JP5723192B2 - Aluminum alloy forging and method for producing the same - Google Patents

Aluminum alloy forging and method for producing the same Download PDF

Info

Publication number
JP5723192B2
JP5723192B2 JP2011076044A JP2011076044A JP5723192B2 JP 5723192 B2 JP5723192 B2 JP 5723192B2 JP 2011076044 A JP2011076044 A JP 2011076044A JP 2011076044 A JP2011076044 A JP 2011076044A JP 5723192 B2 JP5723192 B2 JP 5723192B2
Authority
JP
Japan
Prior art keywords
forging
less
region
recrystallized
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011076044A
Other languages
Japanese (ja)
Other versions
JP2011225988A (en
Inventor
中井 学
学 中井
健太郎 伊原
健太郎 伊原
稲垣 佳也
佳也 稲垣
雅是 堀
雅是 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011076044A priority Critical patent/JP5723192B2/en
Publication of JP2011225988A publication Critical patent/JP2011225988A/en
Application granted granted Critical
Publication of JP5723192B2 publication Critical patent/JP5723192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Description

本発明は、Al−Mg−Si系(6000系)アルミニウム合金鍛造材およびその製造
方法に関するものである。以下、アルミニウムを単にAlとも言う。
The present invention relates to an Al—Mg—Si-based (6000-based) aluminum alloy forged material and a method for producing the same. Hereinafter, aluminum is also simply referred to as Al.

近年、排気ガス等による地球環境問題に対して、自動車などの輸送機の車体の軽量化に
よる燃費の向上が追求されている。このため、特に、自動車などの輸送機の構造材乃至構
造部品、特にアッパーアーム、ロアーアームなどの足回り部品として、AA乃至JIS の規格
で言う6000系(Al−Mg−Si系)Al合金鍛造材が使用されている。6000系
Al合金鍛造材は、高強度高靱性で、耐食性にも比較的優れている。また、6000系A
l合金自体も、合金元素量が少なく、スクラップを再び6000系Al合金溶解原料とし
て再利用しやすい点で、リサイクル性にも優れている。
In recent years, with respect to global environmental problems caused by exhaust gas and the like, improvement in fuel efficiency has been pursued by reducing the weight of the body of a transport aircraft such as an automobile. For this reason, 6000 series (Al-Mg-Si series) Al alloy forgings, which are referred to in the AA to JIS standards, especially as structural parts or structural parts of transport equipment such as automobiles, especially undercarriage parts such as upper arms and lower arms. Is used. The 6000 series Al alloy forging has high strength and high toughness, and is relatively excellent in corrosion resistance. 6000 series A
The l-alloy itself is also excellent in recyclability in that the amount of alloying elements is small and scrap can be easily reused as a 6000-based Al alloy melting raw material.

サスペンションなどの足回り部品には、高強度・高靭性・高耐食性を実現する材料が要
求されている。この点で、アルミニウム合金鍛造材は、足回り鍛造部品して、アルミニウ
ム合金鋳造材等に比較して、強度的に優れ、信頼性が高い。
Suspension parts such as suspensions are required to have high strength, high toughness, and high corrosion resistance. In this respect, the aluminum alloy forged material is an undercarriage forged part, which is superior in strength and high in reliability as compared with an aluminum alloy cast material or the like.

近年、これら輸送機の構造材においても、自動車のより一層の軽量化のために、一層薄
肉化させた上での高強度化や高靱性化が求められている。このため、Al合金鋳造材やA
l合金鍛造材のミクロ組織を改善することが、従来から種々行われている。
In recent years, these transport aircraft structural materials are also required to have higher strength and higher toughness after being made thinner in order to further reduce the weight of automobiles. For this reason, Al alloy castings and A
Various attempts have been made to improve the microstructure of l-alloy forgings.

例えば、6000系Al合金鋳造材の晶出物の平均粒径を8 μm 以下と小さくし、かつ
デンドライト二次アーム間隔(DAS) を40μm 以下と細かくして、Al合金鍛造材をより
高強度で高靱性化することが提案されている(特許文献1、2参照) 。
For example, the average grain size of the crystallized 6000 series Al alloy cast material is reduced to 8 μm or less, and the dendrite secondary arm interval (DAS) is reduced to 40 μm or less, so that the Al alloy forging material has higher strength. It has been proposed to increase the toughness (see Patent Documents 1 and 2).

また、6000系Al合金鍛造材の結晶粒内や粒界の晶出物の平均粒径や平均間隔など
を制御することで、Al合金鍛造材をより高強度で高靱性化することも提案されている。
これらの制御は、粒界腐食や応力腐食割れなどに対しても高耐食性化できる。そして、こ
れらの晶出物の制御に合わせて、Mn、Zr、Crなどの結晶粒微細化効果を有する遷移
元素を添加して、結晶粒を微細化乃至亜結晶粒化させ、破壊靱性や疲労特性を向上させる
こともこれらの提案の中で記載されている(特許文献3、4、5参照) 。
It has also been proposed to increase the strength and toughness of Al alloy forgings by controlling the average grain size and average spacing of crystallized materials in the crystal grains and grain boundaries of 6000 series Al alloy forgings. ing.
These controls can increase the corrosion resistance against intergranular corrosion and stress corrosion cracking. In accordance with the control of these crystallized substances, transition elements having a crystal grain refining effect such as Mn, Zr, Cr, etc. are added to refine the crystal grains or sub-crystal grains, thereby toughness and fatigue. Improvement of characteristics is also described in these proposals (see Patent Documents 3, 4, and 5).

しかし、これら6000系Al合金鍛造材には、上記鍛造および溶体化処理工程におい
て、加工組織が再結晶して粗大結晶粒が発生する傾向がある。これら粗大結晶粒が発生し
た場合、上記ミクロ組織を制御しても、高強度化や高靱性化が果たせず、また、耐食性も
低下する。しかも、これらの各特許文献では、鍛造における加工温度が450 ℃未満と比較
的低く、このような低温の熱間鍛造では、目標としている結晶粒を微細化乃至亜結晶粒化
させることが困難となる。
However, these 6000 series Al alloy forgings tend to generate coarse crystal grains due to recrystallization of the processed structure in the forging and solution treatment steps. When these coarse crystal grains are generated, even if the microstructure is controlled, the strength and toughness cannot be increased, and the corrosion resistance also decreases. Moreover, in each of these patent documents, the processing temperature in forging is relatively low at less than 450 ° C., and in such low temperature hot forging, it is difficult to make the target crystal grains fine or sub-grains. Become.

一方、前記加工組織が再結晶化した粗大結晶粒の発生を抑制するため、Mn、Zr、C
rなどの結晶粒微細化効果を有する遷移元素を添加した上で、450 〜570 ℃の比較的高温
の温度で熱間鍛造を開始することが知られている(特許文献6〜7、8〜10参照) 。
On the other hand, in order to suppress the generation of coarse crystal grains recrystallized from the processed structure, Mn, Zr, C
It is known to start hot forging at a relatively high temperature of 450 to 570 ° C. after adding a transition element having a crystal grain refining effect such as r (Patent Documents 6 to 7, 8 to 8). 10).

これら6000系Al合金鍛造材は、通常、Al合金鋳塊(鋳造材)を鍛造用素材とし
て用い、鋳塊を均質化熱処理後、メカニカル鍛造、油圧鍛造などの熱間鍛造(型鍛造)を
行い、その後、溶体化および焼き入れ処理と人工時効硬化処理との所謂T6調質処理が施
されて製造される。これに対して、耐力で350MPa以上の高強度とシャルピー衝撃値20J/cm2以上の高靭性を得るために、鍛造用の素材として、前記鋳造材を一旦熱間押出加工した押出材を用いることが提案されている(特許文献11、12、13参照)。これらの技術では、通常用いられる鋳造材の他に、鍛造材断面の肉厚中心部における組織を、平均結晶粒径が10μm以下の微細な亜結晶粒組織として、より優れた強度と靭性、あるいは耐食性を持たせている。
These 6000 series Al alloy forgings usually use an Al alloy ingot (casting material) as a forging material, and after the ingot is homogenized and heat treated, it performs hot forging (die forging) such as mechanical forging and hydraulic forging. Thereafter, a so-called T6 tempering treatment including solution treatment and quenching treatment and artificial age hardening treatment is performed. On the other hand, in order to obtain a high strength of 350 MPa or more in proof stress and a high toughness of Charpy impact value of 20 J / cm 2 or more, an extruded material once hot-extruded from the cast material is used as a forging material. Has been proposed (see Patent Documents 11, 12, and 13). In these techniques, in addition to the usually used cast material, the structure in the center of the thickness of the forged material cross section is made as a fine subcrystalline structure with an average crystal grain size of 10 μm or less, more excellent strength and toughness, or It has corrosion resistance.

特開平07−145440号公報Japanese Patent Laid-Open No. 07-145440 特開平06−256880号公報Japanese Patent Laid-Open No. 06-256880 特許3684313号公報Japanese Patent No. 3684313 特開2001−107168号公報JP 2001-107168 A 特開2002−294382号公報JP 2002-294382 A 特開平05247574号公報JP 05247574 A 特開2002−348630号公報JP 2002-348630 A 特開2004−43907号公報JP 2004-43907 A 特開2004−292937号公報JP 2004-292937 A 特開2004−292892号公報JP 2004-292892 A 特開2004−68076号公報JP 2004-68076 A 特開2007−169699号公報JP 2007-169699 A 特開2007−177308号公報JP 2007-177308 A

しかし、これら、鍛造用素材として鋳造材を一旦熱間押出加工した押出材を用いた特許
文献11、12、13にも大きな限界がある。すなわち、熱間鍛造により、鍛造材の部位
によって異なる肉厚減少率のうち、最小の肉厚減少率が25%を超える、大きな加工率で
熱間鍛造加工を行った場合には、鍛造材断面の肉厚中心部においても、再結晶しやすくな
って、粗大な再結晶粒が発生して、強度や靱性の低下が避けがたくなる。
However, Patent Documents 11, 12, and 13 using an extruded material obtained by once hot-extruding a cast material as a forging material have a great limitation. That is, when hot forging is performed at a high processing rate with a minimum thickness reduction rate of more than 25% among the thickness reduction rates that differ depending on the forging parts by hot forging, the forging cross section Even in the thick central portion of the steel, recrystallization is likely to occur, and coarse recrystallized grains are generated, which makes it difficult to avoid a decrease in strength and toughness.

したがって、これら従来の鍛造用素材として鋳造材を一旦熱間押出加工した押出材を用
いる技術(以下、押出鍛造技術という)では、耐力で350MPa以上の高強度と、シャ
ルピー衝撃値20J/cm2以上の高靭性を得るためには、最小の肉厚減少率が25%以
下の小さな加工率で熱間鍛造加工せざるを得ない。実際にも、例えば特許文献12の実施
例では、直径20mmの押出ビレット(丸棒)を、各辺が15mm長さの角R付きの角棒
形状に熱間鍛造しており、その肉厚減少率は25%程度でしかない。
Therefore, in the technique using an extruded material obtained by once extruding a cast material as a conventional forging material (hereinafter referred to as an extrusion forging technique), a high strength of 350 MPa or more in proof stress and a Charpy impact value of 20 J / cm 2 or more. In order to obtain such high toughness, hot forging must be performed at a small processing rate with a minimum thickness reduction rate of 25% or less. Actually, for example, in the example of Patent Document 12, an extruded billet (round bar) having a diameter of 20 mm is hot forged into a square bar shape with corners R each having a length of 15 mm, and the thickness is reduced. The rate is only about 25%.

それゆえ、これら従来の押出鍛造技術では、小さな加工率で熱間鍛造可能な形状が、前
記した棒形状などの単純な鍛造製品形状に、大きく限定、制約される。ただ、汎用されて
いる、アッパーアーム、ロアーアームなどの足回り鍛造部品は、略三角形の全体形状と、
平面視で略Y型形状のアーム部と、このアーム部の3つの各端部に各々ボールジョイント
部(3箇所)を有するような、複雑形状となっている。このため、必然的に、最小の肉厚
減少率が25%を超える大きな加工率となる。
Therefore, in these conventional extrusion forging techniques, the shape that can be hot forged at a small processing rate is largely limited and constrained to a simple forged product shape such as the aforementioned bar shape. However, undercarriage forged parts such as upper arm and lower arm that are widely used,
It has a complicated shape such that it has a substantially Y-shaped arm portion in plan view and ball joint portions (three places) at each of the three end portions of the arm portion. Therefore, inevitably, the minimum thickness reduction rate is a large processing rate exceeding 25%.

更に、これらサスペンションアームなどの自動車足回り部品は、より軽量化を図るため
に、断面が、幅狭で厚い周縁部のリブと、幅広で薄肉な中央部のウエブとからなる、略H
型の形状をしている。そして、近年では、このような自動車足回り部品を一層薄肉化、軽
量化させるために、前記ウエブを一層薄肉化したり、広幅化し、前記リブを一層幅狭化、
厚肉化させた形状( 以下、軽量化形状とも言う) となっている。このため、例えば、前記
ウエブの肉厚を10mm以下に薄肉化させた自動車足回り部品も採用され始めている。
Further, these undercarriage parts such as suspension arms, in order to further reduce the weight, have a cross section consisting of a narrow and thick peripheral rib and a wide and thin central web.
Has the shape of a mold. And in recent years, in order to make such automobile underbody parts thinner and lighter, the web is made thinner or wider, and the ribs are made narrower.
It has a thickened shape (hereinafter also referred to as a lightweight shape). For this reason, for example, automobile undercarriage parts in which the thickness of the web is reduced to 10 mm or less have begun to be adopted.

このような軽量化形状あるいは複雑形状の自動車足回り鍛造部品は、必然的に、最小の
肉厚減少率が25%を超える大きな加工率となる。このため、熱間鍛造加工を行った場合
に、前記した通りに、鍛造材断面の肉厚中心部においても、再結晶しやすくなって、粗大
な再結晶粒が発生して、強度や靱性の低下が避けがたくなる。このため、従来の押出鍛造
技術では、このような軽量化形状の自動車足回り部品を、高強度化させて、製造すること
ができない。
Such a forged part of an automobile undercarriage having a light weight shape or a complicated shape inevitably has a large processing rate with a minimum thickness reduction rate exceeding 25%. For this reason, when hot forging is performed, as described above, it becomes easy to recrystallize even in the thickness center part of the cross-section of the forged material, and coarse recrystallized grains are generated, resulting in strength and toughness. The decline is inevitable. For this reason, with the conventional extrusion forging technology, it is impossible to manufacture such a light weight shaped automobile underbody part with high strength.

本発明はこの様な事情に着目してなされたものであって、その目的は、前記押出鍛造技
術を改良して、アルミニウム合金押出材を熱間鍛造してなる鍛造材であって、高強度で高
耐食性な軽量化形状の鍛造材を提供することを目的とする。
The present invention has been made paying attention to such circumstances, and its purpose is to improve the above-mentioned extrusion forging technology, and is a forging material obtained by hot forging an aluminum alloy extruded material, which has high strength. An object of the present invention is to provide a lightweight forged material with high corrosion resistance.

この目的を達成するために、本発明アルミニウム合金鍛造材の要旨は、アルミニウム合
金押出材を熱間鍛造してなる鍛造材であって、質量%で、Si:0.8〜1.3%、Mg:0.70〜1.3%、Cu:0.01〜0.5%、Zn:0.005〜0.2%、Fe:0.01〜0.45%、Mn:0.30%を超え、0.8%以下、Cr:0.01〜0.25%、Zr:0.01〜0.25%、Ti:0.01〜0.1%を各々含み、かつ前記SiとMgの含有量が[Si%]−[Mg%]/1.73>0.25を満足し、残部Alおよび不可避的不純物からなる組成を有し、この鍛造材の任意の3箇所以上の部位の表層部を除く断面全域における、SEM−EBSP法による測定で同定される、傾角が2°以上、15°未満の小傾角粒界と傾角が15°以上の大傾角粒界とを含めた、未再結晶領域を備え、この未再結晶領域における傾角2°以上の境界で囲まれる領域の平均粒径が10μm以下であるとともに、この未再結晶領域の前記鍛造材の表層部を除く断面全域に対する平均面積割合が75%以上であり、かつ、この未再結晶組織領域における、最大長が10nm以上、800nm以下の分散粒子の平均密度が10個/μm以上であるとともに、最大長が0.5μm以上の晶出物の平均面積率が2.5%以下である
こととする。
In order to achieve this object, the gist of the aluminum alloy forging material of the present invention is a forging material obtained by hot forging an aluminum alloy extruded material, in mass%, Si: 0.8 to 1.3%, Mg: 0.70 to 1.3%, Cu: 0.01 to 0.5%, Zn: 0.005 to 0.2%, Fe: 0.01 to 0.45%, Mn: 0.30% And 0.8% or less, Cr: 0.01 to 0.25%, Zr: 0.01 to 0.25%, Ti: 0.01 to 0.1%, respectively, and the Si and Mg Content of [Si%]-[Mg%] / 1.73> 0.25, and the composition of the balance Al and unavoidable impurities. A low-angle grain boundary having an inclination angle of 2 ° or more and less than 15 ° identified by measurement by the SEM-EBSP method in the entire cross-section excluding the surface layer portion Including an unrecrystallized region including a large-angle grain boundary having an inclination angle of 15 ° or more, and an average particle size of a region surrounded by a boundary having an inclination angle of 2 ° or more in the non-recrystallized region is 10 μm or less. The average area ratio of the non-recrystallized region to the entire cross-section excluding the surface layer portion of the forged material is 75% or more, and the average density of dispersed particles having a maximum length of 10 nm to 800 nm in the non-recrystallized structure region Is 10 pieces / μm 3 or more, and the average area ratio of crystallized substances having a maximum length of 0.5 μm or more is 2.5% or less.

また、上記目的を達成するために、本発明アルミニウム合金鍛造材の製造方法の要旨は
、質量%で、Si:0.8〜1.3%、Mg:0.70〜1.3%、Cu:0.01〜0
.5%、Zn:0.005〜0.2%、Fe:0.01〜0.45%、Mn:0.30%を超え、0.8%以下、Cr:0.01〜0.25%、Zr:0.01〜0.25%、T
i:0.01〜0.1%を各々含み、かつ前記SiとMgの含有量が[Si%]−[Mg
%]/1.73>0.25を満足し、残部Alおよび不可避的不純物からなる組成を有す
るアルミニウム合金鋳塊を、450〜580℃の温度範囲で均質化熱処理を施した後に、
400〜580℃の温度で、押出比が2.4以上、3.7未満の熱間押出加工を行い、こ
の押出材を、材料温度が430〜550℃の範囲、金型温度が100〜250℃の範囲、
最小の肉厚減少率が25%を超えるとともに、最大の肉厚減少率が90%未満の条件で熱
間鍛造加工を行い、更に、溶体化および焼入れ処理と人工時効処理とを施して鍛造材を製
造し、この鍛造材の任意の3箇所以上の部位の表層部を除く断面全域における、SEM−
EBSP法による測定で同定される、傾角が2°以上、15°未満の小傾角粒界と傾角が
15°以上の大傾角粒界とを含めた、未再結晶領域を備え、この未再結晶領域における傾
角2°以上の境界で囲まれる領域の平均粒径を10μm以下とするとともに、この未再結
晶領域の前記鍛造材の表層部を除く断面全域に対する平均面積割合を75%以上とし、か
つ、この未再結晶組織領域における、最大長が10nm以上、800nm以下の分散粒子
の平均密度を10個/μm以上とするとともに、最大長が0.5μm以上の晶出物の
平均面積率を2.5% 以下としたことである。
Moreover, in order to achieve the said objective, the summary of the manufacturing method of this invention aluminum alloy forging material is the mass%, Si: 0.8 to 1.3%, Mg: 0.70 to 1.3%, Cu : 0.01-0
. 5%, Zn: 0.005 to 0.2%, Fe: 0.01 to 0.45%, Mn: more than 0.30%, 0.8% or less, Cr: 0.01 to 0.25% , Zr: 0.01 to 0.25%, T
i: each containing 0.01 to 0.1%, and the contents of Si and Mg are [Si%]-[Mg
%] / 1.73> 0.25, an aluminum alloy ingot having a composition consisting of the balance Al and inevitable impurities is subjected to a homogenization heat treatment in a temperature range of 450 to 580 ° C.
A hot extrusion process with an extrusion ratio of 2.4 or more and less than 3.7 is performed at a temperature of 400 to 580 ° C., and the extruded material is subjected to a material temperature in the range of 430 to 550 ° C. and a mold temperature of 100 to 250. ℃ range,
The forging material is subjected to hot forging under the condition that the minimum thickness reduction rate exceeds 25% and the maximum thickness reduction rate is less than 90%, and further subjected to solution treatment and quenching treatment and artificial aging treatment SEM- in the entire cross section excluding the surface layer portion of any three or more parts of this forging
An unrecrystallized region including a low-angle grain boundary with an inclination angle of 2 ° or more and less than 15 ° and a large-angle grain boundary with an inclination angle of 15 ° or more, identified by measurement by the EBSP method, is provided. The average grain size of the region surrounded by the boundary having an inclination angle of 2 ° or more in the region is set to 10 μm or less, the average area ratio of the non-recrystallized region to the entire cross section excluding the surface layer portion of the forged material is set to 75% or more, and In this non-recrystallized structure region, the average density of dispersed particles having a maximum length of 10 nm or more and 800 nm or less is 10 particles / μm 3 or more, and the average area ratio of crystallized substances having a maximum length of 0.5 μm or more is 2.5% It is as follows.

本発明では、前記押出鍛造技術において、前記軽量化形状の自動車足回り鍛造部品(=
鍛造材)など、鍛造材の部位によって異なる肉厚減少率のうち、最小の肉厚減少率が25
%を超える大きな加工率で熱間鍛造加工を行っても、鍛造材の表層部を除く断面全域に
おいて、再結晶による粗大な再結晶粒が発生せず、微細な結晶粒組織を備えるようにする
。このため、本発明では、前記押出鍛造技術において、再結晶を抑制するとともに再結晶
後の粒界移動を妨げる、微細な分散粒子をより高密度に形成するとともに、再結晶の核と
なる晶出物を抑制して、熱間鍛造での再結晶および粗大な粒成長を抑制する。これによっ
て、特に鍛造材の前記表層部を除く断面全域の結晶粒組織を微細化させる。なお、前記表
層部とは、結晶粒が粗大となっており、光学顕微鏡によって内部組織と判別が可能な薄い
表層部である。
In the present invention, in the extrusion forging technique, the weight-reduced automobile undercarriage forged part (=
For example, the minimum thickness reduction rate is 25 out of the thickness reduction rates that differ depending on the forging material site.
Even if hot forging is performed at a large processing rate exceeding%, coarse recrystallized grains due to recrystallization do not occur in the entire cross section excluding the surface layer portion of the forged material, and a fine crystal grain structure is provided. . Therefore, in the present invention, in the extrusion forging technique, fine dispersed particles that suppress recrystallization and hinder grain boundary movement after recrystallization are formed at a higher density, and crystallization that becomes the nucleus of recrystallization is achieved. Suppresses the material and suppresses recrystallization and coarse grain growth in hot forging. As a result, the crystal grain structure in the entire cross section excluding the surface layer portion of the forged material is refined. In addition, the said surface layer part is a thin surface layer part with which the crystal grain is coarse and can distinguish with an internal structure | tissue with an optical microscope.

ただ、この結晶粒組織の微細化も、前記微細な分散粒子の高密度な形成と晶出物の抑制
によって、傾角が2°以上、15°未満の小傾角粒界として測定あるいは規定される亜結
晶粒だけでなく、傾角が15°以上の大傾角粒界の結晶粒とを含めた、未再結晶領域全体
において、より徹底させることができる。このため、未再結晶領域全体の平均結晶粒を1
0μm以下により微細化させることができる、しかも、このような未再結晶領域(未再結
晶粒組織)が前記鍛造材の断面全域に対する平均面積割合が75%以上と多くすることが
可能である。
However, this refinement of the grain structure is also measured or defined as a low-angle grain boundary having an inclination angle of 2 ° or more and less than 15 ° by high-density formation of the fine dispersed particles and suppression of crystallized substances. Not only the crystal grains but also the entire non-recrystallized region including the crystal grains of the large tilt grain boundary having an inclination angle of 15 ° or more can be made more thorough. Therefore, the average grain size of the entire non-recrystallized region is 1
It is possible to reduce the size to 0 μm or less, and it is possible to increase the average area ratio of such an unrecrystallized region (unrecrystallized grain structure) to 75% or more of the entire cross-section of the forged material.

なお、前記鍛造材の表層部を除く断面全域において、再結晶による粗大な再結晶粒が発
生せず、微細な結晶粒組織を備えるようにするためには、熱間鍛造される前の押出材の組
織において、本発明で規定する、前記微細な分散粒子が高密度に形成されるとともに晶出
物が抑制された、組織となっていることが重要となる。ただ、製造途中の中間材である押
出材では、これら分散粒子や晶出物の測定がしずらく、また、鍛造後の鍛造材であっても
、あるいは、その後調質処理が施された鍛造材であっても、前記押出材での前記分散粒子
と晶出物との大きさと密度あるいは面積割合は、大きく変化することは無い。したがって
、本発明での前記分散粒子と晶出物との組織規定は、鍛造後の鍛造材あるいはその後調質
処理が施された鍛造材で行っている。
In addition, in the entire cross section excluding the surface layer portion of the forged material, coarse recrystallized grains due to recrystallization do not occur, and in order to have a fine crystal grain structure, the extruded material before hot forging In this structure, it is important that the fine dispersed particles defined in the present invention are formed with high density and crystallized substances are suppressed. However, it is difficult to measure these dispersed particles and crystallized materials with extruded materials that are intermediate materials during production, and even forged materials after forging or after tempering treatment. Even if it is a material, the size, density, or area ratio of the dispersed particles and the crystallized material in the extruded material does not change greatly. Therefore, the structure of the dispersed particles and the crystallized product in the present invention is determined by a forged material after forging or a forged material that has undergone a tempering treatment.

本発明は、従来のように鍛造材の肉厚中心部などの局部的あるいは部分的な領域だけの
組織規定ではなく、前記した通り、鍛造材の複数個所における断面全域の組織を規定する
。これによって、本発明では、前記軽量化形状をした自動車足回り鍛造部品を、より高強
度化および高耐食性化させることができるとともに、これらの特性を鍛造材の部位全体に
亘って保障することができる。
The present invention defines the structure of the entire area of the cross section at a plurality of locations of the forged material as described above, not the structure of only the local or partial region such as the central thickness of the forged material as in the prior art. As a result, in the present invention, the weight-reduced automobile undercarriage forged part can be made to have higher strength and higher corrosion resistance, and these characteristics can be guaranteed over the entire portion of the forged material. it can.

以下に、本発明の実施態様につき具体的に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(化学成分組成)
本発明におけるAl合金鍛造材、この鍛造加工用の素材であるAl合金押出材、この押
出加工用の素材であるAl合金鋳造材、この鋳造用の素材であるAl合金溶湯における、
Al合金の化学成分組成について、以下に説明する。
(Chemical composition)
In the Al alloy forging material in the present invention, the Al alloy extruded material that is the material for this forging process, the Al alloy cast material that is the material for this extrusion process, the Al alloy molten material that is the material for this casting,
The chemical component composition of the Al alloy will be described below.

本発明における6000系Al合金の化学成分組成は、前記した足回り鍛造部品などと
して、高強度、耐応力腐食割れ性などの高い耐食性乃至耐久性を保証する必要がある。こ
のため、6000系Al合金組成範囲の中でも、本発明におけるAl合金組成は、質量%
で、Si:0.8〜1.3%、Mg:0.70〜1.3%、Cu:0.01〜0.5%、
Zn:0.005〜0.2%、Fe:0.01〜0.45%、Mn:0.30%を超え、0.8%以下、Cr:0.01〜0.25%、Zr:0.01〜0.25%、Ti:0.
01〜0.1%を各々含み、かつ前記SiとMgの含有量が[Si%]−[Mg%]/1
.73>0.25を満足し、残部Alおよび不可避的不純物からなるものとする。なお、
各元素量における%表示はすべて質量%の意味である。
The chemical composition of the 6000 series Al alloy in the present invention needs to ensure high corrosion resistance and durability such as high strength and stress corrosion cracking resistance as the above-mentioned undercarriage forged parts. For this reason, the Al alloy composition in the present invention in the 6000 series Al alloy composition range is mass%.
Si: 0.8 to 1.3%, Mg: 0.70 to 1.3%, Cu: 0.01 to 0.5%,
Zn: 0.005 to 0.2%, Fe: 0.01 to 0.45%, Mn: more than 0.30%, 0.8% or less, Cr: 0.01 to 0.25%, Zr: 0.01 to 0.25%, Ti: 0.
The content of Si and Mg is [Si%]-[Mg%] / 1.
. 73> 0.25 is satisfied, and the balance is Al and inevitable impurities. In addition,
All percentages in the amounts of each element mean mass%.

溶解原料スクラップなどから必然的に混入される不純物元素も、本発明の諸特性を阻害
しない範囲で、JIS規格の上限規定などに基づく通常の量を含むことは許容される。次
に、各元素の含有量について、臨界的意義や好ましい範囲について説明する。
Impurity elements that are inevitably mixed from melting raw material scrap and the like are allowed to contain a normal amount based on the upper limit of the JIS standard and the like within a range that does not impair the characteristics of the present invention. Next, the critical significance and preferable range of the content of each element will be described.

Mg:0.70〜1.3%
Mgは人工時効硬化処理(時効処理)により、Siとともに、主として針状β' 相として結晶粒内に析出し、自動車足回り部品の高強度 (耐力) を付与するために必須の元素である。Mgの含有量が少な過ぎると、人工時効処理時の時効硬化量が低下する。一方、Mgの含有量が多過ぎると、強度 (耐力) が高くなりすぎ、鍛造性を阻害する。また、溶体化処理後の焼き入れ途中に多量のMg−Si化合物や単体Siが析出しやすく、却って、強度、靱性、伸び、耐食性などを低下させる。したがって、Mg含有量は0.70〜1.3%の範囲とする。
Mg: 0.70 to 1.3%
Mg is an essential element for precipitating in the crystal grains mainly as an acicular β ′ phase together with Si by artificial age hardening (aging treatment) and imparting high strength (proof strength) of automobile undercarriage parts. When there is too little content of Mg, the age hardening amount at the time of artificial aging treatment will fall. On the other hand, if the content of Mg is too large, the strength (yield strength) becomes too high and the forgeability is impaired. Further, a large amount of Mg—Si compound or simple substance Si is likely to precipitate during the quenching after the solution treatment, and on the contrary, the strength, toughness, elongation, corrosion resistance, etc. are lowered. Therefore, the Mg content is in the range of 0.70 to 1.3%.

Si:0.8〜1.3%
SiもMgとともに、人工時効処理により、主として針状β' 相として析出して、自動
車足回り部品使用時の高強度 (耐力) を付与するために必須の元素である。Siの含有量
が少な過ぎると、人工時効処理で十分な強度が得られない。一方、Siの含有量が多過ぎ
ると、鋳造時および溶体化処理後の焼き入れ途中で、粗大な単体Si粒子が晶出および析
出して、耐食性と靱性を低下させる。また、過剰Siが多くなって、高耐食性と高靱性、
高疲労特性を得ることができない。更に伸びが低くなるなど、加工性も阻害する。したが
って、Siの含有量は0.8〜1.3%の範囲とする。
Si: 0.8 to 1.3%
Si, together with Mg, is an essential element for precipitating mainly as an acicular β ′ phase by artificial aging treatment and imparting high strength (yield strength) when using automobile undercarriage parts. If the Si content is too small, sufficient strength cannot be obtained by artificial aging treatment. On the other hand, if the Si content is too large, coarse single Si particles crystallize and precipitate during casting and during quenching after solution treatment, thereby reducing corrosion resistance and toughness. In addition, excess Si increases, high corrosion resistance and high toughness,
High fatigue properties cannot be obtained. Furthermore, workability is also hindered, for example, elongation becomes low. Therefore, the Si content is in the range of 0.8 to 1.3%.

Si含有量とMg含有量との関係
SiとMgとは、前記した各含有量を各々満足するとともに、高強度化のために、Si
含有量である[Si%]とMg含有量である[Mg%]との関係式として、[Si%]−
[Mg%]/1.73>0.25も満足するようにする。すなわち、Mg含有量に対して
Si含有量が過剰な、過剰Si型の6000系合金として、溶体化および焼入れ処理後の
鍛造材の時効硬化性を高めて、時効処理による高強度化を図る。
Relationship between Si content and Mg content Si and Mg satisfy the above-mentioned respective contents, and in order to increase the strength,
As a relational expression between [Si%] which is the content and [Mg%] which is the Mg content, [Si%] −
[Mg%] / 1.73> 0.25 is also satisfied. That is, as an excessive Si-type 6000 series alloy having an excessive Si content relative to the Mg content, the age-hardening property of the forged material after solution treatment and quenching treatment is enhanced, and the strength is increased by aging treatment.

Cu:0.01〜0.5%
Cuは固溶強化にて強度の向上に寄与する他、時効処理に際して、最終製品の時効硬化
を著しく促進する効果も有する。Cuの含有量が少な過ぎると、これらの強度向上効果が
無い。一方、Cuの含有量が多過ぎると、Al合金鍛造材の組織の応力腐食割れや粒界腐
食の感受性を著しく高め、Al合金鍛造材の耐食性や耐久性を低下させる。したがって、
Cuの含有量は0.01〜0.5%の範囲とする。
Cu: 0.01 to 0.5%
Cu contributes to improvement of strength by solid solution strengthening, and also has an effect of significantly accelerating age hardening of the final product during aging treatment. When there is too little content of Cu, there will be no these strength improvement effects. On the other hand, if the Cu content is too large, the sensitivity of stress corrosion cracking and intergranular corrosion of the structure of the Al alloy forging is remarkably increased, and the corrosion resistance and durability of the Al alloy forging are lowered. Therefore,
The Cu content is in the range of 0.01 to 0.5%.

Zn:0.005〜0.2%
Znは、人工時効処理において、Zn−Mg析出物を、微細かつ高密度に析出、形成し
て、高い強度を実現させる。また、固溶したZnは粒内の電位を下げ、腐食形態を粒界か
らではなく、全面的な腐食として、粒界腐食や応力腐食割れを結果として軽減する効果も
ある。しかし、Znの含有量が多過ぎると、耐食性が顕著に低下する。したがって、Zn
の含有量は0.005〜0.2%の範囲とする。
Zn: 0.005 to 0.2%
In the artificial aging treatment, Zn precipitates and forms Zn-Mg precipitates in a fine and high density to realize high strength. Further, the solid solution Zn has the effect of lowering the electric potential in the grains and reducing the corrosion form not from the grain boundaries but as the entire corrosion, resulting in reduction of the intergranular corrosion and stress corrosion cracking. However, when there is too much content of Zn, corrosion resistance will fall remarkably. Therefore, Zn
The content of is in the range of 0.005 to 0.2%.

Fe:0.01〜0.45%
Feは、Mn、Crとともに、Al−Fe系金属間化合物からなる微細な分散粒子 (分
散相) を生成し、再結晶後の粒界移動を妨げ、結晶粒の粗大化を防止するとともに、結晶
粒を微細化させる効果がある。すなわち、微細な分散粒子をより高密度に形成して、鍛造
材での再結晶および粒成長を抑制する。これによって、特に鍛造材の前記表層部を除く断
面全域の結晶粒組織を本発明で規定するように微細化させる。Feの含有量が少な過ぎる
と、これらの効果が無い。一方、Feの含有量が多過ぎると、Al−Fe−Si晶出物な
どの粗大な晶出物を生成する。これらの晶出物は、破壊靱性および疲労特性などを劣化さ
せる。したがって、Feの含有量は0.01〜0.45%の範囲とする。
Fe: 0.01 to 0.45%
Fe, together with Mn and Cr, produces fine dispersed particles (dispersed phase) composed of Al-Fe intermetallic compounds, hinders grain boundary movement after recrystallization, prevents crystal grains from becoming coarse, There is an effect to refine the grain. That is, fine dispersed particles are formed at a higher density to suppress recrystallization and grain growth in the forging material. As a result, the crystal grain structure in the entire cross section excluding the surface layer portion of the forged material is refined as defined in the present invention. If the Fe content is too small, these effects are not obtained. On the other hand, when there is too much content of Fe, coarse crystallization products, such as an Al-Fe-Si crystallization product, will be generated. These crystallized substances deteriorate fracture toughness and fatigue characteristics. Therefore, the Fe content is in the range of 0.01 to 0.45%.

Mn:0.30%を超え、0.8%以下
Mnは、均質化熱処理時およびその後の熱間鍛造時に、Al−Mn系金属間化合物からなる分散粒子 (分散相) を生成し、再結晶後の粒界移動を妨げ、結晶粒の粗大化を防止するとともに、結晶粒を微細化させる効果がある。すなわち、微細な分散粒子をより高密度に形成して、鍛造材での再結晶および粒成長を抑制する。これによって、特に鍛造材の断面の肉厚中心部での結晶粒組織を、本発明で規定するように微細化させる。また、Mnはマトリックスへの固溶による強度およびヤング率の増大も見込める。Mnの含有量が少なすぎると、分散粒子が不足して、これらの効果が期待できず、熱間鍛造時に再結晶が進み、結晶粒が粗大化して、強度や靱性が低下する。一方、Mnの過剰な含有は溶解、鋳造時に粗大な金属間化合物や晶出物を生成しやすく、破壊の起点となり、靱性や疲労特性を低下させる原因となる。このため、Mnは、Cr、Zrとともに含有させるとともに、0.30%を超え、0.8%以下の範囲で含有させる。
Mn: More than 0.30% and 0.8% or less Mn generates dispersed particles (dispersed phase) composed of Al-Mn intermetallic compounds during the homogenization heat treatment and the subsequent hot forging, and is recrystallized. This has the effect of hindering the subsequent grain boundary movement, preventing the crystal grains from becoming coarse, and making the crystal grains finer. That is, fine dispersed particles are formed at a higher density to suppress recrystallization and grain growth in the forging material. As a result, the crystal grain structure at the center of the wall thickness of the cross-section of the forged material is refined as defined in the present invention. Mn is also expected to increase in strength and Young's modulus due to solid solution in the matrix. If the Mn content is too small, the dispersed particles are insufficient, and these effects cannot be expected. Recrystallization proceeds during hot forging, the crystal grains become coarse, and the strength and toughness decrease. On the other hand, when Mn is excessively contained, coarse intermetallic compounds and crystallized substances are likely to be formed during melting and casting, which becomes a starting point of fracture and causes toughness and fatigue characteristics to be lowered. For this reason, Mn is contained together with Cr and Zr, and more than 0.30% and 0.8% or less.

ここで、分散粒子である、前記Al−Mn系金属間化合物や前記Al−Fe系金属間化
合物は、Al−(Fe、Mn、Cr) −Siで表され、Fe、Mn、Cr、Si、Alな
どが、その含有量に応じて、選択的に結合した公知の化合物である。
Here, the Al—Mn intermetallic compound and the Al—Fe intermetallic compound, which are dispersed particles, are represented by Al— (Fe, Mn, Cr) —Si, Fe, Mn, Cr, Si, Al and the like are known compounds that are selectively bonded according to their contents.

Cr:0.01〜0.25%
Crも、Mnと同様に、均質化熱処理時およびその後の熱間鍛造時に、分散粒子 (分散
相) を生成し、再結晶後の粒界移動を妨げ、結晶粒の粗大化を防止するとともに、結晶粒
を微細化させる効果がある。すなわち、微細な分散粒子をより高密度に形成して、鍛造材
での再結晶および粒成長を抑制する。Crの含有量が少なすぎると、これらの効果が期待
できず、熱間鍛造時に再結晶が進み、結晶粒が粗大化して、強度や靱性が低下する。一方
、これらの元素の過剰な含有は溶解、鋳造時に粗大な金属間化合物や晶出物を生成しやす
く、破壊の起点となり、靱性や疲労特性を低下させる原因となる。このため、CrはMn
、Zrとともに含有させるとともに、その含有量は0.01〜0.25%の範囲とする。
Cr: 0.01 to 0.25%
Cr, like Mn, generates dispersed particles (dispersed phase) during homogenization heat treatment and subsequent hot forging, preventing grain boundary migration after recrystallization, preventing coarsening of crystal grains, There is an effect of refining crystal grains. That is, fine dispersed particles are formed at a higher density to suppress recrystallization and grain growth in the forging material. If the Cr content is too small, these effects cannot be expected, recrystallization proceeds during hot forging, the crystal grains become coarse, and the strength and toughness decrease. On the other hand, excessive inclusion of these elements tends to generate coarse intermetallic compounds and crystallized substances during melting and casting, which becomes a starting point of fracture and causes toughness and fatigue characteristics to be lowered. Therefore, Cr is Mn
And Zr, and the content thereof is set to a range of 0.01 to 0.25%.

Zr:0.01〜0.25%、
Zrも、Mn、Crと同様に、均質化熱処理時およびその後の熱間鍛造時に、分散粒子
(分散相) を生成し、再結晶後の粒界移動を妨げ、結晶粒の粗大化を防止するとともに、
結晶粒を微細化させる効果がある。すなわち、微細な分散粒子をより高密度に形成して、
鍛造材での再結晶および粒成長を抑制する。Zrの含有量が少なすぎると、これらの効果
が期待できず、熱間鍛造時に再結晶が進み、結晶粒が粗大化して、強度や靱性が低下する
。一方、これらの元素の過剰な含有は溶解、鋳造時に粗大な金属間化合物や晶出物を生成
しやすく、破壊の起点となり、靱性や疲労特性を低下させる原因となる。このため、Zr
は、Mn、Crとともに含有させるとともに、その含有量は0.01〜0.25%の範囲
とする。
Zr: 0.01 to 0.25%,
Zr is also dispersed particles during homogenization heat treatment and subsequent hot forging, as with Mn and Cr.
(Dispersed phase) is generated, movement of the grain boundary after recrystallization is prevented, and coarsening of the crystal grains is prevented,
There is an effect of refining crystal grains. That is, finely dispersed particles are formed at a higher density,
Suppresses recrystallization and grain growth in the forging. If the Zr content is too small, these effects cannot be expected, recrystallization proceeds during hot forging, the crystal grains become coarse, and the strength and toughness decrease. On the other hand, excessive inclusion of these elements tends to generate coarse intermetallic compounds and crystallized substances during melting and casting, which becomes a starting point of fracture and causes toughness and fatigue characteristics to be lowered. For this reason, Zr
Is contained together with Mn and Cr, and the content thereof is in the range of 0.01 to 0.25%.

Ti:0.01〜0.1%
Tiは、鋳塊の結晶粒を微細化し、鍛造材組織を微細な亜結晶粒とする効果がある。T
iの含有量が少な過ぎるとこの効果が発揮されない。しかし、Tiの含有量が多過ぎると
、粗大な晶出物を形成し、前記加工性を低下させる。したがって、Tiの含有量は0.0
1〜0.1%の範囲とする。
Ti: 0.01 to 0.1%
Ti has the effect of refining the crystal grains of the ingot to make the forged material structure fine subcrystal grains. T
If the content of i is too small, this effect cannot be exhibited. However, when there is too much content of Ti, a coarse crystallization thing will be formed and the said workability will be reduced. Therefore, the Ti content is 0.0
The range is 1 to 0.1%.

この他、以下に記載する元素は不純物であり、各々、以下に各々記載する含有量まで許
容される。水素は不純物として混入しやすく、特に、鍛造材の加工度が小さくなる場合、
水素に起因する気泡が鍛造等加工で圧着せず、ブリスターが発生し、破壊の起点となるた
め、靱性や疲労特性を著しく低下させる。特に、高強度化した足回り部品などにおいては
、この水素による影響が大きい。したがって、Al 100g 当たりの水素濃度は0.25ml以下
の、できるだけ少ない含有量とすることが好ましい。V、Hfも不純物として混入しやす
く、足回り部品の特性を阻害するので、これらの合計で0.3%未満とする。また、B は不
純物であるが、Tiと同様、鋳塊の結晶粒を微細化し、押出や鍛造時の加工性を向上させ
る効果もある。しかし、300ppmを越えて含有されると、やはり粗大な晶出物を形成し、前
記加工性を低下させる。したがって、B は300ppm以下の含有まで許容する。
In addition, the elements described below are impurities, and the contents described below are allowed. Hydrogen is easily mixed as an impurity, especially when the forging material has a low degree of processing.
Bubbles caused by hydrogen do not press-bond in forging or other processing, blisters are generated, and become the starting point of fracture, so that the toughness and fatigue characteristics are significantly reduced. In particular, in the undercarriage parts with increased strength, the influence of hydrogen is large. Therefore, it is preferable that the hydrogen concentration per 100 g of Al is 0.25 ml or less and the content is as small as possible. V and Hf are also likely to be mixed as impurities and hinder the characteristics of the undercarriage parts, so the total of these is made less than 0.3%. Further, although B is an impurity, like Ti, it has the effect of refining the crystal grains of the ingot and improving the workability during extrusion and forging. However, when the content exceeds 300 ppm, coarse crystallized matter is formed, and the workability is lowered. Therefore, B 2 is allowed to contain up to 300 ppm.

(組織)
以上の合金組成を前提に、本発明では、前記軽量化形状の自動車足回り鍛造部品(=鍛
造材)につき、最小の肉厚減少率が25%を超える、大きな加工率で熱間鍛造加工を行っ
ても、特に鍛造材の前記表層部を除く断面全域において、再結晶による粗大な再結晶粒組
織が発生せず、微細な未結晶粒組織を備えるようにする。これによって、本発明では、前
記軽量化形状をした自動車足回り鍛造部品を、より高強度化および高耐食性化させること
ができるとともに、これらの特性を鍛造材の部位全体に亘って保障することができる。
(Organization)
On the premise of the above alloy composition, the present invention performs hot forging at a large processing rate with a minimum thickness reduction rate of more than 25% for the weight-reduced automobile undercarriage forged part (= forged material). Even if the process is performed, a coarse recrystallized grain structure due to recrystallization does not occur in the entire cross section except for the surface layer part of the forged material, and a fine uncrystallized grain structure is provided. As a result, in the present invention, the weight-reduced automobile undercarriage forged part can be made to have higher strength and higher corrosion resistance, and these characteristics can be guaranteed over the entire portion of the forged material. it can.

このために、本発明では、鍛造材の任意の3箇所以上の部位の表層部を除く断面全域において、SEM−EBSP法による測定で同定される、傾角が2°以上、15°未満の小傾角粒界と傾角が15°以上の大傾角粒界とを含めた、未再結晶領域を備え、この未再結晶領域における傾角2°以上の境界で囲まれる領域の平均粒径が10μm以下であるとともに、この未再結晶領域の前記鍛造材の断面全域に対する平均面積割合が75%以上であることとする。この微細な未結晶粒組織は、傾角2°以上、15°未満の小傾角粒界として測定あるいは規定される亜結晶粒だけでなく、傾角が15°以上の大傾角粒界の結晶粒とを含めた、未再結晶領域である。本発明では、このような未再結晶領域全体の平均結晶粒を10μm以下に微細化させる。そして、このような未再結晶領域(未再結晶粒組織)が鍛造材の断面中央部に占める鍛造材断面に対する平均面積割合を75%以上と多くする。   For this reason, in the present invention, the small inclination angle of 2 ° or more and less than 15 °, which is identified by the measurement by the SEM-EBSP method, in the entire cross section excluding the surface layer portion of any three or more portions of the forging. An unrecrystallized region including a grain boundary and a large-angle grain boundary having an inclination angle of 15 ° or more is provided, and an average particle size of a region surrounded by a boundary having an inclination angle of 2 ° or more in the non-recrystallized region is 10 μm or less. At the same time, the average area ratio of the non-recrystallized region to the entire cross-section of the forged material is 75% or more. This fine uncrystallized grain structure includes not only sub-grains measured or defined as small-angle grain boundaries with an inclination angle of 2 ° or more and less than 15 °, but also large-grain grain boundaries with an inclination angle of 15 ° or more. It is an unrecrystallized region including. In the present invention, the average crystal grains in the entire non-recrystallized region are refined to 10 μm or less. And the average area ratio with respect to the forging material cross section which such an unrecrystallized area | region (non-recrystallized grain structure) occupies for the cross-sectional center part of a forging material is increased with 75% or more.

そして、このような微細な未結晶粒組織をえるために、前記未結晶粒組織の(実際には鍛造前の押出材での前記未結晶粒組織に相当する組織であって、測定はこの押出材を鍛造した鍛造材にける前記未結晶粒組織で行う)最大長が10nm以上、800nm以下の分散粒子の平均密度が10個/μm以上であるとともに、最大長が0.5μm以上の晶出物の平均面積率が2.5% 以下とする。 In order to obtain such a fine crystal grain structure, the crystal grain structure of the crystal grain structure (actually the structure corresponding to the crystal grain structure of the extruded material before forging, which is measured by this extrusion A crystal having a maximum length of 10 nm / μm 3 or more and an average density of 10 particles / μm 3 or more and a maximum length of 0.5 μm or more). The average area ratio of items is 2.5% The following.

これらの測定は、実施例にて後述する通り、鍛造材の任意の各部位3箇所以上から前記鍛造材の断面全域を採取して、各々測定試料とする。したがって、例えば鍛造材の試料採取部位の大きさが幅4mm×高さ4mmなら、この4mm×4mmの全域が試料の大きさ=面積となり、試料の大きさは鍛造材の測定部位の断面積によって定まる。この測定試料断面(前記鍛造材の断面全域)を研磨後、化学エッチングし、400倍の光学顕微鏡を用いて、この試料断面に占める再結晶した結晶粒が粗大な表層領域(一般に試料表層から表層近傍)を判別して、測定対象から除外する。その後、光学顕微鏡により測定した、再結晶組織領域と未再結晶組織領域の境界を含む部位を5箇所切り出し(特に光学顕微鏡では境界の位置を判定することが難しい部位を優先する)、観察用に試料調整後、SEM−EBSPを用いて上記境界を含む領域を解析(1視野:4mm×2mm)し、境界の位置を明確にした後、上記断面全域に占める未再結晶組織領域の面積割合(%)を算出して、前記全測定部位(3箇所以上)の測定結果によって平均化する。一方、晶出物、分散粒子は、前記断面の未再結晶組織領域の任意の3部位より試料を切り出し、各組織を後述する各々の手段により観察して、3部位の平均によって、晶出物の平均面積率(%)、分散粒子の平均密度(個/μm)を算出する。因みに、これら晶出物、分散粒子は、前記鍛造材断面全域における前記未再結晶組織の形成に大きく関わるために、その影響や相関を調査するためには、当然ながら、前記未再結晶組織における、これらの存在状態を測定する。 As will be described later in the examples, these measurements are performed by collecting the entire cross-sectional area of the forged material from three or more arbitrary portions of the forged material, and using them as measurement samples. Therefore, for example, if the size of the sample collection site of the forged material is 4 mm wide × 4 mm high, the entire area of 4 mm × 4 mm becomes the size of the sample = area, and the size of the sample depends on the cross-sectional area of the measurement site of the forged material Determined. After polishing this sample cross section (the entire cross section of the forged material), chemical etching, and using a 400 times optical microscope, the surface layer region (generally from the sample surface layer to the surface layer) where the recrystallized crystal grains occupy the sample cross section Near) and exclude it from the measurement target. Then, cut out 5 parts including the boundary between the recrystallized structure area and the non-recrystallized structure area measured with an optical microscope (particularly, it is difficult to determine the position of the boundary with an optical microscope) for observation. After sample preparation, the region including the boundary was analyzed using SEM-EBSP (1 field of view: 4 mm × 2 mm), the position of the boundary was clarified, and then the area ratio of the non-recrystallized structure region in the entire cross section ( %) Is calculated and averaged according to the measurement results of all the measurement sites (three or more locations). On the other hand, the crystallized product and dispersed particles were obtained by cutting out a sample from any three sites in the non-recrystallized texture region of the cross section and observing each structure by means described later, and by averaging the three sites. The average area ratio (%) and the average density (particles / μm 3 ) of the dispersed particles are calculated. Incidentally, since these crystallized substances and dispersed particles are greatly involved in the formation of the unrecrystallized structure in the entire cross-section of the forged material, of course, in order to investigate the influence and correlation, Measure these existence states.

これらの組織規定は、鍛造材の前記リブあるいはウエブなどの任意の部位を3箇所以上
測定した場合の平均値が、前記規定する組織を満足するものとする。鍛造材は部位によっ
て、熱間鍛造加工率、すなわち、肉厚減少率が大きく異なり、この点で、組織も大きく異
なる。ただ、このような鍛造材であっても、本発明では、任意の部位を3箇所以上測定し
た場合の、複数個所の平均値として、このような規定組織を満足している。また、本発明
は、鍛造材の断面の、肉厚中心部のような一部あるいは部分的ではなく、前記表層部を除
く断面全域において、再結晶による粗大な再結晶粒組織が発生せず、微細な未結晶粒組織
を備えるようにしている。このため、前記軽量化形状をした自動車足回り鍛造部品(鍛造
材)の、ほぼ部位全体に亘って、高強度化および高耐食性化を保証できる。因みに、本発
明での前記分散粒子と晶出物とは、熱間鍛造される前の押出材の組織において、規定のよ
うになっていることが重要となる。ただ、前記した通り、鍛造後の鍛造材あるいはその後
調質処理が施された鍛造材であっても、前記押出材での前記分散粒子と晶出物との大きさ
と密度、面積割合は大きく変化することは無いので、本発明での前記分散粒子と晶出物と
の組織規定は、鍛造後の鍛造材あるいはその後調質処理が施された鍛造材で行っている。
In these structure rules, the average value when three or more arbitrary sites such as the ribs or webs of the forged material are measured satisfies the specified structure. The forging material differs greatly in the hot forging rate, that is, the thickness reduction rate, depending on the part. In this respect, the structure is also greatly different. However, even for such a forging, in the present invention, such a prescribed structure is satisfied as an average value of a plurality of locations when three or more arbitrary locations are measured. Further, the present invention is not partially or partially like the thickness center portion of the cross-section of the forged material, and does not generate a coarse recrystallized grain structure due to recrystallization in the entire cross-section excluding the surface layer portion, A fine crystal grain structure is provided. For this reason, high strength and high corrosion resistance can be guaranteed over almost the entire portion of the automobile undercarriage forged part (forged material) having the lightened shape. Incidentally, it is important that the dispersed particles and the crystallized product in the present invention are as defined in the structure of the extruded material before hot forging. However, as described above, the size, density, and area ratio of the dispersed particles and the crystallized material in the extruded material are greatly changed even for a forged material after forging or a forged material subjected to a tempering treatment. Therefore, the structure of the dispersed particles and the crystallized product in the present invention is determined by a forged material after forging or a forged material that has been subjected to a tempering treatment.

(未再結晶領域の測定)
傾角が2°以上、15°未満の小傾角粒界として測定あるいは規定される亜結晶粒と、
傾角が15°以上の大傾角粒界の結晶粒とを含めた、未再結晶領域の同定は、鍛造材の前
記表層部を除く断面全域における、SEM−EBSP法による測定で同定される。SEM
−EBSP法は、電界放出型走査電子顕微鏡(Field Emission Scanning Electron Micro
scope:FESEM)に、後方散乱電子回折像[EBSP: ElectronBack Scattering (Scattered) Pa
ttern] システムを搭載した結晶方位解析法である。鍛造材の前記表層部を除く断面全域
における前記光学顕微鏡の観察によって、再結晶した結晶粒が粗大な表層領域を判別する
とともに、再結晶組織領域と未再結晶組織領域の境界を判別する。そして、特に光学顕微
鏡では境界の位置を判定することが難しい部位を優先する含む部位を5箇所切り出して、
観察用に試料を調整後、SEM−EBSPを用いて、前記した傾角が2°以上、15°未
満の小傾角粒界と傾角が15°以上の大傾角粒界とを含めた未再結晶組織領域の境界領域
を正確に解析(1視野:4mm×2mm)する。そして、前記光学顕微鏡の観察結果と併
せて、未再結晶組織領域を明確にし、上記断面全域に占める未再結晶組織領域の面積割合
(%)を算出する。
(Measurement of non-recrystallized region)
Subgrains measured or defined as small-angle grain boundaries with an inclination angle of 2 ° or more and less than 15 °;
Identification of the non-recrystallized region including a crystal grain of a large tilt grain boundary having an inclination angle of 15 ° or more is identified by measurement by the SEM-EBSP method in the entire cross section excluding the surface layer portion of the forged material. SEM
-The EBSP method is a field emission scanning electron microscope (Field Emission Scanning Electron Microscope).
scope: FESEM) and backscattered electron diffraction image [EBSP: ElectronBack Scattering (Scattered) Pa
ttern] Crystal orientation analysis method equipped with the system. By observing the entire cross section of the forged material except the surface layer portion with the optical microscope, the surface layer region where the recrystallized crystal grains are coarse is determined, and the boundary between the recrystallized structure region and the non-recrystallized structure region is determined. And, in particular, in the optical microscope, cut out five parts including the part that preferentially determines the position of the boundary,
After adjusting the sample for observation, using SEM-EBSP, an unrecrystallized structure including a low-angle grain boundary with an inclination angle of 2 ° or more and less than 15 ° and a large-angle grain boundary with an inclination angle of 15 ° or more. The boundary region of the region is accurately analyzed (1 field of view: 4 mm × 2 mm). Then, together with the observation result of the optical microscope, the non-recrystallized structure region is clarified, and the area ratio (%) of the non-recrystallized structure region in the entire cross section is calculated.

より具体的に、SEM−EBSPの前記観察用試料の調整は、前記光学顕微鏡の観察試
料 (断面組織)を、更に機械研磨後電解エッチングして鏡面化する。そして、FESEM
の鏡筒内にセットした、試料の鏡面化した表面に、電子線を照射してスクリーン上にEB
SPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。
コンピュータでは、この画像を解析して、既知の結晶系を用いたシミュレーションによる
パターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は3次元オ
イラー角として、位置座標(x、y)などとともに記録される。このプロセスが全測定点
に対して自動的に行なわれるので、測定終了時には、鍛造材の断面における数万〜数十万
点の結晶方位データが得られる。
More specifically, in the preparation of the observation sample of SEM-EBSP, the observation sample (cross-sectional structure) of the optical microscope is further mechanically polished and electrolytically etched to make a mirror surface. And FESEM
The surface of the sample that was set in the lens barrel was irradiated with an electron beam on the screen.
Project SP. This is taken with a high-sensitivity camera and captured as an image on a computer.
In the computer, the orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. The calculated crystal orientation is recorded as a three-dimensional Euler angle together with position coordinates (x, y) and the like. Since this process is automatically performed for all measurement points, tens of thousands to hundreds of thousands of crystal orientation data in the cross section of the forged material are obtained at the end of the measurement.

このような鍛造材断面における結晶方位データから、未再結晶領域と再結晶領域とを明
確に区別して同定される。未再結晶領域は、15°未満の小傾角粒と規定される亜結晶粒
の領域、15°以上の大傾角粒からなる領域、また大傾角粒の中に小傾角粒を有する複合
構造の領域からなり、2°以上の境界で囲まれる領域(粒)の平均サイズは10μm以下
からなる。なお、15°以上の大傾角粒からなる領域は、新たに生じた微細な再結晶粒で
はなく、押出加工時また熱間鍛造時に、加工中に生じた小傾角粒が加工中に回転し、境界
間の方位差が大きくなることにより生じるものと推定される。一方、再結晶組織領域は、
平均サイズ10μmを超える大傾角粒からなり、なかには、組織の測定対象から外してい
る前記鍛造材の表層部のように、数mmサイズの巨大な再結晶粒も生じる。そして、この
結果から、この未再結晶領域が、鍛造材断面全域に占める面積割合を求めることができる
From such crystal orientation data in the forged material cross section, the unrecrystallized region and the recrystallized region are clearly distinguished and identified. The non-recrystallized region is a region of sub-crystal grains defined as small-angle grains of less than 15 °, a region composed of large-angle particles of 15 ° or more, and a complex structure region having small-angle particles in large-angle particles. The average size of the region (grain) surrounded by the boundary of 2 ° or more is 10 μm or less. In addition, the region composed of grains with a large inclination of 15 ° or more is not newly generated fine recrystallized grains, but during the extrusion process or the hot forging, the small inclination grains generated during the processing are rotated during the processing, This is presumed to be caused by an increase in the orientation difference between the boundaries. On the other hand, the recrystallized structure region is
It consists of large-angle grains exceeding an average size of 10 μm, and some recrystallized grains with a size of several mm are also generated, such as the surface layer portion of the forged material that is excluded from the structure measurement target. From this result, the area ratio of the non-recrystallized region in the entire cross-section of the forged material can be obtained.

一方、未再結晶領域の平均結晶粒径は、前記試料の鏡面化した表面における、前記SE
M−EBSP法により同定された未再結晶領域内を、400倍の光学顕微鏡で偏光ミクロ
観察を行い、未再結晶領域内の結晶粒についき、粒径を画像解析により測定して、これら
の平均結晶粒径を算出する。
On the other hand, the average crystal grain size of the non-recrystallized region is the SE on the mirrored surface of the sample.
In the non-recrystallized region identified by the M-EBSP method, polarized microscopic observation is performed with an optical microscope of 400 times, followed by the crystal grains in the non-recrystallized region, and the particle size is measured by image analysis. The average crystal grain size is calculated.

因みに、前記特許文献11〜13の平均結晶粒径が10μm以下の微細な亜結晶粒組織
とは、通常は傾角が15°未満の小傾角粒界と規定される亜結晶粒であって、傾角が15°以上の大傾角粒界を除いた、未再結晶粒組織でしかない。すなわち、本発明でいう未再結晶粒組織とは、傾角が2°以上、15°未満の小傾角粒界として測定あるいは規定される亜結晶粒と、傾角が15°以上の大傾角粒界の結晶粒とを含めた領域である。したがって、傾角が15°以上の大傾角粒界を含まずに、亜結晶粒組織のみを規定した前記特許文献11〜13では、未再結晶粒組織を規定しておらず、傾角が15°以上の大傾角粒界の結晶粒の大きさや、面積割合によって、必然的に、本発明の規定から外れる。
Incidentally, the fine subgrain structure with an average crystal grain size of 10 μm or less in Patent Documents 11 to 13 is a subcrystal grain usually defined as a low-angle grain boundary with an inclination angle of less than 15 °, and an inclination angle However, it is only an unrecrystallized grain structure excluding a large tilt grain boundary of 15 ° or more. That is, the non-recrystallized grain structure as used in the present invention is a sub-crystal grain measured or defined as a low-angle grain boundary with an inclination angle of 2 ° or more and less than 15 °, and a large-angle grain boundary with an inclination angle of 15 ° or more. This is a region including crystal grains. Therefore, in Patent Documents 11 to 13 in which only the subgrain structure is defined without including a large-angle grain boundary having an inclination angle of 15 ° or more, an unrecrystallized grain structure is not specified, and the inclination angle is 15 ° or more. Depending on the size of the crystal grain and the area ratio of the large tilt grain boundary, it inevitably deviates from the definition of the present invention.

また、前記特許文献11〜13の亜結晶粒組織の平均結晶粒径や面積割合の測定も、40
0 倍程度の光学顕微鏡のみで、しかも、サイズが大きい再結晶粒の光を反射しやすく色が
淡い特性や、サイズが小さいその他の亜結晶を含めた結晶粒の色の濃さとの、色の濃淡の
違いや、あるいは互いのサイズの違いで識別している。このため、傾角が15°以上の大
傾角粒界を除いていることも含めて、本発明のSEM−EBSP法による結晶粒組織の同
定に比して、測定が不正確とならざるを得ない。
In addition, the measurement of the average crystal grain size and area ratio of the sub-grain structure of Patent Documents 11 to 13 is also possible.
With only an optical microscope of about 0 times, the color of the recrystallized grains with large size is easy to reflect the light color and the color density of the crystal grains including other subcrystals with small size They are identified by the difference in shading or the difference in size. For this reason, the measurement must be inaccurate as compared with the identification of the grain structure by the SEM-EBSP method of the present invention, including the removal of the large-angle grain boundary having an inclination angle of 15 ° or more. .

(分散粒子と晶出物)
前記軽量化形状の足回り鍛造品の熱間鍛造加工の際の、最小の肉厚減少率が25%を超
えたとしても、以上の組織を保証するため、本発明では、前記押出鍛造技術において、再
結晶を抑制するとともに再結晶後の粒界移動を妨げる、微細な分散粒子をより高密度に形
成するとともに、再結晶の核となる晶出物を抑制して、熱間鍛造での再結晶および粗大な
粒成長を抑制する。
(Dispersed particles and crystals)
In the present invention, in order to guarantee the above structure even if the minimum thickness reduction rate in the hot forging process of the underweight forged product of the lightweight shape exceeds 25%, in the present invention, In addition to suppressing recrystallization and preventing grain boundary migration after recrystallization, fine dispersed particles are formed at a higher density, and crystallized substances that are the core of recrystallization are suppressed, so that Suppresses crystal and coarse grain growth.

(分散粒子)
本発明では、前記したSEM−EBSPの観察用試料における未再結晶組織領域の任意の部位3箇所を測定した場合の平均値として、最大長が10nm以上、800nm以下の分散粒子の平均密度を10個/μm以上とする。不定形の分散粒子における、最大長さとは、最も長い軸あるいは最も長い辺の軸長さである。
(Dispersed particles)
In the present invention, the average density of dispersed particles having a maximum length of 10 nm or more and 800 nm or less is set to 10 as an average value when three arbitrary portions of the non-recrystallized structure region in the SEM-EBSP observation sample are measured. Pieces / μm 3 or more. The maximum length of the irregularly dispersed particles is the longest axis or the longest side.

最小の肉厚減少率が25%を超えた場合に再結晶しやすい、鍛造材の前記断面全域の再
結晶を抑制することが、強度、靱性を向上させる上で重要となる。したがって、本発明で
は、この最も再結晶しやすい部位における再結晶を抑制する分散粒子を規定して、再結晶
を抑制し、再結晶による結晶粒の粗大化を抑制する。これによって、再結晶化、結晶粒の
粗大化による粒界破断を抑制して、自動車足回り鍛造部品の強度、靱性を向上させる。
In order to improve strength and toughness, it is important to suppress recrystallization of the entire cross-section of the forged material, which is easy to recrystallize when the minimum thickness reduction rate exceeds 25%. Therefore, in the present invention, dispersed particles that suppress recrystallization at the most recrystallized portion are defined to suppress recrystallization and to suppress coarsening of crystal grains due to recrystallization. This suppresses grain boundary breakage due to recrystallization and coarsening of crystal grains, and improves the strength and toughness of automobile undercarriage forged parts.

本発明で言う分散粒子とはAl- Mn系、Al- Cr系、Al- Zr系の各金属間化合
物である。これらの分散粒子は、微細で高密度に分散すれば、再結晶後の粒界移動を妨げ
る効果があるため、結晶粒の再結晶化や粗大化を防止するとともに、結晶粒を微細化させ
る効果が高い。しかし、通常の製造工程では、鋳造、均質化熱処理、熱間鍛造、溶体化処
理および焼入れ処理などの熱履歴において、昇温速度や冷却速度が小さ過ぎる場合に、製
造条件によっては、粗大化しやすい。このため、再結晶抑制 (結晶粒微細化) 効果が失わ
れ、却って、自動車足回り部品の破壊靱性および疲労特性を劣化させる可能性もある。
The dispersed particles referred to in the present invention are Al—Mn, Al—Cr, and Al—Zr intermetallic compounds. If these dispersed particles are finely and densely dispersed, they have the effect of hindering the grain boundary movement after recrystallization, so that the effect of making the crystal grains finer is prevented while preventing recrystallization and coarsening of the crystal grains. Is expensive. However, in the normal manufacturing process, if the temperature rise rate or cooling rate is too small in the heat history such as casting, homogenizing heat treatment, hot forging, solution treatment and quenching treatment, depending on the production conditions, it tends to be coarse. . For this reason, the effect of suppressing recrystallization (grain refinement) is lost, and on the contrary, the fracture toughness and fatigue characteristics of automobile undercarriage parts may be deteriorated.

このため、本発明では、前記組織における上記分散粒子を微細で高密度に分散させるよ
うにし、粗大化させないために、分散粒子のサイズとして、最大長さと個数(密度)を規
定する。
Therefore, in the present invention, the maximum length and the number (density) are defined as the size of the dispersed particles so that the dispersed particles in the tissue are finely and densely dispersed and not coarsened.

(分散粒子の測定)
ここで、分散粒子の最大長と平均密度は、前記したSEM−EBSPの観察用試料にお
ける未再結晶組織領域の任意の部位3箇所を、倍率20000倍のTEM(透過型電子顕
微鏡) で1断面当たり9視野観察する。これを画像解析して、各分散粒子の最大長と、最
大長が10nm以上、800nm以下の分散粒子の平均密度(10個/μm)を測定
する。この際、TEM観察部の試料厚さは200nmとほぼ一定である。
(Measurement of dispersed particles)
Here, the maximum length and the average density of the dispersed particles are one cross section of TEM (transmission electron microscope) at a magnification of 20000 times at any three sites in the non-recrystallized structure region in the SEM-EBSP observation sample. Observe 9 fields of view. This is subjected to image analysis, and the maximum length of each dispersed particle and the average density (10 particles / μm 3 ) of dispersed particles having a maximum length of 10 nm to 800 nm are measured. At this time, the sample thickness of the TEM observation part is almost constant at 200 nm.

(晶出物)
次ぎに、本発明では、前記したSEM−EBSPの観察用試料における未再結晶組織領
域の任意の部位3箇所を測定した場合の平均値として、最大長が0.5μm以上の晶出物
の平均面積率を2.5% 以下と規制する。不定形の晶出物における、最大長さとは、最
も長い軸あるいは最も長い辺の軸長さである。
(Crystal)
Next, in the present invention, the average value of crystallized substances having a maximum length of 0.5 μm or more as an average value when measuring three arbitrary sites in the non-recrystallized structure region in the above-described SEM-EBSP observation sample. 2.5% area ratio It regulates as follows. The maximum length of an amorphous crystallized product is the longest axis or the longest side.

最小の肉厚減少率が25%を超えた場合に再結晶しやすい、鍛造材の前記断面全域の再
結晶を抑制するためには、その部分の鍛造中の再結晶の核となる晶出物を抑制することが
、強度、靱性を向上させる上で重要となる。因みに、本発明で言う晶出物とは、代表的に
はSi、Fe、Mn、Cr、Zrなどからなる、複合金属間化合物である。本発明では、
これらの含有量が比較的多く、破壊の起点となって鍛造品の特性を劣化させる、粗大な晶
出物を組織的に生成しやすくなっているので、この点でも晶出物を規制する必要がある。
In order to suppress recrystallization of the entire cross-section of the forged material, which is easy to recrystallize when the minimum thickness reduction rate exceeds 25%, a crystallized substance that becomes the core of recrystallization during forging of that portion Suppression is important in improving strength and toughness. Incidentally, the crystallized product as referred to in the present invention is a complex intermetallic compound typically composed of Si, Fe, Mn, Cr, Zr and the like. In the present invention,
Since these contents are relatively large, it is easy to form coarse crystallized materials that are the starting point of fracture and deteriorate the characteristics of the forged product. There is.

(晶出物の測定)
ここで、晶出物の最大長と平均面積率は、前記したSEM−EBSPの観察用試料にお
ける未再結晶組織領域の任意の部位3箇所を、倍率200倍のSEM(走査型電子顕微鏡)
で、1断面当たり25視野(1鍛造材で75視野以上)を観察して撮影し、得られた画像をデジタル処理して算出する。
(Measurement of crystallized matter)
Here, the maximum length and the average area ratio of the crystallized materials are the SEM (scanning electron microscope) with a magnification of 200 times at any three sites in the non-recrystallized texture region in the SEM-EBSP observation sample.
Then, 25 visual fields per cross section (75 visual fields or more with one forging material) are observed and photographed, and the obtained image is calculated by digital processing.

(製造方法)
次に、本発明におけるAl合金鍛造材の製造方法について述べる。本発明におけるAl
合金鍛造材の製造工程自体は、常法により製造が可能である。但し、軽量化形状した自動
車足回り鍛造部品であっても、前記した組織を有し、高強度化、高靱性化および高耐食性
化させるためには、上記組成を有するアルミニウム合金鋳塊を、450〜580℃の温度
範囲で均質化熱処理を施した後に、400〜580℃の温度で、押出比が2.4以上、3.7未満の熱間押出加工を行い、この押出材を、材料温度が430〜550℃の範囲、金型温度が100〜250℃の範囲、最小の肉厚減少率が25%を超えるとともに、最大の肉厚減少率が90%未満の条件で熱間鍛造加工を行い、この鍛造材に溶体化および焼入れ処理と人工時効処理とを施すことが好ましい。押出比は押出前の断面積A、押出後の断面積Bを用いて、ln(A/B)で定義する。また、肉厚減少率は、押出材の径A、鍛造後の肉厚Bを用いて、{(A−B)/A}×100%で定義する。Aは、押出材の断面が円形の場合は直径、他の形状では断面内の最大長さとする。
(Production method)
Next, a method for producing an Al alloy forged material in the present invention will be described. Al in the present invention
The alloy forging manufacturing process itself can be manufactured by a conventional method. However, in order to increase the strength, toughness, and corrosion resistance of an aluminum alloy ingot having the above-described composition even if it is a forged automotive underbody forged part having a structure described above, After performing a homogenization heat treatment in a temperature range of ˜580 ° C., a hot extrusion process with an extrusion ratio of 2.4 or more and less than 3.7 is performed at a temperature of 400 to 580 ° C. Is in the range of 430-550 ° C, mold temperature is in the range of 100-250 ° C, the minimum thickness reduction rate is over 25%, and the maximum thickness reduction rate is less than 90%. Preferably, the forged material is subjected to solution treatment and quenching treatment and artificial aging treatment. The extrusion ratio is defined as ln (A / B) using the cross-sectional area A before extrusion and the cross-sectional area B after extrusion. The thickness reduction rate is defined as {(AB) / A} × 100% using the diameter A of the extruded material and the thickness B after forging. A is the diameter when the cross section of the extruded material is circular, and A is the maximum length within the cross section in other shapes.

(鋳造)
前記特定Al合金成分範囲内に溶解調整されたAl合金溶湯を鋳造する場合には、連続
鋳造圧延法、半連続鋳造法(DC鋳造法)、ホットトップ鋳造法等の通常の溶解鋳造法を
適宜選択して鋳造する。
(casting)
When casting a molten Al alloy melt adjusted within the specific Al alloy component range, a normal melting casting method such as a continuous casting rolling method, a semi-continuous casting method (DC casting method), or a hot top casting method is appropriately used. Select and cast.

但し、前記特定Al合金成分範囲からなるアルミニウム合金溶湯を鋳造する際には、晶
出物の微細化と、デンドライト二次アーム間隔(DAS) を微細化させるために、平均冷却速
度を100 ℃/s以上とすることが好ましい。
However, when casting an aluminum alloy melt having the specific Al alloy component range, an average cooling rate of 100 ° C / ° C is used in order to refine the crystallized material and the dendrite secondary arm spacing (DAS). It is preferable to set it as s or more.

(均質化熱処理)
鋳造した鋳塊の均質化熱処理は450〜580℃の温度範囲に2時間以上保持して行う
。均質化熱処理温度が450℃未満では、温度が低すぎて鋳塊を均質化できず、均質化熱
処理温度が580℃を超えると、鋳塊表面のバーニングが発生する。
(Homogenization heat treatment)
The homogenized heat treatment of the cast ingot is carried out by keeping it in a temperature range of 450 to 580 ° C. for 2 hours or more. If the homogenization heat treatment temperature is less than 450 ° C., the temperature is too low to homogenize the ingot, and if the homogenization heat treatment temperature exceeds 580 ° C., burning of the ingot surface occurs.

(熱間押出)
この均質化熱処理後に、そのまま温度調節されるか、あるいは一旦室温まで冷却された
上で再加熱されて、400〜580℃の温度で、押出比が2.4以上、3.7未満の条件で、鋳塊の熱間押出加工を行い、押出材に加工する。熱間押出温度が580℃を超えると
、押出材表面のバーニングが発生するとともに、粗大な再結晶粒が発生する可能性が高く
なる。熱間押出温度が400℃未満では、押出時の荷重が高くなり、押出材表面に傷が発
生しやすくなる。押出比が高すぎると、粗大な再結晶粒が発生する可能性が高くなり、鍛
造材断面の前記全域や肉厚中心部でさえも結晶粒組織を微細化させることが困難となる。
反対に、押出比が小さ過ぎると、晶出物形成元素の含有量が比較的多く、晶出物を微細化
できず、伸び、靱性、疲労特性等が低くなる危険性がある。
(Hot extrusion)
After this homogenization heat treatment, the temperature is adjusted as it is, or it is once cooled to room temperature and reheated, and at a temperature of 400 to 580 ° C., under an extrusion ratio of 2.4 or more and less than 3.7. Then, hot extrusion of the ingot is performed to process the extruded material. When the hot extrusion temperature exceeds 580 ° C., burning of the surface of the extruded material occurs and the possibility of generating coarse recrystallized grains increases. When the hot extrusion temperature is less than 400 ° C., the load during extrusion increases, and the surface of the extruded material is easily damaged. If the extrusion ratio is too high, there is a high possibility that coarse recrystallized grains will be generated, and it will be difficult to refine the crystal grain structure even in the entire region of the forged material cross section or even in the thickness center.
On the other hand, if the extrusion ratio is too small, the content of the crystallized product-forming element is relatively large, the crystallized product cannot be refined, and there is a risk that elongation, toughness, fatigue properties, and the like are lowered.

(熱間鍛造)
この押出材を再加熱し、材料温度が430〜550℃の範囲、金型温度が100〜25
0℃の範囲、最小の肉厚減少率が25%を超えるとともに、最大の肉厚減少率が90%未
満の条件で熱間鍛造加工を行う。熱間鍛造は、メカニカルプレスによる鍛造や油圧プレス
を用いて、自動車足回り部品の最終製品形状 (ニアネットシェイプ) に鍛造加工される。
この形状とは、前記した軽量化形状であり、例えば、比較的幅狭で厚い周縁部のリブと、
肉厚が10mm以下の薄肉で比較的広幅な中央部のウエブとからなる略H型の断面形状のアー
ム部を有する自動車足回り部品に加工される。
(Hot forging)
The extruded material is reheated, the material temperature is in the range of 430 to 550 ° C., and the mold temperature is 100 to 25.
Hot forging is performed in the range of 0 ° C., with the minimum thickness reduction rate exceeding 25% and the maximum thickness reduction rate being less than 90%. Hot forging is forged into the final product shape (near net shape) of automobile undercarriage parts using mechanical press forging or hydraulic press.
This shape is the above-described weight reduction shape, for example, a relatively narrow and thick peripheral rib,
It is processed into an automobile undercarriage part having an arm portion having a substantially H-shaped cross section composed of a thin web having a thickness of 10 mm or less and a relatively wide central web.

自動車足回り鍛造部品は、鍛造途中の再加熱無しで、あるいは必要に応じて再加熱し、
荒鍛造、中間鍛造、仕上げ鍛造と、熱間鍛造が複数回行われる。各鍛造後、また最終の鍛
造後の材料温度が430℃未満であれば、鍛造および溶体化処理工程において、加工組織
が再結晶して粗大結晶粒が発生する可能性がある。これら粗大結晶粒が発生した場合、上
記ミクロ組織を制御しても、高強度化や高靱性化が果たせず、また、耐食性も低下する。
しかも、低温の熱間鍛造では、鍛造材断面の前記全域を目標としている結晶粒を微細化さ
せることが困難となる。一方、材料温度が550℃を超えた場合、鍛造材表面のバーニン
グが発生するとともに、粗大な再結晶粒が発生する可能性が高くなる。
Automotive undercarriage parts can be reheated without reheating during forging or as needed,
Rough forging, intermediate forging, finish forging, and hot forging are performed multiple times. If the material temperature after each forging and after the final forging is less than 430 ° C., in the forging and solution treatment process, the processed structure may be recrystallized to generate coarse crystal grains. When these coarse crystal grains are generated, even if the microstructure is controlled, the strength and toughness cannot be increased, and the corrosion resistance also decreases.
Moreover, in hot forging at low temperature, it is difficult to refine crystal grains that target the entire region of the cross-section of the forged material. On the other hand, when the material temperature exceeds 550 ° C., burning of the forged material surface occurs and the possibility of generating coarse recrystallized grains increases.

金型温度が100℃未満であれば、材料温度が低くなりすぎ、鍛造および溶体化処理工
程において、加工組織が再結晶して粗大結晶粒が発生する可能性がある。金型温度が25
0℃を超えた場合には、材料温度が高くなりすぎ、鍛造材表面のバーニング、焼き付きが
発生するとともに、粗大な再結晶粒が発生する可能性が高くなる。
If the mold temperature is less than 100 ° C., the material temperature becomes too low, and in the forging and solution treatment process, the processed structure may be recrystallized to generate coarse crystal grains. Mold temperature is 25
When the temperature exceeds 0 ° C., the material temperature becomes too high, and the forging material surface is burned and seized, and the possibility of generating coarse recrystallized grains increases.

部位によって異なる熱間鍛造の加工率として、最小の肉厚減少率が25%以下では、前
記した軽量化(複雑)形状の自動車足回り部品が鍛造加工できなくなる。一方、最大の肉
厚減少率が90%以上の場合、粗大な再結晶粒が発生する可能性が高くなる。
If the minimum thickness reduction rate is 25% or less as the processing rate of hot forging that differs depending on the part, the above-described lightweight (complex) shaped automobile underbody part cannot be forged. On the other hand, when the maximum thickness reduction rate is 90% or more, there is a high possibility that coarse recrystallized grains are generated.

(調質処理)
この熱間鍛造後に、自動車足回り部品としての必要な強度および靱性、耐食性を得るた
めのT6、T7、T8等の調質処理を適宜行う。T6は、溶体化および焼き入れ処理後、最大強さ
を得る人工時効硬化処理である。T7は、溶体化および焼き入れ処理後、最大強さを得る人
工時効硬化処理条件を超えて過剰時効硬化処理である。T8は、溶体化および焼き入れ処理
後、冷間加工を行い、更に最大強さを得る人工時効硬化処理である。
(Refining treatment)
After this hot forging, tempering treatment of T6, T7, T8, etc. for obtaining the necessary strength, toughness and corrosion resistance as an automobile undercarriage part is appropriately performed. T6 is an artificial age hardening treatment that obtains the maximum strength after solution treatment and quenching treatment. T7 is an excessive age hardening treatment that exceeds the artificial age hardening treatment conditions for obtaining the maximum strength after solution treatment and quenching treatment. T8 is an artificial age hardening treatment for obtaining the maximum strength by performing cold working after solution treatment and quenching treatment.

溶体化処理は530〜570℃の温度範囲に20分〜8hr保持する。この溶体化処理温
度が低過ぎるか、あるいは時間が短過ぎると、溶体化が不足して、MgSi化合物の固溶
が不十分となり、強度が低下する。
The solution treatment is held in a temperature range of 530 to 570 ° C. for 20 minutes to 8 hours. If the solution treatment temperature is too low or the time is too short, the solution treatment is insufficient, the solid solution of the MgSi compound becomes insufficient, and the strength decreases.

この溶体化処理後、500℃から40℃までを25℃/s以上の平均冷却速度で焼き入
れ処理を行なうことが好ましい。この平均冷却速度を確保するためには、焼き入れ処理時
の冷却は水冷により行なうことが好ましい。この焼き入れ処理時の冷却速度が低くなると
、粒界上にMgSi化合物、Si等が析出し、人工時効後の製品において、粒界破壊が生
じ易くなり、靱性ならびに疲労特性を低くする。また、冷却途中に、粒内にも、安定相M
gSi化合物、Siが形成され、人工時効時に析出するβ相、β' 相の析出量が減るため
、強度が低下する。
After this solution treatment, it is preferable to perform a quenching treatment from 500 ° C. to 40 ° C. at an average cooling rate of 25 ° C./s or more. In order to secure this average cooling rate, it is preferable that the cooling during the quenching process is performed by water cooling. When the cooling rate during the quenching process is lowered, MgSi compounds, Si, and the like are precipitated on the grain boundaries, and in the product after artificial aging, grain boundary fracture is likely to occur, and toughness and fatigue characteristics are lowered. In addition, during the cooling, the stable phase M
Since the gSi compound and Si are formed and the amount of β phase and β phase precipitated during artificial aging is reduced, the strength is lowered.

ただ、一方で、冷却速度が高くなると、焼入歪み量が多くなり、焼入後に、矯正工程が
新たに必要となったり、矯正工程の工数が増す問題も新たに生じる。また残留応力も高く
なり、製品の寸法、形状精度が低下する問題も新たに生じる。この点、製品製造工程を短
縮し、低コスト化するためには、焼入歪みが緩和される50〜85℃の温湯焼入が好ましい。
ここで、温湯焼入温度が50℃未満では焼入歪みが大きくなり、85℃を越えると冷却速度が
低くなりすぎ、靱性ならびに疲労特性、強度が低くなる。
However, on the other hand, when the cooling rate is increased, the amount of quenching distortion increases, and a new correction process is required after quenching, and there is a new problem that the number of steps in the correction process increases. In addition, the residual stress increases, and a new problem arises that the dimensional and shape accuracy of the product is lowered. In this respect, in order to shorten the product manufacturing process and reduce the cost, hot water quenching at 50 to 85 ° C. in which quenching distortion is alleviated is preferable.
Here, when the hot water quenching temperature is less than 50 ° C., the quenching strain increases, and when it exceeds 85 ° C., the cooling rate becomes too low, and the toughness, fatigue characteristics, and strength decrease.

溶体化および焼入れ処理後の人工時効硬化処理は、焼入れ処理後、室温時効を進めない
ために、1時間以内に、160〜210℃の温度範囲と20分〜8hrの保持時間の範囲か
ら、前記T6、T7、T8等の調質処理の条件を選択する。
The artificial age hardening treatment after solution treatment and quenching treatment is performed within the temperature range of 160 to 210 ° C. and the holding time of 20 minutes to 8 hours within one hour in order to prevent room temperature aging after quenching treatment. Select the tempering conditions such as T6, T7, T8.

なお、前記した、均質化熱処理、溶体化処理には空気炉、誘導加熱炉、硝石炉などが適
宜用いられる。更に、人工時効硬化処理には空気炉、誘導加熱炉、オイルバスなどが適宜
用いられる。
In addition, an air furnace, an induction heating furnace, a nitrite furnace, etc. are used suitably for the above-mentioned homogenization heat treatment and solution treatment. Further, an air furnace, an induction heating furnace, an oil bath, or the like is appropriately used for the artificial age hardening treatment.

本発明自動車足回り部品は、これら調質処理の前後に、自動車足回り部品として必要な
、機械加工や表面処理などが適宜施されても良い。
The automobile underbody parts of the present invention may be appropriately subjected to machining, surface treatment, and the like necessary as automobile undercarriage parts before and after the tempering treatment.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例
によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加
えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

次に、本発明の実施例を説明する。表1に示すアルミニウム合金組成の鋳塊(最終の鍛
造品組成でもある)を、表2に示す各条件で、均質化熱処理、熱間押出加工、熱間鍛造加
工を行い、また、この鍛造材に溶体化および焼入れ処理と人工時効処理を施して鍛造材を
製造した。そして、この鍛造材の組織、機械的特性、耐食性を表3に示すように測定、評
価した。
Next, examples of the present invention will be described. The ingot of aluminum alloy composition shown in Table 1 (which is also the final forged product composition) is subjected to homogenization heat treatment, hot extrusion, and hot forging under the conditions shown in Table 2. The forged material was manufactured by solution treatment, quenching treatment and artificial aging treatment. And the structure, mechanical characteristics, and corrosion resistance of this forged material were measured and evaluated as shown in Table 3.

より具体的に、表1に示すアルミニウム合金組成の鋳塊(最終の鍛造品組成でもある)
は半連続鋳造法により鋳造した。なお、表1に示す各アルミニウム合金合金例は、共通し
て100gのAl中の水素濃度は全て0.10〜0.15mlであった。
More specifically, the ingot of the aluminum alloy composition shown in Table 1 (also the final forged product composition)
Was cast by semi-continuous casting method. In addition, in each aluminum alloy alloy example shown in Table 1, the hydrogen concentration in 100 g of Al was all 0.10 to 0.15 ml.

これら各Al合金鋳塊の外表面を厚さ3mm 面削して、長さ500mm に切断後、各々表2に
示す各条件で、先ず均質化熱処理した。均質化熱処理後は、共通して、ファンを使用して
、冷却速度が100 ℃/hr 以上で強制空冷した。熱間押出は、各々表2に示す各条件で、通常の直接押出で行い、押出後はファンを使用して強制空冷した。熱間鍛造は、各々表2に示す各条件で、金型温度を100〜250℃の範囲に調節した上下金型を用いたメカニカルプレスにより行い、フラッシュランドの隙間1.5 〜3mm で、最終の肉厚まで再加熱無しに3 回鍛造した。この鍛造材を、各々表2に示す各条件で、空気炉を用いた溶体化処理および水焼入れを行った後、各々表2に示す各条件で人工時効処理を施し、T6の調質処理とした。
The outer surface of each of these Al alloy ingots was chamfered to a thickness of 3 mm, cut to a length of 500 mm, and then subjected to a homogenization heat treatment under each condition shown in Table 2. After the homogenization heat treatment, forcible air cooling was commonly performed using a fan at a cooling rate of 100 ° C / hr or more. The hot extrusion was performed by ordinary direct extrusion under the conditions shown in Table 2, and after extrusion, forced air cooling was performed using a fan. Hot forging is performed by a mechanical press using upper and lower molds with the mold temperature adjusted to a range of 100 to 250 ° C. under the conditions shown in Table 2, and the final meat is formed with a clearance of 1.5 to 3 mm in the flash land. Forged to thickness 3 times without reheating. This forged material was subjected to solution treatment using an air furnace and water quenching under each condition shown in Table 2, and then subjected to artificial aging treatment under each condition shown in Table 2, respectively. did.

製造した鍛造材は、前記軽量化形状である自動車足回り部品として、各三角形の頂点部
分にボールジョイント部(1箇所)とゴムブッシュ部(2箇所)を有し、これらを略三角形の全体形状からなるアーム部で各々繋いだ形状とした。アーム部はその幅方向の中央部にアーム部の各長手方向に亙って延在する肉厚が10mm以下と薄いウエブ部と肉厚が厚いリブ部とからなる。このような自動車足回り部品において、最大応力が発生しやすい、前記肉厚が厚いリブ部の前記1箇所のボールジョイント部に近接した部位3箇所から、各測定試料を採取した。このリブ部は、特に強度、靱性を有すべき部位であって、このリブ部分に結晶粒の粗大化が生じやすくなると、アーム部、ひいては自動車足回り部品全体としての強度を高く維持しながら軽量化を図るのが困難となる。
The manufactured forged material has a ball joint part (one place) and a rubber bush part (two places) at the apex part of each triangle as an automobile undercarriage part having the light weight shape, and these are substantially triangular overall shapes. It was made into the shape which connected by the arm part which consists of each. The arm portion is composed of a thin web portion and a thick rib portion having a thickness of 10 mm or less extending in the longitudinal direction of the arm portion at the center in the width direction. In such an automobile undercarriage part, each measurement sample was collected from three portions of the thick rib portion where the maximum stress is likely to occur and close to the one ball joint portion. This rib part is a part that should have strength and toughness. If the rib part is prone to coarsening of crystal grains, it is lightweight while maintaining the strength of the arm part and thus the entire automobile undercarriage component. It becomes difficult to make it easier.

前記3箇所から採取した測定試料における各断面を研磨後、化学エッチングし、400倍の光学顕微鏡を用いて、試料断面に占める再結晶した表層領域を判別して、測定対象から除外した。その後、再結晶組織領域と未再結晶組織領域の境界を含む部位であって、光学顕微鏡では境界の位置を判定することが難しい部位を優先して5箇所切り出し、観察用に試料調整後、SEM−EBSPを用いて上記境界を含む領域を解析(1視野:4mm×2mm)し、境界の位置を明確にした後、上記断面に占める未再結晶組織領域の面積割合(%)を算出した。そして、この未再結晶領域の平均結晶粒径を、前記光学顕微鏡で偏光ミクロ観察を行い、画像解析により測定、算出した。この結果、鍛造材断面に未再結晶領域を有する例では、発明例、比較例を含めて、この未再結晶領域における傾角2°以上の境界で囲まれる領域の平均粒径は、すべて10μm以下であった。   Each cross section of the measurement sample collected from the three locations was polished and then chemically etched, and the recrystallized surface layer region occupying the sample cross section was determined using a 400 × optical microscope and excluded from the measurement target. After that, five parts including the boundary between the recrystallized structure region and the non-recrystallized structure region, which are difficult to determine the position of the boundary with an optical microscope, are cut out preferentially, and after adjusting the sample for observation, SEM -The region including the boundary was analyzed using EBSP (1 visual field: 4 mm x 2 mm), the position of the boundary was clarified, and then the area ratio (%) of the non-recrystallized structure region in the cross section was calculated. Then, the average crystal grain size of the non-recrystallized region was measured and calculated through image analysis by performing polarization micro observation with the optical microscope. As a result, in the example having the non-recrystallized region in the cross section of the forged material, including the invention example and the comparative example, the average particle size of the region surrounded by the boundary of the tilt angle of 2 ° or more in this non-recrystallized region is all 10 μm or less. Met.

一方、晶出物、分散粒子は、前記断面の未再結晶組織領域より、任意の3部位から試料
を切り出し、各組織を観察し平均値を、晶出物の平均面積割合(%、表3では平均面積率
と表示)、分散粒子の平均密度(個/μm、表3では平均個数と表示)を算出した。
そして、例え平均値として本発明で規定するこれらの組織規定を満足したとしても、前記
3箇所のうちの各1箇所当たりでは、どこの箇所も個別には本発明で規定するこれらの組
織規定を満足しないものを×、1箇所でも個別に本発明組織規定を満足するものを○、2
箇所以上(2箇所か3箇所全部か)個別に本発明組織規定を満足するものを◎と評価した
On the other hand, for the crystallized product and dispersed particles, a sample was cut out from any three sites from the non-recrystallized texture region of the cross section, and each structure was observed and the average value was calculated as the average area ratio of crystallized product (%, Table 3). The average area ratio is indicated), and the average density of dispersed particles (number / μm 3 , indicated as the average number in Table 3) was calculated.
And even if these organization rules prescribed in the present invention are satisfied as an average value, for each one of the three locations, each of these locations is individually defined in the present invention. X which does not satisfy, x which satisfies the organizational rules of the present invention individually even in one place
Those satisfying the organizational rules of the present invention were evaluated as “◎” individually at two or more locations (two or all three locations).

(機械的特性)
前記リブ部の3箇所から採取した測定試料から、引張試験片 (L方向) を作製して、引
張強度(MPa) 、0.2%耐力(MPa) 、伸び(%) などの機械的性質を各々測定し、これら3個所
(試験片3個)の各平均値を求めた。
(Mechanical properties)
Tensile test specimens (L direction) are prepared from the measurement samples taken from three locations of the ribs, and mechanical properties such as tensile strength (MPa), 0.2% proof stress (MPa), and elongation (%) are measured. And each average value of these three places (three test pieces) was calculated | required.

(粒界腐食感受性)
耐食性評価のために、旧JIS-W1103 の規定に準じた粒界腐食感受性試験を、前記リブ部
の各部位3箇所から採取した測定試料(試験片3個)に対して行った。試験条件は、試験
液に規定時間の6hr浸漬後、試料を引き上げ、その後、試験片の断面を切断・研磨し、光
学顕微鏡を用いて、試料表面からの腐食深さを測定した。倍率は×100 とし、腐食深さが
200 μm 以下までを軽微な腐食として「○」と評価した。また、200 μm を超える場合を
大きな腐食として「×」と評価した。
(Intergranular corrosion sensitivity)
In order to evaluate corrosion resistance, an intergranular corrosion susceptibility test in accordance with the provisions of the former JIS-W1103 was performed on measurement samples (three test pieces) collected from three portions of the rib portion. The test condition was that the sample was pulled up after 6 hours of immersion in the test solution, and then the cross section of the test piece was cut and polished, and the corrosion depth from the sample surface was measured using an optical microscope. The magnification is x100 and the corrosion depth is
Less than 200 μm was evaluated as “◯” as minor corrosion. Moreover, the case where it exceeded 200 μm was evaluated as “×” as large corrosion.

表3から明らかな通り、各発明例は、組成と製造条件が好ましい範囲内である。この結
果、発明例は、平均値とともに、少なくとも1箇所以上個別に、本発明で規定するこれら
の組織規定を満足する。この結果、発明例は引張強度が最低でも394MPa以上であり、粒界腐食感受性にも優れている。
As is apparent from Table 3, the composition and production conditions of each invention example are within the preferred ranges. As a result, the inventive examples satisfy these organizational rules defined in the present invention individually with at least one place together with the average value. As a result, the inventive examples have a minimum tensile strength of 394 MPa or more, and are excellent in intergranular corrosion sensitivity.

これに対し、最適製造条件から外れて製造された比較例16〜25は、本発明範囲内の組成
ではあるが、本発明組織規定を満足しないか、鍛造材に製造できていない。したがって、
製造できたとしても、比較例は、強度、耐食性のいずれかが、発明例に比して著しく劣る
On the other hand, Comparative Examples 16 to 25 manufactured out of the optimum manufacturing conditions have compositions within the scope of the present invention, but do not satisfy the present invention organization regulations or have not been manufactured into forged materials. Therefore,
Even if it can be manufactured, either the strength or corrosion resistance of the comparative example is significantly inferior to that of the inventive example.

比較例16は均熱温度が高過ぎ局部的な溶融(バーニング)が生じた。比較例17は均熱温度が低過ぎ、均質化熱処理が不十分で晶出物の面積率が大きくなり伸びが低下した。比較例18は押出温度が高過ぎ、試料表層にバーニングが生じた。比較例19は押出温度が低過ぎ、押出荷重が高くなり、表層に傷が多発した。比較例20は押出比が高過ぎ、再結晶した領域が大きくなり強度、伸びが低下した。比較例21は押出比が低過ぎ、晶出物の面積率が大きくなり伸びが低下した。比較例22は鍛造温度が高過ぎ、前記バーニング、焼付きが生じた。比較例23は鍛造温度が低過ぎ、再結晶した領域が大きくなり、特に強度が低下した。比較例24は鍛造加工率が高過ぎ、再結晶した領域が大きくなり強度、伸びが低下した。比較例25は溶体化温度が高過ぎ、前記バーニングが生じた。これらバーニングや傷が生じた比較例は、発明例のような組織や特性の測定、調査を省いた。 In Comparative Example 16, the soaking temperature was too high, and local melting (burning) occurred. In Comparative Example 17, the soaking temperature was too low, the homogenization heat treatment was insufficient, the area ratio of the crystallized substance was increased, and the elongation was lowered. In Comparative Example 18, the extrusion temperature was too high, and burning occurred on the sample surface layer. In Comparative Example 19, the extrusion temperature was too low, the extrusion load was high, and the surface layer was frequently scratched. In Comparative Example 20, the extrusion ratio was too high, and the recrystallized area became large, and the strength and elongation decreased. In Comparative Example 21, the extrusion ratio was too low, the area ratio of the crystallized product increased, and the elongation decreased. In Comparative Example 22, the forging temperature was too high, and the burning and seizure occurred. In Comparative Example 23, the forging temperature was too low, the recrystallized region was large, and the strength was particularly reduced. In Comparative Example 24, the forging rate was too high, and the recrystallized region became large, and the strength and elongation decreased. In Comparative Example 25, the solution temperature was too high, and the burning occurred. In the comparative examples in which the burning and scratches occurred, the measurement and investigation of the structure and characteristics as in the invention examples were omitted.

また、本発明範囲外の組成のAl合金である比較例1 〜15は、最適製造条件内で製造されているものの、強度、耐食性のいずれかが、発明例に比して著しく劣る。 Further, although Comparative Examples 1 to 15 which are Al alloys having compositions outside the scope of the present invention are manufactured within the optimum manufacturing conditions, either strength or corrosion resistance is remarkably inferior to that of the inventive examples.

比較例1 はZr過少である。比較例2はCr過少である。比較例3 はMn過少である。このため、表3の通り、再結晶した領域が大きくなり強度、伸び、耐食性が低下している。比較例4 はZr過多である。比較例5はCr過多である。比較例6 はMn過多である。このため、表3の通り、晶出物の面積率が大きくなり特に伸びの低下が著しい。比較例7はSi過多で、表3の通り、晶出物の面積率が大きくなり、伸びが低下している。比較例8 はSi過少で、表3の通り、強度が低くなっている。比較例9 はFe過多で、表3の通り、晶出物の面積率が大きくなり、伸びが著しく低くなっている。比較例10はFe過少で、表3の通り、再結晶した領域が大きくなり、強度が低くなっている。比較例11はCu過多で、表3の通り、耐食性は著しく低下する。比較例12はCu過少で表3の通り、強度は低くなる。比較例13はZn過多で、表3の通り、耐食性は著しく低下する。比較例14はTi過多で、表3の通り、粗大な金属間化合物を生成し、押し出し時に金属間化合物を起点に表面欠陥を多発する。比較例15はTi過少で、表3の通り、鋳塊の再結晶粒は粗大化し、押し出し時に割れを生じる。 In Comparative Example 1, Zr is too small. In Comparative Example 2, Cr is insufficient. In Comparative Example 3, Mn is insufficient. For this reason, as shown in Table 3, the recrystallized region becomes large and the strength, elongation, and corrosion resistance are reduced. Comparative Example 4 is excessive in Zr. Comparative Example 5 is excessive in Cr. In Comparative Example 6, Mn is excessive. For this reason, as shown in Table 3, the area ratio of the crystallized substance increases and the decrease in elongation is particularly remarkable. In Comparative Example 7, the amount of Si is excessive, and as shown in Table 3, the area ratio of the crystallized product is increased and the elongation is decreased. In Comparative Example 8, the Si content is low, and as shown in Table 3, the strength is low. In Comparative Example 9, Fe is excessive, and as shown in Table 3, the area ratio of the crystallized product is increased and the elongation is remarkably reduced. In Comparative Example 10, Fe is insufficient, and as shown in Table 3, the recrystallized region is large and the strength is low. Comparative Example 11 is excessive Cu, and as shown in Table 3, the corrosion resistance is significantly reduced. In Comparative Example 12, Cu is too small and the strength is low as shown in Table 3. In Comparative Example 13, the Zn content is excessive, and as shown in Table 3, the corrosion resistance is significantly reduced. In Comparative Example 14, Ti is excessive, and as shown in Table 3, a coarse intermetallic compound is produced, and surface defects frequently occur from the intermetallic compound as a starting point during extrusion. Comparative Example 15 is a Ti too small, as shown in Table 3, the ingot of recrystallized grains coarse, arising cracking during extrusion.

以上の結果から、本発明組成、組織規定あるいは最適製造条件の、アルミニウム合金押
出材を熱間鍛造してなる鍛造材の強度、耐食性を向上させる臨界的な意義が分かる。
From the above results, the critical significance of improving the strength and corrosion resistance of a forged material obtained by hot forging an aluminum alloy extruded material according to the present invention composition, structure definition or optimum production conditions can be understood.

Figure 0005723192
Figure 0005723192

Figure 0005723192
Figure 0005723192

Figure 0005723192
Figure 0005723192

本発明によれば、高強度化および高耐食性化させた、アルミニウム合金押出材を熱間鍛
造してなる鍛造材およびこれらの特性を鍛造材の部位全体に亘って保障した鍛造材および
その製造方法を提供することができる。したがって、Al- Mg- Si系アルミニウム合
金鍛造材の、自動車足回り部品など輸送機用への用途の拡大を図ることができる点で、多
大な工業的な価値を有するものである。
According to the present invention, a forged material obtained by hot forging an aluminum alloy extruded material with high strength and high corrosion resistance, a forged material that guarantees these characteristics over the entire portion of the forged material, and a method for producing the same Can be provided. Therefore, the Al—Mg—Si based aluminum alloy forging material has a great industrial value in that it can be used for transportation equipment such as automobile undercarriage parts.

Claims (2)

アルミニウム合金押出材を熱間鍛造してなる鍛造材であって、質量%で、Si:0.8
〜1.3%、Mg:0.70〜1.3%、Cu:0.01〜0.5%、Zn:0.005
〜0.2%、Fe:0.01〜0.45%、Mn:0.30%を超え、0.8%以下、C
r:0.01〜0.25%、Zr:0.01〜0.25%、Ti:0.01〜0.1%を
各々含み、かつ前記SiとMgの含有量が[Si%]−[Mg%]/1.73>0.25
を満足し、残部Alおよび不可避的不純物からなる組成を有し、この鍛造材の任意の3箇所以上の部位の表層部を除く断面全域における、SEM−EBSP法による測定で同定される、傾角が2°以上、15°未満の小傾角粒界と傾角が15°以上の大傾角粒界とを含めた、未再結晶領域を備え、この未再結晶領域における傾角2°以上の境界で囲まれる領域の平均粒径が10μm以下であるとともに、この未再結晶領域の前記鍛造材の表層部を除く断面全域に対する平均面積割合が75%以上であり、かつ、この未再結晶組織領域における、最大長が10nm以上、800nm以下の分散粒子の平均密度が10個/μm以上であるとともに、最大長が0.5μm以上の晶出物の平均面積率が2.5%以下であることを特徴とするアルミニウム合金鍛造材。
It is a forging material formed by hot forging an aluminum alloy extruded material, and is expressed by mass%, Si: 0.8
To 1.3%, Mg: 0.70 to 1.3%, Cu: 0.01 to 0.5%, Zn: 0.005
-0.2%, Fe: 0.01-0.45%, Mn: more than 0.30%, 0.8% or less, C
r: 0.01 to 0.25%, Zr: 0.01 to 0.25%, Ti: 0.01 to 0.1%, respectively, and the Si and Mg contents are [Si%] − [Mg%] / 1.73> 0.25
The inclination is identified by the measurement by the SEM-EBSP method in the entire cross section excluding the surface layer portion of any three or more parts of the forging material having a composition composed of the balance Al and inevitable impurities. An unrecrystallized region including a low-angle grain boundary of 2 ° or more and less than 15 ° and a large-angle grain boundary of 15 ° or more is provided, and the unrecrystallized region is surrounded by a boundary having an inclination angle of 2 ° or more. The average grain size of the region is 10 μm or less, the average area ratio of the non-recrystallized region to the entire cross section excluding the surface layer portion of the forged material is 75% or more, and the maximum in the non-recrystallized structure region wherein the length is 10nm or more, with an average density of less dispersed particles 800nm is 10 pieces / [mu] m 3 or more, the maximum length of the average area ratio of 0.5μm or more crystallizate is less than 2.5% Aluminum Gold forged material.
質量%で、Si:0.8〜1.3%、Mg:0.70〜1.3%、Cu:0.01〜0
.5%、Zn:0.005〜0.2%、Fe:0.01〜0.45%、Mn:0.30%を超え、0.8%以下、Cr:0.01〜0.25%、Zr:0.01〜0.25%、T
i:0.01〜0.1%を各々含み、かつ前記SiとMgの含有量が[Si%]−[Mg
%]/1.73>0.25を満足し、残部Alおよび不可避的不純物からなる組成を有す
るアルミニウム合金鋳塊を、450〜580℃の温度範囲で均質化熱処理を施した後に、
400〜580℃の温度で、押出比が2.4以上、3.7未満の熱間押出加工を行い、こ
の押出材を、材料温度が430〜550℃の範囲、金型温度が100〜250℃の範囲、
最小の肉厚減少率が25%を超えるとともに、最大の肉厚減少率が90%未満の条件で熱
間鍛造加工を行い、更に、溶体化および焼入れ処理と人工時効処理とを施して鍛造材を製
造し、この鍛造材の任意の3箇所以上の部位の表層部を除く断面全域における、SEM−
EBSP法による測定で同定される、傾角が2°以上、15°未満の小傾角粒界と傾角が
15°以上の大傾角粒界とを含めた、未再結晶領域を備え、この未再結晶領域における傾
角2°以上の境界で囲まれる領域の平均粒径を10μm以下とするとともに、この未再結
晶領域の前記鍛造材の表層部を除く断面全域に対する平均面積割合を75%以上とし、か
つ、この未再結晶組織領域における、最大長が10nm以上、800nm以下の分散粒子
の平均密度を10個/μm以上とするとともに、最大長が0.5μm以上の晶出物の
平均面積率を2.5% 以下としたことを特徴とするアルミニウム合金鍛造材の製造方法
In mass%, Si: 0.8 to 1.3%, Mg: 0.70 to 1.3%, Cu: 0.01 to 0
. 5%, Zn: 0.005 to 0.2%, Fe: 0.01 to 0.45%, Mn: more than 0.30%, 0.8% or less, Cr: 0.01 to 0.25% , Zr: 0.01 to 0.25%, T
i: each containing 0.01 to 0.1%, and the contents of Si and Mg are [Si%]-[Mg
%] / 1.73> 0.25, an aluminum alloy ingot having a composition consisting of the balance Al and inevitable impurities is subjected to a homogenization heat treatment in a temperature range of 450 to 580 ° C.
A hot extrusion process with an extrusion ratio of 2.4 or more and less than 3.7 is performed at a temperature of 400 to 580 ° C., and the extruded material is subjected to a material temperature in the range of 430 to 550 ° C. and a mold temperature of 100 to 250. ℃ range,
The forging material is subjected to hot forging under the condition that the minimum thickness reduction rate exceeds 25% and the maximum thickness reduction rate is less than 90%, and further subjected to solution treatment and quenching treatment and artificial aging treatment SEM- in the entire cross section excluding the surface layer portion of any three or more parts of this forging
An unrecrystallized region including a low-angle grain boundary with an inclination angle of 2 ° or more and less than 15 ° and a large-angle grain boundary with an inclination angle of 15 ° or more, identified by measurement by the EBSP method, is provided. The average grain size of the region surrounded by the boundary having an inclination angle of 2 ° or more in the region is set to 10 μm or less, the average area ratio of the non-recrystallized region to the entire cross section excluding the surface layer portion of the forged material is set to 75% or more, and In this non-recrystallized structure region, the average density of dispersed particles having a maximum length of 10 nm or more and 800 nm or less is 10 particles / μm 3 or more, and the average area ratio of crystallized substances having a maximum length of 0.5 μm or more is 2.5% The manufacturing method of the aluminum alloy forging material characterized by the following.
JP2011076044A 2010-03-31 2011-03-30 Aluminum alloy forging and method for producing the same Active JP5723192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011076044A JP5723192B2 (en) 2010-03-31 2011-03-30 Aluminum alloy forging and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010082997 2010-03-31
JP2010082997 2010-03-31
JP2011076044A JP5723192B2 (en) 2010-03-31 2011-03-30 Aluminum alloy forging and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011225988A JP2011225988A (en) 2011-11-10
JP5723192B2 true JP5723192B2 (en) 2015-05-27

Family

ID=45041682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011076044A Active JP5723192B2 (en) 2010-03-31 2011-03-30 Aluminum alloy forging and method for producing the same

Country Status (1)

Country Link
JP (1) JP5723192B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973717B2 (en) * 2011-12-16 2016-08-23 株式会社Uacj Aluminum alloy composite and manufacturing method thereof, aluminum alloy forged product
JP5863626B2 (en) * 2012-02-02 2016-02-16 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
JP5698695B2 (en) * 2012-03-30 2015-04-08 株式会社神戸製鋼所 Aluminum alloy forgings for automobiles and manufacturing method thereof
JP5872443B2 (en) * 2012-03-30 2016-03-01 株式会社神戸製鋼所 Aluminum alloy forgings for automobiles and manufacturing method thereof
ES2695698T3 (en) 2012-04-25 2019-01-10 Norsk Hydro As Extruded aluminum alloy profile Al-Mg-Si with improved properties
WO2014084424A1 (en) * 2012-11-30 2014-06-05 인하대학교 산학협력단 High heat-dissipating high strength aluminum alloy
JP5837026B2 (en) * 2013-03-29 2015-12-24 株式会社神戸製鋼所 Aluminum alloy forgings for automobiles and manufacturing method thereof
KR101511544B1 (en) 2013-11-15 2015-04-13 현대자동차주식회사 A method for manufacturing forged product using hot forging aluminum alloy
CN107282666A (en) * 2017-06-16 2017-10-24 航天精工股份有限公司 A kind of high intensity aluminum or aluminum alloy fastener and its manufacture method
JP7380134B2 (en) * 2019-11-27 2023-11-15 株式会社レゾナック Manufacturing method for aluminum alloy forgings for automobile suspension parts
CN111014539B (en) * 2019-12-24 2022-03-15 陕西宏远航空锻造有限责任公司 Method for matching conductivity of aluminum alloy forging with longitudinal yield strength
CN114369747A (en) * 2022-01-07 2022-04-19 山东创新精密科技有限公司 Aluminum alloy strip stiffened plate for ship and extrusion process thereof
JP2023104587A (en) * 2022-01-18 2023-07-28 株式会社レゾナック Aluminum alloy forged product and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3684313B2 (en) * 1998-08-25 2005-08-17 株式会社神戸製鋼所 High-strength, high-toughness aluminum alloy forgings for automotive suspension parts
JP2007169699A (en) * 2005-12-21 2007-07-05 Toyota Motor Corp High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component
JP4757022B2 (en) * 2005-12-28 2011-08-24 住友軽金属工業株式会社 High strength and toughness aluminum alloy extruded material and forged material excellent in corrosion resistance, and method for producing the extruded material and forged material
JP5180496B2 (en) * 2007-03-14 2013-04-10 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same

Also Published As

Publication number Publication date
JP2011225988A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5723192B2 (en) Aluminum alloy forging and method for producing the same
JP5110938B2 (en) Automotive undercarriage parts and manufacturing method thereof
JP5901738B2 (en) Aluminum alloy forging and method for producing the same
JP5180496B2 (en) Aluminum alloy forging and method for producing the same
JP5698695B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
JP5863626B2 (en) Aluminum alloy forging and method for producing the same
JP5431233B2 (en) Aluminum alloy forging and method for producing the same
EP2899287B1 (en) Aluminum alloy plate for automobile part
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP5830006B2 (en) Extruded aluminum alloy with excellent strength
JP3997009B2 (en) Aluminum alloy forgings for high-speed moving parts
JP3684313B2 (en) High-strength, high-toughness aluminum alloy forgings for automotive suspension parts
JP2017155251A (en) Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor
KR20090089905A (en) High-strength aluminum-base alloy products and process for production thereof
JP6182490B2 (en) Aluminum alloy forging
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
WO2009123084A1 (en) Magnesium alloy and process for producing the same
JP6223670B2 (en) Aluminum alloy sheet for automobile parts
JP2001107168A (en) High strength and high toughness aluminum alloy forged material excellent in corrosion resistance
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
JP2001181771A (en) High strength and heat resistant aluminum alloy material
JP2018111864A (en) Aluminum alloy forging material
JP2006257522A (en) Al-Zn-Mg-Cu-BASED ALUMINUM ALLOY CONTAINING ZR AND METHOD FOR MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150327

R150 Certificate of patent or registration of utility model

Ref document number: 5723192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150