JP5739093B2 - Rare earth magnet, manufacturing method thereof, and magnet composite member - Google Patents

Rare earth magnet, manufacturing method thereof, and magnet composite member Download PDF

Info

Publication number
JP5739093B2
JP5739093B2 JP2009209672A JP2009209672A JP5739093B2 JP 5739093 B2 JP5739093 B2 JP 5739093B2 JP 2009209672 A JP2009209672 A JP 2009209672A JP 2009209672 A JP2009209672 A JP 2009209672A JP 5739093 B2 JP5739093 B2 JP 5739093B2
Authority
JP
Japan
Prior art keywords
rare earth
alloy
magnetic
layer
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009209672A
Other languages
Japanese (ja)
Other versions
JP2011061038A (en
Inventor
岳 佐藤
佐藤  岳
敏之 嶋
敏之 嶋
哲也 庄司
哲也 庄司
宮本 典孝
典孝 宮本
諭 杉本
諭 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Tohoku University NUC
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43948322&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5739093(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tohoku University NUC, Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Tohoku University NUC
Priority to JP2009209672A priority Critical patent/JP5739093B2/en
Publication of JP2011061038A publication Critical patent/JP2011061038A/en
Application granted granted Critical
Publication of JP5739093B2 publication Critical patent/JP5739093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Description

本発明は、高い保磁力を有する希土類磁石およびその製造方法並びにその希土類磁石を用いた磁石複合部材に関する。   The present invention relates to a rare earth magnet having a high coercive force, a manufacturing method thereof, and a magnet composite member using the rare earth magnet.

Nd−Fe−B系を代表とする希土類磁石(特に永久磁石)は、非常に高い磁気特性を示す。この希土類磁石を用いると、電磁機器や電動機の小型化、高出力化、高密度化さらには環境負荷の低減化等を図ることが可能となる。このため、幅広い分野で希土類磁石の利用が検討されている。もっとも、希土類磁石の実用化に際して、その希土類磁石の高い磁気特性が厳しい環境下でも長期的に安定していることが求められる。このような観点から、希土類磁石の残留磁束密度のみならず、その耐熱性や保磁力を向上させる研究開発が盛んに行われている。それに関連する記載が例えば下記のような文献に開示されている。   Rare earth magnets (particularly permanent magnets) typified by the Nd-Fe-B system exhibit very high magnetic properties. When this rare earth magnet is used, it is possible to reduce the size, increase the output, increase the density, and reduce the environmental load of the electromagnetic device and the electric motor. For this reason, the use of rare earth magnets is being studied in a wide range of fields. However, when a rare earth magnet is put to practical use, it is required that the high magnetic properties of the rare earth magnet be stable in the long term even under severe conditions. From such a point of view, research and development for improving not only the residual magnetic flux density of the rare earth magnet but also its heat resistance and coercive force are actively conducted. The related description is disclosed in the following documents, for example.

特開2008−235343号公報JP 2008-235343 A 特開2008−263179号公報JP 2008-263179 A 特開2009−43776号公報JP 2009-43776 A 特開2009−43813号公報JP 2009-43813 A 特開2009−54754号公報JP 2009-54754 A

上記の特許文献はいずれも、希土類元素(R)と鉄(Fe)およびホウ素(B)からなるR−Fe−B系磁石の保磁力を高めるために、その主相の構成元素(R−Fe−B)とは別の元素(Dy、Tbなどの希土類元素の他、Al、Siなどの非希土類元素)を、その主相の結晶粒界へ熱拡散させることを提案している。もっとも、このような熱拡散方法では、希土類磁石の保磁力を必ずしも十分に高めることはできない。また、Dyなどの稀少元素の使用は、供給不安を伴うため工業的にあまり好ましいものではない。   In any of the above patent documents, in order to increase the coercive force of an R—Fe—B magnet composed of rare earth elements (R), iron (Fe), and boron (B), the constituent elements of the main phase (R—Fe -B) proposes thermal diffusion of elements other than rare earth elements such as Dy and Tb as well as non-rare earth elements such as Al and Si to the crystal grain boundaries of the main phase. However, such a thermal diffusion method cannot always sufficiently increase the coercive force of the rare earth magnet. In addition, the use of rare elements such as Dy is not preferable industrially because it involves supply concerns.

本発明は、このような事情に鑑みて為されたものである。すなわち、従来とは異なる方法により、磁性合金の結晶粒界面の性状を改善して、保磁力を一層高めた希土類磁石と、その製造方法およびその希土類磁石を用いた磁石複合部材を提供することを目的とする。   The present invention has been made in view of such circumstances. That is, to provide a rare earth magnet having improved coercive force by improving the properties of the crystal grain interface of the magnetic alloy by a method different from the conventional method, a manufacturing method thereof, and a magnet composite member using the rare earth magnet. Objective.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、従来とは異なって、磁性合金の結晶粒の界面を改質する方法を思いつき、これにより高保磁力の希土類磁石を得ることに成功した。この成果を発展させることにより、以降に述べるような本発明を完成するに至った。   As a result of extensive research and trial and error, the present inventor has come up with a method of modifying the interface of crystal grains of a magnetic alloy, which is different from the conventional one. Succeeded in getting. By developing this result, the present invention described below has been completed.

《希土類磁石の製造方法》
(1)すなわち、本発明の希土類磁石の製造方法は、ネオジム(Nd)と鉄(Fe)とホウ素(B)の合金であるNd−Fe−B系磁性合金の表面に該磁性合金の共晶点よりも低温で液相を生じ得る浸透材を付着させる付着工程と、該付着工程後に加熱して該磁性合金の結晶粒の粒界へ該浸透材を浸透拡散させる浸透工程とを備え、粒径が1〜500nmである該結晶粒が銅(Cu)とNdの合金であるNd−Cu合金からなる該浸透材の構成元素で被包されてなる希土類磁石が得られることを特徴とする。
《Rare earth magnet manufacturing method》
(1) That is, the method for producing a rare earth magnet of the present invention comprises a eutectic of the magnetic alloy on the surface of an Nd—Fe—B magnetic alloy which is an alloy of neodymium (Nd), iron (Fe), and boron (B). An adhesion step for adhering a penetrant capable of generating a liquid phase at a temperature lower than the point, and an infiltration step for infiltrating and diffusing the penetrant into a grain boundary of the magnetic alloy by heating after the adhesion step, diameter the crystal grains is 1~500nm, characterized in that the copper (Cu) and formed by encapsulated with the constituent elements of the infiltrating material composed of a Nd-Cu alloy is an alloy of Nd rare earth magnet is obtained .

(2)本発明の製造方法により、保磁力が大きく向上した希土類磁石を得ることが可能となった。このような優れた希土類磁石が得られた理由やメカニズムは必ずしも定かではないが、現状では次のように考えられる。
本発明では、付着工程で磁性合金の表面に浸透材を付着させた後、浸透工程でそれを加熱することにより、浸透材を磁性合金の結晶粒界へ浸透させている。これにより、磁性合金の結晶粒の界面は、浸透材またはその構成元素によって、滑らかに、さらには均一に被包された状態となり得る。この結果、保磁力に大きく影響する結晶粒の界面性状が大きく改善され、その界面エネルギー状態が均一化または安定化し、磁壁移動および逆磁区の生成を抑制し、その結晶粒またはその集合体からなる希土類磁石の保磁力が著しく高まったと考えられる。
(2) The production method of the present invention makes it possible to obtain a rare earth magnet having a greatly improved coercive force. The reason and mechanism for obtaining such an excellent rare earth magnet are not necessarily clear, but at present, it is considered as follows.
In the present invention, after the penetrating material is attached to the surface of the magnetic alloy in the attaching step, the penetrating material is infiltrated into the crystal grain boundary of the magnetic alloy by heating it in the infiltrating step. Thereby, the interface of the crystal grains of the magnetic alloy can be smoothly and evenly encapsulated by the penetrating material or its constituent elements. As a result, the interfacial properties of the crystal grains that greatly affect the coercive force are greatly improved, the interfacial energy state is made uniform or stabilized, the domain wall movement and the generation of reverse magnetic domains are suppressed, and the crystal grains or aggregates thereof are formed. It is thought that the coercive force of rare earth magnets has increased significantly.

(3)浸透工程で行う加熱の温度(浸透加熱温度)は、特に限定されないが、希土類磁石の配向度や残留磁束密度などの磁気特性等へ与える悪影響を抑止しつつ、希土類磁石の保磁力を高められる範囲内である。具体的には、浸透加熱温度は磁性合金の共晶点(共晶温度)よりも低くて浸透材が液相を生じる液相温度以上であると好適である。
ここで共晶点や液相温度はそれらの構成元素または組成により異なり、一概には特定されない。例えば、代表的なNd−Fe−B系磁石の三元共晶点は、665℃となる。また、希土類磁石が主に二元素からなる磁性相を主相とする場合であれば、その構成二元素の二元共晶点を上記の共晶点とすればよい。勿論、コバルト(Co)、ガリウム(Ga)などの磁気特性を改善する改質元素を含む場合は、上記の共晶点はそれらの元素を含めた多元系共晶点となる。
また、液相温度は、浸透材の少なくとも一部から液相が出現する温度である。従って上記の浸透加熱温度では、浸透材が固液共存状態にあってもよい。液相温度は浸透材の組成により変化するが、液相温度が浸透材の共晶点付近にあれば、本発明の浸透工程をより低い温度で行うことができて効率的である。
(3) The heating temperature (penetration heating temperature) performed in the permeation process is not particularly limited, but the coercive force of the rare earth magnet is controlled while suppressing adverse effects on the magnetic properties such as the degree of orientation of the rare earth magnet and the residual magnetic flux density. It is within the range that can be increased. Specifically, the osmotic heating temperature is preferably lower than the eutectic point (eutectic temperature) of the magnetic alloy and is equal to or higher than the liquidus temperature at which the osmotic material generates a liquid phase.
Here, the eutectic point and the liquidus temperature vary depending on their constituent elements or compositions, and are not generally specified. For example, the ternary eutectic point of a typical Nd—Fe—B magnet is 665 ° C. If the rare-earth magnet has a magnetic phase mainly composed of two elements as a main phase, the binary eutectic point of the constituent two elements may be set as the eutectic point. Of course, when a modified element that improves magnetic properties such as cobalt (Co) or gallium (Ga) is included, the above eutectic point is a multi-element eutectic point including these elements.
The liquid phase temperature is a temperature at which the liquid phase appears from at least a part of the penetrating material. Therefore, at the above osmotic heating temperature, the osmotic material may be in a solid-liquid coexistence state. The liquidus temperature varies depending on the composition of the penetrant, but if the liquidus temperature is in the vicinity of the eutectic point of the penetrant, the penetrating step of the present invention can be performed at a lower temperature, which is efficient.

(4)浸透材の組成も本発明では特に限定されないが、比較的低い液相温度が得られる組成であると好ましい。また、結晶粒の界面を均一に被包するために、磁性合金の結晶粒との濡れ性に優れる元素からなると好ましい。さらに、その結晶粒を被包する浸透材の構成元素が磁性合金の結晶粒中に固溶等すると、その被包が不十分となるか、または希土類磁石の磁気特性が低下する原因となる。従って浸透材の構成元素は磁性合金に非固溶であると好ましい。 (4) The composition of the penetrant is not particularly limited in the present invention, but is preferably a composition that can obtain a relatively low liquidus temperature. Moreover, in order to encapsulate the crystal grain interface uniformly, it is preferable that the crystal grain of the magnetic alloy is made of an element excellent in wettability. Furthermore, if the constituent elements of the penetrating material encapsulating the crystal grains are solid-solved in the crystal grains of the magnetic alloy, the encapsulating becomes insufficient, or the magnetic properties of the rare earth magnet are deteriorated. Therefore, the constituent element of the penetrating material is preferably insoluble in the magnetic alloy.

(5)本発明でいう磁性合金または希土類磁石は、結晶粒からなる限り、その形態を問わない。例えば、結晶粒単体でも、粉末粒子状でも、膜状でも、焼結体のようなバルク状でもよい。 (5) The form of the magnetic alloy or rare earth magnet in the present invention is not limited as long as it is composed of crystal grains. For example, it may be a single crystal grain, a powder particle, a film, or a bulk like a sintered body.

《希土類磁石》
(1)本発明は、単に上記の製造方法としてのみならず、それにより得られた高保磁力の希土類磁石としても把握される。
《Rare earth magnet》
(1) The present invention is grasped not only as the above-described manufacturing method but also as a high coercivity rare earth magnet obtained thereby.

(2)例えば本発明は、R1を含む磁性合金からなる結晶粒と、該該磁性合金の共晶点よりも低温で液相を生じ得る浸透材または少なくとも該浸透材の構成元素によって該結晶粒を被包する粒界部と、からなることを特徴とする希土類磁石でもよい。このように一つの結晶粒とその結晶粒の界面を被包する粒界部とからなる希土類磁石が本発明でいう希土類磁石の最小単位(基本単位)となる。逆にいえば、他の希土類磁石はその最小単位の集合体として把握できる。ちなみに、その結晶粒の粒径が1〜500nmまたは粒界部と結晶粒との粒界幅が1〜10nmであると、保磁力を含む磁気特性に優れた希土類磁石が得られて好ましい。 (2) For example, the present invention provides a crystal grain comprising a magnetic alloy containing R1 and a penetrating material capable of producing a liquid phase at a temperature lower than the eutectic point of the magnetic alloy or at least a constituent element of the penetrating material. It may also be a rare earth magnet characterized by comprising a grain boundary portion encapsulating. Thus, the rare earth magnet composed of one crystal grain and the grain boundary portion enclosing the interface of the crystal grain is the minimum unit (basic unit) of the rare earth magnet in the present invention. In other words, other rare earth magnets can be grasped as an assembly of the minimum units. Incidentally, when the grain size of the crystal grains is 1 to 500 nm or the grain boundary width between the grain boundary part and the crystal grains is 1 to 10 nm, a rare earth magnet excellent in magnetic characteristics including coercive force is obtained, which is preferable.

《磁石複合部材》
(1)本発明は、上記の希土類磁石とそれが結合した基材とからなる磁石複合部材としても把握され得る。
《Magnet composite member》
(1) The present invention can also be grasped as a magnet composite member composed of the rare earth magnet and a base material to which the rare earth magnet is bonded.

(2)また、高い保磁力のみならず非常に高い配向性(異方性)を有する磁石複合部材を得るために、前記希土類磁石は、R1を含む磁性合金からなる磁性層と、該磁性層と前記基材との間に形成され該磁性層の配向結晶面と整合的な結晶構造を有する下地層および/または該磁性層の酸化を抑制する保護層を有する積層磁石であると好適である。このような希土類磁石として、例えば、厚さが1〜200nmの薄膜磁石がある。 (2) In order to obtain a magnet composite member having not only high coercive force but also very high orientation (anisotropy), the rare earth magnet includes a magnetic layer made of a magnetic alloy containing R1, and the magnetic layer. And a base layer having a crystal structure consistent with the oriented crystal plane of the magnetic layer and / or a protective layer that suppresses oxidation of the magnetic layer. . An example of such a rare earth magnet is a thin film magnet having a thickness of 1 to 200 nm.

《その他》
特に断らない限り、本明細書でいう「x〜y」は、下限値xおよび上限値yを含む。また、本明細書に記載した種々の下限値または上限値は、任意に組合わされて「a〜b」のような範囲を構成し得る。さらに、本明細書に記載した範囲内に含まれる任意の数値を、数値範囲を設定するための上限値または下限値とすることができる。
<Others>
Unless otherwise specified, “x to y” in the present specification includes a lower limit value x and an upper limit value y. Moreover, the various lower limit value or upper limit value described in this specification can be arbitrarily combined to constitute a range such as “ab”. Furthermore, any numerical value included in the range described in the present specification can be used as an upper limit value or a lower limit value for setting the numerical value range.

本発明に係る希土類磁石を模式的に示した断面図である。It is sectional drawing which showed typically the rare earth magnet which concerns on this invention. その希土類磁石の一つである積層磁石を模式的に示した斜視断面図である。It is the perspective sectional view showing typically the lamination magnet which is one of the rare earth magnets. その積層磁石の保磁力と磁性層の厚さとの関係を示すグラフである。It is a graph which shows the relationship between the coercive force of the laminated magnet, and the thickness of a magnetic layer. 本発明の希土類磁石の一つである多層薄膜磁石をエネルギー分散型X線分光法(EDX)により観察した写真である。同図(a)は全体像であり、同図(b)はCr像であり、同図(c)はFe像であり、同図(d)はCu像であり、同図(e)はMo像であり、同図(f)はNd像である。It is the photograph which observed the multilayer thin film magnet which is one of the rare earth magnets of this invention by energy dispersive X ray spectroscopy (EDX). (A) is an overall image, (b) is a Cr image, (c) is an Fe image, (d) is a Cu image, and (e) in FIG. It is a Mo image, and the same figure (f) is a Nd image.

発明の実施形態を挙げて本発明をより詳しく説明する。なお、以下の実施形態を含め、本明細書で説明する内容は、本発明に係る希土類磁石の製造方法のみならず、その希土類磁石および磁石複合部材にも適宜適用される。上述した構成に、次に列挙する構成中から任意に選択した一つまたは二つ以上の構成がさらに付加されて、本発明が形成されてもよい。下記の構成はいずれも、カテゴリーを越えて重畳的または任意的に選択可能である。例えば、成分組成に関する構成であれば、物のみならず製造方法にも関連する。また製造方法に関する構成も、プロダクトバイプロセスとして理解すれば物に関する構成ともなり得る。なお、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. The contents described in this specification, including the following embodiments, are appropriately applied not only to the method for producing a rare earth magnet according to the present invention but also to the rare earth magnet and the magnet composite member. One or more configurations arbitrarily selected from the configurations listed below may be further added to the configuration described above to form the present invention. Any of the following configurations can be selected in a superimposed manner or arbitrarily across categories. For example, if it is the structure regarding a component composition, it is related not only to a thing but to a manufacturing method. In addition, a configuration related to a manufacturing method can be a configuration related to a product if understood as a product-by-process. Note that which embodiment is the best depends on the target, required performance, and the like.

《磁性合金》
(1)本発明に係る磁性合金は希土類元素(R1)を含む二元系または三元系以上の合金である。この磁性合金には、いわゆる金属間化合物を含まれる。
本明細書でいう希土類元素には、スカンジウム(Sc)、イットリウム(Y)、ランタノイドを含む。ランタノイドは、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)およびルテチウム(Lu)などがある。もっとも本発明の磁性合金のR1は、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、TmおよびYbの少なくとも1種以上であると好適である。特に、コストや磁気特性の観点から、R1がPr、NdまたはSmの一種以上であると実用的である。
《Magnetic alloy》
(1) The magnetic alloy according to the present invention is a binary or ternary or higher alloy containing a rare earth element (R1). This magnetic alloy includes so-called intermetallic compounds.
The rare earth elements referred to in this specification include scandium (Sc), yttrium (Y), and lanthanoids. Lanthanoids include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium ( Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu). However, R1 of the magnetic alloy of the present invention is preferably at least one of Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. In particular, from the viewpoint of cost and magnetic properties, it is practical that R1 is one or more of Pr, Nd, or Sm.

二元系磁性合金としては、例えば、SmCo、SmCo17のようなSm−Co系合金、PrCoのようなPr−Co系合金がある。また三元系磁性合金としてはNdFe14BのようなR1−Fe−B系合金が代表的である。もっともR1Fe14Bからなる主相のみならず、R1リッチ相の存在が希土類磁石の保磁力を高め得る。そこでこのような種々の観点を踏まえて、R1−Fe−B系の磁性合金は、全体を100原子%(以下単に%で表す。)としたときに8〜30%のR1と、4〜20%のBと、残部であるFeとからなると好ましい。いずれの元素も過少または過多では、主相であるR1Fe14相(2−14−1相)の体積率に影響し、異相が生成して、磁気特性が悪化し得る。R1の下限値または上限値は上記範囲内で任意に選択し設定し得るが、特にR1が9〜15%であると高配向で磁気特性に優れる希土類磁石が得られ易い。またBの下限値または上限値は上記範囲内で任意に選択し設定し得るが、特にBが8〜16%であると微細組織が得られ易く、希土類磁石の保磁力の向上に有効である。さらに、Feは基本的に主たる残部であるが、あえていえばFeは69〜82%であると好ましく、Feの上限値または下限値はその範囲内で任意に選択し設定し得る。ただし、R1やB以外の残部であるFeは、希土類磁石の種々の特性の改善に有効な元素(改質元素)や不可避不純物の存在割合によって変化し得る。 The binary magnetic alloys, for example, SmCo-based alloy, such as SmCo 5, Sm 2 Co 17, there is a PrCo alloy such as PrCo 5. A typical ternary magnetic alloy is an R1-Fe-B alloy such as Nd 2 Fe 14 B. However, not only the main phase composed of R1 2 Fe 14 B but also the presence of the R1 rich phase can increase the coercivity of the rare earth magnet. Therefore, based on such various viewpoints, the R1-Fe-B-based magnetic alloy has 8 to 30% R1 and 4 to 20 when the whole is 100 atomic% (hereinafter simply expressed as%). % B and the remaining Fe are preferable. If either element is too small or excessive, it affects the volume fraction of the main phase R1 2 Fe 14 B 1 phase (2-14-1 phase), and a heterogeneous phase is generated, which may deteriorate the magnetic properties. The lower limit value or upper limit value of R1 can be arbitrarily selected and set within the above range, but in particular, when R1 is 9 to 15%, a rare earth magnet having high orientation and excellent magnetic properties is easily obtained. Further, the lower limit value or upper limit value of B can be arbitrarily selected and set within the above range. Particularly, when B is 8 to 16%, a fine structure is easily obtained, which is effective for improving the coercive force of the rare earth magnet. . Furthermore, Fe is basically the main balance, but if it is given, it is preferable that Fe is 69 to 82%, and the upper limit value or lower limit value of Fe can be arbitrarily selected and set within the range. However, the remaining Fe other than R1 and B may vary depending on the presence ratio of elements (modifying elements) and inevitable impurities effective in improving various characteristics of the rare earth magnet.

(2)上記の改質元素には、希土類磁石の耐熱性を向上させるコバルト(Co)、ランタン(La)、保磁力などの磁気特性の向上に有効なガリウム(Ga)、ニオブ(Nb)、アルミニウム(Al)、ケイ素(Si)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)、ゲルマニウム(Ge)、ジルコニウム(Zr)、モリブデン(Mo)、インジウム(In)、スズ(Sn)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)または鉛(Pb)の少なくとも1種以上がある。改質元素の組合せは任意である。また、その含有量は通常微量であり、例えば、0.01〜10%程度であると好ましい。
また、不可避不純物は、原料中に含まれる不純物や各工程時に混入等する不純物などであって、コスト的または技術的な理由等により除去することが困難な元素である。本発明に係る希土類磁石の不可避不純物として、例えば、カルシウム(Ca)、ナトリウム(Na)、カリウム(K)、酸素(O)、窒素(N)、炭素(C)、水素(H)、アルゴン(Ar)等がある。なお、ここで述べた希土類元素、改質元素および不可避不純物に関することは、後述する浸透材やスパッタリングの原料についても適宜該当する。
(2) The above-described modifying elements include cobalt (Co), lanthanum (La), gallium (Ga), niobium (Nb), which are effective in improving magnetic properties such as coercive force, which improve the heat resistance of rare earth magnets, Aluminum (Al), silicon (Si), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), germanium (Ge), zirconium (Zr), There is at least one of molybdenum (Mo), indium (In), tin (Sn), hafnium (Hf), tantalum (Ta), tungsten (W), and lead (Pb). The combination of the modifying elements is arbitrary. Moreover, the content is usually a very small amount, for example, preferably about 0.01 to 10%.
Inevitable impurities are impurities contained in the raw material, impurities mixed in at each step, and the like, and are elements that are difficult to remove due to cost or technical reasons. Examples of the inevitable impurities of the rare earth magnet according to the present invention include calcium (Ca), sodium (Na), potassium (K), oxygen (O), nitrogen (N), carbon (C), hydrogen (H), argon ( Ar) and the like. Note that the rare earth elements, the modifying elements, and the inevitable impurities described here are also appropriately applicable to the penetrating material and the sputtering raw material described later.

《浸透材》
(1)本発明の浸透材は、上述の磁性合金の共晶点よりも低い温度(液相温度)で液相を生じ得る合金である。浸透材の組成は特に限定されない。もっとも、浸透材は、加熱処理を伴う浸透工程において、磁性合金の結晶粒界へ浸透し、少なくとも浸透材の構成元素が結晶粒を被包し、結晶粒の界面性状を改質して希土類磁石の保磁力を向上させるものである必要がある。このような観点から本発明の浸透材の材質が選定される。
先ず、浸透材の主たる構成元素として、Al、Mg、Cu、Ti、V、Cr、Ga、Y、Zr、Nb、Mo、Hf、Ta、W、銀(Ag)、金(Au)、白金(Pt)またはルテニウム(Ru)などの(非希土類)金属元素がある。また浸透材は、適宜、O、N、CまたはHのような非金属元素を含んでもよい。
《Penetration material》
(1) The penetrant of the present invention is an alloy that can generate a liquid phase at a temperature (liquid phase temperature) lower than the eutectic point of the magnetic alloy described above. The composition of the penetrating material is not particularly limited. However, the permeation material penetrates into the crystal grain boundaries of the magnetic alloy in the permeation process that involves heat treatment, and at least the constituent elements of the permeation material encapsulate the crystal grains, thereby modifying the interfacial properties of the crystal grains, thereby rare earth magnet It is necessary to improve the coercive force. From such a viewpoint, the material of the penetrating material of the present invention is selected.
First, the main constituent elements of the penetrant are Al, Mg, Cu, Ti, V, Cr, Ga, Y, Zr, Nb, Mo, Hf, Ta, W, silver (Ag), gold (Au), platinum ( There are (non-rare earth) metal elements such as Pt) or ruthenium (Ru). Further, the penetrating material may contain a nonmetallic element such as O, N, C or H as appropriate.

(2)次に、磁性合金の結晶粒界への浸透性の観点から、浸透材は比較的低い温度で液相化し易く、また、その結晶粒の界面に対する濡れ性に優れるものであると好適である。
浸透材の好ましい液相温度は、磁性合金の組成(つまり共晶点)に依るため一概には特定できないが、磁性合金がR1−Fe−B系磁石の場合であれば、その液相温度は350〜625℃であると好ましい。液相温度が過大であると、磁性合金も液相を生じ易くなり好ましくない。液相温度が過小であると希土類磁石の耐熱性が低下し易くなり好ましくない。
上記のような比較的低い温度で液相化する(金属)単体として、Al、Mgがある。もっとも多くの単体元素は融点が高く、上述のような温度域では液相化し難い。そこで2種以上の元素を組合わせることにより、液相温度を低下させ得ると好ましい。このような多元系の浸透材は、当初から完全な合金や化合物である必要はない。すなわち、磁性合金(磁性層)の表面上に付着した段階または浸透工程中に合金化等するものでもよい。
このように本発明の浸透材は、磁性合金の共晶点よりも低い温度で液相化し得るものであれば足り、その自体が鋳塊またはバルク等の素材として存在する必要は必ずしもない。
(2) Next, from the viewpoint of the permeability of the magnetic alloy to the crystal grain boundaries, the penetrating material is liable to be in a liquid phase at a relatively low temperature, and preferably has excellent wettability with respect to the crystal grain interface. It is.
The preferable liquidus temperature of the penetrating material depends on the composition of the magnetic alloy (that is, the eutectic point) and cannot be specified unconditionally. However, if the magnetic alloy is an R1-Fe-B magnet, the liquidus temperature is It is preferable in it being 350-625 degreeC. If the liquidus temperature is excessive, the magnetic alloy is liable to form a liquid phase, which is not preferable. If the liquidus temperature is too low, the heat resistance of the rare earth magnet tends to decrease, which is not preferable.
Examples of the (metal) simple substance that becomes a liquid phase at a relatively low temperature as described above include Al and Mg. Most elemental elements have a high melting point, and are difficult to form a liquid phase in the temperature range as described above. Therefore, it is preferable that the liquidus temperature can be lowered by combining two or more elements. Such multi-component penetrants need not be complete alloys or compounds from the beginning. That is, it may be alloyed at the stage of adhering on the surface of the magnetic alloy (magnetic layer) or during the permeation process.
As described above, the penetrating material of the present invention only needs to be capable of forming a liquid phase at a temperature lower than the eutectic point of the magnetic alloy, and does not necessarily have to exist as a material such as an ingot or a bulk.

(3)具体的な浸透材として、R2−Cu系合金(Nd−Cu合金、Nd−Al合金、Dy−Cu合金、Dy−Al合金、Pr−Cu合金、Pr−Al合金、Tb−Cu合金、Tb−Al合金)等がある。さらにその中で濡れ性に優れるものとして、磁性合金がR1−Fe−B系合金の場合であれば、R2−Cu系合金、R2−Al系合金などがある。特に、R1およびR2が共にNdである場合、Nd−Fe−Bの三元系合金の共晶点は665℃であるので、(共晶点:520℃)のNd−Cu合金が浸透材として好適である。
ここでNd−Cu合金のNdには、Nd−Fe−B系合金の保磁力を高める作用がある。またCuはその磁石合金に対する濡れ性に優れると共にその磁石合金に対してほとんど固溶しない。このため結晶粒界へ浸透したCuは、確実に磁性合金の結晶粒を被包し、その磁気特性を低下させることなく結晶粒の界面を改質してその保磁力を高める。加えてNdおよびCuは安定した調達が容易な金属であり、工業的な利用に適する。従ってNd−Cu合金は上述した条件を満たす優れた浸透材の一つである。
(3) R2-Cu alloy (Nd-Cu alloy, Nd-Al alloy, Dy-Cu alloy, Dy-Al alloy, Pr-Cu alloy, Pr-Al alloy, Tb-Cu alloy as specific penetration material , Tb-Al alloy) and the like. Further, among those having excellent wettability, if the magnetic alloy is an R1-Fe-B alloy, there are an R2-Cu alloy and an R2-Al alloy. In particular, when both R1 and R2 are Nd, the eutectic point of the ternary alloy of Nd—Fe—B is 665 ° C., so the Nd—Cu alloy (eutectic point: 520 ° C.) is used as the penetrating material. Is preferred.
Here, Nd of the Nd—Cu alloy has an effect of increasing the coercive force of the Nd—Fe—B alloy. Cu has excellent wettability with respect to the magnet alloy and hardly dissolves in the magnet alloy. For this reason, Cu that has penetrated into the crystal grain boundary surely encapsulates the crystal grains of the magnetic alloy, and modifies the interface of the crystal grains without deteriorating its magnetic properties, thereby increasing its coercive force. In addition, Nd and Cu are metals that are stable and easy to procure, and are suitable for industrial use. Therefore, the Nd—Cu alloy is one of excellent penetrants that satisfy the above-described conditions.

このような特性を発揮する限り、Nd−Cu合金の組成は特に限定されない。もっともNd−Cu合金は、全体を100原子%としたときに、Cuが10〜95%で残部がNdであると好ましい。Cuが過少では少量のNd−Cu合金で上記効果を得ることが難しい。またCuが過多ではNd−Cu合金の液相温度が上昇して好ましくない。Nd−Cu合金中のCuは20〜90%さらには30〜83%であると好ましい。   As long as such properties are exhibited, the composition of the Nd—Cu alloy is not particularly limited. However, the Nd—Cu alloy is preferably 10 to 95% of Cu and the balance of Nd when the whole is 100 atomic%. If the amount of Cu is too small, it is difficult to obtain the above effect with a small amount of Nd—Cu alloy. Further, if Cu is excessive, the liquidus temperature of the Nd—Cu alloy increases, which is not preferable. Cu in the Nd—Cu alloy is preferably 20 to 90%, more preferably 30 to 83%.

《希土類磁石の製造方法》
本発明の希土類磁石の製造方法は主に付着工程と浸透工程とからなる。
(1)付着工程
付着工程は、希土類元素(R1)を含む磁性合金の表面に上述の浸透材を付着させる工程である。このときの磁性合金の形態は、鋳塊状、粉末状、層状、粒子状等のいずれでもよい。ここでは層状(膜状)の希土類磁石を製造方法する場合を例にとり説明する。
《Rare earth magnet manufacturing method》
The method for producing a rare earth magnet of the present invention mainly comprises an adhesion step and an infiltration step.
(1) Attachment process An adhesion process is a process of making the above-mentioned penetration material adhere to the surface of a magnetic alloy containing rare earth elements (R1). The form of the magnetic alloy at this time may be any of an ingot shape, a powder shape, a layer shape, a particle shape, and the like. Here, a case of manufacturing a layered (film-like) rare earth magnet will be described as an example.

先ず、前提となる磁性層を基材の表面上に形成する(磁性層形成工程)。この磁性層形成工程は、磁性合金をターゲット原料としたスパッタリングなどによって容易に形成可能である。なお、磁性層が形成される基材の材質や形態は基本的には問わない。もっとも、磁性層の結晶成長に適した基材を用いると、磁性合金の結晶をエピタキシャル成長させて結晶方位が特定方向に揃った(つまり配向した)配向度の大きな(磁化異方性の大きな)希土類磁石(希土類磁性薄膜)を得ることができる。ちなみにエピタキシャル成長には、基材側(後述の下地層を含む)の結晶と磁性層の結晶との格子定数がほぼ等しく、両者の熱膨張係数が近接しているほど好ましい。磁性合金がR1−Fe−B系合金の場合、そのような基材として、酸化マグネシウム(MgO)の単結晶からなるMgO単結晶基材、W、Mo、Cu、Siの単結晶基材などがある。ここで基材の積層面に垂直な方向を磁性層の磁化容易軸(c軸)の方向とすると、その積層面はミラー指数でいう(001)面となる。   First, a prerequisite magnetic layer is formed on the surface of a substrate (magnetic layer forming step). This magnetic layer forming step can be easily formed by sputtering using a magnetic alloy as a target raw material. In addition, the material and form of the base material on which the magnetic layer is formed are not particularly limited. However, when a base material suitable for crystal growth of the magnetic layer is used, a magnetic alloy crystal is epitaxially grown and the crystal orientation is aligned in a specific direction (that is, oriented). A magnet (rare earth magnetic thin film) can be obtained. Incidentally, for epitaxial growth, it is preferable that the lattice constants of the crystal on the substrate side (including the underlayer described later) and the crystal of the magnetic layer are substantially equal, and the thermal expansion coefficients of both are closer. When the magnetic alloy is an R1-Fe-B alloy, examples of such a base material include a MgO single crystal base material made of a single crystal of magnesium oxide (MgO), a single crystal base material of W, Mo, Cu, and Si. is there. Here, when the direction perpendicular to the laminated surface of the base material is the direction of the easy axis of magnetization (c-axis) of the magnetic layer, the laminated surface is a (001) plane referred to as a Miller index.

また、基材自体がそのような結晶構造をもたない場合、そのような結晶構造をもつ下地層を基材の表面に形成してもよい。勿論、基材および下地層が共にそのような結晶構造をもつとより好ましい。いずれにしても、磁性層形成工程前に、基材の表面上に磁性層の配向結晶面と整合的な結晶構造を有する下地層を形成しておくと好適である(下地層形成工程)。このような下地層には、シード層やバッファ層がある。シード層とはバッファ層の結晶成長を促進させる層であり、バッファ層とは磁性層の形成を促進する土台となる層である。磁性合金がR1−Fe−B系合金の場合、下地層の構成材として、Mo、Ta、W、Ti、Cr、V、Nbなどが好適である。なお、下地層形成工程は、例えば、スパッタリングにより下地材を形成後、加熱処理によって平坦化する工程であると好ましい。   In addition, when the substrate itself does not have such a crystal structure, an underlayer having such a crystal structure may be formed on the surface of the substrate. Of course, it is more preferable that both the base material and the underlayer have such a crystal structure. In any case, it is preferable to form an underlayer having a crystal structure consistent with the oriented crystal plane of the magnetic layer on the surface of the base material before the magnetic layer formation step (underlayer formation step). Such an underlayer includes a seed layer and a buffer layer. The seed layer is a layer that promotes crystal growth of the buffer layer, and the buffer layer is a layer that serves as a foundation for promoting the formation of the magnetic layer. When the magnetic alloy is an R1-Fe-B alloy, Mo, Ta, W, Ti, Cr, V, Nb, and the like are suitable as the constituent material of the underlayer. In addition, it is preferable that a base layer formation process is a process of planarizing by heat processing, after forming a base material by sputtering, for example.

こうして基材上または下地層上に形成した磁性層上へ、浸透材からなる浸透層を形成する(浸透層形成工程)。この浸透層形成工程も前述したスパッタリングにより行うことができる。この際、ターゲット原料は単種でも複数種でもよい。つまり、浸透層形成工程(付着工程)は、浸透材からなる単一原料または組合わせた全体組成が該浸透材の組成となる複数原料をターゲットとしてスパッタリングするスパッタリング工程であればよい。これにより、一般的には合金や化合物の製造が困難な浸透材をも実質的に利用可能となる。ちなみにこのことは本明細書で述べるスパッタリング全般についていえることである。   In this way, a permeation layer made of a permeation material is formed on the magnetic layer formed on the substrate or the underlayer (permeation layer forming step). This permeation layer forming step can also be performed by the aforementioned sputtering. At this time, the target raw material may be single type or plural types. That is, the permeation layer forming step (attachment step) may be a sputtering step in which sputtering is performed using a single raw material composed of a permeation material or a plurality of raw materials whose combined total composition is the composition of the permeation material. Thereby, in general, it is possible to substantially use a penetrating material which is difficult to produce an alloy or a compound. Incidentally, this can be said for the general sputtering described in this specification.

ところで、磁性層の厚さ(t1)に対する浸透層の厚さ(t2)の層厚比(t2/t1)は、0(0%)を超えて、0〜0.1(0〜10%)の範囲であると好ましい。層厚比の下限側はさらに0.01(1%)以上、0.015(1.5%)以上さらには0.02(2%)以上であると好ましい。層厚比が過小では磁性層に対して浸透材が不足気味となり、磁性層の結晶粒を浸透材で十分に被包することができない。逆に層厚比が過大となると磁性層の体積分率が減少して好ましくない。   By the way, the layer thickness ratio (t2 / t1) of the thickness (t2) of the permeation layer to the thickness (t1) of the magnetic layer exceeds 0 (0%) and is 0 to 0.1 (0 to 10%). It is preferable that it is in the range. The lower limit side of the layer thickness ratio is preferably 0.01 (1%) or more, 0.015 (1.5%) or more, further 0.02 (2%) or more. When the layer thickness ratio is too small, the penetrating material is insufficient with respect to the magnetic layer, and the crystal grains of the magnetic layer cannot be sufficiently encapsulated with the penetrating material. Conversely, if the layer thickness ratio is excessive, the volume fraction of the magnetic layer decreases, which is not preferable.

(2)浸透工程
浸透工程は、付着工程により磁性合金の表面に付着した浸透材を加熱して、磁性合金の結晶粒の粒界へ浸透材を浸透拡散させる工程である。これにより、磁性合金の結晶粒が少なくとも浸透材の構成元素で被包された希土類磁石が得られ、希土類磁石の保磁力を高めることが可能となる。このときの加熱温度は、前述したように希土類磁石の共晶点未満で浸透材の液相温度(共晶点)以上であると好ましい。また磁性合金の結晶粒の被包は、浸透材全体によっても、その一部の構成元素のみによってもよい。
(2) Penetration process The penetration process is a process in which the penetration material attached to the surface of the magnetic alloy in the adhesion step is heated to penetrate and diffuse the penetration material into the grain boundaries of the magnetic alloy. As a result, a rare earth magnet in which crystal grains of the magnetic alloy are encapsulated with at least the constituent element of the penetrating material is obtained, and the coercive force of the rare earth magnet can be increased. As described above, the heating temperature at this time is preferably lower than the eutectic point of the rare earth magnet and higher than or equal to the liquidus temperature (eutectic point) of the penetrating material. In addition, the crystal grains of the magnetic alloy may be encapsulated by the entire penetrating material or only by some constituent elements.

ところで、浸透工程後の磁性合金の表面には、その酸化等を抑止するための保護被膜を設けると好適である。特に、磁性合金がR1−Fe−B系磁性合金のように酸化し易い場合に保護被膜が有効となる。
そして希土類磁石が前述したような積層磁石の場合なら、本発明の製造方法は、さらに、浸透工程後の磁性層の酸化を抑制する保護層を形成する保護層形成工程を備えると好適である。このような保護層の形成も前述したスパッタリングにより行える。そのターゲットには、Cr、Ag、Au、Pd、Pt、Mo、Cu、Ti、Ta、Ru、V、Hf、W、Irなどの単体、合金または化合物などを用いることができる。このスパッタリングは通常、室温域で行えば足りる。
By the way, it is preferable to provide a protective film on the surface of the magnetic alloy after the permeation step to prevent oxidation or the like. In particular, the protective coating is effective when the magnetic alloy is easily oxidized like the R1-Fe-B magnetic alloy.
If the rare earth magnet is a laminated magnet as described above, it is preferable that the manufacturing method of the present invention further includes a protective layer forming step for forming a protective layer for suppressing oxidation of the magnetic layer after the permeation step. Such a protective layer can also be formed by the aforementioned sputtering. As the target, a simple substance such as Cr, Ag, Au, Pd, Pt, Mo, Cu, Ti, Ta, Ru, V, Hf, W, and Ir, an alloy, a compound, or the like can be used. Usually, it is sufficient to perform this sputtering at room temperature.

《希土類磁石》
本発明の希土類磁石は、R1を含む磁性合金からなる結晶粒と、該磁性合金の共晶点よりも低温で液相を生じ得る浸透材または少なくともその浸透材の構成元素によって結晶粒を被包する粒界部とからなる(図1参照)。
《Rare earth magnet》
The rare earth magnet of the present invention encapsulates crystal grains by crystal grains made of a magnetic alloy containing R1 and a penetrating material capable of producing a liquid phase at a temperature lower than the eutectic point of the magnetic alloy or at least constituent elements of the penetrating material. (See FIG. 1).

本発明の希土類磁石は、一つの結晶粒とその周囲を被包する粒界部とが基本単位(最小単位)となっている限り、その形態は問わない。つまり、その基本単位も本発明の希土類磁石であるし、その基本単位が集合した粒子または鋳塊、その粒子が集合した粉末、その粉末を焼結させた焼結体など、本発明の希土類磁石である。この結晶粒は粒径が1〜500nmであると、磁気特性に非常に優れる希土類磁石が得られて好ましい。   The form of the rare earth magnet of the present invention is not limited as long as one crystal grain and the grain boundary portion surrounding the crystal grain are the basic unit (minimum unit). That is, the basic unit is also the rare earth magnet of the present invention, and the rare earth magnet of the present invention such as particles or ingots in which the basic units are aggregated, powders in which the particles are aggregated, and sintered bodies obtained by sintering the powders. It is. It is preferable that the crystal grains have a grain size of 1 to 500 nm because a rare earth magnet having very excellent magnetic properties can be obtained.

また本発明の希土類磁石は層状または薄膜状でもよい。すなわち、本発明の希土類磁石は、基材上に形成されるR1を含む磁性合金からなる磁性層およびその表面に形成された浸透層からなる積層磁石でもよい。この積層磁石はさらに、磁性層と基材との間に形成され磁性層の配向結晶面と整合的な結晶構造を有する下地層や、磁性層の酸化を抑制する保護層を有していると好適である。また本発明の希土類磁石は、基材を除く希土類磁石の厚さが1〜200nmさらには5〜100nmの薄膜磁石であってもよい。このような薄膜磁石は、高配向で高残留磁束密度であると共に高保磁力であって、非常に磁気特性に優れる。   The rare earth magnet of the present invention may be in the form of a layer or a thin film. That is, the rare earth magnet of the present invention may be a laminated magnet composed of a magnetic layer made of a magnetic alloy containing R1 formed on a substrate and a permeation layer formed on the surface thereof. The laminated magnet further includes an underlayer formed between the magnetic layer and the base material and having a crystal structure consistent with the oriented crystal plane of the magnetic layer, and a protective layer that suppresses oxidation of the magnetic layer. Is preferred. The rare earth magnet of the present invention may be a thin film magnet having a thickness of 1 to 200 nm, further 5 to 100 nm, of the rare earth magnet excluding the base material. Such a thin film magnet has a high orientation, a high residual magnetic flux density, a high coercive force, and an excellent magnetic property.

《磁石複合部材》
本発明の希土類磁石を用いた磁石複合部材として、磁気ケース、磁気ディスクなどの磁気記録媒体、電動機のロータまたはステータなどがある。
《Magnet composite member》
Examples of the magnet composite member using the rare earth magnet of the present invention include a magnetic case, a magnetic recording medium such as a magnetic disk, and a rotor or stator of an electric motor.

実施例を挙げて本発明をより具体的に説明する。
《試料の製造》
図2示すような種々の試料(磁石複合部材、積層磁石)を次のようにして製造した。
(1)下地層形成工程
積層磁石を結合する基材として、MgO単結晶基板(以下単に「基板」という。)を用意した。このMgO単結晶基板は、(001)面が基板面になるように加工し、表面粗度を小さくするため研磨を行ったものである(フルウチ化学株式会社製、MgO(100)単結晶)。
The present invention will be described more specifically with reference to examples.
<Production of sample>
Various samples (magnet composite member, laminated magnet) as shown in FIG. 2 were produced as follows.
(1) Underlayer Formation Step An MgO single crystal substrate (hereinafter simply referred to as “substrate”) was prepared as a base material for bonding laminated magnets. This MgO single crystal substrate is processed so that the (001) plane becomes the substrate surface and polished to reduce the surface roughness (MgO (100) single crystal manufactured by Furuuchi Chemical Co., Ltd.).

この基板の(001)面上に、Crからなる平坦なシード層(第1下地層)およびMoからなる平坦なバッファ層(第2下地層)を形成した(下地層形成工程)。バッファ層のMoは、NdFe14B相(単位は原子%、以下同様)の結晶配向面(c面)と格子整合性の高いb.c.c.材料である。このMoの結晶成長を制御して平滑で良質なバッファ層を形成させるために、Crからなるシード層を設けた。これらの下地層は、いずれもスパッタリングにより各下地材を積層した後に加熱処理して形成した。シード層の厚さは1nm、バッファ層の厚さは20nmとした。 A flat seed layer (first underlayer) made of Cr and a flat buffer layer (second underlayer) made of Mo were formed on the (001) plane of this substrate (underlayer forming step). Mo in the buffer layer is a bc.c. material having high lattice matching with the crystal orientation plane (c-plane) of the Nd 2 Fe 14 B phase (unit: atomic%, the same applies hereinafter). In order to control the Mo crystal growth and form a smooth and good quality buffer layer, a seed layer made of Cr was provided. All of these underlayers were formed by laminating each underlayer by sputtering and then heat-treating. The seed layer thickness was 1 nm, and the buffer layer thickness was 20 nm.

なお、本実施例のスパッタリングは、マグネトロンスパッタ法に基づき、積層(成膜)前の到達真空度を1x10−8Pa以下、製膜形状をφ8mmとして行った。また、各試料の各層の厚さ(層厚)は、積層速度と積層時間の積から算出した。ちなみに積層速度は、本実施例では0.4〜1Å/sとした。 Sputtering in this example was performed based on a magnetron sputtering method with an ultimate vacuum before lamination (film formation) of 1 × 10 −8 Pa or less and a film formation shape of φ8 mm. Moreover, the thickness (layer thickness) of each layer of each sample was calculated from the product of the stacking speed and the stacking time. Incidentally, the laminating speed was set to 0.4 to 1 kg / s in this example.

(2)磁性層形成工程
上述のスパッタリングにより、加熱した基板のバッファ層上に磁性層を形成した(磁性層形成工程)。ターゲットには、Nd(R1)、FeおよびFe−20at%B合金を用いた。スパッタリングは625℃に加熱した基板に対して行い、厚さ30nmの磁性層を形成した。
(2) Magnetic layer formation process The magnetic layer was formed on the buffer layer of the heated board | substrate by the above-mentioned sputtering (magnetic layer formation process). Nd (R1), Fe, and Fe-20 at% B alloy were used as targets. Sputtering was performed on a substrate heated to 625 ° C. to form a magnetic layer having a thickness of 30 nm.

(3)浸透層形成工程(付着工程)
磁性層を形成した基板を冷却し、室温域で上述したスパッタリングを行い、その磁性層上に浸透層を形成した(浸透層形成工程、スパッタリング工程)。このときのターゲットには、Nd(R2)原料およびCu原料の二種の原料を用いた。そして浸透層の全体組成が表1に示す組成(Cu濃度:原子%)となるように、上記のスパッタリングを行った。こうして種々の組成のNd−Cu合金(浸透材)からなる浸透層を磁性層上に積層した。それぞれの浸透層の厚さは表1に示した通りである。
(3) Penetration layer formation process (attachment process)
The substrate on which the magnetic layer was formed was cooled, and the above-described sputtering was performed at room temperature to form a permeation layer on the magnetic layer (permeation layer formation step, sputtering step). As the target at this time, two kinds of raw materials, Nd (R2) raw material and Cu raw material, were used. And said sputtering was performed so that the whole composition of a osmosis | permeation layer might become the composition (Cu density | concentration: atomic%) shown in Table 1. FIG. In this way, a permeation layer made of Nd—Cu alloys (penetration materials) of various compositions was laminated on the magnetic layer. The thickness of each penetration layer is as shown in Table 1.

なお、表1中の試料No.A1〜A3は、この浸透層の積層をしなかった場合であり、試料No.A4はNdのみを磁性層上に積層した場合である。なお、試料No.A2は、0.5nmに相当するCuを含有させた磁性層を30nm形成した。   In addition, sample No. in Table 1 A1 to A3 are cases where the permeation layer was not laminated. A4 is the case where only Nd is laminated on the magnetic layer. Sample No. As A2, 30 nm of a magnetic layer containing Cu corresponding to 0.5 nm was formed.

(4)浸透工程
浸透層を形成した種々の基板を表1に示す各温度に加熱する加熱処理を施した。この加熱処理は前述した1x10−8Pa以下の真空雰囲気中で60分間行った。但し、試料No.A1およびA2については、浸透工程を行っていない。
(4) Penetration process The heat treatment which heats the various board | substrates in which the osmosis | permeation layer was formed to each temperature shown in Table 1 was given. This heat treatment was performed for 60 minutes in the above-described vacuum atmosphere of 1 × 10 −8 Pa or less. However, Sample No. About A1 and A2, the osmosis | permeation process is not performed.

(5)保護層形成工程
その浸透工程後の基板を冷却し、室温域で上述のスパッタリングを行い、Crからなる保護層を最表面に形成した。保護層の厚さは全て10nmとした。
(5) Protective layer formation process The board | substrate after the infiltration process was cooled, and the above-mentioned sputtering was performed at room temperature, and the protective layer which consists of Cr was formed in the outermost surface. All the protective layers had a thickness of 10 nm.

(6)さらに、試料No.A3および試料No.C1の磁性層の厚さを、8〜100nmの間で種々変更した別の試料も製造した(図3参照)。 (6) Furthermore, sample no. A3 and Sample No. Other samples in which the thickness of the magnetic layer of C1 was variously changed between 8 and 100 nm were also manufactured (see FIG. 3).

《各試料の測定》
上述した各試料の保磁力を超伝導量子干渉型磁束計(SQUID)により測定した。その結果を表1に併せて記載した。
一例として試料No.C1の積層断面を、透過型電子顕微鏡(TEM)を用いてエネルギー分散型X線分光法(EDX)により観察した画像を図4(a)〜(f)に示す。
<< Measurement of each sample >>
The coercivity of each sample described above was measured with a superconducting quantum interference magnetometer (SQUID). The results are also shown in Table 1.
As an example, Sample No. 4A to 4F show images obtained by observing the laminated cross section of C1 by energy dispersive X-ray spectroscopy (EDX) using a transmission electron microscope (TEM).

《各試料の評価》
(1)試料No.A1〜A4
表1からわかるように、浸透層を設けていない試料No.A1およびA3の場合、加熱処理の有無に拘わらず、保磁力が12〜13kOe(9.5〜10.3x10A/m)程度と低い。
これらに対して、磁性層上にNd層を設けて熱処理を行った試料No.A4の場合、保磁力が少し向上している。また磁性層にCuを混在させさらに試料No.A2の場合、保磁力がさらに向上している。このように保磁力が増大したのは、Nd−Fe−B合金の結晶粒界へNdやCuが導入されて、その結晶粒の界面性状が改善されたためと思われる。もっとも、それらの保磁力の増大量は僅かである。
<< Evaluation of each sample >>
(1) Sample No. A1-A4
As can be seen from Table 1, sample no. In the case of A1 and A3, the coercive force is as low as about 12 to 13 kOe (9.5 to 10.3 × 10 5 A / m) regardless of the presence or absence of heat treatment.
In contrast to these, sample Nos. 1 and 2 were subjected to heat treatment by providing an Nd layer on the magnetic layer. In the case of A4, the coercive force is slightly improved. In addition, Cu was mixed in the magnetic layer and sample No. In the case of A2, the coercive force is further improved. The reason why the coercive force is increased in this way is thought to be that Nd and Cu are introduced into the crystal grain boundary of the Nd—Fe—B alloy and the interfacial properties of the crystal grains are improved. However, the amount of increase in their coercive force is slight.

(2)試料No.B1〜B5は、Nd−64%Cu合金(浸透材)からなる浸透層の形成後に行う浸透工程の加熱温度を種々変更したものである。表1から、加熱温度が400〜600℃である試料No.B2〜B4では、保磁力が大きく向上していることがわかる。特に加熱温度が500〜600℃である試料No.B3およびB4は、保磁力が著しく向上している。この理由は、上記の浸透材がその温度域で液相化して浸透材の結晶粒界へ十分に浸透したためと考えられる。従って浸透工程の加熱温度は、350〜625℃の範囲において好ましといえる。
なお、磁性層を構成する磁性合金の三元系共晶点は665℃であり、浸透層を構成するNd−Cu合金の共晶点は520℃である。
(2) Sample No. B1 to B5 are obtained by variously changing the heating temperature in the infiltration step performed after the formation of the infiltration layer made of the Nd-64% Cu alloy (infiltration material). From Table 1, sample No. whose heating temperature is 400-600 degreeC is shown. It can be seen that the coercive force is greatly improved in B2 to B4. Especially sample No. whose heating temperature is 500-600 degreeC. B3 and B4 have significantly improved coercive force. The reason for this is considered to be that the above-described penetrating material became a liquid phase in the temperature range and sufficiently penetrated into the crystal grain boundary of the penetrating material. Therefore, it can be said that the heating temperature in the infiltration step is preferable in the range of 350 to 625 ° C.
The ternary eutectic point of the magnetic alloy constituting the magnetic layer is 665 ° C., and the eutectic point of the Nd—Cu alloy constituting the permeation layer is 520 ° C.

(3)試料No.C1〜C4は、磁性層上に形成するNd−64%Cu合金(浸透材)からなる浸透層の厚さを種々変更したものである。なお、浸透工程の加熱温度は一律400℃とした。
表1からわかるように、浸透層の厚さが変化しても、保磁力はあまり変化しない。もっとも、試料No.C2およびC3から、浸透層の厚さが0.6〜2nmの範囲においてより高い保磁力が得られると考えられる。
(3) Sample No. C1 to C4 are obtained by variously changing the thickness of the permeation layer made of an Nd-64% Cu alloy (penetration material) formed on the magnetic layer. The heating temperature in the infiltration process was uniformly 400 ° C.
As can be seen from Table 1, the coercive force does not change much even if the thickness of the permeation layer changes. However, sample no. From C2 and C3, it is considered that a higher coercive force can be obtained when the thickness of the permeation layer is in the range of 0.6 to 2 nm.

(4)試料No.D1〜D6は、浸透層を構成するNd−Cu合金(浸透材)の組成割合を種々変更したものである。なお、浸透工程の加熱温度は一律500℃とした。
表1から、浸透層のCu濃度が広範囲で変化しても、いずれの場合も高い保磁力が保たれることが明らかとなった。特に試料No.D2〜D5からわかるように、Cu濃度が20〜90at%の範囲においてより高い保磁力が得られるといえる。
(4) Sample No. D1 to D6 are obtained by variously changing the composition ratio of the Nd—Cu alloy (penetrating material) constituting the osmotic layer. The heating temperature in the infiltration process was uniformly 500 ° C.
From Table 1, it became clear that high coercive force is maintained in any case even if the Cu concentration of the permeation layer varies in a wide range. In particular, sample no. As can be seen from D2 to D5, it can be said that a higher coercive force can be obtained in a Cu concentration range of 20 to 90 at%.

(5)また、上述した試料No.A3(浸透層無し)または試料No.C1(浸透層有り)の磁性層の厚さのみを、種々変更した複数の試料を用意した。これら試料について保磁力を測定した結果を図3のグラフにまとめた。
この結果から、磁性層の厚さに拘わらず、本発明に係る浸透層を設けて熱処理を行うことにより保磁力が全体的に向上することがわかる。
特に、磁性層の厚さが10nm(磁性層に対する浸透層の層厚比が5%)の試料は、保磁力が26kOe程度と著しく高くなることがわかった。このことから、磁性層が比較的薄くて、磁性層に対する浸透層の厚さの比が5%前後であると、磁性合金の結晶粒の界面がCuまたはNdによって滑らかに被包され、保磁力が著しく高められることがわかった。
(5) In addition, the above-mentioned sample No. A3 (no penetration layer) or sample no. A plurality of samples were prepared in which only the thickness of the magnetic layer C1 (with a permeation layer) was changed. The results of measuring the coercivity of these samples are summarized in the graph of FIG.
From this result, it can be seen that the coercive force is improved as a whole by performing the heat treatment by providing the permeation layer according to the present invention regardless of the thickness of the magnetic layer.
In particular, it was found that the sample having a magnetic layer thickness of 10 nm (the thickness ratio of the osmotic layer to the magnetic layer is 5%) has a remarkably high coercive force of about 26 kOe. Therefore, when the magnetic layer is relatively thin and the ratio of the thickness of the permeation layer to the magnetic layer is around 5%, the interface of the crystal grains of the magnetic alloy is smoothly encapsulated by Cu or Nd, and the coercive force Was found to be significantly increased.

(6)このことは図4に示した試料No.C1に関するEDX写真像からも明らかである。すなわち、図4(d)および図4(f)から、磁性層を構成する結晶粒の界面がCuおよびNdでほぼ均一に被包されていることが確認された。また図4から粒子間に形成される粒界幅は1〜10nmであることが明らかとなった。また図4(d)から、Cuがその結晶粒内部にほとんど固溶していないことも明らかとなった。さらに図4(b)、(c)および(e)から結晶粒の粒界には、浸透層以外の層を構成するCr、FeおよびMoがほとんど存在しないことも確認された。 (6) This is because the sample No. shown in FIG. It is also clear from the EDX photographic image for C1. That is, from FIG. 4D and FIG. 4F, it was confirmed that the interface of the crystal grains constituting the magnetic layer was almost uniformly encapsulated with Cu and Nd. Moreover, it became clear from FIG. 4 that the grain boundary width formed between the grains is 1 to 10 nm. Moreover, it became clear from FIG.4 (d) that Cu hardly dissolves in the inside of the crystal grain. Further, from FIGS. 4B, 4C, and 4E, it was confirmed that Cr, Fe, and Mo constituting layers other than the permeation layer were hardly present at the grain boundaries of the crystal grains.

Claims (13)

ネオジム(Nd)と鉄(Fe)とホウ素(B)の合金であるNd−Fe−B系磁性合金の表面に該磁性合金の共晶点よりも低温で液相を生じ得る浸透材を付着させる付着工程と、
該付着工程後に加熱して該磁性合金の結晶粒の粒界へ該浸透材を浸透拡散させる浸透工程とを備え、
粒径が1〜500nmである該結晶粒が銅(Cu)とNdの合金であるNd−Cu合金からなる該浸透材の構成元素で被包されてなる希土類磁石が得られることを特徴とする希土類磁石の製造方法。
A penetrant capable of forming a liquid phase at a temperature lower than the eutectic point of the magnetic alloy is attached to the surface of an Nd-Fe-B magnetic alloy, which is an alloy of neodymium (Nd), iron (Fe), and boron (B) . An adhesion process;
Including a permeation step of heating and diffusing the permeation material into the grain boundaries of the magnetic alloy by heating after the adhesion step,
It is characterized in that a rare earth magnet is obtained in which the crystal grains having a particle size of 1 to 500 nm are encapsulated with constituent elements of the penetrant made of an Nd-Cu alloy which is an alloy of copper (Cu) and Nd. A method for producing a rare earth magnet.
前記付着工程は、前記浸透材からなる単一原料または組合わせた全体組成が該浸透材の組成となる複数原料を、ターゲットとしてスパッタリングするスパッタリング工程である請求項1に記載の希土類磁石の製造方法。   2. The method for producing a rare earth magnet according to claim 1, wherein the attaching step is a sputtering step in which a single raw material made of the penetrating material or a plurality of raw materials whose combined total composition becomes the composition of the penetrating material is sputtered as a target. . 前記磁性合金は、全体を100原子%としたときに8〜30原子%のNdと4〜20原子%のBと残部であるFeとからなる請求項1または2に記載の希土類磁石の製造方法。 3. The method for producing a rare earth magnet according to claim 1, wherein the magnetic alloy is composed of 8 to 30 atomic% Nd , 4 to 20 atomic% B, and the balance Fe when the whole is 100 atomic%. . 前記浸透工程の加熱温度は、350〜625℃である請求項1〜3のいずれかに記載の希土類磁石の製造方法。 The method for producing a rare earth magnet according to any one of claims 1 to 3, wherein a heating temperature in the permeation step is 350 to 625 ° C. さらに、基材の表面上に前記磁性合金からなる磁性層を形成する磁性層形成工程を備え、
前記付着工程は、該磁性層上に前記浸透材からなる浸透層を形成する浸透層形成工程である請求項1〜のいずれかに記載の希土類磁石の製造方法。
And a magnetic layer forming step of forming a magnetic layer made of the magnetic alloy on the surface of the substrate,
The deposition process is a method of producing a rare-earth magnet according to any one of claims 1 to 4, which is a permeable layer forming step of forming an osmotic layer consisting of the infiltrating material on the magnetic layer.
前記磁性層の厚さ(t1)に対する前記浸透層の厚さ(t2)の層厚比(t2/t1)は0.1以下である請求項に記載の希土類磁石の製造方法。 The method for producing a rare earth magnet according to claim 5 , wherein a layer thickness ratio (t2 / t1) of the thickness (t2) of the permeation layer to the thickness (t1) of the magnetic layer is 0.1 or less. さらに、前記磁性層形成工程前に、前記基材の表面上に前記磁性層の配向結晶面と整合的な結晶構造を有する下地層を形成する下地層形成工程を備える請求項またはに記載の希土類磁石の製造方法。 Furthermore, before the magnetic layer forming step, according to claim 5 or 6 comprising a foundation layer forming step of forming a base layer having a consistent crystal structure and orientation crystal plane of the magnetic layer on the surface of the substrate Method for producing rare earth magnets. さらに、前記浸透工程後に、前記磁性層の酸化を抑制する保護層を形成する保護層形成工程を備える請求項のいずれかに記載の希土類磁石の製造方法。 Furthermore, the after infiltration step, the method of producing the rare-earth magnet according to any one of claims 5-7 comprising a protective layer forming step of forming a suppressing protective layer oxidation of the magnetic layer. 請求項1〜のいずれかに記載の製造方法により得られたことを特徴とする希土類磁石。 Rare-earth magnet, characterized in that obtained by the production method according to any one of claims 1-8. NdとFeとBの合金であるNd−Fe−B系磁性合金からなり粒径が1〜500nmである結晶粒と、
該該磁性合金の共晶点よりも低温で液相を生じ得る、CuとNdの合金であるNd−Cu合金からなる浸透材の構成元素によって該結晶粒を被包する粒界部とからなり、
粒界部の幅が1〜10nmであることを特徴とする希土類磁石。
A crystal grain having a particle diameter of 1 to 500 nm made of an Nd—Fe—B based magnetic alloy, which is an alloy of Nd, Fe, and B ;
It consists of a grain boundary part that encapsulates the crystal grains by a constituent element of a penetrating material made of an Nd-Cu alloy that is an alloy of Cu and Nd, which can generate a liquid phase at a temperature lower than the eutectic point of the magnetic alloy. ,
A rare earth magnet having a grain boundary portion width of 1 to 10 nm.
基材と、
該基材に結合した請求項または10に記載の希土類磁石と、
からなることを特徴とする磁石複合部材。
A substrate;
The rare earth magnet according to claim 9 or 10 bonded to the substrate;
A magnet composite member comprising:
前記希土類磁石は、前記磁性合金からなる磁性層と、
該磁性層と前記基材との間に形成され該磁性層の配向結晶面と整合的な結晶構造を有する下地層と、
該磁性層の酸化を抑制する保護層とを有する積層磁石である請求項11に記載の磁石複合部材。
The rare earth magnet includes a magnetic layer made of the magnetic alloy,
An underlayer formed between the magnetic layer and the base material and having a crystal structure consistent with the oriented crystal plane of the magnetic layer;
The magnet composite member according to claim 11 , which is a laminated magnet having a protective layer for suppressing oxidation of the magnetic layer.
前記希土類磁石は、厚さが1〜200nmの薄膜磁石である請求項11または12に記載の磁石複合部材。 The magnet composite member according to claim 11 or 12 , wherein the rare earth magnet is a thin film magnet having a thickness of 1 to 200 nm.
JP2009209672A 2009-09-10 2009-09-10 Rare earth magnet, manufacturing method thereof, and magnet composite member Expired - Fee Related JP5739093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209672A JP5739093B2 (en) 2009-09-10 2009-09-10 Rare earth magnet, manufacturing method thereof, and magnet composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209672A JP5739093B2 (en) 2009-09-10 2009-09-10 Rare earth magnet, manufacturing method thereof, and magnet composite member

Publications (2)

Publication Number Publication Date
JP2011061038A JP2011061038A (en) 2011-03-24
JP5739093B2 true JP5739093B2 (en) 2015-06-24

Family

ID=43948322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209672A Expired - Fee Related JP5739093B2 (en) 2009-09-10 2009-09-10 Rare earth magnet, manufacturing method thereof, and magnet composite member

Country Status (1)

Country Link
JP (1) JP5739093B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918611B (en) * 2010-05-20 2015-09-09 独立行政法人物质·材料研究机构 The manufacture method of rare-earth permanent magnet and rare-earth permanent magnet
JP5732877B2 (en) * 2011-02-04 2015-06-10 株式会社豊田中央研究所 Magnetic material and method for producing the same
JP5754232B2 (en) * 2011-05-02 2015-07-29 トヨタ自動車株式会社 Manufacturing method of high coercive force NdFeB magnet
US10199145B2 (en) * 2011-11-14 2019-02-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for producing the same
JP5742813B2 (en) 2012-01-26 2015-07-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP5790617B2 (en) 2012-10-18 2015-10-07 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP5870914B2 (en) * 2012-12-25 2016-03-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method
CN105518809B (en) 2013-06-05 2018-11-20 丰田自动车株式会社 Rare-earth magnet and its manufacturing method
JP6003920B2 (en) 2014-02-12 2016-10-05 トヨタ自動車株式会社 Rare earth magnet manufacturing method
WO2015121915A1 (en) * 2014-02-12 2015-08-20 日東電工株式会社 Rare earth permanent magnet and production method for rare earth permanent magnet
KR101602789B1 (en) * 2014-11-27 2016-03-24 부산대학교 산학협력단 NdFeB BASED MAGNET AND METHOD OF THE NdFeB BASED MAGNET USING WETTING COATING
CN107275029B (en) * 2016-04-08 2018-11-20 沈阳中北通磁科技股份有限公司 A kind of high-performance Ne-Fe-B permanent magnet and manufacturing method with neodymium iron boron waste material production
US10658107B2 (en) 2016-10-12 2020-05-19 Senju Metal Industry Co., Ltd. Method of manufacturing permanent magnet
CN111834118B (en) * 2020-07-02 2022-05-27 宁波永久磁业有限公司 Method for improving coercive force of sintered neodymium-iron-boron magnet and sintered neodymium-iron-boron magnet
CN116752051B (en) * 2023-06-20 2024-03-26 中南大学 Multi-component multifunctional high-strength green alloy and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114939A (en) * 1986-04-11 1988-05-19 Tokin Corp R2t14b-type composite-type magnet material and its production
JP3382392B2 (en) * 1994-11-15 2003-03-04 本田技研工業株式会社 Brazing material
JP3472358B2 (en) * 1994-11-07 2003-12-02 本田技研工業株式会社 Permanent magnet for heat bonding and method of manufacturing the same
JP4084007B2 (en) * 2000-07-24 2008-04-30 吟也 足立 Manufacturing method of magnetic material
JP3921399B2 (en) * 2001-03-01 2007-05-30 Tdk株式会社 Sintered magnet
JP2006041507A (en) * 2001-03-01 2006-02-09 Tdk Corp Sintered magnet
JP2003303708A (en) * 2002-04-09 2003-10-24 Hitachi Metals Ltd Rare-earth thin-film magnet
CN101006534B (en) * 2005-04-15 2011-04-27 日立金属株式会社 Rare earth sintered magnet and process for producing the same
JP5328161B2 (en) * 2008-01-11 2013-10-30 インターメタリックス株式会社 Manufacturing method of NdFeB sintered magnet and NdFeB sintered magnet
JP2010263172A (en) * 2008-07-04 2010-11-18 Daido Steel Co Ltd Rare earth magnet and manufacturing method of the same
CN102804296B (en) * 2009-06-18 2015-04-15 丰田自动车株式会社 Method and apparatus for producing magnetic powder

Also Published As

Publication number Publication date
JP2011061038A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP5739093B2 (en) Rare earth magnet, manufacturing method thereof, and magnet composite member
JP6256360B2 (en) Permanent magnet and method for manufacturing the same
EP2908319B1 (en) Method for producing rare-earth magnet
JP5206834B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP6391915B2 (en) Grain boundary modification method for Nd-Fe-B magnet
JP4677942B2 (en) Method for producing R-Fe-B rare earth sintered magnet
JP6693392B2 (en) R- (Fe, Co) -B system sintered magnet and its manufacturing method
JPH01103805A (en) Permanent magnet
KR20170058295A (en) R-(Fe,Co)-B SINTERED MAGNET AND MAKING METHOD
WO2007119271A1 (en) Thin-film rare earth magnet and method for manufacturing the same
CN110942881B (en) Rare earth magnet and method for producing same
TW201711059A (en) R-Fe-B based sintered magnet and manufacturing method thereof having a core/shell structure covering the main phase
US20180286545A1 (en) R-t-b based sintered magnet
JP3311907B2 (en) Permanent magnet material, permanent magnet, and method of manufacturing permanent magnet
JP2018110162A (en) Rare earth magnet and method for manufacturing the same
WO2012121351A1 (en) Rare earth magnet and process for producing same
JP5732877B2 (en) Magnetic material and method for producing the same
JP2020053437A (en) Rare earth magnet and manufacturing method therefor
JPWO2006009137A1 (en) Rare earth magnets
JP7035682B2 (en) RTB-based sintered magnet
JPS62188745A (en) Permanent magnet material and its production
JP2024023206A (en) Anisotropic rare earth sintered magnet and manufacturing method thereof
JP2024020341A (en) Anisotropic rare earth sintered magnet and method for manufacturing the same
JP2006210864A (en) Rare-earth magnet and its manufacturing method
JP6398911B2 (en) Permanent magnet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150423

R150 Certificate of patent or registration of utility model

Ref document number: 5739093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees