JP5726687B2 - Fluid dynamic bearing device - Google Patents

Fluid dynamic bearing device Download PDF

Info

Publication number
JP5726687B2
JP5726687B2 JP2011198748A JP2011198748A JP5726687B2 JP 5726687 B2 JP5726687 B2 JP 5726687B2 JP 2011198748 A JP2011198748 A JP 2011198748A JP 2011198748 A JP2011198748 A JP 2011198748A JP 5726687 B2 JP5726687 B2 JP 5726687B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
sleeve
housing
groove
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011198748A
Other languages
Japanese (ja)
Other versions
JP2013060993A (en
Inventor
古森 功
功 古森
山本 哲也
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2011198748A priority Critical patent/JP5726687B2/en
Publication of JP2013060993A publication Critical patent/JP2013060993A/en
Application granted granted Critical
Publication of JP5726687B2 publication Critical patent/JP5726687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Rotational Drive Of Disk (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は、流体動圧軸受装置に関する。   The present invention relates to a fluid dynamic bearing device.

流体動圧軸受装置は、その高回転精度および静粛性から、情報機器(例えばHDD)の磁気ディスク駆動装置や、CD、DVD、ブルーレイディスク等の光ディスク駆動装置、あるいはMD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用として好適に使用されている。   Due to its high rotational accuracy and quietness, the fluid dynamic pressure bearing device is a magnetic disk drive device for information equipment (for example, HDD), an optical disk drive device such as CD, DVD, Blu-ray disc, or a magneto-optical disk such as MD, MO, etc. It is suitably used for spindle motors such as drive devices.

例えば特許文献1には、軸部材と、内周に軸部材が挿入された軸受スリーブと、内周面に軸受スリーブが固定された筒状のハウジングと、ハウジングの一端側の開口部を閉塞する底部とを備えた流体動圧軸受装置が示されている。軸部材が回転すると、軸部材の外周面と軸受スリーブの内周面との間にラジアル軸受隙間が形成され、このラジアル軸受隙間に生じる流体膜で軸部材が相対回転自在に非接触支持される。   For example, in Patent Document 1, a shaft member, a bearing sleeve in which the shaft member is inserted on the inner periphery, a cylindrical housing in which the bearing sleeve is fixed on the inner periphery, and an opening on one end side of the housing are closed. A fluid dynamic bearing device with a bottom is shown. When the shaft member rotates, a radial bearing gap is formed between the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing sleeve, and the shaft member is supported in a non-contact manner so as to be relatively rotatable by a fluid film generated in the radial bearing gap. .

上記の流体動圧軸受装置では、ハウジングの閉塞側の空間の圧力バランスを維持するために、軸受スリーブの外周面とハウジングの内周面との間に連通路が設けられている。具体的には、軸受スリーブの外周面に軸方向溝を設け、この軸方向溝と、ハウジングの円筒状内周面とで連通路を形成している。この連通路により、ハウジングの閉塞側の空間がハウジングの開口側の空間と連通し、ハウジング閉塞側の空間を大気圧に維持することができる。   In the above fluid dynamic bearing device, a communication path is provided between the outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing in order to maintain the pressure balance of the space on the closed side of the housing. Specifically, an axial groove is provided on the outer peripheral surface of the bearing sleeve, and a communication path is formed by the axial groove and the cylindrical inner peripheral surface of the housing. By this communication path, the space on the closed side of the housing communicates with the space on the open side of the housing, and the space on the closed side of the housing can be maintained at atmospheric pressure.

また、同文献に示されている流体動圧軸受装置では、軸受スリーブの内周面に形成されるヘリングボーン形状の動圧溝を軸方向非対称形状としている。これにより、軸部材の回転に伴ってラジアル軸受隙間の潤滑油がハウジングの閉塞側に押し込まれ、連通路を介してハウジング開口側に移動し、再びラジアル軸受隙間に供給される。このように潤滑油を強制的に循環させることで、軸受装置の内部空間における局部的な負圧の発生をより一層確実に防止することができる。   Further, in the fluid dynamic pressure bearing device disclosed in the same document, the herringbone-shaped dynamic pressure groove formed on the inner peripheral surface of the bearing sleeve has an axially asymmetric shape. As a result, as the shaft member rotates, the lubricating oil in the radial bearing gap is pushed into the closed side of the housing, moves to the housing opening side through the communication path, and is supplied again to the radial bearing gap. By forcibly circulating the lubricating oil in this way, it is possible to more reliably prevent the generation of a local negative pressure in the internal space of the bearing device.

特開2011−58542号公報JP 2011-58542 A

しかし、流体動圧軸受装置の構造によっては、上記のような連通路を設けることが困難な場合がある。例えば、外周面に軸方向溝が形成された軸受スリーブをインサート部品として、ハウジングを樹脂で射出成形する場合、射出した樹脂により軸受スリーブの外周面の軸方向溝が埋められてしまうため、連通路を形成することができない。   However, depending on the structure of the fluid dynamic bearing device, it may be difficult to provide the communication path as described above. For example, when a bearing sleeve having an axial groove formed on the outer peripheral surface is used as an insert part and the housing is injection molded with resin, the injected resin fills the axial groove on the outer peripheral surface of the bearing sleeve. Can not form.

連通路が設けられていない流体動圧軸受装置において、上記のように軸方向非対称なヘリングボーン形状の動圧溝を設け、ラジアル軸受隙間の潤滑油をハウジングの閉塞側に向けて押し込むと、ハウジングの閉塞側の空間の圧力が過剰に高まり、軸部材が過浮上となる(すなわちハウジング開口側への支持力が過剰となる)恐れがある。   In a fluid dynamic pressure bearing device in which no communication passage is provided, when the axially asymmetric herringbone-shaped dynamic pressure groove is provided as described above and the lubricating oil in the radial bearing gap is pushed toward the closing side of the housing, the housing There is a possibility that the pressure in the space on the closed side will increase excessively and the shaft member will float up (that is, the supporting force on the housing opening side will be excessive).

例えば、ヘリングボーン形状の動圧溝のアンバランスを小さくし、ラジアル軸受隙間の潤滑油をハウジング閉塞側に押し込む力(ポンピング力)を小さくすれば、軸部材の過浮上を回避することができるが、ハウジング閉塞側の空間における負圧の発生を確実に防止できない恐れがある。   For example, if the unbalance of the herringbone-shaped dynamic pressure groove is reduced and the force (pumping force) that pushes the lubricating oil in the radial bearing gap into the housing closing side is reduced, the shaft member can be prevented from overlifting. There is a possibility that the generation of negative pressure in the space on the housing closing side cannot be reliably prevented.

以上のように、連通路を設けることができない場合、軸部材の過浮上及び負圧の発生の双方を防止することが困難であった。   As described above, when the communication path cannot be provided, it has been difficult to prevent both over-levitation of the shaft member and generation of negative pressure.

本発明の解決すべき課題は、連通路を設けることができない流体動圧軸受装置において、ハウジングの閉塞側の空間の圧力を適正に維持し、軸部材の過浮上及び負圧の発生を防止することにある。   The problem to be solved by the present invention is that in a fluid dynamic pressure bearing device in which a communication path cannot be provided, the pressure in the space on the closed side of the housing is properly maintained, and the shaft member is prevented from over-levitation and generation of negative pressure. There is.

前記課題を解決するためになされた本発明は、軸部材と、内周に軸部材が挿入された焼結金属製のスリーブと、内周にスリーブを保持する筒状のハウジングと、ハウジングの軸方向一端側の開口部を閉塞する底部と、軸部材の外周面とスリーブの内周面との間に形成されたラジアル軸受隙間と、ラジアル軸受隙間に満たされた潤滑流体に動圧作用を発生させる動圧溝とを備え、スリーブとハウジングとの固定部に、該固定部の軸方向両端を連通する連通路が設けられていない流体動圧軸受装置であって、動圧溝が、ラジアル軸受隙間の潤滑流体を軸方向一端側(ハウジングの閉塞側)に向けて押し込む第1傾斜溝と、ラジアル軸受隙間の潤滑流体を軸方向他端側(ハウジングの開口側)に向けて押し込む第2傾斜溝とを有するヘリングボーン形状をなし、第1傾斜溝の軸方向寸法をL1、第2傾斜溝の軸方向寸法をL2、動圧溝全体の軸方向寸法をLとしたとき、L1>L2、且つ、5≦(L3/L4)×100≦20(ただし、L3=L1−L2、L4=L−L3)を満たすことを特徴とする。   The present invention made to solve the above-mentioned problems includes a shaft member, a sintered metal sleeve having a shaft member inserted into the inner periphery, a cylindrical housing holding the sleeve on the inner periphery, and a shaft of the housing. Generates a hydrodynamic action on the bottom that closes the opening at one end in the direction, the radial bearing gap formed between the outer peripheral surface of the shaft member and the inner peripheral surface of the sleeve, and the lubricating fluid filled in the radial bearing clearance A fluid dynamic pressure bearing device in which a fixed portion between the sleeve and the housing is not provided with a communication path that communicates both axial ends of the fixed portion. The dynamic pressure groove is a radial bearing. A first inclined groove for pushing the lubricating fluid in the gap toward one axial end side (housing side of the housing), and a second inclined for pushing the lubricating fluid in the radial bearing gap toward the other axial end side (opening side of the housing) Herringbone with grooves When the axial dimension of the first inclined groove is L1, the axial dimension of the second inclined groove is L2, and the axial dimension of the entire dynamic pressure groove is L, L1> L2 and 5 ≦ (L3 / L4) × 100 ≦ 20 (where L3 = L1−L2, L4 = L−L3).

この流体動圧軸受装置では、ヘリングボーン形状の動圧溝の第1傾斜溝と第2傾斜溝の軸方向寸法差、すなわち動圧溝のアンバランス量L3(=L1−L2)を、動圧溝の軸方向対称領域の軸方向寸法L4(=L−L3)の5%以上としている。これにより、ハウジングとスリーブとの固定部に連通路が設けられない場合でも、ハウジングの閉塞側の空間に潤滑油が十分に供給され、この空間における負圧の発生を防止できる。また、動圧溝のアンバランス量L3を、動圧溝の軸方向対称領域の軸方向寸法L4の20%以下とすることで、ハウジングとスリーブとの固定部に連通路が設けられない場合でも、ハウジング7の閉塞側の空間の圧力が過剰となることを防止し、軸部材の過浮上を防止できる。このとき、ハウジングの閉塞側の空間に供給された潤滑油の一部は、スリーブの下側端面の表面開孔からスリーブの内部に抜けるため、ハウジングの閉塞側の空間の圧力を低下させ、軸部材の過浮上を確実に防止できる。   In this fluid dynamic pressure bearing device, the axial dimension difference between the first inclined groove and the second inclined groove of the herringbone-shaped dynamic pressure groove, that is, the unbalance amount L3 (= L1-L2) of the dynamic pressure groove is determined by the dynamic pressure. It is set to 5% or more of the axial dimension L4 (= L−L3) of the axially symmetric region of the groove. Thereby, even when the communication path is not provided in the fixing portion between the housing and the sleeve, the lubricating oil is sufficiently supplied to the space on the closing side of the housing, and generation of negative pressure in this space can be prevented. Further, by setting the unbalance amount L3 of the dynamic pressure groove to 20% or less of the axial dimension L4 of the axially symmetric region of the dynamic pressure groove, even when the communication path is not provided in the fixing portion between the housing and the sleeve. Further, it is possible to prevent the pressure in the space on the closed side of the housing 7 from becoming excessive, and to prevent the shaft member from excessively floating. At this time, a part of the lubricating oil supplied to the space on the closed side of the housing escapes from the surface opening on the lower end surface of the sleeve to the inside of the sleeve. It is possible to surely prevent the member from overlifting.

上記の流体動圧軸受装置によれば、例えばスリーブをインサート部品としてハウジングを樹脂で射出成形することで、連通路を形成することができない場合でも、ハウジングの閉塞側の空間の圧力を適正に維持することができる。   According to the fluid dynamic pressure bearing device described above, the pressure in the space on the closed side of the housing is properly maintained even when the communication path cannot be formed by, for example, molding the housing with resin using the sleeve as an insert part. can do.

上記の動圧溝は、例えば第1傾斜溝の円周方向に対する傾斜角度の大きさと、第2傾斜溝の円周方向に対する傾斜角度の大きさとを等しくした形状とすることができる。   The dynamic pressure groove may have a shape in which, for example, the inclination angle of the first inclined groove with respect to the circumferential direction is equal to the inclination angle of the second inclined groove with respect to the circumferential direction.

また、上記の動圧溝は、第1傾斜溝と第2傾斜溝との軸方向間に環状丘部を設けたり、あるいは、第1傾斜溝と第2傾斜溝とを軸方向で連続させたりすることができる。   In addition, the dynamic pressure groove includes an annular hill portion between the first inclined groove and the second inclined groove, or the first inclined groove and the second inclined groove are continuous in the axial direction. can do.

上記の流体動圧軸受装置では、ハウジングの軸方向他端側の開口部に環状のシール部を設け、シール部の内周面と軸部材の外周面との間に、潤滑流体の漏れ出しを防止するシール空間を形成することができる。このとき、シール空間よりもハウジングの閉塞側の空間には潤滑流体が満たされ、シール空間の内部に、大気と潤滑流体との界面が保持される。   In the above fluid dynamic pressure bearing device, an annular seal portion is provided in the opening on the other axial end side of the housing, and the lubricating fluid leaks between the inner peripheral surface of the seal portion and the outer peripheral surface of the shaft member. A sealing space to prevent can be formed. At this time, the space closer to the housing than the seal space is filled with the lubricating fluid, and the interface between the atmosphere and the lubricating fluid is maintained inside the seal space.

上記のハウジングは、例えばシール部と一体成形したり、あるいは底部と一体成形したりすることができる。   The housing can be integrally formed with the seal portion or integrally formed with the bottom portion, for example.

上記のスリーブは、例えば銅鉄系の焼結金属で形成することができる。   The above-described sleeve can be formed of, for example, a copper iron-based sintered metal.

上記の流体動圧軸受装置は、例えばHDDのディスク駆動装置のスピンドルモータ用として好適に用いることができる。   The fluid dynamic bearing device described above can be suitably used for a spindle motor of an HDD disk drive device, for example.

以上のように、本発明によれば、連通路を設けることができない流体動圧軸受装置において、ハウジングの閉塞側の空間の圧力を適正に維持し、軸部材の過浮上及び負圧の発生を防止することができる。   As described above, according to the present invention, in the fluid dynamic pressure bearing device in which the communication path cannot be provided, the pressure in the space on the closed side of the housing is properly maintained, and the shaft member is excessively floated and negative pressure is generated. Can be prevented.

本発明の実施形態に係る流体動圧軸受装置が組み込まれたHDDのディスク駆動装置のスピンドルモータの断面図である。It is sectional drawing of the spindle motor of the disk drive device of HDD incorporating the fluid dynamic pressure bearing apparatus which concerns on embodiment of this invention. 上記流体動圧軸受装置の断面図である。It is sectional drawing of the said fluid dynamic pressure bearing apparatus. 上記流体動圧軸受装置のスリーブの断面図である。It is sectional drawing of the sleeve of the said fluid dynamic pressure bearing apparatus. 上記流体動圧軸受装置のスリーブの下面図である。It is a bottom view of the sleeve of the fluid dynamic bearing device. 上記流体動圧軸受装置の底部の上面図である。It is a top view of the bottom part of the fluid dynamic bearing device. 他の実施形態に係る流体動圧軸受装置のスリーブの断面図である。It is sectional drawing of the sleeve of the fluid dynamic pressure bearing apparatus which concerns on other embodiment. 他の実施形態に係る流体動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic pressure bearing apparatus which concerns on other embodiment.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示すスピンドルモータは、例えばHDDのディスク駆動装置に用いられるものである。このスピンドルモータは、本発明の一実施形態に係る流体動圧軸受装置1と、流体動圧軸受装置1の軸部材2に固定されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bとからなる駆動部4と、ブラケット5とを備えている。ステータコイル4aはブラケット5に固定され、ロータマグネット4bはディスクハブ3に固定される。流体動圧軸受装置1は、ブラケット5の内周に固定される。ディスクハブ3には、1又は複数枚のディスク6(図1では2枚)が保持される。このように構成されたスピンドルモータにおいて、ステータコイル4aに通電すると、ロータマグネット4bが回転し、これに伴って、ディスクハブ3に保持されたディスク6が軸部材2と一体に回転する。   The spindle motor shown in FIG. 1 is used, for example, in an HDD disk drive device. The spindle motor is opposed to the fluid dynamic pressure bearing device 1 according to an embodiment of the present invention and the disk hub 3 fixed to the shaft member 2 of the fluid dynamic pressure bearing device 1 via, for example, a radial gap. In addition, a drive unit 4 including a stator coil 4a and a rotor magnet 4b and a bracket 5 are provided. The stator coil 4 a is fixed to the bracket 5, and the rotor magnet 4 b is fixed to the disk hub 3. The fluid dynamic bearing device 1 is fixed to the inner periphery of the bracket 5. The disk hub 3 holds one or a plurality of disks 6 (two in FIG. 1). In the spindle motor configured as described above, when the stator coil 4a is energized, the rotor magnet 4b rotates, and accordingly, the disk 6 held by the disk hub 3 rotates integrally with the shaft member 2.

流体動圧軸受装置1は、図2に示すように、軸部材2と、内周に軸部材2が挿入された焼結金属製のスリーブ8と、内周面にスリーブ8が固定された筒状のハウジング7と、ハウジング7の軸方向一端側の開口部を閉塞する底部9と、ハウジング7の軸方向他端側の開口部に配設されるシール部10とを主に備える。本実施形態では、ハウジング7とシール部10とを一体成形した場合を示す。   As shown in FIG. 2, the fluid dynamic bearing device 1 includes a shaft member 2, a sleeve 8 made of sintered metal having the shaft member 2 inserted into the inner periphery, and a cylinder having the sleeve 8 fixed to the inner periphery. The housing 7 mainly includes a bottom portion 9 that closes an opening portion on one axial end side of the housing 7, and a seal portion 10 that is disposed on the opening portion on the other axial end side of the housing 7. In this embodiment, the case where the housing 7 and the seal part 10 are integrally formed is shown.

軸部材2は、例えばステンレス鋼等の金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。軸部2aの外周面2a1は、凹凸の無い平滑な円筒面とされる。外周面2a1の軸方向略中央部には、外周面2a1よりも僅かに小径な逃げ部2a2が設けられる。フランジ部2bは円盤状を成している。フランジ部2bの上側端面2b1及び下側端面2b2は、凹凸の無い平坦面とされる。   The shaft member 2 is formed of a metal material such as stainless steel, for example, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. The outer peripheral surface 2a1 of the shaft portion 2a is a smooth cylindrical surface without irregularities. A clearance portion 2a2 having a slightly smaller diameter than the outer peripheral surface 2a1 is provided at a substantially central portion in the axial direction of the outer peripheral surface 2a1. The flange portion 2b has a disk shape. The upper end surface 2b1 and the lower end surface 2b2 of the flange portion 2b are flat surfaces without unevenness.

スリーブ8は、焼結金属で形成され、例えば、銅を主成分とする銅系の焼結金属、鉄を主成分とする鉄系の焼結金属、あるいは、銅及び鉄を主成分とする銅鉄系の焼結金属で形成される。   The sleeve 8 is formed of a sintered metal, for example, a copper-based sintered metal mainly composed of copper, an iron-based sintered metal mainly composed of iron, or copper mainly composed of copper and iron. It is made of iron-based sintered metal.

スリーブ8の内周面8aには、軸方向に離隔した2箇所の領域にラジアル軸受面8a1、8a2が設けられる。このラジアル軸受面8a1、8a2に、図3に示すようなヘリングボーン形状の動圧溝G、Fが形成される。   On the inner peripheral surface 8a of the sleeve 8, radial bearing surfaces 8a1 and 8a2 are provided in two regions separated in the axial direction. Herringbone-shaped dynamic pressure grooves G and F as shown in FIG. 3 are formed on the radial bearing surfaces 8a1 and 8a2.

動圧溝Gは、軸方向非対称なヘリングボーン形状をなす。具体的には、動圧溝Gは、軸部材2の回転方向先行側(図3の左側)に向けて下方に傾斜し、円周方向に並べて配された複数の第1傾斜溝G1と、軸部材2の回転方向先行側に向けて上方に傾斜し、円周方向に並べて配された複数の第2傾斜溝G2とを有する。軸部材2が回転すると、第1傾斜溝G1はラジアル軸受隙間の潤滑油を下向きに押し込み、第2傾斜溝G2はラジアル軸受隙間の潤滑油を上向きに押し込む。このとき、第1傾斜溝G1と第2傾斜溝G2は円周方向に対する傾斜角度の大きさが等しく、且つ、第1傾斜溝G1の軸方向寸法L1は第2傾斜溝G2の軸方向寸法L2よりも大きい(L1>L2)。このため、第1傾斜溝G1による下向きのポンピング力が、第2傾斜溝G2による上向きのポンピング力を上回り、動圧溝G全体としてラジアル軸受隙間の潤滑油を下向きに流動させるポンピング力を発生させる。第1傾斜溝G1と第2傾斜溝G2との軸方向寸法の差は、所定の範囲内に設定される。具体的には、動圧溝G全体の軸方向寸法をLとしたとき、動圧溝Gのアンバランス量L3(=L1−L2)と、動圧溝Gのうち、軸方向対称な領域の軸方向寸法L4(=L−L3)との比L3/L4が、5%以上、20%以下の範囲に設定される(5≦(L3/L4)×100≦20)。   The dynamic pressure groove G has an axially asymmetric herringbone shape. Specifically, the dynamic pressure groove G is inclined downward toward the rotation direction leading side (left side in FIG. 3) of the shaft member 2 and a plurality of first inclined grooves G1 arranged side by side in the circumferential direction, The shaft member 2 has a plurality of second inclined grooves G2 which are inclined upward toward the rotational direction leading side and are arranged side by side in the circumferential direction. When the shaft member 2 rotates, the first inclined groove G1 pushes the lubricating oil in the radial bearing gap downward, and the second inclined groove G2 pushes the lubricating oil in the radial bearing gap upward. At this time, the first inclined groove G1 and the second inclined groove G2 have the same inclination angle with respect to the circumferential direction, and the axial dimension L1 of the first inclined groove G1 is the axial dimension L2 of the second inclined groove G2. (L1> L2). For this reason, the downward pumping force by the first inclined groove G1 exceeds the upward pumping force by the second inclined groove G2, and the pumping force that causes the lubricating oil in the radial bearing gap to flow downward is generated as the whole dynamic pressure groove G. . The difference in axial dimension between the first inclined groove G1 and the second inclined groove G2 is set within a predetermined range. Specifically, when the axial dimension of the entire dynamic pressure groove G is L, the unbalanced amount L3 (= L1-L2) of the dynamic pressure groove G and the axially symmetric region of the dynamic pressure groove G The ratio L3 / L4 to the axial dimension L4 (= L−L3) is set in the range of 5% or more and 20% or less (5 ≦ (L3 / L4) × 100 ≦ 20).

動圧溝Fは、軸方向対称なヘリングボーン形状をなす。具体的には、動圧溝Fは、軸部材2の回転方向先行側に向けて下方に傾斜し、円周方向に並べて配された複数の第1傾斜溝F1と、軸部材2の回転方向先行側に向けて上方に傾斜し、円周方向に並べて配された複数の第2傾斜溝F2とを有する。軸部材2が回転すると、第1傾斜溝F1はラジアル軸受隙間の潤滑油を下向きに押し込み、第2傾斜溝F2はラジアル軸受隙間の潤滑油を上向きに押し込む。第1傾斜溝F1と第2傾斜溝F2は、円周方向に対する傾斜角度の大きさが等しく、且つ、軸方向寸法が等しいため、第1傾斜溝F1による下向きのポンピング力と第2傾斜溝F2による上向きのポンピング力とが相殺し、動圧溝F全体としてラジアル軸受隙間の潤滑油を軸方向に流動させるポンピング力は生じない。ただし、実際は、動圧溝Fの加工誤差により、動圧溝Fにより軸方向のポンピング力が僅かに発生する。   The dynamic pressure groove F has an axially symmetrical herringbone shape. Specifically, the dynamic pressure groove F is inclined downward toward the rotational direction leading side of the shaft member 2, and a plurality of first inclined grooves F1 arranged side by side in the circumferential direction, and the rotational direction of the shaft member 2 A plurality of second inclined grooves F2 that are inclined upward toward the leading side and are arranged side by side in the circumferential direction. When the shaft member 2 rotates, the first inclined groove F1 pushes the lubricating oil in the radial bearing gap downward, and the second inclined groove F2 pushes the lubricating oil in the radial bearing gap upward. Since the first inclined groove F1 and the second inclined groove F2 have the same inclination angle with respect to the circumferential direction and the same axial dimension, the downward pumping force by the first inclined groove F1 and the second inclined groove F2 Therefore, the pumping force that causes the lubricating oil in the radial bearing gap to flow in the axial direction as the entire dynamic pressure groove F does not occur. However, in actuality, due to a processing error of the dynamic pressure groove F, a slight axial pumping force is generated by the dynamic pressure groove F.

動圧溝G、Fの各傾斜溝G1、G2、F1、F2の円周方向間には、傾斜丘部G3、G4、F3、F4が設けられる。また、動圧溝Gの第1傾斜溝G1と第2傾斜溝G2との軸方向間、及び、動圧溝Fの第1傾斜溝F1と第2傾斜溝F2との軸方向間には、環状丘部G5、F5が設けられる。傾斜丘部G3、G4と環状丘部G5、及び、傾斜丘部F3、F4と環状丘部F5(図3にクロスハッチングで示す領域)は、それぞれ同一円筒面上で連続している。   Inclined hill portions G3, G4, F3, and F4 are provided between the circumferential directions of the inclined grooves G1, G2, F1, and F2 of the dynamic pressure grooves G and F, respectively. Further, between the axial direction of the first inclined groove G1 and the second inclined groove G2 of the dynamic pressure groove G and between the axial direction of the first inclined groove F1 and the second inclined groove F2 of the dynamic pressure groove F, Annular hills G5 and F5 are provided. The inclined hill portions G3 and G4 and the annular hill portion G5, and the inclined hill portions F3 and F4 and the annular hill portion F5 (regions indicated by cross-hatching in FIG. 3) are respectively continuous on the same cylindrical surface.

ラジアル軸受面8a1、8a2の軸方向間には、円筒面8a3が設けられる。円筒面8a3は、動圧溝Gの第2傾斜溝G2及び動圧溝Fの第1傾斜溝F1と同一円筒面上で連続している。また、動圧溝Gの第1傾斜溝G1の上端は、スリーブ8の上側端面8dの内周チャンファに達し、動圧溝Fの第2傾斜溝F2の下端は、スリーブ8の下側端面8bの内周チャンファに達している。   A cylindrical surface 8a3 is provided between the axial directions of the radial bearing surfaces 8a1 and 8a2. The cylindrical surface 8a3 is continuous on the same cylindrical surface as the second inclined groove G2 of the dynamic pressure groove G and the first inclined groove F1 of the dynamic pressure groove F. The upper end of the first inclined groove G1 of the dynamic pressure groove G reaches the inner peripheral chamfer of the upper end face 8d of the sleeve 8, and the lower end of the second inclined groove F2 of the dynamic pressure groove F is the lower end face 8b of the sleeve 8. Has reached the inner circumference Changfa.

スリーブ8の下側端面8bには、図4に示すようなスパイラル形状の動圧溝8b1が形成される。スリーブ8の外周面8cは、凹凸のない平滑な円筒面とされる。スリーブ8の上側端面8dは凹凸の無い平坦面とされる。   On the lower end surface 8b of the sleeve 8, a spiral-shaped dynamic pressure groove 8b1 as shown in FIG. 4 is formed. The outer peripheral surface 8c of the sleeve 8 is a smooth cylindrical surface without irregularities. The upper end surface 8d of the sleeve 8 is a flat surface without unevenness.

スリーブ8は、銅系金属粉末及び鉄系金属粉末を含む混合金属粉末を圧縮成形して圧粉体を形成した後、この圧粉体を焼結して焼結体を形成し、さらに焼結体にサイジングを施して所定寸法に整形することにより製造される。サイジング工程の際に、スリーブ8の内周面8aに動圧溝G、Fがプレス成形されると共に、スリーブ8の下側端面8bに動圧溝8b1がプレス成形される。   The sleeve 8 is formed by compression-molding a mixed metal powder containing copper-based metal powder and iron-based metal powder to form a green compact, and then sintering the green compact to form a sintered body. Manufactured by sizing the body and shaping it to a predetermined dimension. During the sizing process, the dynamic pressure grooves G and F are press-molded on the inner peripheral surface 8 a of the sleeve 8, and the dynamic pressure groove 8 b 1 is press-molded on the lower end surface 8 b of the sleeve 8.

ハウジング7は、軸方向両端を開口した円筒状をなす(図2参照)。ハウジング7の内周面7aは、凹凸の無い平滑な円筒面とされる。ハウジング7の内周面7aの下端には、内周面7aよりも大径であって、底部9を固定するための固定面7bが設けられる。ハウジング7は、スリーブ8をインサート部材とした樹脂の射出成形で形成され、ハウジング7の内周面7aとスリーブ8の外周面8cとは全面で密着している。従って、ハウジング7の内周面7aとスリーブ8の外周面8cとの固定部には、この固定部の軸方向両端を連通する連通路は形成されない。   The housing 7 has a cylindrical shape with both axial ends open (see FIG. 2). The inner peripheral surface 7a of the housing 7 is a smooth cylindrical surface having no irregularities. At the lower end of the inner peripheral surface 7 a of the housing 7, a fixing surface 7 b that is larger in diameter than the inner peripheral surface 7 a and that fixes the bottom 9 is provided. The housing 7 is formed by resin injection molding using the sleeve 8 as an insert member, and the inner peripheral surface 7a of the housing 7 and the outer peripheral surface 8c of the sleeve 8 are in close contact with each other. Accordingly, a communication path that communicates both ends in the axial direction of the fixed portion is not formed in the fixed portion between the inner peripheral surface 7 a of the housing 7 and the outer peripheral surface 8 c of the sleeve 8.

底部9は、金属材料あるいは樹脂材料で円盤状に形成される。底部9の上側端面9aには、図5に示すようなスパイラル形状の動圧溝9a1が形成される。底部9の外周面9bは、接着、圧入、接着剤介在下での圧入、あるいはこれらの併用等の適宜の手段で、ハウジング7の固定面7bに固定される。   The bottom 9 is formed in a disk shape from a metal material or a resin material. A spiral dynamic pressure groove 9a1 as shown in FIG. 5 is formed on the upper end surface 9a of the bottom portion 9. The outer peripheral surface 9b of the bottom portion 9 is fixed to the fixing surface 7b of the housing 7 by appropriate means such as bonding, press-fitting, press-fitting with an adhesive interposed, or a combination thereof.

シール部10は、ハウジング7の上端開口部に設けられ、本実施形態ではシール部10とハウジング7とが樹脂で一体成形される。シール部10の内周面10aには、上方に向けて漸次拡径したテーパ形状をなしている。シール部10の内周面10aと軸部2aの外周面2a1との間には、下方に向けて径方向幅を徐々に狭めた断面楔形のシール空間Sが形成される。シール部10の下側端面10bは、スリーブ8の上側端面8dと当接している。   The seal portion 10 is provided at the upper end opening of the housing 7, and in this embodiment, the seal portion 10 and the housing 7 are integrally formed of resin. The inner peripheral surface 10a of the seal portion 10 has a tapered shape that gradually increases in diameter upward. Between the inner peripheral surface 10a of the seal portion 10 and the outer peripheral surface 2a1 of the shaft portion 2a is formed a wedge-shaped seal space S having a gradually narrowing radial width downward. The lower end surface 10 b of the seal portion 10 is in contact with the upper end surface 8 d of the sleeve 8.

上記の構成部品からなる流体動圧軸受装置1の内部に、潤滑油が注入される。これにより、ラジアル軸受隙間やスラスト軸受隙間、さらにはスリーブ8の内部空孔を含む流体動圧軸受装置1の内部空間が潤滑油で満たされる。すなわち、シール空間Sよりもハウジング7の閉塞側の空間は潤滑油で途切れなく満たされ、油面は常にシール空間Sの範囲内に維持される。   Lubricating oil is injected into the fluid dynamic bearing device 1 composed of the above components. As a result, the internal space of the fluid dynamic bearing device 1 including the radial bearing gap, the thrust bearing gap, and the internal holes of the sleeve 8 is filled with the lubricating oil. That is, the space on the closed side of the housing 7 with respect to the seal space S is filled with the lubricating oil without interruption, and the oil level is always maintained within the range of the seal space S.

軸部材2が回転すると、スリーブ8の内周面8aのラジアル軸受面8a1、8a2(動圧溝G、F形成領域)と軸部2aの外周面2a1との間にラジアル軸受隙間が形成される。そして、動圧溝G、Fによりラジアル軸受隙間の油膜の圧力が高められ、この動圧作用によって、軸部2aを回転自在に非接触支持する第1ラジアル軸受部R1及び第2ラジアル軸受部R2が構成される。   When the shaft member 2 rotates, a radial bearing gap is formed between the radial bearing surfaces 8a1 and 8a2 (dynamic pressure groove G and F formation region) of the inner peripheral surface 8a of the sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a. . Then, the pressure of the oil film in the radial bearing gap is increased by the dynamic pressure grooves G and F, and by this dynamic pressure action, the first radial bearing portion R1 and the second radial bearing portion R2 that rotatably support the shaft portion 2a in a non-contact manner. Is configured.

これと同時に、フランジ部2bの上側端面2b1とスリーブ8の下側端面8b(動圧溝8b1形成領域)との間、及び、フランジ部2bの下側端面2b2と底部9の上側端面9a(動圧溝9a1形成領域)との間にそれぞれスラスト軸受隙間が形成される。そして、動圧溝8b1、9a1によりスラスト軸受隙間の油膜の圧力が高められ、この動圧作用によって、フランジ部2bを両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが構成される。   At the same time, between the upper end surface 2b1 of the flange portion 2b and the lower end surface 8b (dynamic pressure groove 8b1 formation region) of the sleeve 8, and the lower end surface 2b2 of the flange portion 2b and the upper end surface 9a of the bottom portion 9 (moving). Thrust bearing gaps are respectively formed between the pressure groove 9a1 formation region). Then, the pressure of the oil film in the thrust bearing gap is increased by the dynamic pressure grooves 8b1 and 9a1, and by this dynamic pressure action, the first thrust bearing portion T1 and the second thrust bearing portion T1 that support the flange portion 2b rotatably in both thrust directions are contacted. And a thrust bearing portion T2.

このとき、動圧溝Gの第1傾斜溝G1と第2傾斜溝G2の寸法差により、ラジアル軸受隙間の潤滑油を下向きに押し込むポンピング力が発生する。上記のように、動圧溝Gのアンバランス量L3を、動圧溝Gの軸方向対称領域の軸方向寸法L4の5%以上とすることで、ハウジング7の閉塞側の空間に潤滑油が十分に供給され、この空間における負圧の発生を防止できる。また、動圧溝Gのアンバランス量L3を、動圧溝Gの軸方向対称領域の軸方向寸法L4の20%以下とすることで、ハウジング7の閉塞側の空間、特に軸部材2のフランジ部2bの下側端面2b2が面する空間の圧力が過剰となることを防止し、軸部材2の過浮上を防止できる。このとき、ハウジング7の閉塞側の空間に供給された潤滑油の一部は、スリーブ8の下側端面8bの表面開孔からスリーブ8の内部に抜けるため、ハウジング7の閉塞側の空間の圧力を低下させ、軸部材2の過浮上を確実に防止できる。   At this time, due to the difference in dimensions between the first inclined groove G1 and the second inclined groove G2 of the dynamic pressure groove G, a pumping force that pushes the lubricating oil in the radial bearing gap downward is generated. As described above, when the unbalance amount L3 of the dynamic pressure groove G is set to 5% or more of the axial dimension L4 of the axially symmetric region of the dynamic pressure groove G, the lubricating oil is introduced into the closed space of the housing 7. Sufficiently supplied, and generation of negative pressure in this space can be prevented. Further, by setting the unbalance amount L3 of the dynamic pressure groove G to 20% or less of the axial dimension L4 of the axially symmetric region of the dynamic pressure groove G, the space on the closed side of the housing 7, particularly the flange of the shaft member 2 It is possible to prevent the pressure in the space facing the lower end surface 2b2 of the portion 2b from becoming excessive, and to prevent the shaft member 2 from being overlifted. At this time, part of the lubricating oil supplied to the space on the closed side of the housing 7 escapes from the surface opening of the lower end surface 8b of the sleeve 8 to the inside of the sleeve 8, so the pressure in the space on the closed side of the housing 7 is reduced. The shaft member 2 can be reliably prevented from over-levitation.

本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記実施形態と同一の構成及び機能を有する箇所には同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the location which has the same structure and function as the said embodiment, and duplication description is abbreviate | omitted.

例えば、スリーブ8の内周面8aに形成されるヘリングボーン形状の動圧溝Gの形状は上記に限られない。例えば、図3に示す環状丘部G5、F5を省略し、図6に示すように第1傾斜溝G1と第2傾斜溝G2、及び、第1傾斜溝F1と第2傾斜溝F2を、それぞれ軸方向で連続させもよい。   For example, the shape of the herringbone-shaped dynamic pressure groove G formed on the inner peripheral surface 8a of the sleeve 8 is not limited to the above. For example, the annular hill portions G5 and F5 shown in FIG. 3 are omitted, and the first inclined groove G1 and the second inclined groove G2 and the first inclined groove F1 and the second inclined groove F2 are respectively shown in FIG. It may be continuous in the axial direction.

また、上記の実施形態では、シール部10とハウジング7とを一体成形した場合を示したが、これに限らず、例えば図7に示すように、シール部10とハウジング7とを別体に形成する一方で、底部9とハウジング7とを樹脂で一体成形してもよい。この場合、シール部10は、金属材料あるいは樹脂材料で環状に形成され、ハウジング7の内周面の上端に固定される。   Further, in the above embodiment, the case where the seal portion 10 and the housing 7 are integrally formed is shown. However, the present invention is not limited to this. For example, as shown in FIG. On the other hand, the bottom 9 and the housing 7 may be integrally formed of resin. In this case, the seal portion 10 is formed in a ring shape with a metal material or a resin material, and is fixed to the upper end of the inner peripheral surface of the housing 7.

また、上記の実施形態では、スリーブ8の外周面8cが平滑な円筒面である場合を示したが、これに限られない。例えば、スリーブ8の外周面8cに、凹部(例えば軸方向溝)を形成してもよい。この場合、ハウジング7の樹脂が凹部に入り込み、ハウジング7に対するスリーブ8の回り止めや抜け止めを行うことができる。   In the above-described embodiment, the case where the outer peripheral surface 8c of the sleeve 8 is a smooth cylindrical surface has been described, but the present invention is not limited to this. For example, a recess (for example, an axial groove) may be formed on the outer peripheral surface 8 c of the sleeve 8. In this case, the resin of the housing 7 enters the concave portion, and the sleeve 8 can be prevented from rotating or coming off from the housing 7.

また、上記の実施形態では、スリーブ8をインサート部品としてハウジング7を射出成形した場合を示したが、これに限らず、スリーブ8とハウジング7とを別体に形成した後、これらを接着や圧入等の適宜の手段で固定してもよい。特に、図7に示す構成では、スリーブ8及び軸部材2をインサート部品として、底部9を一体に有するハウジング7を射出成形することは困難である。従って、スリーブ8とハウジング7を別体に形成し、スリーブ8の内周に軸部材2を挿入した後、スリーブ8の外周面8cとハウジング7の内周面7aとが固定される。   In the above embodiment, the case where the housing 7 is injection-molded using the sleeve 8 as an insert part is shown. However, the present invention is not limited thereto, and the sleeve 8 and the housing 7 are formed separately and then bonded or press-fitted. You may fix by appropriate means, such as. In particular, in the configuration shown in FIG. 7, it is difficult to injection-mold the housing 7 having the bottom 9 integrally with the sleeve 8 and the shaft member 2 as insert parts. Therefore, after the sleeve 8 and the housing 7 are formed separately and the shaft member 2 is inserted into the inner periphery of the sleeve 8, the outer peripheral surface 8c of the sleeve 8 and the inner peripheral surface 7a of the housing 7 are fixed.

また、上記の実施形態では、スリーブ8の内周面8aにヘリングボーン形状の動圧溝G、Fが形成されているが、これに限らず、動圧溝を軸部材2の外周面2a1に形成してもよい。この場合、軸部材2の外周面2a1に、例えば転造加工により動圧溝を形成することができる。また、上記の実施形態では、スリーブ8の内周面8aの軸方向に離隔した2箇所に動圧溝G、F(ラジアル軸受面8a1、8a2)を形成したが、これに限らず、動圧溝Fを省略したり、動圧溝G、Fを軸方向で連続させてもよい。   In the above embodiment, the herringbone-shaped dynamic pressure grooves G and F are formed on the inner peripheral surface 8 a of the sleeve 8. However, the present invention is not limited to this, and the dynamic pressure grooves are formed on the outer peripheral surface 2 a 1 of the shaft member 2. It may be formed. In this case, a dynamic pressure groove can be formed on the outer peripheral surface 2a1 of the shaft member 2 by rolling, for example. In the above-described embodiment, the dynamic pressure grooves G and F (radial bearing surfaces 8a1 and 8a2) are formed at two locations separated in the axial direction of the inner peripheral surface 8a of the sleeve 8. However, the present invention is not limited to this. The groove F may be omitted or the dynamic pressure grooves G and F may be continuous in the axial direction.

また、上記の実施形態では、図4及び図5に示すように、スリーブ8の下側端面8b、及び、底部9の上側端面9aに、スパイラル形状の動圧溝8b1、9a1が形成されているが、これに限られない。例えば、図示は省略するが、ヘリングボーン形状の動圧溝や、円周方向でステップ形状や波形形状をなした半径方向溝を形成することができる。また、ポンプインタイプの動圧溝に限らず、ポンプアウトタイプの動圧溝でもよい。また、これらの動圧溝を、フランジ部2bの上側端面2b1及び下側端面2b2に形成してもよい。この場合、フランジ部2bの上下端面2b1、2b2に、例えばプレス加工により動圧溝を形成することができる。   In the above embodiment, as shown in FIGS. 4 and 5, spiral-shaped dynamic pressure grooves 8 b 1 and 9 a 1 are formed on the lower end surface 8 b of the sleeve 8 and the upper end surface 9 a of the bottom portion 9. However, it is not limited to this. For example, although not shown, a herringbone-shaped dynamic pressure groove or a radial groove having a step shape or a wave shape in the circumferential direction can be formed. The pump-in type dynamic pressure groove is not limited to the pump-in type dynamic pressure groove. Further, these dynamic pressure grooves may be formed on the upper end surface 2b1 and the lower end surface 2b2 of the flange portion 2b. In this case, dynamic pressure grooves can be formed on the upper and lower end surfaces 2b1 and 2b2 of the flange portion 2b, for example, by pressing.

また、上記の実施形態では、軸部材2を回転側、スリーブ8を固定側とした、いわゆる軸回転タイプの流体動圧軸受装置を示したが、これに限らず、軸部材2を固定側、スリーブ8を回転側とした、いわゆる軸固定タイプの流体動圧軸受装置に本発明を適用することもできる。   In the above-described embodiment, a so-called shaft rotation type fluid dynamic bearing device in which the shaft member 2 is the rotation side and the sleeve 8 is the fixed side is shown, but not limited thereto, the shaft member 2 is the fixed side, The present invention can also be applied to a so-called shaft-fixed type fluid dynamic bearing device in which the sleeve 8 is the rotating side.

また、上記の実施形態では、本発明に係る流体動圧軸受装置をHDDのディスク駆動装置のスピンドルモータに組み込んだ例を示しているが、これに限らず、他のディスク駆動装置のスピンドルモータや、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、あるいはプロジェクタのカラーホイールモータ等に適用することもできる。   In the above embodiment, an example in which the fluid dynamic pressure bearing device according to the present invention is incorporated in a spindle motor of an HDD disk drive device is shown. It can also be applied to a polygon scanner motor of a laser beam printer (LBP) or a color wheel motor of a projector.

本発明の有効性を確認するため、動圧溝Gの第1傾斜溝G1の長さが異なる複数種のスリーブ8を形成し、各スリーブ8を有する流体動圧軸受装置1(図3参照)の軸部材2を5000〜8000rpmで回転させ、それぞれの場合において軸部材2の過浮上の有無、及び、負圧の発生の有無を調べた。   In order to confirm the effectiveness of the present invention, a plurality of types of sleeves 8 having different lengths of the first inclined groove G1 of the dynamic pressure groove G are formed, and the fluid dynamic pressure bearing device 1 having each sleeve 8 (see FIG. 3). The shaft member 2 was rotated at 5000 to 8000 rpm, and in each case, the presence or absence of over-levitation of the shaft member 2 and the occurrence of negative pressure was examined.

その結果、表1に示すように、動圧溝Gのアンバランス量L3(=L1−L2)が0.10の場合には負圧の発生が確認され、動圧溝Gのアンバランス量L3が0.80及び1.00の場合には軸部材の過浮上が確認された。一方、動圧溝Gのアンバランス量L3が0.15及び0.60の場合には軸部材の過浮上及び負圧の発生の何れも確認されなかった。この結果から、動圧溝Gのアンバランス量L3と、動圧溝Gの軸方向対称な領域の軸方向寸法L4との比L3/L4を5%以上20%以下とすることで、軸部材の過浮上及び負圧の発生の双方を防止できることが確認された。   As a result, as shown in Table 1, when the unbalance amount L3 (= L1-L2) of the dynamic pressure groove G is 0.10, generation of negative pressure is confirmed, and the unbalance amount L3 of the dynamic pressure groove G is confirmed. Was 0.80 and 1.00, it was confirmed that the shaft member was overlifted. On the other hand, when the unbalance amount L3 of the dynamic pressure groove G was 0.15 and 0.60, neither the shaft member over-levitation nor the generation of negative pressure was confirmed. From this result, the ratio L3 / L4 between the unbalanced amount L3 of the dynamic pressure groove G and the axial dimension L4 of the axially symmetric region of the dynamic pressure groove G is set to 5% or more and 20% or less. It was confirmed that it was possible to prevent both over-levitation and negative pressure.

Figure 0005726687
Figure 0005726687

1 流体動圧軸受装置
2 軸部材
7 ハウジング
8 スリーブ
9 底部
10 シール部
G 動圧溝
G1 第1傾斜溝
G2 第2傾斜溝
G3、G4 傾斜丘部
G5 環状丘部
F 動圧溝
F1 第1傾斜溝
F2 第2傾斜溝
F3、F4 傾斜丘部
F5 環状丘部
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft member 7 Housing 8 Sleeve 9 Bottom part 10 Sealing part G Dynamic pressure groove G1 First inclination groove G2 Second inclination groove G3, G4 Inclined hill part G5 Annular hill part F Dynamic pressure groove F1 First inclination Groove F2 Second inclined groove F3, F4 Inclined hill portion F5 Annular hill portion R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S Seal space

Claims (10)

軸部及び該軸部の軸方向一端に設けられたフランジ部を有する軸部材と、内周に前記軸部が挿入された焼結金属製のスリーブと、内周面に前記スリーブの外周面が固定された筒状のハウジングと、前記ハウジングの軸方向一端側の開口部を閉塞する底部と、前記軸部の外周面と前記スリーブの内周面との間に形成されたラジアル軸受隙間と、前記スリーブの端面とこれに対向する前記フランジ部の一方の端面との間に形成された第一のスラスト軸受隙間と、前記底部の端面とこれに対向する前記フランジ部の他方の端面との間に形成された第二のスラスト軸受隙間と、前記ラジアル軸受隙間に満たされた潤滑流体に動圧作用を発生させるラジアル動圧溝と、第一のスラスト軸受隙間に満たされた潤滑流体に動圧作用を発生させるポンプインタイプの第一のスラスト動圧溝と、第二のスラスト軸受隙間に満たされた潤滑流体に動圧作用を発生させるポンプインタイプの第二のスラスト動圧溝とを備え、前記スリーブと前記ハウジングとの固定部に、該固定部の軸方向両端を連通する連通路が設けられていない流体動圧軸受装置であって、
前記ラジアル動圧溝が、前記ラジアル軸受隙間の潤滑流体を軸方向一端側に向けて押し込む第1傾斜溝と、前記ラジアル軸受隙間の潤滑流体を軸方向他端側に向けて押し込む第2傾斜溝とを有するヘリングボーン形状をなし、
第1傾斜溝の軸方向寸法をL1、第2傾斜溝の軸方向寸法をL2、前記ラジアル動圧溝全体の軸方向寸法をLとしたとき、
L1>L2、且つ、5≦(L3/L4)×100≦20
(ただし、L3=L1−L2、L4=L−L3)
を満たすことを特徴とする流体動圧軸受装置。
A shaft member having a shaft portion and a flange portion provided at one axial end of the shaft portion, a sintered metal sleeve having the shaft portion inserted into the inner periphery, and an outer peripheral surface of the sleeve on the inner peripheral surface A fixed cylindrical housing, a bottom portion that closes an opening on one axial end side of the housing, a radial bearing gap formed between an outer peripheral surface of the shaft portion and an inner peripheral surface of the sleeve; Between the first thrust bearing gap formed between the end surface of the sleeve and one end surface of the flange portion facing the sleeve, and the end surface of the bottom portion and the other end surface of the flange portion facing the first thrust bearing gap A second thrust bearing gap formed in the radial bearing, a radial dynamic pressure groove for generating a dynamic pressure action in the lubricating fluid filled in the radial bearing gap, and a dynamic pressure in the lubricating fluid filled in the first thrust bearing gap. Pump interface that generates action Comprises a first thrust dynamic pressure groove flop, and a second second pump-in type for generating a dynamic pressure action on the lubricating fluid filled in the thrust bearing gap of the thrust dynamic pressure groove, the said sleeve housing The fluid dynamic pressure bearing device is not provided with a communication passage communicating with both axial ends of the fixed portion in the fixed portion.
The radial dynamic pressure groove has a first inclined groove for pushing the lubricating fluid in the radial bearing gap toward one end in the axial direction, and a second inclined groove for pushing the lubricating fluid in the radial bearing gap toward the other end in the axial direction. Herringbone shape with
When the axial dimension of the first inclined groove is L1, the axial dimension of the second inclined groove is L2, and the axial dimension of the entire radial dynamic pressure groove is L,
L1> L2 and 5 ≦ (L3 / L4) × 100 ≦ 20
(However, L3 = L1-L2, L4 = L-L3)
A fluid dynamic bearing device characterized by satisfying
前記スリーブをインサート部品として、前記ハウジングを樹脂で射出成形した請求項1記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein the sleeve is used as an insert part and the housing is injection-molded with resin. 第1傾斜溝の円周方向に対する傾斜角度の大きさと、第2傾斜溝の円周方向に対する傾斜角度の大きさとが等しい請求項1又は2記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1 or 2, wherein a magnitude of an inclination angle with respect to a circumferential direction of the first inclined groove is equal to a magnitude of an inclination angle with respect to the circumferential direction of the second inclined groove. 第1傾斜溝と第2傾斜溝との軸方向間に、環状丘部を設けた請求項1〜3の何れかに記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein an annular hill portion is provided between the first inclined groove and the second inclined groove in the axial direction. 第1傾斜溝と第2傾斜溝とを軸方向で連続させた請求項1〜3の何れかに記載の流体動圧軸受装置。   The fluid dynamic bearing device according to any one of claims 1 to 3, wherein the first inclined groove and the second inclined groove are continuous in the axial direction. 前記ハウジングの軸方向他端側の開口部に環状のシール部を設け、前記シール部の内周面と前記軸部材の外周面との間に、潤滑流体の漏れ出しを防止するシール空間を形成する請求項1〜5の何れかに記載の流体動圧軸受装置。   An annular seal portion is provided at the opening on the other axial end side of the housing, and a seal space is formed between the inner peripheral surface of the seal portion and the outer peripheral surface of the shaft member to prevent leakage of the lubricating fluid. The fluid dynamic bearing device according to claim 1. 前記シール部と前記ハウジングとを一体成形した請求項6記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 6, wherein the seal portion and the housing are integrally formed. 前記ハウジングと前記底部とを一体成形した請求項1〜7の何れかに記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein the housing and the bottom are integrally formed. 前記スリーブが銅鉄系の焼結金属製である請求項1〜8の何れかに記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein the sleeve is made of a copper iron-based sintered metal. HDDのディスク駆動装置のスピンドルモータに組み込まれる請求項1〜9の何れかに記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein the fluid dynamic bearing device is incorporated in a spindle motor of an HDD disk drive device.
JP2011198748A 2011-09-12 2011-09-12 Fluid dynamic bearing device Expired - Fee Related JP5726687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198748A JP5726687B2 (en) 2011-09-12 2011-09-12 Fluid dynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198748A JP5726687B2 (en) 2011-09-12 2011-09-12 Fluid dynamic bearing device

Publications (2)

Publication Number Publication Date
JP2013060993A JP2013060993A (en) 2013-04-04
JP5726687B2 true JP5726687B2 (en) 2015-06-03

Family

ID=48185840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198748A Expired - Fee Related JP5726687B2 (en) 2011-09-12 2011-09-12 Fluid dynamic bearing device

Country Status (1)

Country Link
JP (1) JP5726687B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106870354A (en) * 2017-02-21 2017-06-20 苟小平 Six brass bushings of groove
JP6599572B2 (en) * 2019-01-09 2019-10-30 Ntn株式会社 Fluid dynamic bearing device and bearing member and shaft member used therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3942482B2 (en) * 2001-06-27 2007-07-11 日本電産株式会社 DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP4330961B2 (en) * 2003-09-16 2009-09-16 Ntn株式会社 Hydrodynamic bearing device
JP2009103252A (en) * 2007-10-24 2009-05-14 Ntn Corp Fluid bearing device and motor having the same
JP2010106994A (en) * 2008-10-31 2010-05-13 Ntn Corp Fluid bearing device

Also Published As

Publication number Publication date
JP2013060993A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2008069805A (en) Dynamic pressure bearing device
US20100166346A1 (en) Dynamic bearing device
JP5726687B2 (en) Fluid dynamic bearing device
WO2012144288A1 (en) Fluid dynamic pressure bearing device
JP2010281403A (en) Fluid dynamic pressure bearing, spindle motor having fluid dynamic pressure bering, and recording disc driving device having spindle motor
JP2011112075A (en) Fluid dynamic pressure bearing device
JP2012247052A (en) Fluid dynamic pressure bearing device
JP5318343B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP5687104B2 (en) Axial fan motor
JP5784777B2 (en) Fluid dynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP4738964B2 (en) Hydrodynamic bearing device and motor having the same
JP2010091004A (en) Hydrodynamic pressure bearing device and manufacturing method therefor
JP5335304B2 (en) Fluid dynamic bearing device
JP4615328B2 (en) Hydrodynamic bearing device
JP2008111520A (en) Dynamic pressure bearing device
JP5602535B2 (en) Fluid dynamic bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP2007255646A (en) Fluid bearing device
JP2001173645A (en) Dynamic pressure bearing unit
JP5188942B2 (en) Fluid dynamic bearing device
JP2007263225A (en) Fluid bearing device
JP2005273815A (en) Dynamic pressure bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5726687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees