JP5755341B2 - Plating equipment - Google Patents

Plating equipment Download PDF

Info

Publication number
JP5755341B2
JP5755341B2 JP2013553235A JP2013553235A JP5755341B2 JP 5755341 B2 JP5755341 B2 JP 5755341B2 JP 2013553235 A JP2013553235 A JP 2013553235A JP 2013553235 A JP2013553235 A JP 2013553235A JP 5755341 B2 JP5755341 B2 JP 5755341B2
Authority
JP
Japan
Prior art keywords
plating
plated
shaft
center position
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013553235A
Other languages
Japanese (ja)
Other versions
JPWO2013105420A1 (en
Inventor
豊 有村
豊 有村
清水 康夫
康夫 清水
米田 篤彦
篤彦 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013553235A priority Critical patent/JP5755341B2/en
Publication of JPWO2013105420A1 publication Critical patent/JPWO2013105420A1/en
Application granted granted Critical
Publication of JP5755341B2 publication Critical patent/JP5755341B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/008Current shielding devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/001Magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、メッキ装置等に関し、例えば磁歪式トルクセンサにおける磁歪膜を磁性合金メッキで形成するメッキ装置に関する。   The present invention relates to a plating apparatus and the like, for example, a plating apparatus for forming a magnetostrictive film in a magnetostrictive torque sensor by magnetic alloy plating.

車両は、例えば電動パワーステアリング装置を備えている。電動パワーステアリング装置は、ステアリングハンドルへの運転者による操作によって生じるステアリング系での操舵トルクを低減させる補助トルクを発生させる。補助トルクの発生により、電動パワーステアリング装置は、運転者の負担を軽減することができる。電動パワーステアリング装置は、操舵トルクを検出する操舵トルクセンサを有し、操舵トルク等の軸状部材(回転軸、ピニオン軸、入力軸とも言う。)に働くトルクを検出するトルクセンサは、例えば、互いに異なる磁気異方性を有する複数の磁歪膜の磁歪効果を利用してトルクを検出する磁歪式トルクセンサで構成することができる。   The vehicle includes an electric power steering device, for example. The electric power steering apparatus generates an auxiliary torque that reduces a steering torque in a steering system generated by an operation by a driver on a steering handle. Due to the generation of the auxiliary torque, the electric power steering apparatus can reduce the burden on the driver. The electric power steering apparatus includes a steering torque sensor that detects steering torque, and a torque sensor that detects torque acting on a shaft-like member (also referred to as a rotation shaft, a pinion shaft, or an input shaft) such as steering torque is, for example, A magnetostrictive torque sensor that detects torque using the magnetostrictive effect of a plurality of magnetostrictive films having different magnetic anisotropies can be used.

例えば、特許文献1は、互いに異なる磁気異方性が付与される前の2つの磁歪膜を軸状部材の被メッキ部にメッキで形成するメッキ装置を開示している。メッキ装置の陽極(金属籠、金属ペレット)から軸状部材の露出部又は非マスク部(陰極、被メッキ部)に電流を流すことで、メッキ液中の金属イオン(例えばNiイオン及びFeイオン)が陰極側で析出して磁歪膜等の磁性合金メッキを形成することができる。   For example, Patent Document 1 discloses a plating apparatus that forms two magnetostrictive films before plating with different magnetic anisotropies on a portion to be plated of a shaft member by plating. Metal ions (for example, Ni ions and Fe ions) in the plating solution are caused to flow from the anode (metal rod, metal pellet) of the plating apparatus to the exposed part or non-mask part (cathode, plated part) of the shaft-like member. Can be deposited on the cathode side to form a magnetic alloy plating such as a magnetostrictive film.

しかしながら、電流線(電気力線)は、陽極全体から被メッキ部(陰極)に向かうので、電流線は、陽極の長さ等のパターンに依存して被メッキ部に均一に流れ込むことができない。言い換えれば、電動パワーステアリング装置に要求される仕様の種類によっては、電流線が、被メッキ部により均一に流れ込む必要がある。即ち、上記特許文献1に開示されているメッキ装置は、中央の遮蔽治具の直径を上下の遮蔽治具の直径よりも小さく形成することにより、被メッキ部の表面全体の電流密度分布を均一に設定することを開示しているが、本発明者らは、軸状部材の軸方向において、被メッキ部の表面上の電流密度分布が、実際には、陽極のパターンに依存して被メッキ部の位置によって異なり、磁性合金メッキの厚さのバラツキが仕様の種類によって許容範囲内に収まらないことを認識した。   However, since the current lines (lines of electric force) are directed from the entire anode toward the portion to be plated (cathode), the current lines cannot flow uniformly into the portion to be plated depending on the pattern such as the length of the anode. In other words, depending on the type of specification required for the electric power steering apparatus, the current line needs to flow uniformly into the portion to be plated. That is, the plating apparatus disclosed in Patent Document 1 has a uniform current density distribution on the entire surface of the plated portion by forming the diameter of the central shielding jig smaller than the diameter of the upper and lower shielding jigs. Although the present inventors have disclosed that the current density distribution on the surface of the portion to be plated in the axial direction of the shaft-shaped member is actually dependent on the anode pattern, Depending on the position of the part, it was recognized that the variation in the thickness of the magnetic alloy plating did not fall within the allowable range depending on the type of specification.

特開2008−101243号公報JP 2008-101243 A

本発明の課題は、磁性合金メッキの厚さをより均一に形成可能なメッキ装置を提供することにある。   The subject of this invention is providing the plating apparatus which can form the thickness of magnetic alloy plating more uniformly.

本発明による第1の態様によれば、メッキ液を溜めるメッキ槽を有し、該メッキ液に浸漬された軸状部材を陰極として該軸状部材に磁性合金メッキを施すメッキ装置であって、前記軸状部材の外周面に装着され、前記軸状部材の被メッキ部を規定する複数の遮蔽治具と、前記軸状部材の周囲に設けられ、前記被メッキ部と対向する出力部を有する陽極と、を備えており、前記軸状部材の軸方向において、前記被メッキ部の中心位置と前記出力部の中心位置とは、中心位置に関する所定の許容値内で一致するメッキ装置が提供される。   According to a first aspect of the present invention, there is provided a plating apparatus having a plating tank for storing a plating solution, and performing magnetic alloy plating on the shaft-like member using the shaft-like member immersed in the plating solution as a cathode, A plurality of shielding jigs that are mounted on the outer peripheral surface of the shaft-shaped member and define a portion to be plated of the shaft-shaped member, and an output portion that is provided around the shaft-shaped member and faces the portion to be plated. And a plating apparatus in which a center position of the plated portion and a center position of the output portion coincide with each other within a predetermined allowable value regarding the center position in the axial direction of the shaft-shaped member. The

軸状部材の軸方向において、軸状部材の被メッキ部の中心位置と陽極の出力部の中心位置とが一致する場合、被メッキ部に流れ込む電流線は、被メッキ部の中心位置に対して対称になる。従って、磁性合金メッキの厚さのバラツキも、被メッキ部の中心位置に対して対称になり、磁性合金メッキの厚さをより均一に形成することができる。   In the axial direction of the shaft-shaped member, when the center position of the plated portion of the shaft-shaped member coincides with the center position of the output portion of the anode, the current line flowing into the plated portion is relative to the center position of the plated portion. It becomes symmetric. Therefore, the variation in the thickness of the magnetic alloy plating is also symmetric with respect to the center position of the portion to be plated, and the thickness of the magnetic alloy plating can be formed more uniformly.

言い換えれば、被メッキ部に流れ込む電流線が被メッキ部の中心位置に対して対称でなく、且つ被メッキ部の中心位置から最も離れる位置(被メッキ部の一方の端部位置)での磁性合金メッキの厚さが最も薄い又は最も厚い場合、その厚さと被メッキ部の一方の端部位置での磁性合金メッキの厚さとの差は、被メッキ部に流れ込む電流線が被メッキ部の中心位置に対して対称になる時の差よりも大きくなる。従って、被メッキ部に流れ込む電流線が被メッキ部の中心位置に対して対称でない時の磁性合金メッキの厚さのバラツキは、例えば被メッキ部の一方の端部位置で、許容範囲内に収まらないこともある。   In other words, the magnetic line at the position where the current line flowing into the plated portion is not symmetrical with respect to the central position of the plated portion and is farthest from the central position of the plated portion (one end position of the plated portion). When the thickness of the gold plating is the thinnest or thickest, the difference between the thickness and the thickness of the magnetic alloy plating at one end position of the plated portion is that the current line flowing into the plated portion is the center position of the plated portion. It becomes larger than the difference when it becomes symmetric. Therefore, the variation in the thickness of the magnetic alloy plating when the current line flowing into the plated portion is not symmetrical with respect to the center position of the plated portion, for example, is within an allowable range at one end position of the plated portion. Sometimes not.

従って、磁性合金メッキの厚さのバラツキが被メッキ部の全体で許容範囲内に収まるように、軸状部材の被メッキ部の中心位置と陽極の出力部の中心位置とが中心位置に関する所定の許容値内で一致させることで、磁性合金メッキの厚さをより均一に形成することができる。   Therefore, the central position of the plated portion of the shaft-like member and the central position of the output portion of the anode are set to a predetermined value with respect to the central position so that the variation in the thickness of the magnetic alloy plating is within the allowable range of the entire plated portion. By matching within the allowable value, the thickness of the magnetic alloy plating can be formed more uniformly.

第1の態様では、好ましくは、前記軸状部材の軸方向において、前記被メッキ部の長さと前記陽極の出力部の長さとは、長さに関する所定の許容値内で一致する。   In the first aspect, preferably, in the axial direction of the shaft-like member, the length of the portion to be plated and the length of the output portion of the anode coincide with each other within a predetermined allowable value regarding the length.

軸状部材の軸方向において、軸状部材の被メッキ部の長さと陽極の出力部の長さとが一致する場合、被メッキ部に流れ込む電流線は、被メッキ部の表面に対して垂直になる。従って、被メッキ部の全体の表面上の電流密度分布が均一になり、磁性合金メッキの厚さをより均一に形成することができる。   In the axial direction of the shaft-shaped member, when the length of the portion to be plated of the shaft-shaped member matches the length of the output portion of the anode, the current line flowing into the portion to be plated is perpendicular to the surface of the portion to be plated. . Therefore, the current density distribution on the entire surface of the portion to be plated becomes uniform, and the thickness of the magnetic alloy plating can be formed more uniformly.

従って、磁性合金メッキの厚さのバラツキが被メッキ部の全体で許容範囲内に収まるように、軸状部材の被メッキ部の長さと陽極の出力部の長さとが長さに関する所定の許容値内で一致させることで、磁性合金メッキの厚さをより均一に形成することができる。   Therefore, the length of the portion to be plated of the shaft-like member and the length of the output portion of the anode are predetermined tolerances regarding the length so that the variation in the thickness of the magnetic alloy plating is within the allowable range of the entire portion to be plated. By making them coincide with each other, the thickness of the magnetic alloy plating can be formed more uniformly.

第1の態様において、メッキ装置は、好ましくは、前記陽極と前記軸状部材との間に設けられた遮蔽物をさらに備える。   In the first aspect, the plating apparatus preferably further includes a shield provided between the anode and the shaft-shaped member.

陽極全体を出力部としないで、遮蔽物は、陽極の一部で陽極の出力部を形成することができる。   The shielding object can form the output part of the anode with a part of the anode without using the whole anode as the output part.

第1の態様において、好ましくは、前記遮蔽物のパターンは、前記陽極の前記出力部のパターンを規定してもよく、前記磁性合金メッキの厚さのバラツキが許容範囲内に収まるように、前記遮蔽物のパターンが決定されてもよい。   In the first aspect, preferably, the pattern of the shielding object may define a pattern of the output portion of the anode, and the variation of the thickness of the magnetic alloy plating is within an allowable range. The pattern of the shield may be determined.

陽極の種類によっては、軸状部材の被メッキ部の中心位置と陽極の出力部の中心位置とが一致させることができないこともある。或いは、陽極の種類によっては、軸状部材の被メッキ部の長さと陽極の出力部の長さとが一致させることができないこともある。そこで、遮蔽物のパターンを調整することによって、陽極の出力部のパターン(中心位置、長さ)を調整し、磁性合金メッキの厚さをより均一に形成することができる。   Depending on the type of the anode, the center position of the portion to be plated of the shaft-shaped member may not match the center position of the output portion of the anode. Or depending on the kind of anode, the length of the to-be-plated part of a shaft-shaped member and the length of the output part of an anode may be unable to correspond. Therefore, by adjusting the pattern of the shield, the pattern (center position, length) of the output portion of the anode can be adjusted, and the thickness of the magnetic alloy plating can be formed more uniformly.

また、軸状部材の種類によっては、被メッキ部の長さ等のパターンが異なる。このような場合でも、1つの陽極で、遮蔽物のパターンを調整することにより、様々な種類の軸状部材又は被メッキ部に適合しながら、磁性合金メッキの厚さをより均一に形成することができる。   Further, depending on the type of the shaft-shaped member, the pattern such as the length of the portion to be plated is different. Even in such a case, the thickness of the magnetic alloy plating can be formed more uniformly while adjusting the pattern of the shielding object with one anode while adapting to various types of shaft-shaped members or parts to be plated. Can do.

第1の態様において、好ましくは、前記遮蔽物は、前記陽極に着脱可能な組み立て式である。   In the first aspect, preferably, the shield is an assembly type that can be attached to and detached from the anode.

遮蔽物を交換可能にすることで、様々な種類の軸状部材又は被メッキ部に適合しながら、磁性合金メッキの厚さをより均一に形成することができる。   By making the shields replaceable, the thickness of the magnetic alloy plating can be formed more uniformly while adapting to various types of shaft-shaped members or parts to be plated.

第1の態様において、好ましくは、メッキ装置は、前記被メッキ部と対向するメッキ液噴出口を有するメッキ液噴出ノズルをさらに備えてもよく、前記メッキ液噴出ノズルは、前記メッキ槽に着脱可能な組み立て式であってもよい。   In the first aspect, preferably, the plating apparatus may further include a plating solution ejection nozzle having a plating solution ejection port facing the portion to be plated, and the plating solution ejection nozzle is detachable from the plating tank. It may be an assembly type.

軸状部材の種類によっては、被メッキ部の中心位置等のパターンが異なる。このような場合でも、被メッキ部と対向するメッキ液噴出口を有するメッキ液噴出ノズルに交換することで、様々な種類の軸状部材又は被メッキ部に適合しながら、磁性合金メッキの厚さをより均一に形成することができる。   Depending on the type of the shaft-shaped member, the pattern of the center position of the portion to be plated is different. Even in such a case, the thickness of the magnetic alloy plating can be adapted to various types of shaft-like members or parts to be plated by replacing with a plating liquid jet nozzle having a plating liquid jet nozzle facing the part to be plated. Can be formed more uniformly.

第1の態様では、好ましくは、前記軸状部材の軸方向において、前記被メッキ部の中心位置と前記メッキ液噴出口の中心位置とは、前記中心位置に関する所定の許容値内で一致する。   In the first aspect, preferably, in the axial direction of the shaft-shaped member, the center position of the plated portion and the center position of the plating solution outlet coincide with each other within a predetermined allowable value related to the center position.

軸状部材の軸方向において、軸状部材の被メッキ部の中心位置とメッキ液噴出口(メッキ液噴出ノズルの出力部)の中心位置とが一致する場合、被メッキ部に流れ込むメッキ液の流線は、被メッキ部の中心位置に対して対称になる。従って、磁性合金メッキの厚さのバラツキも、被メッキ部の中心位置に対して対称になり、磁性合金メッキの厚さをより均一に形成することができる。また、軸状部材を回転させてメッキ槽内のメッキ液を攪拌する場合であっても、磁性合金メッキの組成をより均一に形成することができる。   In the axial direction of the shaft-shaped member, when the center position of the plated portion of the shaft-shaped member coincides with the center position of the plating solution ejection port (output portion of the plating solution ejection nozzle), the flow of the plating solution flowing into the plated portion The line is symmetric with respect to the center position of the portion to be plated. Therefore, the variation in the thickness of the magnetic alloy plating is also symmetric with respect to the center position of the portion to be plated, and the thickness of the magnetic alloy plating can be formed more uniformly. Even when the shaft member is rotated to stir the plating solution in the plating tank, the composition of the magnetic alloy plating can be formed more uniformly.

第1の態様では、好ましくは、前記軸状部材の軸方向において、前記被メッキ部の長さと前記メッキ液噴出口の長さとは、前記長さに関する所定の許容値内で一致する。   In the first aspect, preferably, in the axial direction of the shaft-shaped member, the length of the portion to be plated and the length of the plating solution jet outlet coincide with each other within a predetermined allowable value related to the length.

軸状部材の軸方向において、軸状部材の被メッキ部の長さとメッキ液噴出口(メッキ液噴出ノズルの出力部)の長さとが一致する場合、被メッキ部に流れ込む金属イオンの密度は、被メッキ部の全体に対して均一になる。従って、磁性合金メッキの厚さをより均一に形成することができる。また、軸状部材を回転させてメッキ槽内のメッキ液を攪拌する場合であっても、磁性合金メッキの組成をより均一に形成することができる。   In the axial direction of the shaft-shaped member, when the length of the portion to be plated of the shaft-shaped member and the length of the plating solution ejection port (the output portion of the plating solution ejection nozzle) match, the density of metal ions flowing into the portion to be plated is It becomes uniform over the entire portion to be plated. Therefore, the thickness of the magnetic alloy plating can be formed more uniformly. Even when the shaft member is rotated to stir the plating solution in the plating tank, the composition of the magnetic alloy plating can be formed more uniformly.

当業者は、例示した本発明に従う態様が、本発明の精神を逸脱することなく、さらに変更され得ることを容易に理解できるであろう。   Those skilled in the art will readily understand that the illustrated embodiments according to the present invention can be further modified without departing from the spirit of the present invention.

本発明に従うメッキ装置の詳細構成例を示す。The detailed structural example of the plating apparatus according to this invention is shown. 図2(A)は、図1のメッキ装置の概略構成例を示し、図2(B)は、図1に示すメッキ槽の内部を示す詳細構成例を示す。2A shows a schematic configuration example of the plating apparatus of FIG. 1, and FIG. 2B shows a detailed configuration example showing the inside of the plating tank shown in FIG. 図3(A)は、図1のメッキ装置の他の概略構成例を示し、図3(B)は、図1に示すメッキ槽の内部を示す他の詳細構成例を示す。3A shows another schematic configuration example of the plating apparatus of FIG. 1, and FIG. 3B shows another detailed configuration example showing the inside of the plating tank shown in FIG. 図1に示すメッキ槽の上面図を示す。The top view of the plating tank shown in FIG. 1 is shown. 図5(A)は、図2(B)に示すメッキ液噴出ノズルの外観例を示し、図5(B)は、図5(A)のメッキ液噴出ノズルの出力部の概略構成例を示す。5A shows an example of the appearance of the plating solution ejection nozzle shown in FIG. 2B, and FIG. 5B shows a schematic configuration example of the output part of the plating solution ejection nozzle shown in FIG. . 図6(A)は、図3(B)に示すメッキ液噴出ノズルの外観例を示し、図6(B)は、図1に示すメッキ装置の陽極の変形例を示す。6A shows an external appearance example of the plating solution ejection nozzle shown in FIG. 3B, and FIG. 6B shows a modification of the anode of the plating apparatus shown in FIG. 図3(B)の金属籠及び遮蔽物の分解斜視図の一例を示す。An example of the exploded perspective view of the metal cage and shield of FIG. 3 (B) is shown. 図8(A)は、図7の遮蔽物の変形例を示し、図8(B)は、図3(B)の陽極の変形例を示す。8A shows a modification of the shield in FIG. 7, and FIG. 8B shows a modification of the anode in FIG. 3B. 図9(A)〜図9(H)は、それぞれ、被メッキ部の中心位置と出力部の中心位置とを実質的に一致させる時の説明図を示す。FIGS. 9A to 9H are explanatory views when the center position of the portion to be plated and the center position of the output portion are substantially matched. 図10(A)〜図10(H)は、それぞれ、被メッキ部の中心位置と出力部の中心位置とを実質的に一致させる時のもう1つの説明図を示す。FIGS. 10A to 10H show another explanatory view when the center position of the portion to be plated and the center position of the output portion are substantially matched.

以下、本発明の好ましい実施例について、添付した図面に基づいて詳細に説明する。当業者は、本発明が、以下に説明される実施例によって不当に限定されないことを留意すべきである。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. One skilled in the art should note that the present invention is not unduly limited by the examples described below.

図1は、本発明に従うメッキ装置の詳細構成例を示し、図2(A)は、主として、本発明に従うメッキ装置(又は陽極の出力部)の概略構成例(又は拡大図)を示す。図1の例において、メッキ装置1は、陽極10と軸状部材5との間に設けられた遮蔽物10mを備え、図2(A)の例において、遮蔽物10mで陽極10の出力部10sを規定している点に特徴がある。言い換えれば、図1のメッキ装置1は、特許文献1のメッキ装置を改良した点に特徴がある。但し、後述するように、陽極10の種類によっては、出力部10sによって磁性合金メッキの厚さをより均一に形成することができる限り、メッキ装置1が遮蔽物10mを備えなくてもよい。   FIG. 1 shows a detailed configuration example of a plating apparatus according to the present invention, and FIG. 2A mainly shows a schematic configuration example (or enlarged view) of a plating apparatus (or an output part of an anode) according to the present invention. In the example of FIG. 1, the plating apparatus 1 includes a shielding object 10 m provided between the anode 10 and the shaft-like member 5, and in the example of FIG. 2A, the output 10 s of the anode 10 with the shielding object 10 m. It is characterized in that it stipulates. In other words, the plating apparatus 1 of FIG. 1 is characterized in that the plating apparatus of Patent Document 1 is improved. However, as will be described later, depending on the type of the anode 10, the plating apparatus 1 may not include the shielding object 10m as long as the thickness of the magnetic alloy plating can be more uniformly formed by the output portion 10s.

図1の例において、メッキ装置1は、メッキ液2を溜めるメッキ槽3を有し、メッキ液3に浸漬された軸状部材5を陰極として軸状部材5に磁性合金メッキを施す。図2(A)の例において、メッキ装置1は、軸状部材5の外周面に装着され、軸状部材5の被メッキ部5sを規定する複数の遮蔽治具13,14,15と、軸状部材5の周囲に設けられ、被メッキ部5sと対向する出力部10sを有する陽極10とを備える。   In the example of FIG. 1, the plating apparatus 1 includes a plating tank 3 that stores a plating solution 2, and performs magnetic alloy plating on the shaft-like member 5 using the shaft-like member 5 immersed in the plating solution 3 as a cathode. In the example of FIG. 2A, the plating apparatus 1 is mounted on the outer peripheral surface of the shaft-like member 5, and includes a plurality of shielding jigs 13, 14, 15 that define the portion to be plated 5 s of the shaft-like member 5, and the shaft And an anode 10 having an output part 10 s provided around the shaped member 5 and facing the part to be plated 5 s.

図2(A)の参照するに、複数の遮蔽治具13,14,15は、上下両端の遮蔽治具13,15と両端の遮蔽治具13,15の間に設けられた中間の遮蔽治具14とで構成され、被メッキ部5sは、軸状部材5のうちの両端の遮蔽治具13,15の内側であって、遮蔽治具14で覆われていない部分である。言い換えれば、被メッキ部5sは、複数の遮蔽治具13,14,15のうちの隣り合う遮蔽治具(隣り合う遮蔽治具13,14、隣り合う遮蔽治具14,15)間に位置する軸状部材5の2つの部分である。被メッキ部5sは、軸状部材5の例えば2つの部分で構成されているが、2つの部分の間のスペース(遮蔽治具14で覆われている部分)を無視して、被メッキ部5sの長さ(外形長さ)は、被メッキ部5sの一方の端部から他方の端部までの距離5lである。軸状部材5の軸方向Jにおいて、軸状部材5の一方の端部(底部)位置は、0(原点)であり、被メッキ部5sの中心位置は、5cである。   As shown in FIG. 2A, the plurality of shielding jigs 13, 14, 15 are intermediate shielding treatments provided between the shielding jigs 13, 15 at both upper and lower ends and the shielding jigs 13, 15 at both ends. The portion to be plated 5 s is a portion that is inside the shielding jigs 13 and 15 at both ends of the shaft-like member 5 and is not covered with the shielding jig 14. In other words, the portion to be plated 5 s is located between adjacent shielding jigs (adjacent shielding jigs 13, 14, adjacent shielding jigs 14, 15) among the plurality of shielding jigs 13, 14, 15. These are two parts of the shaft-like member 5. The portion to be plated 5s is composed of, for example, two portions of the shaft-like member 5, but the space between the two portions (the portion covered with the shielding jig 14) is ignored, and the portion to be plated 5s. Is the distance 5l from one end of the portion to be plated 5s to the other end. In the axial direction J of the shaft-shaped member 5, one end (bottom) position of the shaft-shaped member 5 is 0 (origin), and the center position of the portion to be plated 5s is 5c.

図2(A)を参照するに、遮蔽物10mは、複数の部材で構成され、陽極10の出力部10sは、被メッキ部5sと類似して、複数の部材で規定され、複数の部材で覆われていない部分又は遮蔽されていない部分である。出力部10sの長さ(外形長さ)は、出力部10sの一方の端部から他方の端部までの距離10lであり、軸状部材5の軸方向Jにおいて、出力部10sの中心位置は、10cである。軸状部材5の被メッキ部5sの中心位置5cと陽極10の出力部10sの中心位置10cとが一致する場合、被メッキ部5sに流れ込む電流線は、被メッキ部5sの中心位置に対して対称になる。従って、磁性合金メッキの厚さのバラツキも、被メッキ部5sの中心位置に対して対称になり、磁性合金メッキの厚さをより均一に形成することができる。但し、中心位置5cと陽極10の出力部10sの中心位置10cとが完全に一致する必要はなく、後述するように、両者は、実質的に一致していればよい。   Referring to FIG. 2A, the shielding object 10m is composed of a plurality of members, and the output portion 10s of the anode 10 is defined by a plurality of members, similar to the portion to be plated 5s. It is an uncovered part or an unshielded part. The length (outer length) of the output portion 10s is a distance 10l from one end portion of the output portion 10s to the other end portion, and the center position of the output portion 10s in the axial direction J of the shaft-like member 5 is 10c. When the center position 5c of the portion to be plated 5s of the shaft-like member 5 and the center position 10c of the output portion 10s of the anode 10 match, the current line flowing into the portion to be plated 5s is relative to the center position of the portion to be plated 5s. It becomes symmetric. Therefore, the variation in the thickness of the magnetic alloy plating is also symmetric with respect to the center position of the portion to be plated 5s, and the thickness of the magnetic alloy plating can be formed more uniformly. However, the center position 5c and the center position 10c of the output portion 10s of the anode 10 do not have to be completely coincident with each other as long as they are substantially coincident as described later.

図2(A)の例において、軸状部材5の軸方向Jにおいて、軸状部材5の被メッキ部5sの長さ5lと陽極10の出力部10sの長さ10lとは、後述するように、実質的に一致していることが好ましく、被メッキ部5sの長さ5lが出力部10sの長さ10lよりも若干長くてもよく、両者が完全に一致してもよく、被メッキ部5sの長さ5lが出力部10sの長さ10lよりも若干短くてもよい。   In the example of FIG. 2A, in the axial direction J of the shaft-shaped member 5, the length 5l of the portion 5s to be plated of the shaft-shaped member 5 and the length 10l of the output portion 10s of the anode 10 are described later. The length 5l of the portion to be plated 5s may be slightly longer than the length 10l of the output portion 10s, or both may be completely coincident with each other. The length 5l may be slightly shorter than the length 10l of the output portion 10s.

図2(A)の例において、軸状部材5の軸方向Jにおいて、軸状部材5の被メッキ部5sの中心位置5cと、後述するメッキ液噴出ノズル9の出力部(メッキ液噴出口26)の中心位置26cとは、実質的に一致していることが好ましい。更に、軸状部材5の軸方向Jにおいて、軸状部材5の被メッキ部5sの長さ5lとメッキ液噴出ノズル9の出力部の長さ26lとは、実質的に一致していることが好ましい。   In the example of FIG. 2A, in the axial direction J of the shaft-like member 5, the center position 5c of the portion to be plated 5s of the shaft-like member 5 and the output portion (plating solution outlet 26 of the plating solution jet nozzle 9 described later). ) Is preferably substantially coincident with the center position 26c. Furthermore, in the axial direction J of the shaft-shaped member 5, the length 5l of the portion to be plated 5s of the shaft-shaped member 5 and the length 26l of the output portion of the plating solution ejection nozzle 9 are substantially the same. preferable.

図1の例において、メッキ装置1は、メッキ液2の温度等を調整するためのメッキ液調整槽4と、被メッキ部5sを有する軸状部材5を回転自在に保持する回転保持装置6とを更に備える。軸状部材5は、例えばクロムモリブデン鋼材から成るステアリングシャフトであって、回転保持装置6の保持部材12によって、メッキ槽3の中心に鉛直方向に保持されている。メッキ槽3の下部外側に液チャンバ7が設けられ、メッキ槽3の上部外側に回収部8が設けられ、メッキ槽3の内部に、陽極10及び被メッキ部5s(陰極)だけでなく、例えば絶縁性樹脂製のメッキ液噴出ノズル9も設けられている。なお、メッキ液噴出ノズル9は、後述するように、メッキ槽3又は例えば液チャンバ7に着脱可能な組み立て式であることが好ましい。   In the example of FIG. 1, the plating apparatus 1 includes a plating solution adjustment tank 4 for adjusting the temperature of the plating solution 2, and a rotation holding device 6 that rotatably holds a shaft-like member 5 having a portion to be plated 5 s. Is further provided. The shaft-like member 5 is a steering shaft made of, for example, chrome molybdenum steel, and is held in the vertical direction at the center of the plating tank 3 by the holding member 12 of the rotation holding device 6. A liquid chamber 7 is provided outside the lower part of the plating tank 3, a recovery part 8 is provided outside the upper part of the plating tank 3, and not only the anode 10 and the part to be plated 5 s (cathode) but also, for example, A plating solution jet nozzle 9 made of an insulating resin is also provided. In addition, it is preferable that the plating liquid ejection nozzle 9 is an assembly type that can be attached to and detached from the plating tank 3 or the liquid chamber 7 as described later.

メッキ液2は、少なくとも2つの金属イオン(例えばNiイオン及びFeイオン)を所定の割合で含む合金メッキ液であり、メッキ液調整槽4により所定の温度に保たれている。軸状部材5の外周面には、例えば絶縁性樹脂製の遮蔽治具13,14,15が装着されている。遮蔽治具13,14,15は、厚さは、例えば10[mm]以上であることが好ましい円筒状であって、軸状部材5に対して着脱できるように、その直径方向で分割可能である。両端の遮蔽治具13,15の間に設けられた中間遮蔽治具14の直径は、両端遮蔽治具13,15の直径よりも小さく形成することが好ましいが、中間遮蔽治具14を省略してもよい。   The plating solution 2 is an alloy plating solution containing at least two metal ions (for example, Ni ions and Fe ions) in a predetermined ratio, and is maintained at a predetermined temperature by the plating solution adjusting tank 4. On the outer peripheral surface of the shaft-like member 5, for example, shielding jigs 13, 14, 15 made of insulating resin are mounted. The shielding jigs 13, 14, and 15 have a cylindrical shape that is preferably, for example, 10 [mm] or more, and can be divided in the diameter direction so as to be detachable from the shaft-like member 5. is there. The diameter of the intermediate shielding jig 14 provided between the shielding jigs 13 and 15 at both ends is preferably smaller than the diameter of the shielding jigs 13 and 15 at both ends, but the intermediate shielding jig 14 is omitted. May be.

回転保持装置6は、鉛直方向に設けられた金属製の回転軸18と、回転軸18の中間部に設けられた上下機構19と、回転軸18と上下機構19との接合部に設けられたベアリング20と、回転軸18の一端に設けられた保持部材12と、回転軸18の他端に設けられたモータ21と、モータ21近傍に設けられ電源22の負極に電気的に接続された給電ブラシ23と、を備える。回転保持装置6は、上下機構19によって回転軸18を上下に動かすことにより軸状部材5をメッキ液2に浸漬させ、あるいは軸状部材5をメッキ液2から引き上げるように構成されている。また、回転保持装置6は、モータ21によって回転軸18を回転することにより、軸状部材5を回転させるように構成されている。   The rotation holding device 6 is provided at a metal rotation shaft 18 provided in a vertical direction, a vertical mechanism 19 provided at an intermediate portion of the rotation shaft 18, and a joint portion between the rotation shaft 18 and the vertical mechanism 19. The bearing 20, the holding member 12 provided at one end of the rotating shaft 18, the motor 21 provided at the other end of the rotating shaft 18, and the power supply provided near the motor 21 and electrically connected to the negative electrode of the power source 22. A brush 23. The rotation holding device 6 is configured to immerse the shaft-like member 5 in the plating solution 2 by moving the rotating shaft 18 up and down by the up-and-down mechanism 19 or to lift the shaft-like member 5 from the plating solution 2. The rotation holding device 6 is configured to rotate the shaft-like member 5 by rotating the rotation shaft 18 by the motor 21.

メッキ液調整槽4は、攪拌機29と、温度調整器30と、ヒータ31とを備え、メッキ液調整槽4の内部にメッキ液2が溜められている。攪拌機29は、メッキ液2を攪拌することにより、メッキ液2中の例えばNiイオン及びFeイオンを均一に分散させるとともに、メッキ液2の液温を均一化する。温度調整器30は、メッキ液2の温度を測定しヒータ31を制御することにより、メッキ液2を所定の温度に維持する。   The plating solution adjustment tank 4 includes a stirrer 29, a temperature adjuster 30, and a heater 31, and the plating solution 2 is stored inside the plating solution adjustment tank 4. The stirrer 29 stirs the plating solution 2 to uniformly disperse, for example, Ni ions and Fe ions in the plating solution 2 and to make the temperature of the plating solution 2 uniform. The temperature regulator 30 measures the temperature of the plating solution 2 and controls the heater 31 to maintain the plating solution 2 at a predetermined temperature.

メッキ液調整槽4内のメッキ液2は、メッキ液調整槽4内と液チャンバ7内とを連通させるメッキ液供給管32を介して液チャンバ7内に供給される。メッキ液供給管32の途中には、ポンプ33と、ストレーナ34と、流量計35とが設けられている。また、メッキ液2の流量を調節するためのコントローラ36が設けられており、コントローラ36はインバータ37を介してポンプ33に接続している。流量計35によりメッキ液供給管32内を通過するメッキ液2の流量が測定され、コントローラ36により測定値と予め設定しておいた値とが比較されてインバータ37が制御され、インバータ37によりポンプ33のポンプ流量が調節されることにより、液チャンバ7内に供給されるメッキ液2の流量、すなわちメッキ液噴出口26(図2B)から噴出されるメッキ液2の流量が調節される。また、ストレーナ34により、メッキ液供給管32内のメッキ液2中のゴミ等の異物が濾過される。   The plating solution 2 in the plating solution adjustment tank 4 is supplied into the liquid chamber 7 through a plating solution supply pipe 32 that allows the inside of the plating solution adjustment tank 4 and the solution chamber 7 to communicate with each other. In the middle of the plating solution supply pipe 32, a pump 33, a strainer 34, and a flow meter 35 are provided. A controller 36 for adjusting the flow rate of the plating solution 2 is provided, and the controller 36 is connected to the pump 33 via an inverter 37. The flow rate of the plating solution 2 passing through the plating solution supply pipe 32 is measured by the flow meter 35, the measured value is compared with a preset value by the controller 36, and the inverter 37 is controlled. By adjusting the pump flow rate of 33, the flow rate of the plating solution 2 supplied into the solution chamber 7, that is, the flow rate of the plating solution 2 ejected from the plating solution outlet 26 (FIG. 2B) is adjusted. Further, foreign substances such as dust in the plating solution 2 in the plating solution supply pipe 32 are filtered by the strainer 34.

図2(B)は、図1に示すメッキ槽3の内部を示す詳細構成例を示す。図3(A)は、主として、図1に示すメッキ装置1の陽極10の出力部10sの他の概略構成例(拡大図)を示し、図3(B)は、図1に示すメッキ装置1のメッキ槽3の内部を示す他の詳細構成例を示す。図3の例において、両端の遮蔽治具13,15の間に設けられた遮蔽治具14が省略されている。言い換えれば、互いに異なる磁気異方性が付与される前の2つの磁歪膜の間のスペースが省略され、単一の被メッキ部5sに単一の磁性合金メッキを形成し、その後に、単一の磁性合金メッキに、互いに異なる磁気異方性を付与して2つの機能を有する磁歪膜を形成してもよい。更に、図3の例において、被メッキ部5sは、図2の例と比べて、メッキ液2の上側に位置している。   FIG. 2B shows a detailed configuration example showing the inside of the plating tank 3 shown in FIG. 3A mainly shows another schematic configuration example (enlarged view) of the output portion 10s of the anode 10 of the plating apparatus 1 shown in FIG. 1, and FIG. 3B shows the plating apparatus 1 shown in FIG. The other detailed structural example which shows the inside of the plating tank 3 is shown. In the example of FIG. 3, the shielding jig 14 provided between the shielding jigs 13 and 15 at both ends is omitted. In other words, the space between the two magnetostrictive films before the magnetic anisotropy different from each other is given is omitted, and a single magnetic alloy plating is formed on the single plated portion 5s, and then a single magnetic alloy plating is formed. A magnetostrictive film having two functions may be formed by giving different magnetic anisotropies to the magnetic alloy plating. Further, in the example of FIG. 3, the portion to be plated 5 s is located above the plating solution 2 compared to the example of FIG. 2.

図2(B)の例及び図3(B)の例において、メッキ液噴出ノズル9は、液チャンバ7を介してメッキ槽3に着脱可能な組み立て式であり、メッキ液噴出ノズル9の底部にフランジ9fが設けられ、複数のボルト9bでメッキ液噴出ノズル9又はフランジ9fが液チャンバ7に固定される。なお、フランジ9f及びボルト9bは、固定具の一例であって、他の部材又は他の部品で固定具を構成してもよい。   In the example of FIG. 2B and the example of FIG. 3B, the plating solution ejection nozzle 9 is an assembly type that can be attached to and detached from the plating tank 3 through the solution chamber 7, and is attached to the bottom of the plating solution ejection nozzle 9. A flange 9f is provided, and the plating solution ejection nozzle 9 or the flange 9f is fixed to the liquid chamber 7 by a plurality of bolts 9b. The flange 9f and the bolt 9b are an example of a fixture, and the fixture may be constituted by other members or other components.

軸状部材5の種類によっては、被メッキ部5sが軸状部材5に設けられる位置(中心位置5c)が異なり、図3(B)の例における被メッキ部5sは、図2(B)の例と比べて、メッキ液2の上側に位置している。このような場合でも、被メッキ部5sと対向するメッキ液噴出口26を有するメッキ液噴出ノズル9に交換することで、様々な種類の軸状部材5又は被メッキ部5sに適合しながら、磁性合金メッキの厚さをより均一に形成することができる。言い換えれば、図2(B)のメッキ液噴出ノズル9の長さを伸ばし、複数のメッキ液噴出口26を上方に位置させて、例えば図3(B)の交換用のメッキ液噴出ノズル9を準備することができる。   Depending on the type of the shaft-like member 5, the position (center position 5c) at which the portion to be plated 5s is provided on the shaft-like member 5 differs, and the portion to be plated 5s in the example of FIG. Compared to the example, it is located above the plating solution 2. Even in such a case, by replacing with the plating solution ejection nozzle 9 having the plating solution ejection port 26 facing the portion to be plated 5s, the magnetic material is adapted to various types of shaft-like members 5 or the portion to be plated 5s. The thickness of the alloy plating can be formed more uniformly. In other words, the length of the plating solution ejection nozzle 9 shown in FIG. 2B is extended, and the plurality of plating solution ejection ports 26 are positioned upward. For example, the replacement plating solution ejection nozzle 9 shown in FIG. Can be prepared.

後述するように、遮蔽物10mも、メッキ液噴出ノズル9と同様に交換することで、様々な種類の軸状部材5又は被メッキ部5sに適合することができる。   As will be described later, the shielding object 10m can also be adapted to various types of shaft-like members 5 or to-be-plated parts 5s by exchanging in the same manner as the plating solution ejection nozzle 9.

図2(B)の例及び図3(B)の例において、メッキ槽3は、例えば絶縁性樹脂製又は内側表面に絶縁塗膜が施された金属製の円筒形の槽である。メッキ液2は、メッキ液噴出ノズル9を介して液チャンバ7内からメッキ槽3内に供給され、メッキ槽3の上端部から回収部8内に溢れ出て、回収部8の底に設けられメッキ液回収管11を介して図1のメッキ液調整槽4に回収される。   In the example of FIG. 2 (B) and the example of FIG. 3 (B), the plating tank 3 is a cylindrical tank made of, for example, an insulating resin or a metal having an insulating coating applied to the inner surface. The plating liquid 2 is supplied from the liquid chamber 7 into the plating tank 3 through the plating liquid jet nozzle 9, overflows from the upper end portion of the plating tank 3 into the recovery unit 8, and is provided at the bottom of the recovery unit 8. It is collected in the plating solution adjusting tank 4 of FIG.

電源22がONであるときに、メッキ液2は、回転している軸状部材5の被メッキ部分5sに向かってメッキ液噴出口26から噴出される。これにより、被メッキ部5sの表面全体にメッキ液2が供給されるとともに、被メッキ部5sの表面全体で均一な液流を得ることができる。また、軸状部材5が回転しているので、被メッキ部5sの表面全体においてメッキ液2のNiイオン濃度及びFeイオン濃度が一定に保たれる。   When the power supply 22 is ON, the plating solution 2 is ejected from the plating solution ejection port 26 toward the portion to be plated 5 s of the rotating shaft-shaped member 5. Thereby, the plating solution 2 is supplied to the entire surface of the portion to be plated 5s, and a uniform liquid flow can be obtained over the entire surface of the portion to be plated 5s. Further, since the shaft-like member 5 is rotating, the Ni ion concentration and the Fe ion concentration of the plating solution 2 are kept constant over the entire surface of the portion to be plated 5s.

図2(B)の例及び図3(B)の例において、軸状部材5の外周面には、上遮蔽治具13よりも上の部分及び下遮蔽治具15よりも下の部分にマスキングテープ16が巻き付けられている(図5(A)及び図6(A)参照)。軸状部材5の被メッキ部5sは、遮蔽治具13,14,15又は遮蔽治具13,15及びマスキングテープ16で覆われていない部分である。   In the example of FIG. 2B and the example of FIG. 3B, the outer peripheral surface of the shaft-like member 5 is masked on a portion above the upper shielding jig 13 and a portion below the lower shielding jig 15. The tape 16 is wound (see FIGS. 5A and 6A). The plated portion 5 s of the shaft-like member 5 is a portion that is not covered with the shielding jigs 13, 14, 15 or the shielding jigs 13, 15 and the masking tape 16.

図2(B)の例及び図3(B)の例において、陽極10は、上端が開口し下端が閉口している円筒形の金属籠27と、金属籠27の内部に収容される複数の金属ペレット28とで構成される。金属籠27は、その円周面の内側にメッキ液噴出ノズル9を取り囲むように配置され、図示せぬ固定具によってメッキ槽3の内周面及び底面に接触しないように支持されている。金属籠27は、通電したときにメッキ液2中に溶解しないような例えばTiから成る金網で形成され、電源22(図1)の正極に電気的に接続されている。一方、金属ペレット28は、メッキ液2中に溶解可能な例えばNi−Fe合金製のペレット、Ni単体から成る金属ペレットとFe単体から成る金属ペレットとの混在ペレット等である。陽極10として金属ペレット28を用いているが、金属籠27に収容されるとともに金属籠27の目から漏れ出さないような大きさであれば、球体等の任意の形状であってもよい。   In the example of FIG. 2B and the example of FIG. 3B, the anode 10 includes a cylindrical metal rod 27 having an open upper end and a closed lower end, and a plurality of pieces accommodated inside the metal rod 27. And metal pellets 28. The metal rod 27 is disposed inside the circumferential surface so as to surround the plating solution ejection nozzle 9 and is supported by a fixture (not shown) so as not to contact the inner circumferential surface and the bottom surface of the plating tank 3. The metal rod 27 is formed of, for example, a metal mesh made of Ti so that it does not dissolve in the plating solution 2 when energized, and is electrically connected to the positive electrode of the power source 22 (FIG. 1). On the other hand, the metal pellet 28 is, for example, a pellet made of Ni—Fe alloy that can be dissolved in the plating solution 2, a mixed pellet of a metal pellet made of Ni alone and a metal pellet made of Fe alone, or the like. Although the metal pellet 28 is used as the anode 10, it may have any shape such as a sphere as long as it is accommodated in the metal rod 27 and does not leak from the eyes of the metal rod 27.

Ni−Fe合金メッキが施されることによりメッキ液2中のNiイオンとFeイオンとが消費されても、電解により金属ペレット28からNiイオンとFeイオンとがメッキ液2中に溶解し、メッキ液2中のNiイオン濃度及びFeイオン濃度が一定に保たれるので、メッキ液2を容易に管理することができる。また、金属籠27内に金属ペレット28が収容される構成となっているので、メッキの途中であっても金属ペレット28を金属籠27内に容易に供給することができる。   Even if Ni ions and Fe ions in the plating solution 2 are consumed due to the Ni-Fe alloy plating, the Ni ions and Fe ions are dissolved in the plating solution 2 from the metal pellets 28 by electrolysis, and plating is performed. Since the Ni ion concentration and the Fe ion concentration in the liquid 2 are kept constant, the plating liquid 2 can be easily managed. Further, since the metal pellet 28 is accommodated in the metal rod 27, the metal pellet 28 can be easily supplied into the metal rod 27 even during the plating.

図4は、図1に示すメッキ槽3の上面図を示す。図5(A)は、図2(B)に示すメッキ液噴出ノズル9の外観例を示し、図6(A)は、図3(B)に示すメッキ液噴出ノズル9の外観例を示す。図5(B)は、主として、図5(A)のメッキ液噴出ノズル9の出力部の概略構成例を示し、図6(B)は、図1に示すメッキ装置1の陽極10の変形例を示す。図4の例において、メッキ液噴出ノズル9は、軸状部材5を円中心とする円周上に等間隔に例えば4本設けられている。メッキ液噴出ノズル9の数は、4本以外の複数本であってもよく、1本であってもよい。   FIG. 4 shows a top view of the plating tank 3 shown in FIG. 5A shows an example of the appearance of the plating solution ejection nozzle 9 shown in FIG. 2B, and FIG. 6A shows an example of the appearance of the plating solution ejection nozzle 9 shown in FIG. FIG. 5B mainly shows a schematic configuration example of the output part of the plating solution ejection nozzle 9 of FIG. 5A, and FIG. 6B shows a modification of the anode 10 of the plating apparatus 1 shown in FIG. Indicates. In the example of FIG. 4, for example, four plating solution ejection nozzles 9 are provided at equal intervals on the circumference with the shaft-shaped member 5 as the center. The number of the plating solution ejection nozzles 9 may be a plurality other than four or one.

図6(B)の例において、陽極10全体から被メッキ部(陰極)5sに向かう。言い換えれば、図6(B)の陽極10全体が図2(A)の陽極10の出力部10sを構成し、被メッキ部5sの中心位置5cと出力部10sの中心位置10cとが一致するように、図6(B)の陽極10は、固定されている。図6(B)の例において、メッキ装置1又はメッキ槽3は、例えば図4等に示す遮蔽物10mを備えてない。   In the example of FIG. 6B, the whole anode 10 is directed to the portion to be plated (cathode) 5s. In other words, the anode 10 in FIG. 6B as a whole constitutes the output portion 10s of the anode 10 in FIG. 2A, and the center position 5c of the plated portion 5s and the center position 10c of the output portion 10s coincide with each other. Moreover, the anode 10 in FIG. 6B is fixed. In the example of FIG. 6B, the plating apparatus 1 or the plating tank 3 does not include the shielding object 10m shown in FIG.

図5(A)の例及び図5(B)の例において、複数のメッキ液噴出口26は、被メッキ部5sに対向するようにメッキ液噴出ノズル9の外周面に設けられ、軸状部材5の軸方向と平行に配置されている。図5(A)の例において、複数のメッキ液噴出口26は、個々の被メッキ部5s,5s(被メッキ部全体における例えば2つの被副メッキ部5s,5s)に対応して複数の領域(例えば上部領域及び下部領域)に分類されている。個々の領域(上部領域、下部領域)の長さ26l1,26l2は、対応する1つの被副メッキ部5sの長さ5l1,5l2と実質的に一致することが好ましい。更に、個々の領域(上部領域、下部領域)の中心26c1,26c2は、対応する1つの被副メッキ部5sの中心5c1,5c2と実質的に一致することが好ましい。これらにより、磁性合金メッキの厚さをより均一に形成することができるとともに、軸状部材5を回転させてメッキ槽3内のメッキ液2を攪拌する場合であっても、磁性合金メッキの組成をより均一に形成することができる。   In the example of FIG. 5 (A) and the example of FIG. 5 (B), the plurality of plating solution ejection ports 26 are provided on the outer peripheral surface of the plating solution ejection nozzle 9 so as to face the portion to be plated 5s, and are axial members. 5 is arranged in parallel with the axial direction. In the example of FIG. 5A, the plurality of plating solution outlets 26 have a plurality of regions corresponding to the individual plated portions 5s, 5s (for example, two sub-plated portions 5s, 5s in the entire plated portion). (For example, an upper region and a lower region). It is preferable that the lengths 26l1 and 26l2 of the individual regions (upper region and lower region) substantially coincide with the lengths 5l1 and 5l2 of the corresponding sub-plated portion 5s. Furthermore, it is preferable that the centers 26c1 and 26c2 of the individual regions (upper region and lower region) substantially coincide with the centers 5c1 and 5c2 of the corresponding sub-plated portion 5s. Accordingly, the thickness of the magnetic alloy plating can be formed more uniformly, and the composition of the magnetic alloy plating can be achieved even when the shaft member 5 is rotated and the plating solution 2 in the plating tank 3 is stirred. Can be formed more uniformly.

図5(B)の例において、陽極10の出力部10s全体における例えば2つの副出力部は、個々の被副メッキ部5sに対応して複数の領域(例えば上部領域及び下部領域)に分類され、個々の領域(上部領域、下部領域)の長さ10l1,10l2は、対応する1つの被副メッキ部5sの長さ5l1,5l2と実質的に一致することが好ましい。更に、個々の領域(上部領域、下部領域)の中心10c1,10c2は、対応する1つの被副メッキ部5sの中心5c1,5c2と実質的に一致することが好ましい。これらにより、個々の被メッキ部5s,5s(被メッキ部全体における例えば2つの被副メッキ部5s,5s)において、磁性合金メッキの厚さをより均一に形成することができる。   In the example of FIG. 5B, for example, two sub-output portions in the entire output portion 10s of the anode 10 are classified into a plurality of regions (for example, an upper region and a lower region) corresponding to each sub-plated portion 5s. The lengths 10l1 and 10l2 of the individual regions (upper region and lower region) are preferably substantially equal to the lengths 5l1 and 5l2 of the corresponding sub-plated portion 5s. Furthermore, it is preferable that the centers 10c1 and 10c2 of the individual regions (upper region and lower region) substantially coincide with the centers 5c1 and 5c2 of the corresponding sub-plated portion 5s. Accordingly, the thickness of the magnetic alloy plating can be more uniformly formed in each of the plated portions 5s and 5s (for example, two sub-plated portions 5s and 5s in the entire plated portion).

図7は、図3(B)の金属籠27及び遮蔽物10mの分解斜視図の一例を示す。図7の例において、例えば3つの開口部を有する円筒状の遮蔽物10mは、例えばボルト10b、フレーム10f1及び図示せぬナット等の固定具で金属籠27の内側表面(円周面)に固定することができる。遮蔽物10mのパターンは、陽極10の出力部10sのパターンを規定し、遮蔽物10mは、陽極10又は例えば金属籠27に着脱可能な組み立て式であることが好ましい。言い換えれば、遮蔽物10mの開口部で陽極10又は金属ペレット28に対応する部分が陽極10の出力部10sを規定し、遮蔽物10mは、交換式であることが好ましい。代替的に、金属籠27又は陽極10が交換式であってもよい。   FIG. 7 shows an example of an exploded perspective view of the metal rod 27 and the shield 10m of FIG. In the example of FIG. 7, for example, a cylindrical shielding object 10 m having three openings is fixed to the inner surface (circumferential surface) of the metal rod 27 with a fixture such as a bolt 10 b, a frame 10 f 1, and a nut (not shown). can do. The pattern of the shielding object 10m defines the pattern of the output portion 10s of the anode 10, and the shielding object 10m is preferably an assembly type that can be attached to and detached from the anode 10 or the metal rod 27, for example. In other words, the portion corresponding to the anode 10 or the metal pellet 28 in the opening of the shielding object 10m defines the output part 10s of the anode 10, and the shielding object 10m is preferably exchangeable. Alternatively, the metal rod 27 or the anode 10 may be replaceable.

金属籠27は、フレーム10f2及び図示せぬ部材又は部品等の固定具で、図1のメッキ槽3に固定することができる。なお、遮蔽物10m及び固定具(ボルト10b、フレーム10f1、フレーム10f2等)は、絶縁物であり、両者は、例えば絶縁物質で構成され、又は両者の表面に例えば絶縁塗膜が施される。   The metal rod 27 can be fixed to the plating tank 3 of FIG. 1 with a fixture such as a frame 10f2 and a member or component not shown. The shielding object 10m and the fixtures (bolts 10b, frame 10f1, frame 10f2, etc.) are insulators, and both are made of, for example, an insulating material, or an insulating coating film is applied to the surfaces of both.

なお、図7の金属籠27及び遮蔽物10mを図2(B)に適用する場合、例えば3つの開口部は、円筒状の遮蔽物10mの下側に設けられ、遮蔽治具14に対応する部分の開口が閉じられ、言い換えれば例えば6つの開口部(図示せず)が円筒状の遮蔽物10mに設けられる。   When the metal rod 27 and the shielding object 10m of FIG. 7 are applied to FIG. 2B, for example, three openings are provided below the cylindrical shielding object 10m and correspond to the shielding jig 14. The opening of the part is closed, in other words, for example, six openings (not shown) are provided in the cylindrical shield 10m.

図8(A)は、図7の遮蔽物10mの変形例を示し、図8(B)は、図3(B)の陽極10の変形例を示す。図8(A)の例において、遮蔽物10mは、2つの円筒状の部材で構成され、図8(A)の遮蔽物10m,10mを金属籠27に固定する時、遮蔽物10m,10mの間のスペースが陽極10又は金属ペレット28の出力部10sを規定する。言い換えれば、遮蔽物10m,10mのパターンが陽極10又は金属ペレット28の出力部10sのパターンを規定する。   8A shows a modified example of the shielding object 10m in FIG. 7, and FIG. 8B shows a modified example of the anode 10 in FIG. 3B. In the example of FIG. 8A, the shielding object 10m is composed of two cylindrical members. When the shielding objects 10m, 10m of FIG. 8A are fixed to the metal rod 27, the shielding objects 10m, 10m The space in between defines the output portion 10 s of the anode 10 or the metal pellet 28. In other words, the pattern of the shielding objects 10m and 10m defines the pattern of the output portion 10s of the anode 10 or the metal pellet 28.

図8(A)の遮蔽物10m,10mは、金属籠27に固定しないで、例えば図8(B)の例に示すように、ボルト10b、ナット10n等の固定具で、例えば6本の板状の部材で構成される6つの陽極10,10,10,10,10,10に固定してもよい。言い換えれば、メッキ装置1は、金属籠27及び金属ペレット28で構成される陽極10の代わりに、板状の溶解しない陽極10を採用してもよい。   The shields 10m and 10m in FIG. 8A are not fixed to the metal rod 27, but are, for example, six plates with a fixture such as a bolt 10b and a nut 10n as shown in the example of FIG. 8B. You may fix to the six anodes 10, 10, 10, 10, 10, 10 comprised by a shape-shaped member. In other words, the plating apparatus 1 may employ the plate-like undissolved anode 10 instead of the anode 10 composed of the metal rod 27 and the metal pellet 28.

図8(A)の遮蔽物10m,10mを図2(B)に適用する場合、遮蔽物10mは、遮蔽治具14に対応する部分の円筒状の部材を含んで、例えば3つの円筒状の部材(図示せず)で構成され、隣接する部材の間のスペースが、下側に設けられる。   When the shielding objects 10m and 10m in FIG. 8A are applied to FIG. 2B, the shielding object 10m includes a cylindrical member corresponding to the shielding jig 14, for example, three cylindrical shapes. It is composed of members (not shown), and a space between adjacent members is provided on the lower side.

図9(A)〜図9(H)は、それぞれ、被メッキ部5sの中心位置5c(又は被副メッキ部5sの中心位置5c1,5c2)と出力部10sの中心位置10c(又は副出力部10sの中心位置10c1,10c2)とを実質的に一致させる時の説明図を示す。図9(C)は、被メッキ部5sの中心位置5cと出力部10sの中心位置10cとが完全に一致する時の例えばNi−Fe合金メッキの膜厚のバラツキを示し、例えば図3(B)の被メッキ部5sの軸状部材5の軸方向Jにおける異なる6つの位置の膜厚を表している。また、図9(C)中の2つの点線で示される範囲が仕様によって定められている膜厚に関する許容範囲である。図9(A)及び図9(B)は、出力部10sの中心位置10cが被メッキ部5sの中心位置5cよりも高い時の膜厚のバラツキを示し、図9(A)の中心位置10cは、図9(B)の中心位置10cよりも高い。図9(D)〜図9(H)は、出力部10sの中心位置10cが被メッキ部5sの中心位置5cよりも低い時の膜厚のバラツキを示し、図9(D)〜図9(H)の中心位置10cは、図9(D)〜図9(H)の順で、徐々により低くなり、図9(H)の中心位置10cが最も低い。   9A to 9H respectively show the center position 5c of the portion to be plated 5s (or the center positions 5c1 and 5c2 of the portion to be plated 5s) and the center position 10c of the output portion 10s (or the sub output portion). An explanatory view when the center positions 10c1 and 10c2) of 10s are substantially matched is shown. FIG. 9C shows a variation in the film thickness of, for example, Ni—Fe alloy plating when the center position 5c of the portion to be plated 5s and the center position 10c of the output portion 10s completely coincide, for example, FIG. ) Represents the film thickness at six different positions in the axial direction J of the shaft-like member 5 of the portion to be plated 5s. Further, a range indicated by two dotted lines in FIG. 9C is an allowable range related to the film thickness determined by the specification. 9A and 9B show variations in film thickness when the center position 10c of the output portion 10s is higher than the center position 5c of the portion to be plated 5s, and the center position 10c in FIG. 9A. Is higher than the center position 10c in FIG. FIGS. 9D to 9H show the variation in film thickness when the center position 10c of the output portion 10s is lower than the center position 5c of the portion to be plated 5s, and FIGS. The center position 10c of H) gradually becomes lower in the order of FIGS. 9D to 9H, and the center position 10c of FIG. 9H is the lowest.

図9(A)〜図9(F)の各々において、6つの位置の膜厚のすべてが許容範囲内に収まる一方、図9(G)〜図9(H)の各々において、6つの位置の膜厚のすべてが許容範囲内に収まらない。従って、被メッキ部5sの中心位置5cと出力部10sの中心位置10cとが完全に一致するだけでなく(図9(C))、出力部10sの中心位置10cが被メッキ部5sの中心位置5cよりも若干高くてもよく(図9(A)、図9(B))、出力部10sの中心位置10cが被メッキ部5sの中心位置5cよりも若干低くてもよく(図9(D)、図9(E)、図9(F))、磁性合金メッキの厚さのバラツキが被メッキ部5sの全体で許容範囲内に収まるように、被メッキ部5sの中心位置5c(又は中心位置5c1,5c2)と陽極10の中心位置10c(又は中心位置10c1,10c2)とは、中心位置に関する所定の許容値内で一致すればよい。   In each of FIGS. 9A to 9F, all the film thicknesses at the six positions fall within the allowable range, while in each of FIGS. 9G to 9H, the six positions are All of the film thickness is not within the acceptable range. Therefore, not only the center position 5c of the portion to be plated 5s and the center position 10c of the output portion 10s completely coincide (FIG. 9C), but the center position 10c of the output portion 10s is the center position of the portion to be plated 5s. It may be slightly higher than 5c (FIGS. 9A and 9B), and the center position 10c of the output portion 10s may be slightly lower than the center position 5c of the plated portion 5s (FIG. 9D ), FIG. 9 (E), FIG. 9 (F)), the center position 5c (or center) of the plated portion 5s so that the variation in the thickness of the magnetic alloy plating is within the allowable range of the entire plated portion 5s. The positions 5c1, 5c2) and the center position 10c of the anode 10 (or the center positions 10c1, 10c2) have only to coincide with each other within a predetermined permissible value regarding the center position.

同様に、被メッキ部5sの長さ5lが出力部10sの長さ10lよりも若干長くてもよく、両者が完全に一致してもよく、被メッキ部5sの長さ5lが出力部10sの長さ10lよりも若干短くてもよく、磁性合金メッキの厚さのバラツキが被メッキ部5sの全体で許容範囲内に収まるように、被メッキ部5sの長さ5l(又は長さ5l1,5l2)と陽極10の出力部10sの長さ10l(又は長さ10l1,10l2)とは、長さに関する所定の許容値内で一致すればよい。   Similarly, the length 5l of the portion to be plated 5s may be slightly longer than the length 10l of the output portion 10s, or they may completely match, and the length 5l of the portion to be plated 5s is equal to the length of the output portion 10s. The length 5l (or lengths 5l1, 5l2) of the portion to be plated 5s may be slightly shorter than the length 10l so that the variation in the thickness of the magnetic alloy plating is within the allowable range of the entire portion to be plated 5s. ) And the length 10 l (or length 10 l 1, 10 l 2) of the output portion 10 s of the anode 10 only have to coincide with each other within a predetermined allowable value regarding the length.

図10(A)〜図10(H)は、それぞれ、被メッキ部5sの中心位置5cと出力部10sの中心位置10cとを実質的に一致させる時のもう1つの説明図を示す。図10(C)は、被メッキ部5sの中心位置5cと出力部10sの中心位置10cとが完全に一致する時の例えばNi−Fe合金メッキの鉄組成又は鉄の割合のバラツキを示す。また、図10(C)中の2つの点線で示される範囲が仕様によって定められている鉄組成に関する許容範囲である。図10(A)〜図10(H)の中心位置10cは、それぞれ、図9(A)〜図9(H)の中心位置10cに対応し、図10(A)の中心位置10cが最も高く、図10(H)の中心位置10cが最も低い。図10(B)〜図10(F)の各々において、6つの位置の鉄組成のすべてが許容範囲内に収まる一方、図10(A)、図10(G)〜図10(H)の各々において、6つの位置の鉄組成のすべてが許容範囲内に収まらない。   FIGS. 10A to 10H show another explanatory diagram when the center position 5c of the portion to be plated 5s and the center position 10c of the output portion 10s are substantially matched. FIG. 10C shows the variation in the iron composition or the ratio of iron in, for example, Ni—Fe alloy plating when the center position 5c of the portion to be plated 5s and the center position 10c of the output portion 10s completely coincide. Further, a range indicated by two dotted lines in FIG. 10C is an allowable range regarding the iron composition defined by the specification. The center position 10c in FIGS. 10A to 10H corresponds to the center position 10c in FIGS. 9A to 9H, and the center position 10c in FIG. 10A is the highest. The center position 10c in FIG. 10H is the lowest. In each of FIGS. 10 (B) to 10 (F), all of the iron compositions at the six positions fall within the allowable range, while each of FIGS. 10 (A), 10 (G) to 10 (H). In this case, all of the iron compositions at the six positions do not fall within the allowable range.

膜厚だけでなく、鉄組成も考慮することが好ましく、磁性合金メッキの各成分のバラツキも被メッキ部5sの全体で許容範囲内に収まるように、被メッキ部5sの中心位置5c(又は中心位置5c1,5c2)と陽極10の中心位置10c(又は中心位置10c1,10c2)とは、中心位置に関する所定の許容値内で一致することができる(図10(B)〜図10(F)、図9(B)〜図9(F))。同様に、膜厚だけでなく、鉄組成も考慮して、被メッキ部5sの長さ5l(又は長さ5l1,5l2)と陽極10の出力部10sの長さ10l(又は長さ10l1,10l2)とが、長さに関する所定の許容値内で一致することが好ましい。   It is preferable to consider not only the film thickness but also the iron composition, and the center position 5c (or center) of the portion to be plated 5s so that the variation of each component of the magnetic alloy plating is within the allowable range of the entire portion to be plated 5s. The positions 5c1 and 5c2) and the center position 10c of the anode 10 (or the center positions 10c1 and 10c2) can coincide with each other within a predetermined allowable value regarding the center position (FIGS. 10B to 10F). FIG. 9B to FIG. 9F). Similarly, in consideration of not only the film thickness but also the iron composition, the length 5l (or length 5l1, 5l2) of the portion to be plated 5s and the length 10l (or length 10l1, 10l2) of the output portion 10s of the anode 10 are considered. ) Preferably match within a predetermined tolerance for length.

本発明は、上述の例示的な実施例に限定されず、また、当業者は、上述の例示的な実施例を請求の範囲に含まれる技術的範囲まで、容易に変更することができる。   The present invention is not limited to the above-described exemplary embodiments, and those skilled in the art can easily change the above-described exemplary embodiments to the technical scope included in the claims.

0・・・原点、1・・・メッキ装置、2・・・メッキ液、3・・・メッキ槽、5・・・軸状部材、5c・・・被メッキ部の中心位置、5l・・・被メッキ部の長さ、5s・・・被メッキ部、6・・・回転手段、9・・・メッキ液噴出ノズル、9b、9f・・・メッキ液噴出ノズルの固定具、10・・・陽極、10b,10n,10f1・・・遮蔽物の固定具、10c・・・出力部の中心位置、10l・・・出力部の長さ、10f2・・・金属籠の固定具、10m・・・遮蔽物、10s・・・出力部、13,15・・・両端の遮蔽治具、14・・・両端の遮蔽治具の間に設けられた遮蔽治具、26・・・メッキ液噴出口、26c・・・メッキ液噴出口の中心位置、27・・・金属籠、28・・・金属ペレット。   DESCRIPTION OF SYMBOLS 0 ... Origin, 1 ... Plating apparatus, 2 ... Plating solution, 3 ... Plating tank, 5 ... Shaft member, 5c ... Center position of to-be-plated part, 5l ... Length of the portion to be plated, 5 s... Plated portion, 6... Rotating means, 9... Plating solution ejection nozzle, 9 b and 9 f. 10b, 10n, 10f1... Shield fixing tool, 10c... Center position of output part, 10l... Output part length, 10f2. 10 s... Output part, 13, 15... Shielding jigs at both ends, 14... Shielding jig provided between the shielding jigs at both ends, 26. ... Center position of plating solution outlet, 27 ... Metal bowl, 28 ... Metal pellet.

Claims (8)

メッキ液を溜めるメッキ槽を有し、前記メッキ液に浸漬された軸状部材を陰極として該軸状部材に磁性合金メッキを施すメッキ装置であって、
前記軸状部材の外周面に装着され、前記軸状部材の被メッキ部を規定する複数の遮蔽治具と、
前記軸状部材の周囲に設けられ、前記被メッキ部と対向する出力部を有する陽極と、
を備えており、
前記軸状部材の軸方向において、前記被メッキ部の中心位置と前記出力部の中心位置とは、前記中心位置に関する所定の許容値内で一致することを特徴とするメッキ装置。
A plating apparatus having a plating tank for storing a plating solution, and performing magnetic alloy plating on the shaft-shaped member using the shaft-shaped member immersed in the plating solution as a cathode;
A plurality of shielding jigs mounted on an outer peripheral surface of the shaft-shaped member and defining a portion to be plated of the shaft-shaped member;
An anode provided around the shaft-like member and having an output portion facing the plated portion;
With
In the axial direction of the shaft-like member, the plating apparatus is characterized in that a center position of the plated portion and a center position of the output portion coincide with each other within a predetermined allowable value related to the center position.
前記軸状部材の軸方向において、前記被メッキ部の長さと前記陽極の出力部の長さとは、前記長さに関する所定の許容値内で一致する、請求項1に記載のメッキ装置。   2. The plating apparatus according to claim 1, wherein in the axial direction of the shaft-shaped member, the length of the portion to be plated and the length of the output portion of the anode coincide with each other within a predetermined allowable value related to the length. 前記メッキ装置は、前記陽極と前記軸状部材との間に設けられた遮蔽物を、さらに備えている、請求項1又は2に記載のメッキ装置。   The plating apparatus according to claim 1, further comprising a shield provided between the anode and the shaft-like member. 前記遮蔽物のパターンは、前記陽極の前記出力部のパターンを規定し、前記磁性合金メッキの厚さのバラツキが許容範囲内に収まるように、前記遮蔽物のパターンが決定されている、請求項3に記載のメッキ装置。   The pattern of the shielding object defines a pattern of the output portion of the anode, and the pattern of the shielding object is determined so that a variation in thickness of the magnetic alloy plating is within an allowable range. 4. The plating apparatus according to 3. 前記遮蔽物は、前記陽極に着脱可能な組み立て式である、請求項3又は4に記載のメッキ装置。   The plating apparatus according to claim 3 or 4, wherein the shield is an assembly type that can be attached to and detached from the anode. 前記メッキ装置は、前記被メッキ部と対向するメッキ液噴出口を有するメッキ液噴出ノズルを、さらに備えており、前記メッキ液噴出ノズルは、前記メッキ槽に着脱可能な組み立て式である、請求項1乃至5の何れか1項に記載のメッキ装置。   The plating apparatus further includes a plating solution ejection nozzle having a plating solution ejection port facing the portion to be plated, and the plating solution ejection nozzle is an assembly type that can be attached to and detached from the plating tank. The plating apparatus according to any one of 1 to 5. 前記軸状部材の軸方向において、前記被メッキ部の中心位置と前記メッキ液噴出口の中心位置とは、前記中心位置に関する所定の許容値内で一致する、請求項6に記載のメッキ装置。   The plating apparatus according to claim 6, wherein in the axial direction of the shaft-shaped member, a center position of the plated portion and a center position of the plating solution jet outlet coincide with each other within a predetermined allowable value regarding the center position. 前記軸状部材の軸方向において、前記被メッキ部の長さと前記メッキ液噴出口の長さとは、前記長さに関する所定の許容値内で一致することを特徴とする請求項7に記載のメッキ装置。   The plating according to claim 7, wherein in the axial direction of the shaft-shaped member, the length of the portion to be plated and the length of the plating solution jet outlet coincide with each other within a predetermined allowable value related to the length. apparatus.
JP2013553235A 2012-01-11 2012-12-21 Plating equipment Expired - Fee Related JP5755341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013553235A JP5755341B2 (en) 2012-01-11 2012-12-21 Plating equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012003152 2012-01-11
JP2012003152 2012-01-11
PCT/JP2012/083272 WO2013105420A1 (en) 2012-01-11 2012-12-21 Plating device
JP2013553235A JP5755341B2 (en) 2012-01-11 2012-12-21 Plating equipment

Publications (2)

Publication Number Publication Date
JPWO2013105420A1 JPWO2013105420A1 (en) 2015-05-11
JP5755341B2 true JP5755341B2 (en) 2015-07-29

Family

ID=48781378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013553235A Expired - Fee Related JP5755341B2 (en) 2012-01-11 2012-12-21 Plating equipment

Country Status (3)

Country Link
US (1) US20140339077A1 (en)
JP (1) JP5755341B2 (en)
WO (1) WO2013105420A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110328624B (en) * 2019-07-26 2020-07-31 郑州磨料磨具磨削研究所有限公司 Deposition fixture for special-shaped electroplating grinding wheel and using method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469566A (en) * 1983-08-29 1984-09-04 Dynamic Disk, Inc. Method and apparatus for producing electroplated magnetic memory disk, and the like
US4588653A (en) * 1983-08-29 1986-05-13 Dynamic Disk, Inc. Magnetic memory disk
US4534832A (en) * 1984-08-27 1985-08-13 Emtek, Inc. Arrangement and method for current density control in electroplating
US5256274A (en) * 1990-08-01 1993-10-26 Jaime Poris Selective metal electrodeposition process
US5281325A (en) * 1992-07-02 1994-01-25 Berg N Edward Uniform electroplating of printed circuit boards
US6168691B1 (en) * 1996-08-09 2001-01-02 Atotech Deutschland Gmbh Device for electrochemical treatment of elongate articles
DE19837973C1 (en) * 1998-08-21 2000-01-20 Atotech Deutschland Gmbh Apparatus for electrochemical treatment of parts of bar-shaped workpieces in immersion bath installations
US6402923B1 (en) * 2000-03-27 2002-06-11 Novellus Systems Inc Method and apparatus for uniform electroplating of integrated circuits using a variable field shaping element
US6916409B1 (en) * 2002-12-31 2005-07-12 Advanced Cardiovascular Systems, Inc. Apparatus and process for electrolytic removal of material from a medical device
JP3854249B2 (en) * 2003-06-16 2006-12-06 本田技研工業株式会社 Method for forming magnetostrictive film in magnetostrictive torque sensor
EP1477788B1 (en) * 2003-05-12 2006-04-26 HONDA MOTOR CO., Ltd. Magnetostrictive coat forming method
US7402231B2 (en) * 2003-09-17 2008-07-22 Nippon Platec Co., Ltd. Method and apparatus for partially plating work surfaces
JP4684979B2 (en) * 2006-10-19 2011-05-18 本田技研工業株式会社 Plating equipment

Also Published As

Publication number Publication date
US20140339077A1 (en) 2014-11-20
WO2013105420A1 (en) 2013-07-18
JPWO2013105420A1 (en) 2015-05-11

Similar Documents

Publication Publication Date Title
RU2637460C1 (en) Device and method of applying coating on cylinders
JP4684979B2 (en) Plating equipment
JP7138586B2 (en) Cathode drum for electrolytic deposition
JP5755341B2 (en) Plating equipment
JP2017145438A (en) Partial plating method and manufacturing method of main body metal fitting for spark plug
JP7173932B2 (en) Anode holder and plating equipment
JP2009120935A (en) Annular plating bath
JP6911491B2 (en) Electrode structure
JP2009501276A (en) Electrode apparatus and method for electrochemical coating of workpiece surfaces
WO2012043513A1 (en) Apparatus for plating cylinder
TWI410532B (en) Vertical wafer hole filling electrode plating apparatus
JP5451182B2 (en) Jig for plating processing of cylindrical bag-shaped workpiece
JP2004211116A (en) Apparatus for anodic oxidation-treatment to aluminum or aluminum alloy
JP4793399B2 (en) Plating barrel and barrel plating equipment
TW201514329A (en) Magnetron sputtering gun device
JP2003226997A (en) Semi-conductor wafer plating tool
JP4496522B2 (en) Manufacturing method of multi-core metal tube by electroforming
JP2010037635A (en) Electroplating method, and apparatus therefor
JP2009019227A (en) Plating device
TW202001003A (en) Electroplating device including an electroplating tank, a plating solution concentration apparatus and a plating solution purification apparatus
JP2004332102A (en) Insoluble electrode for metallic foil production
TWI434960B (en) Metal foil electrolytic precipitation device
JP2582991Y2 (en) Surface treatment electrode
JPH06453Y2 (en) Plating equipment
JP2022526777A (en) Coating equipment for coating parts

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R150 Certificate of patent or registration of utility model

Ref document number: 5755341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees