanger 3 for the distribution ratio. Is also set to a hot water supply priority distribution ratio to cover the air conditioning load reduced by 10 to 30%. Here, the required air conditioning load is obtained based on the temperature difference between the current room temperature and the cooling set temperature. As a result, in the hot water supply priority mode, the distribution ratio at which the mode switching means 104 distributes the refrigerant R from the compressor 2 to both the first heat exchanger 3 and the hot water supply heat exchanger 6 connected in parallel is the hot water supply. The opening degree of the second motor-operated valve D2 and the sixth motor-operated valve D6 is controlled so that the priority distribution ratio is obtained. In the hot water supply priority mode, while the hot water supply that can properly cover the required hot water supply load can be performed, the air supplied to the room with the remaining refrigerant R is heated and the required heating load is exceeded. Although it is small, heating that can cover the limited air-conditioning load can be performed.

空調優先モードでは、モード切換手段104が、第2電動弁D2の開度を第6電動弁D6の開度よりも開き側に制御して、圧縮機2からの冷媒Rを給湯熱交換器6よりも第1熱交換器3に優先して供給している。この空調優先モードでは、その分配割合について、第1熱交換器3にて取得される熱出力により要求されている空調負荷を賄うための空調優先用分配割合に設定されている。これにより、空調優先モードでは、モード切換手段104が、並列状態に接続された第1熱交換器3と給湯熱交換器6との両者に圧縮機2からの冷媒Rを分配させる分配割合が空調優先用分配割合になるように、第2電動弁D2及び第6電動弁D6の開度を制御している。空調優先モードでは、要求されている暖房負荷を適切に賄うことができる暖房を行うことができながら、残りの冷媒Rにて給湯用水Mを加熱して給湯することができる。   In the air conditioning priority mode, the mode switching means 104 controls the opening degree of the second motor-operated valve D2 to the opening side with respect to the opening degree of the sixth motor-operated valve D6, and supplies the refrigerant R from the compressor 2 to the hot water supply heat exchanger 6. Rather than the first heat exchanger 3. In this air conditioning priority mode, the distribution ratio is set to an air conditioning priority distribution ratio that covers the air conditioning load required by the heat output acquired by the first heat exchanger 3. Thus, in the air conditioning priority mode, the distribution ratio at which the mode switching means 104 distributes the refrigerant R from the compressor 2 to both the first heat exchanger 3 and the hot water supply heat exchanger 6 connected in parallel is air conditioning. The opening degree of the second motor-operated valve D2 and the sixth motor-operated valve D6 is controlled so that the priority distribution ratio is obtained. In the air conditioning priority mode, hot water can be supplied by heating the hot water M with the remaining refrigerant R while performing heating that can properly cover the required heating load.

参考例では、給水路18にて給水される給湯用水Mが、給湯熱交換器6だけでなく、排熱熱交換器7においても加熱されて給湯路19に供給されるので、空調優先モードに切り換えた場合でも、給湯利用箇所に給湯設定温度の給湯用水Mを給湯することができ、要求されている給湯負荷を賄うことができる給湯を行うことができる。また、要求されている給湯設定温度が高い場合等、要求されている給湯負荷が大きくて給湯熱交換器6及び排熱熱交換器7にて加熱するだけでは要求されている給湯負荷を賄うことができない場合でも、運転制御手段103が、補助加熱器21を運転させることで、要求されている給湯負荷を賄うようにしている。 In this reference example , the hot water supply water M supplied in the water supply passage 18 is heated not only in the hot water supply heat exchanger 6 but also in the exhaust heat exchanger 7 and supplied to the hot water supply passage 19. Even when switched to, the hot water supply water M at the hot water supply set temperature can be supplied to the hot water use location, and hot water supply that can cover the required hot water supply load can be performed. Further, when the required hot water supply set temperature is high, the required hot water supply load is large, and the required hot water supply load is covered only by heating with the hot water supply heat exchanger 6 and the exhaust heat exchanger 7. Even when the operation cannot be performed, the operation control means 103 operates the auxiliary heater 21 to cover the required hot water supply load.

給湯優先モード及び空調優先モードにおける分配割合については、一定の分配割合とする、或いは、変更設定できるように構成することができる。分配割合を変更設定する場合には、例えば、使用者の要求に応じて変更設定することもできる。   About the distribution ratio in hot water supply priority mode and air-conditioning priority mode, it can be set as a fixed distribution ratio, or it can change and set. When the distribution ratio is changed and set, for example, it can be changed and set according to a user request.

(給湯運転)
給湯運転では、図5に示すように、ヒートポンプ回路HPについて、運転制御手段103が、エンジン1を運転させるとともに、循環状態切換手段102にてヒートポンプ回路HPにおける冷媒Rの循環状態を給湯循環状態に切り換えている。排熱回路9については、運転制御手段103が、エンジン1、排熱熱交換器7の順に排熱回収媒体Cが循環するように、第2三方弁S2及び第3三方弁S3の状態を切り換えて排熱循環ポンプ14を作動させている。給湯用水回路15については、運転制御手段103が、給水路18にて給水される給湯用水Mを、給湯熱交換器6、排熱熱交換器7の順に通過させて給湯路19に供給するように、第4三方弁S4及び第5三方弁S5の状態を切り換えて給湯用水循環ポンプ20を作動させている。
(Hot water operation)
In the hot water supply operation, as shown in FIG. 5, with respect to the heat pump circuit HP, the operation control means 103 operates the engine 1, and the circulation state switching means 102 changes the circulation state of the refrigerant R in the heat pump circuit HP to the hot water supply circulation state. Switching. For the exhaust heat circuit 9, the operation control means 103 switches the states of the second three-way valve S2 and the third three-way valve S3 so that the exhaust heat recovery medium C circulates in the order of the engine 1 and the exhaust heat exchanger 7. Thus, the exhaust heat circulation pump 14 is operated. With respect to the hot water supply water circuit 15, the operation control means 103 supplies the hot water supply water M supplied through the water supply passage 18 to the hot water supply passage 19 through the hot water supply heat exchanger 6 and the exhaust heat exchanger 7 in this order. In addition, the hot water supply water circulation pump 20 is operated by switching the states of the fourth three-way valve S4 and the fifth three-way valve S5.

ヒートポンプ回路HPでは、給湯熱交換器6にて冷媒Rが給湯用水Mを加熱して放熱され、第2熱交換器5にて冷媒Rが外気から吸熱している。給湯用水回路15では、給水路18にて給水される給湯用水Mが、まず、給湯熱交換器6に供給されて冷媒Rにて加熱され、更に、排熱熱交換器7に供給されて排熱回収媒体Cにて加熱され、給湯路19に供給される。そして、上述の冷房・給湯同時運転と同様に、給湯路19の給湯用水Mは、混合流路22からの給湯用水Mと混合されて給湯設定温度に調整されて給湯利用箇所に給湯される。このようにして、給湯利用箇所への給湯を行っている。   In the heat pump circuit HP, the refrigerant R heats the hot water supply water M in the hot water supply heat exchanger 6 and is dissipated, and the refrigerant R absorbs heat from the outside air in the second heat exchanger 5. In the hot water supply water circuit 15, the hot water supply water M supplied through the water supply passage 18 is first supplied to the hot water supply heat exchanger 6 and heated by the refrigerant R, and further supplied to the exhaust heat heat exchanger 7 to be discharged. Heated by the heat recovery medium C and supplied to the hot water supply channel 19. Then, similarly to the above-described simultaneous cooling and hot water supply operation, the hot water supply water M in the hot water supply passage 19 is mixed with the hot water supply water M from the mixing flow path 22, adjusted to the hot water supply set temperature, and supplied to the hot water use location. In this way, hot water is supplied to the hot water use location.

〔第実施形態〕
上記参考例では、図2に示すように、循環状態切換手段102が冷房・給湯循環状態に切り換えた場合に、圧縮機2、給湯熱交換器6、第3電動弁D3(膨張弁4に相当する)、第1熱交換器3の順に冷媒Rを循環させている。
これに代えて、この第実施形態では、循環状態切換手段102が、冷房・給湯循環状態として、図6に示す直列用冷媒・給湯循環状態と、図7に示す並列用冷媒・給湯循環状態とに切換自在に構成されている。
First Embodiment
In the above reference example , as shown in FIG. 2, when the circulation state switching means 102 is switched to the cooling / hot water supply circulation state, the compressor 2, the hot water supply heat exchanger 6, the third electric valve D3 (corresponding to the expansion valve 4). The refrigerant R is circulated in the order of the first heat exchanger 3.
Instead, in this first embodiment, the circulation state switching means 102 is in the cooling / hot water supply circulation state, and the serial refrigerant / hot water circulation state shown in FIG. 6 and the parallel refrigerant / hot water circulation state shown in FIG. And can be switched between.

ヒートポンプ回路HPは、第1〜第8流路部位P1〜P8に加えて、第3流路部位P3の途中部位と第1流路部位P1の途中部位とを接続する第9流路部位P9が備えられている。この第9流路部位P9は、その途中部位に第8電動弁D8が備えられ、その一端部が第3流路部位P3において給湯熱交換器6との接続箇所と第1三方弁S1の配設箇所との間の部位に接続され、且つ、その他端部が第1流路部位P1において第1電動弁D1の配設箇所と第8流路部位P8との接続箇所との間の部位に接続されている。また、第3流路部位P3には、第9流路部位P9との接続箇所と第1三方弁S1の配設箇所との間の部位に第9電動弁D9が備えられている。   In addition to the first to eighth flow path portions P1 to P8, the heat pump circuit HP includes a ninth flow path portion P9 that connects a midway portion of the third flow path portion P3 and a midway portion of the first flow path portion P1. Is provided. The ninth flow path part P9 is provided with an eighth electric valve D8 in the middle of the ninth flow path part P9, one end of which is connected to the hot water supply heat exchanger 6 in the third flow path part P3 and the arrangement of the first three-way valve S1. The other end of the first flow path part P1 is connected to a part between the installation part and the connection part between the first electric valve D1 and the eighth flow path part P8. It is connected. The third flow path part P3 is provided with a ninth electric valve D9 at a part between the connection point with the ninth flow path part P9 and the place where the first three-way valve S1 is disposed.

直列用冷媒・給湯循環状態では、図6に示すように、循環状態切換手段102が、第2電動弁D2、第8電動弁D8、第4電動弁D4、第3電動弁D3、第5電動弁D5を開状態とするとともに、第4流路部位P4の冷媒Rを第3流路部位P3において第1熱交換器3側に供給する状態に第1三方弁S1を切り換えている。これにより、直列用冷媒・給湯循環状態では、給湯熱交換器6と第2熱交換器5とを直列状態で接続して、圧縮機2、給湯熱交換器6、第2熱交換器5、第4電動弁D4及び第3電動弁D3の一方又は両者(膨張弁4に相当する)、第1熱交換器3の順に冷媒Rを循環させる。   In the serial refrigerant / hot water supply circulation state, as shown in FIG. 6, the circulation state switching means 102 has the second motor-operated valve D2, the eighth motor-operated valve D8, the fourth motor-operated valve D4, the third motor-operated valve D3, and the fifth motor-operated valve. While opening the valve D5, the first three-way valve S1 is switched to a state where the refrigerant R of the fourth flow path part P4 is supplied to the first heat exchanger 3 side in the third flow path part P3. Thereby, in the serial refrigerant / hot water supply circulation state, the hot water supply heat exchanger 6 and the second heat exchanger 5 are connected in series, and the compressor 2, the hot water supply heat exchanger 6, the second heat exchanger 5, The refrigerant R is circulated in the order of one or both of the fourth electric valve D4 and the third electric valve D3 (corresponding to the expansion valve 4) and the first heat exchanger 3.

並列用冷媒・給湯循環状態では、図7に示すように、循環状態切換手段102が、第1電動弁D1、第2電動弁D2、第9電動弁D9、第4電動弁D4、第3電動弁D3、第5電動弁D5を開状態とするとともに、第3流路部位P3において給湯熱交換器6側からの冷媒Rと第4流路部位P4の冷媒Rとを合流させて第3流路部位P3において第1熱交換器3側に供給する状態に第1三方弁S1を切り換えている。これにより、給湯熱交換器6と第2熱交換器5とを並列状態で接続して、圧縮機2、給湯熱交換器6及び第2熱交換器5の両者、又は、給湯熱交換器6及び第2熱交換器5の夫々に単独、第3電動弁D3(膨張弁4に相当する)、第1熱交換器3の順に冷媒Rを循環させる。   In the parallel refrigerant / hot water supply circulation state, as shown in FIG. 7, the circulation state switching means 102 includes the first motor-operated valve D1, the second motor-operated valve D2, the ninth motor-operated valve D9, the fourth motor-operated valve D4, and the third motor-operated valve. The valve D3 and the fifth electric valve D5 are opened, and the refrigerant R from the hot water supply heat exchanger 6 side and the refrigerant R in the fourth flow path part P4 are merged in the third flow path part P3 to generate a third flow. The first three-way valve S1 is switched to a state of supplying to the first heat exchanger 3 side in the road part P3. Thereby, the hot water supply heat exchanger 6 and the second heat exchanger 5 are connected in parallel, and both the compressor 2, the hot water supply heat exchanger 6 and the second heat exchanger 5, or the hot water supply heat exchanger 6 are connected. The refrigerant R is circulated in the order of the third motor-operated valve D3 (corresponding to the expansion valve 4) and the first heat exchanger 3 independently of each of the second heat exchanger 5 and the second heat exchanger 5.

直列用冷媒・給湯循環状態と並列用冷媒・給湯循環状態との間での切換については、循環状態切換手段102が、給湯熱交換器6に供給される給湯用水Mの給水温度t1、給湯熱交換器6を通過した冷媒Rの給湯用熱交出口温度t2、及び、第2熱交換器5に通風される流体(外気)の通風流体温度(外気温度)t3に基づいて、直列用冷媒・給湯循環状態と並列用冷媒・給湯循環状態との間で切換を行うように構成されている。   Regarding switching between the serial refrigerant / hot water supply circulation state and the parallel refrigerant / hot water supply circulation state, the circulation state switching means 102 supplies the hot water supply water t to the hot water supply water M supplied to the hot water supply heat exchanger 6 and the hot water supply heat. Based on the heat exchange outlet temperature t2 for hot water supply of the refrigerant R that has passed through the exchanger 6 and the ventilation fluid temperature (outside air temperature) t3 of the fluid (outside air) that is ventilated to the second heat exchanger 5, Switching between the hot water supply circulation state and the parallel refrigerant / hot water supply circulation state is performed.

この第実施形態では、給湯熱交換器6に供給される給湯用水Mの給水温度t1を検出する第1温度センサT1、給湯熱交換器6を通過した冷媒Rの給湯用熱交出口温度t2を検出する第2温度センサT2、第2熱交換器5に通風される流体(外気)の通風流体温度(外気温度)t3を検出する第3温度センサT3が備えられている。
循環状態切換手段102は、第1温度センサT1による給水温度t1が第3温度センサT3による外気温度t3よりも低く、且つ、第3温度センサT3による外気温度t3が第2温度センサT2による給湯用熱交出口温度t2よりも低い場合に、図6に示すように、直列用冷媒・給湯循環状態に切り換えている。そして、循環状態切換手段102は、第2温度センサT2による給湯用熱交出口温度t2が第3温度センサT3による外気温度t3よりも高い場合にも、図6に示すように、直列用冷媒・給湯循環状態に切り換えている。これにより、給湯熱交換器6、第2熱交換器5の順に直列に冷媒Rを供給することで、給湯熱交換器6にて冷媒Rが給湯用水Mを加熱して放熱し、更に、第2熱交換器5にて給湯熱交換器6にて放熱した冷媒Rが外気を加熱して放熱して、ヒートポンプ回路HPを効率よく作動させている。
In the first embodiment, the first temperature sensor T1 that detects the feed water temperature t1 of the hot water supply water M supplied to the hot water supply heat exchanger 6, the hot water supply heat exchange outlet temperature t2 of the refrigerant R that has passed through the hot water supply heat exchanger 6. And a third temperature sensor T3 for detecting the ventilation fluid temperature (outside air temperature) t3 of the fluid (outside air) ventilated through the second heat exchanger 5.
The circulating state switching means 102 is for hot water supply by the first temperature sensor T1 where the feed water temperature t1 is lower than the outside air temperature t3 by the third temperature sensor T3 and the outside temperature t3 by the third temperature sensor T3 is by the second temperature sensor T2. When the temperature is lower than the heat exchange outlet temperature t2, as shown in FIG. 6, the state is switched to the serial refrigerant / hot water supply circulation state. Further, the circulation state switching means 102, as shown in FIG. 6, can also be used for the serial refrigerant / heat exchanger outlet temperature t2 by the second temperature sensor T2 to be higher than the outdoor air temperature t3 by the third temperature sensor T3. Switching to hot water circulation. Thus, by supplying the refrigerant R in series in the order of the hot water supply heat exchanger 6 and the second heat exchanger 5, the refrigerant R heats the hot water supply water M in the hot water supply heat exchanger 6 to dissipate heat, and further, The refrigerant R radiated by the hot water supply heat exchanger 6 in the two heat exchangers 5 heats the outside air to dissipate the heat, thereby operating the heat pump circuit HP efficiently.

また、循環状態切換手段102は、第1温度センサT1による給水温度t1が第3温度センサT3による外気温度t3よりも高く、且つ、第3温度センサT3による外気温度t3が第2温度センサT2による給湯用熱交出口温度t2よりも高い場合に、図7に示すように、並列用冷媒・給湯循環状態に切り換えている。そして、循環状態切換手段102は、第2温度センサT2による給湯用熱交出口温度t2が第3温度センサT3による外気温度t3よりも低い場合にも、図7に示すように、並列用冷媒・給湯循環状態に切り換えている。これにより、給湯熱交換器6と第2熱交換器5とに並列に冷媒Rを供給することで、給湯熱交換器6にて冷媒Rが給湯用水Mを加熱して放熱するとともに、第2熱交換器5にて冷媒Rが外気を加熱して放熱し、ヒートポンプ回路HPを効率よく作動させている。   Further, the circulation state switching means 102 is such that the feed water temperature t1 by the first temperature sensor T1 is higher than the outside air temperature t3 by the third temperature sensor T3, and the outside air temperature t3 by the third temperature sensor T3 is by the second temperature sensor T2. When it is higher than the hot water supply heat exchange outlet temperature t2, the state is switched to the parallel refrigerant / hot water supply circulation state as shown in FIG. Further, the circulation state switching means 102 is also provided with the parallel refrigerant / cooling unit as shown in FIG. 7 even when the hot water supply heat exchange outlet temperature t2 by the second temperature sensor T2 is lower than the outside air temperature t3 by the third temperature sensor T3. Switching to hot water circulation. Thus, by supplying the refrigerant R in parallel to the hot water supply heat exchanger 6 and the second heat exchanger 5, the refrigerant R heats the hot water supply water M and dissipates heat in the hot water supply heat exchanger 6, and the second In the heat exchanger 5, the refrigerant R heats the outside air to dissipate the heat, and operates the heat pump circuit HP efficiently.

〔別実施形態〕
(1)上記参考例及び第実施形態では、冷房運転や暖房運転を行う場合に、貯湯運転も同時に行うようにしているが、貯湯運転は行わずに、冷房運転や暖房運転を単独にて行うこともできる。
[Another embodiment]
(1) In the reference example and the first embodiment, when performing cooling operation or heating operation, hot water storage operation is also performed at the same time, but without performing hot water storage operation, cooling operation or heating operation is performed independently. It can also be done.

本発明は、圧縮機、第1熱交換器、膨張弁、第2熱交換器、及び、給湯用水を加熱する給湯熱交換器から構成されるヒートポンプ回路を備え、冷房と給湯との両者を同時に行うだけでなく、暖房と給湯との両者についても同時に行うことができ、空調と給湯との両者を同時に行いたいという使用者の要求に応えることができる各種のヒートポンプ給湯システムに適応可能である。   The present invention includes a heat pump circuit that includes a compressor, a first heat exchanger, an expansion valve, a second heat exchanger, and a hot water supply heat exchanger that heats hot water supply water. It can be applied not only to both heating and hot water supply, but also to various heat pump hot water supply systems that can meet the user's request to perform both air conditioning and hot water supply simultaneously.

1 エンジン
2 圧縮機
3 第1熱交換器
4 膨張弁
5 第2熱交換器
6 給湯用熱交換器
7 排熱熱交換器
16 貯湯タンク
17 給湯用水循環路(給湯用水循環手段)
102 循環状態切換手段
103 運転制御手段
104 モード切換手段
HP ヒートポンプ回路
C 排熱回収媒体
M 給湯用水
R 冷媒
DESCRIPTION OF SYMBOLS 1 Engine 2 Compressor 3 1st heat exchanger 4 Expansion valve 5 2nd heat exchanger 6 Hot water supply heat exchanger 7 Waste heat exchanger 16 Hot water storage tank 17 Hot water supply water circulation path (hot water supply water circulation means)
102 Circulating state switching means 103 Operation control means 104 Mode switching means HP Heat pump circuit C Waste heat recovery medium M Hot water supply water R Refrigerant

Claims (5)

圧縮機、第1熱交換器、膨張弁、第2熱交換器、及び、給湯用水を加熱する給湯熱交換器から構成されるヒートポンプ回路を備えているヒートポンプ給湯システムであって、
前記ヒートポンプ回路における冷媒の循環状態について、前記圧縮機、前記給湯熱交換器、前記膨張弁、前記第1熱交換器の順に冷媒を循環させる冷房・給湯循環状態と、前記給湯熱交換器と前記第1熱交換器とを並列状態で接続して、前記圧縮機、前記給湯熱交換器及び前記第1熱交換器の両者、前記膨張弁、前記第2熱交換器の順に冷媒を循環させる暖房・給湯循環状態とに切換可能な循環状態切換手段と、
前記ヒートポンプ回路における冷媒の循環状態を前記循環状態切換手段により前記冷房・給湯循環状態に切り換える冷房・給湯同時運転、及び、前記ヒートポンプ回路における冷媒の循環状態を前記循環状態切換手段により前記暖房・給湯循環状態に切り換える暖房・給湯同時運転を実行可能な運転制御手段と、
前記運転制御手段が前記暖房・給湯同時運転を行う場合に、並列状態に接続された前記給湯熱交換器と前記第1熱交換器との両者に前記圧縮機からの冷媒を分配させる分配割合を、前記第1熱交換器よりも前記給湯熱交換器に優先して分配させる給湯優先モードと、前記給湯熱交換器よりも前記第1熱交換器に優先して分配させる空調優先モードとに切換自在なモード切換手段とを備え
前記循環状態切換手段は、前記冷房・給湯循環状態として、前記給湯熱交換器と前記第2熱交換器とを直列状態で接続して、前記圧縮機、前記給湯熱交換器、前記第2熱交換器、前記膨張弁、前記第1熱交換器の順に冷媒を循環させる直列用冷房・給湯循環状態と、前記給湯熱交換器と前記第2熱交換器とを並列状態で接続して、前記圧縮機、前記給湯熱交換器及び前記第2熱交換器の両者、前記膨張弁、前記第1熱交換器の順に冷媒を循環させる並列用冷房・給湯循環状態とに切換自在に構成されているヒートポンプ給湯システム。
A heat pump hot water supply system including a heat pump circuit including a compressor, a first heat exchanger, an expansion valve, a second heat exchanger, and a hot water heat exchanger for heating hot water,
Regarding the circulation state of the refrigerant in the heat pump circuit, a cooling / hot water circulation state in which refrigerant is circulated in the order of the compressor, the hot water supply heat exchanger, the expansion valve, and the first heat exchanger, the hot water supply heat exchanger, and the Heating by connecting the first heat exchanger in parallel and circulating the refrigerant in the order of the compressor, the hot water supply heat exchanger and the first heat exchanger, the expansion valve, and the second heat exchanger.・ Circulation state switching means capable of switching to hot water circulation state;
The cooling / hot water supply simultaneous operation for switching the circulation state of the refrigerant in the heat pump circuit to the cooling / hot water circulation state by the circulation state switching means, and the heating / hot water supply for the circulation state of the refrigerant in the heat pump circuit by the circulation state switching means. Operation control means capable of performing simultaneous heating and hot water supply switching to a circulating state;
When the operation control means performs the heating and hot water supply simultaneous operation, a distribution ratio for distributing the refrigerant from the compressor to both the hot water heat exchanger and the first heat exchanger connected in parallel is set. Switching between a hot water supply priority mode in which the hot water supply heat exchanger is distributed over the first heat exchanger and an air conditioning priority mode in which the hot water heat exchanger is distributed with priority over the first heat exchanger. Flexible mode switching means ,
The circulation state switching means connects the hot water supply heat exchanger and the second heat exchanger in series in the cooling / hot water supply circulation state, and the compressor, the hot water supply heat exchanger, the second heat exchange An in-line cooling / hot water circulation state in which refrigerant is circulated in the order of the exchanger, the expansion valve, and the first heat exchanger, and the hot water heat exchanger and the second heat exchanger are connected in parallel, The compressor, the hot water supply heat exchanger, and the second heat exchanger, the expansion valve, and the first heat exchanger are configured to be switched to a parallel cooling / hot water supply circulation state in which refrigerant is circulated in this order . Heat pump hot water supply system.
前記給湯優先モードでは、前記分配割合が、前記第1熱交換器にて取得される熱出力により要求されている空調負荷よりも小さく設定された制限空調負荷を賄うための給湯優先用分配割合に設定されており、前記空調優先モードでは、前記分配割合が、前記第1熱交換器にて取得される熱出力により要求されている空調負荷を賄うための空調優先用分配割合に設定されている請求項1に記載のヒートポンプ給湯システム。   In the hot water supply priority mode, the distribution ratio is set to a distribution ratio for hot water supply priority to cover the limited air conditioning load set smaller than the air conditioning load required by the heat output acquired by the first heat exchanger. In the air conditioning priority mode, the distribution ratio is set to an air conditioning priority distribution ratio to cover the air conditioning load required by the heat output acquired by the first heat exchanger. The heat pump hot water supply system according to claim 1. 前記圧縮機を駆動させるエンジンと、そのエンジンの排熱にて前記給湯用水を加熱する排熱熱交換器とが備えられている請求項1又は2に記載のヒートポンプ給湯システム。   The heat pump hot water supply system according to claim 1 or 2, further comprising: an engine that drives the compressor; and an exhaust heat exchanger that heats the hot water supply water with exhaust heat of the engine. 前記給湯熱交換器を通過した前記給湯用水を前記排熱熱交換器に供給するように構成されている請求項3に記載のヒートポンプ給湯システム。   The heat pump hot water supply system according to claim 3, wherein the hot water supply water that has passed through the hot water supply heat exchanger is configured to be supplied to the exhaust heat heat exchanger. 貯湯タンクに貯留されている前記給湯用水を前記排熱熱交換器に供給し、前記排熱熱交換器を通過した前記給湯用水を前記貯湯タンクに戻す給湯用水循環手段を備え、前記運転制御手段は、給湯の要求が無くて前記エンジンにて前記圧縮機を駆動させる場合に、前記給湯用水循環手段を作動させて前記排熱熱交換器にて加熱された前記給湯用水を前記貯湯タンクに貯湯する貯湯運転を行うように構成されている請求項3又は4に記載のヒートポンプ給湯システム。   The hot water supply water stored in the hot water storage tank is supplied to the exhaust heat heat exchanger, and the hot water supply water circulation means for returning the hot water supply water that has passed through the exhaust heat heat exchanger to the hot water storage tank is provided, and the operation control means When there is no request for hot water supply and the compressor is driven by the engine, the hot water supply water circulating means is operated and the hot water supply water heated by the exhaust heat exchanger is stored in the hot water storage tank. The heat pump hot water supply system according to claim 3 or 4 configured to perform hot water storage operation.
JP2011169473A 2011-08-02 2011-08-02 Heat pump hot water supply system Active JP5801642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011169473A JP5801642B2 (en) 2011-08-02 2011-08-02 Heat pump hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011169473A JP5801642B2 (en) 2011-08-02 2011-08-02 Heat pump hot water supply system

Publications (2)

Publication Number Publication Date
JP2013032883A JP2013032883A (en) 2013-02-14
JP5801642B2 true JP5801642B2 (en) 2015-10-28

Family

ID=47788894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011169473A Active JP5801642B2 (en) 2011-08-02 2011-08-02 Heat pump hot water supply system

Country Status (1)

Country Link
JP (1) JP5801642B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012530B2 (en) * 2013-03-29 2016-10-25 リンナイ株式会社 Hot water storage water heater
CN104251572A (en) * 2013-06-28 2014-12-31 林柏翰 Multifunctional heat pump air conditioning system
KR101607012B1 (en) * 2014-09-29 2016-03-28 린나이코리아 주식회사 Heating device
EP3236174B1 (en) * 2014-11-27 2020-07-01 Mitsubishi Electric Corporation Combined air conditioning and hot-water supply system
CN111692637B (en) * 2020-06-18 2021-08-20 广东美的制冷设备有限公司 Control method, control device, air conditioning system, and computer-readable storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290476A (en) * 1989-04-28 1990-11-30 Matsushita Electric Ind Co Ltd Air-conditioning and hot water feeding system equipment
JP3979909B2 (en) * 2002-10-03 2007-09-19 大阪瓦斯株式会社 Hot water storage water heater
JP2007309536A (en) * 2006-05-16 2007-11-29 Daikin Ind Ltd Refrigerating device

Also Published As

Publication number Publication date
JP2013032883A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP7262887B2 (en) VEHICLE HEAT MANAGEMENT SYSTEM AND CONTROL METHOD THEREOF, VEHICLE
JP6916600B2 (en) Vehicle battery cooling system
US10589596B2 (en) Thermal management for an electric or hybrid vehicle and a method for air-conditioning the interior of such a motor vehicle
WO2020108532A1 (en) Vehicle thermal management system and control method therefor, and vehicle
CN111231773B (en) Vehicle thermal management system, control method thereof and vehicle
WO2019138731A1 (en) Heat management system
KR102097394B1 (en) Integrated heat Management system in Vehicle
CN108284725B (en) Intelligent heat management system of new energy automobile distributed drive
JP2002352867A (en) Battery temperature controller for electric vehicle
JP2008308080A (en) Heat absorption and radiation system for automobile, and control method thereof
JP5801642B2 (en) Heat pump hot water supply system
CN112498046B (en) Thermal management system
JP2008185245A (en) Compression type heat pump device, operation method of the same, and cogeneration system
JP6387532B2 (en) Air conditioner for vehicle and component unit thereof
JP3986180B2 (en) Hot water storage hot water source
JP4990677B2 (en) Engine-driven heat pump device
JP6351478B2 (en) Air conditioning system
JP4259693B2 (en) Air conditioner
KR20230076417A (en) Integrated thermal management system for electric vehicles
JP3851847B2 (en) Hot water storage hot water source
WO2015141210A1 (en) Air conditioning device for vehicle
JP2001253227A (en) Air conditioner for vehicle
JP3888790B2 (en) Water heater
KR102086379B1 (en) Air conditioning system for vehicle
JP7315296B1 (en) Working machine and its temperature control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150827

R150 Certificate of patent or registration of utility model

Ref document number: 5801642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150