JP5716219B1 - Position estimation method and position estimation apparatus - Google Patents
Position estimation method and position estimation apparatus Download PDFInfo
- Publication number
- JP5716219B1 JP5716219B1 JP2014025227A JP2014025227A JP5716219B1 JP 5716219 B1 JP5716219 B1 JP 5716219B1 JP 2014025227 A JP2014025227 A JP 2014025227A JP 2014025227 A JP2014025227 A JP 2014025227A JP 5716219 B1 JP5716219 B1 JP 5716219B1
- Authority
- JP
- Japan
- Prior art keywords
- wave
- receiver
- hyperbola
- arrival time
- reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
【課題】受波器を複数の地点に設けることを要さずに、短時間で波源位置を推定可能な方法を提供する。【解決手段】海水面W1と海底面W2との間に設置された受波器Jが、波源Hから受波器Jに直接到達した直接波Dや、海水面W1で1回反射して受波器Jに到達した第1反射波R1や、海底面W2で1回反射して受波器Jに到達した第2反射波R2を受信する。そして、波源Hと第1境界面に対する波源Hの鏡像H1とを焦点とする第1双曲線S1の式や、波源Hと海底面W2に対する波源Hの鏡像H2とを焦点とする第2双曲線S2の式が求められる。そして、第1双曲線S1の式と第2双曲線S2の式とを連立することで、波源Hの座標である第1双曲線S1及び第2双曲線S2の共通の焦点の座標が求められる。【選択図】図1There is provided a method capable of estimating a wave source position in a short time without requiring a receiver at a plurality of points. A receiver J installed between a seawater surface W1 and a seafloor W2 receives a direct wave D directly reaching the receiver J from a wave source H or reflected once by the seawater surface W1. The first reflected wave R1 that has reached the wave device J and the second reflected wave R2 that has been reflected once by the sea floor W2 and reached the wave receiver J are received. Then, the expression of the first hyperbola S1 focusing on the wave source H and the mirror image H1 of the wave source H with respect to the first boundary surface, or the second hyperbola S2 focusing on the mirror image H2 of the wave source H with respect to the wave source H and the sea bottom W2. An expression is required. Then, by combining the expression of the first hyperbola S1 and the expression of the second hyperbola S2, the coordinates of the focal point common to the first hyperbola S1 and the second hyperbola S2, which are the coordinates of the wave source H, are obtained. [Selection] Figure 1
Description
本発明は、パルス波の波源の位置を推定する方法及び装置に関する。 The present invention relates to a method and apparatus for estimating the position of a pulse wave source.
水中では電磁波の減衰が大きいため、一般的に水中物体の探知には音波が利用される。音波を利用して水中物体を探知する方式として、アクティブソナーと呼ばれる方式や、パッシブソナーと呼ばれる方式がある。アクティブソナーは、波源から音を送波して物体から反射するエコー音を検出し、物体までの距離と方位を求めるものであるが、自ら音を出すために自身の存在を暴露してしまうことになる。一方、パッシブソナーは、水中物体の放射音を検出するものであり、自ら音を出さないため、秘密裏に水中物体を探知することができる。しかしながら、パッシブソナーでは、物体の方位を求めるのは容易であるが、物体までの距離を求めるためには目標運動解析やマッチドフィールド処理などによる複雑な計算が必要であった。目標運動解析では連続的な放射音により物体までの距離を推定することができるが、一時的な過渡音では物体までの距離を求めることができない。また、マッチドフィールド処理は海洋環境を事前に把握しておく必要があるが、時間空間的に変化する海洋環境の複雑な特性をデータベース化するのは困難である。 Since the attenuation of electromagnetic waves is large in water, sound waves are generally used to detect underwater objects. As a method for detecting an underwater object using sound waves, there are a method called active sonar and a method called passive sonar. Active sonar detects the echo sound reflected from the object by transmitting the sound from the wave source, and seeks the distance and direction to the object, but it exposes its existence to make its own sound. become. On the other hand, passive sonar detects the radiated sound of an underwater object and does not emit sound itself, so it can detect an underwater object in secret. However, with passive sonar, it is easy to determine the orientation of an object, but in order to determine the distance to the object, complicated calculations such as target motion analysis and matched field processing are required. In the target motion analysis, the distance to the object can be estimated by continuous radiated sound, but the distance to the object cannot be obtained by temporary transient sound. In addition, it is necessary for the matched field processing to grasp the marine environment in advance, but it is difficult to create a database of complex characteristics of the marine environment that changes in time and space.
一時的な過渡音で物体までの距離を求める方法として、音波の伝搬時間差を利用する方法が研究されている。このような方法として、非特許文献1に開示される総当たり法と称される方法がある。以下、図7及び図8を参照して、総当たり法について説明する。 As a method for obtaining a distance to an object with a temporary transient sound, a method using a propagation time difference of a sound wave has been studied. As such a method, there is a method called a brute force method disclosed in Non-Patent Document 1. Hereinafter, the brute force method will be described with reference to FIGS. 7 and 8.
総当たり法は、図7(a)に示すように、実目標hが発生する過渡音を受波器jに受信させるものであり、実目標hから反射することなく受波器jに直接到達した直接波Dhの伝搬時間と、海水面w1や海底面w2で反射して受波器jに到達した反射波Rh1,Rh2の伝搬時間との差(1),(2)が測定される(図8(a))。そして、図7(b)に示すように、実目標hが存在すると想定される範囲が格子化されて、各格子点上にある仮目標kが過渡音を発生するとした場合に、受波器jに直接到達する直接波Dkの伝搬時間と、海水面w1や海底面w2で反射して受波器jに到達する反射波Rk1,Rk2の伝搬時間との差(3),(4)が、総当たり的(格子点ごとに)に計算される(図8(b))。そして、各仮目標k(各格子点)について計算された伝搬時間差(3),(4)と、実目標hについて測定された伝搬時間差(1),(2)との差が算出されて、当該差が最小となる仮目標kの位置情報(仮目標の深度、仮目標と受波器との間の距離)が、実目標hの位置を示す情報として取得される。 In the round robin method, as shown in FIG. 7A, the receiver j receives the transient sound generated by the actual target h, and directly reaches the receiver j without being reflected from the actual target h. The difference (1), (2) between the propagation time of the direct wave Dh and the propagation times of the reflected waves Rh1, Rh2 reflected by the seawater surface w1 and the seafloor w2 and reaching the receiver j is measured ( FIG. 8 (a)). Then, as shown in FIG. 7B, when the range in which the actual target h is assumed to be gridded and the temporary target k on each grid point generates a transient sound, the receiver The difference (3), (4) between the propagation time of the direct wave Dk that directly reaches j and the propagation time of the reflected waves Rk1 and Rk2 that are reflected by the seawater surface w1 and the seafloor w2 and reach the receiver j Are calculated brute force (for each grid point) (FIG. 8B). Then, the difference between the propagation time difference (3), (4) calculated for each temporary target k (each grid point) and the propagation time difference (1), (2) measured for the actual target h is calculated, Position information of the temporary target k that minimizes the difference (depth of the temporary target, distance between the temporary target and the receiver) is acquired as information indicating the position of the actual target h.
また、伝搬経路の違いにより波源の位置を推定する方法が、特許文献1,2に開示されている。特許文献1,2の方法では、異なる位置に複数の音響センサが設置されて、各音響センサが、それぞれ波源からの直接波を受信する。そして、任意の2つの音響センサに受信される直接波の伝搬時間差が算出されて、上記2つの音響センサ間での伝搬時間差が一定となる双曲線が求められる。この双曲線は、任意の2つの音響センサからなる組毎に求められ、2組以上で求められた双曲線の交点が、波源の位置として推定される。 Further, Patent Documents 1 and 2 disclose methods for estimating the position of a wave source based on a difference in propagation paths. In the methods of Patent Documents 1 and 2, a plurality of acoustic sensors are installed at different positions, and each acoustic sensor receives a direct wave from a wave source. Then, the propagation time difference between the direct waves received by any two acoustic sensors is calculated, and a hyperbola in which the propagation time difference between the two acoustic sensors is constant is obtained. This hyperbola is obtained for each set of two arbitrary acoustic sensors, and the intersection of the hyperbola obtained by two or more sets is estimated as the position of the wave source.
しかしながら、上記の総当たり法では、実目標hが存在すると想定される範囲(深度及び距離)が大きい場合や、格子の刻み幅が小さい場合には、格子点の数が多くなる。このため、格子点ごとに伝搬時間差(3),(4)を算出する計算に、長い時間を要する。この問題を改善する手法として、Simulated Annealing法やGenetic Algorism法などの確率論的解法があるが、これらの方法は、解を確実に捜索する方法とはいえない。 However, in the brute force method, the number of grid points increases when the range (depth and distance) in which the actual target h is assumed to be large is large or when the grid step size is small. For this reason, it takes a long time to calculate the propagation time differences (3) and (4) for each lattice point. There are probabilistic solutions such as the Simulated Annealing method and the Genetic Algorism method as methods to improve this problem, but these methods cannot be said to be a method of searching for a solution reliably.
また、特許文献1,2に開示される方法では、波源位置を求めるために、音響センサを複数の地点に設ける必要がある。 Moreover, in the methods disclosed in Patent Documents 1 and 2, it is necessary to provide acoustic sensors at a plurality of points in order to obtain the wave source position.
本発明は、受波器を複数の地点に設けることを要さずに、短時間で波源位置を推定可能な方法及び装置を提供することを目的とする。 An object of this invention is to provide the method and apparatus which can estimate a wave source position in a short time, without providing a receiver in several points.
上記目的を達成するため、本発明の第1観点に係る位置推定方法は、第1境界面と第2境界面との間からパルス波を放射する波源の位置を推定するための方法であって、前記第1境界面と前記第2境界面との間に設置された受波器に、前記波源から放射されたパルス波を受信させる受信ステップと、前記波源から前記受波器に直接到達した直接波の到達時刻、前記第1境界面で1回反射して前記受波器に到達した第1反射波の到達時刻、及び前記第2境界面で1回反射して前記受波器に到達した第2反射波の到達時刻を特定する到達時刻特定ステップと、前記直接波の到達時刻と前記第1反射波の到達時刻とに基づき、前記直接波と前記第1反射波との伝搬経路差を算出し、前記直接波の到達時刻と前記第2反射波の到達時刻とに基づき、前記直接波と前記第2反射波との伝搬経路差を算出する経路差算出ステップと、前記直接波と前記第1反射波との伝搬経路差と、前記受波器の座標とに基づき、前記受波器を通過する双曲線であって、前記波源と前記第1境界面に対する前記波源の鏡像とを焦点とする第1双曲線の式を求め、前記直接波と前記第2反射波との伝搬経路差と、前記受波器の座標とに基づき、前記受波器を通過する双曲線であって、前記波源と前記第2境界面に対する前記波源の鏡像とを焦点とする第2双曲線の式を求める双曲線取得ステップと、前記第1双曲線の式と前記第2双曲線の式とを連立することで、前記波源の座標である前記第1双曲線及び前記第2双曲線の共通の焦点の座標を求める焦点座標算出ステップとを備える。 In order to achieve the above object, a position estimation method according to a first aspect of the present invention is a method for estimating a position of a wave source that emits a pulse wave from between a first boundary surface and a second boundary surface. Receiving a pulse wave radiated from the wave source to a receiver installed between the first boundary surface and the second boundary surface, and reaching the receiver directly from the wave source; The arrival time of the direct wave, the arrival time of the first reflected wave that is reflected once at the first boundary surface and reaches the receiver, and the arrival time of the first reflected wave that is reflected once at the second boundary surface and reaches the receiver Based on the arrival time specifying step for specifying the arrival time of the second reflected wave and the arrival time of the direct wave and the arrival time of the first reflected wave, the propagation path difference between the direct wave and the first reflected wave is determined. Based on the arrival time of the direct wave and the arrival time of the second reflected wave. Based on the path difference calculating step for calculating the propagation path difference between the direct wave and the second reflected wave, the propagation path difference between the direct wave and the first reflected wave, and the coordinates of the receiver. A hyperbola passing through a waver, wherein a formula of a first hyperbola focusing on the wave source and a mirror image of the wave source with respect to the first boundary surface is obtained, and a propagation path difference between the direct wave and the second reflected wave And a hyperbola that passes through the receiver based on the coordinates of the receiver and obtains a formula of a second hyperbola that focuses on the wave source and a mirror image of the wave source with respect to the second boundary surface. The focal coordinate calculation for obtaining the common focal point coordinates of the first hyperbola and the second hyperbola as the coordinates of the wave source by combining the obtaining step and the first hyperbola equation and the second hyperbola equation Steps.
また、本発明の第2観点に係る位置推定方法は、第1境界面と第2境界面との間からパルス波を放射する波源の位置を推定するための方法であって、前記第1境界面と前記第2境界面との間に設置された受波器に、前記波源から放射されたパルス波を受信させる受信ステップと、前記波源から前記受波器に直接到達した直接波の到達時刻、前記第1境界面で1回反射して前記受波器に到達した第1反射波の到達時刻、及び前記第2境界面で1回反射して前記受波器に到達した第2反射波の到達時刻を特定する到達時刻特定ステップと、前記直接波の到達時刻と前記第1反射波の到達時刻とに基づき、前記直接波と前記第1反射波との伝搬経路差を算出し、前記直接波の到達時刻と前記第2反射波の到達時刻とに基づき、前記直接波と前記第2反射波との伝搬経路差を算出する経路差算出ステップと、前記直接波と前記第1反射波との伝搬経路差と、前記受波器の座標とに基づき、前記波源を通過する双曲線であって、前記受波器と前記第1境界面に対する前記受波器の鏡像とを焦点とする第1双曲線の式を求め、前記直接波と前記第2反射波との伝搬経路差と、前記受波器の座標とに基づき、前記波源を通過する双曲線であって、前記受波器と前記第2境界面に対する前記受波器の鏡像とを焦点とする第2双曲線の式を求める双曲線取得ステップと、前記第1双曲線の式と前記第2双曲線の式とを連立して、前記波源の座標である前記第1双曲線及び前記第2双曲線の交点の座標を求める交点座標算出ステップとを備える。 A position estimation method according to a second aspect of the present invention is a method for estimating a position of a wave source that emits a pulse wave from between a first boundary surface and a second boundary surface, wherein the first boundary surface A receiving step for receiving a pulse wave radiated from the wave source to a receiver installed between a surface and the second boundary surface; and an arrival time of a direct wave that has directly reached the receiver from the wave source , The arrival time of the first reflected wave that is reflected once at the first boundary surface and reaches the receiver, and the second reflected wave that is reflected once at the second boundary surface and reaches the receiver Based on the arrival time specifying step for specifying the arrival time of the direct wave and the arrival time of the direct wave and the arrival time of the first reflected wave, a propagation path difference between the direct wave and the first reflected wave is calculated, Based on the arrival time of the direct wave and the arrival time of the second reflected wave, the direct wave and the second wave It is a hyperbola that passes through the wave source based on a path difference calculating step for calculating a propagation path difference with a wave, a propagation path difference between the direct wave and the first reflected wave, and coordinates of the receiver. Then, a first hyperbolic equation focusing on the receiver and a mirror image of the receiver with respect to the first boundary surface is obtained, a propagation path difference between the direct wave and the second reflected wave, and the receiver A hyperbola acquisition step for obtaining a hyperbola expression passing through the wave source based on the coordinates of the waver, the focus being on the wave receiver and a mirror image of the wave receiver with respect to the second boundary surface; And an intersection coordinate calculation step of obtaining the coordinates of the intersection of the first hyperbola and the second hyperbola, which are the coordinates of the wave source, by combining the expression of the first hyperbola and the expression of the second hyperbola.
また、本発明の第1及び第2観点に係る位置推定方法では、前記波源は、前記第1境界面としての海水面と、前記第2境界面としての海底面との間から、前記パルス波である音波を放射するものであり、前記受波器には、当該受波器の位置における水圧を測定可能な圧力センサが設けられ、前記圧力センサが計測した水圧に基づき、前記受波器の座標を求める受波器座標算出ステップをさらに有し、前記双曲線取得ステップでは、前記受波器座標算出ステップで算出された前記受波器の座標を用いて、前記第1双曲線や前記第2双曲線の式が求められる。 Moreover, in the position estimation method according to the first and second aspects of the present invention, the wave source includes the pulse wave from between the sea surface as the first boundary surface and the sea surface as the second boundary surface. The receiver is provided with a pressure sensor capable of measuring the water pressure at the position of the receiver, and based on the water pressure measured by the pressure sensor, A receiver coordinate calculation step for obtaining coordinates, and in the hyperbola acquisition step, the first hyperbola and the second hyperbola are used by using the coordinates of the receiver calculated in the receiver coordinate calculation step. Is obtained.
また、本発明の第3観点に係る位置推定装置は、第1境界面と第2境界面との間からパルス波を放射する波源の位置を推定するための装置であって、前記第1境界面と前記第2境界面との間に設置されて、前記波源から放射されたパルス波を受信する受波器と、前記波源から前記受波器に直接到達した直接波の到達時刻、前記第1境界面で1回反射して前記受波器に到達した第1反射波の到達時刻、及び前記第2境界面で1回反射して前記受波器に到達した第2反射波の到達時刻を特定する到達時刻特定部と、前記直接波の到達時刻と前記第1反射波の到達時刻とに基づき、前記直接波と前記第1反射波との伝搬経路差を算出し、前記直接波の到達時刻と前記第2反射波の到達時刻とに基づき、前記直接波と前記第2反射波との伝搬経路差を算出する経路差算出部と、前記直接波と前記第1反射波との伝搬経路差と、前記受波器の座標とに基づき、前記受波器を通過する双曲線であって、前記波源と前記第1境界面に対する前記波源の鏡像とを焦点とする第1双曲線の式を求め、前記直接波と前記第2反射波との伝搬経路差と、前記受波器の座標とに基づき、前記受波器を通過する双曲線であって、前記波源と前記第2境界面に対する前記波源の鏡像とを焦点とする第2双曲線の式を求める双曲線取得部と、前記第1双曲線の式と前記第2双曲線の式とを連立することで、前記波源の座標である前記第1双曲線及び前記第2双曲線の共通の焦点の座標を求める焦点座標算出部とを備える。 A position estimation apparatus according to a third aspect of the present invention is an apparatus for estimating a position of a wave source that emits a pulse wave from between a first boundary surface and a second boundary surface, wherein the first boundary A receiver installed between a surface and the second boundary surface for receiving a pulse wave radiated from the wave source, and an arrival time of a direct wave that has directly reached the receiver from the wave source, The arrival time of the first reflected wave that is reflected once at one boundary surface and reaches the receiver, and the arrival time of the second reflected wave that is reflected once at the second boundary surface and reaches the receiver A propagation time difference between the direct wave and the first reflected wave is calculated based on the arrival time specifying unit for specifying the arrival time and the arrival time of the direct wave and the arrival time of the first reflected wave; Based on the arrival time and the arrival time of the second reflected wave, the propagation path difference between the direct wave and the second reflected wave is calculated. A path difference calculation unit to be output, a propagation path difference between the direct wave and the first reflected wave, and a hyperbola passing through the receiver based on the coordinates of the receiver, the wave source and the wave A first hyperbola formula focusing on the mirror image of the wave source with respect to the first boundary surface is obtained, and based on the propagation path difference between the direct wave and the second reflected wave, and the coordinates of the receiver. A hyperbola that passes through a waver, and that obtains a second hyperbola expression that focuses on the wave source and a mirror image of the wave source with respect to the second boundary surface; and the first hyperbola expression and the second hyperbola And a focal coordinate calculation unit that obtains the coordinates of the focal point common to the first hyperbola and the second hyperbola, which are the coordinates of the wave source, by combining the equations of the hyperbola.
また、本発明の第4観点に係る位置推定装置は、第1境界面と第2境界面との間からパルス波を放射する波源の位置を推定するための装置であって、前記第1境界面と前記第2境界面との間に設置されて、前記波源から放射されたパルス波を受信する受波器と、前記波源から前記受波器に直接到達した直接波の到達時刻、前記第1境界面で1回反射して前記受波器に到達した第1反射波の到達時刻、及び前記第2境界面で1回反射して前記受波器に到達した第2反射波の到達時刻を特定する到達時刻特定部と、前記直接波の到達時刻と前記第1反射波の到達時刻とに基づき、前記直接波と前記第1反射波との伝搬経路差を算出し、前記直接波の到達時刻と前記第2反射波の到達時刻とに基づき、前記直接波と前記第2反射波との伝搬経路差を算出する経路差算出部と、前記直接波と前記第1反射波との伝搬経路差と、前記受波器の座標とに基づき、前記波源を通過する双曲線であって、前記受波器と前記第1境界面に対する前記受波器の鏡像とを焦点とする第1双曲線の式を求め、前記直接波と前記第2反射波との伝搬経路差と、前記受波器の座標とに基づき、前記波源を通過する双曲線であって、前記受波器と前記第2境界面に対する前記受波器の鏡像とを焦点とする第2双曲線の式を求める双曲線取得部と、前記第1双曲線の式と前記第2双曲線の式とを連立して、前記波源の座標である前記第1双曲線及び前記第2双曲線の交点の座標を求める交点座標算出部とを備える。 A position estimation apparatus according to a fourth aspect of the present invention is an apparatus for estimating the position of a wave source that emits a pulse wave from between a first boundary surface and a second boundary surface, wherein the first boundary surface A receiver installed between a surface and the second boundary surface for receiving a pulse wave radiated from the wave source, and an arrival time of a direct wave that has directly reached the receiver from the wave source, The arrival time of the first reflected wave that is reflected once at one boundary surface and reaches the receiver, and the arrival time of the second reflected wave that is reflected once at the second boundary surface and reaches the receiver A propagation time difference between the direct wave and the first reflected wave is calculated based on the arrival time specifying unit for specifying the arrival time and the arrival time of the direct wave and the arrival time of the first reflected wave; Based on the arrival time and the arrival time of the second reflected wave, the propagation path difference between the direct wave and the second reflected wave is calculated. A path difference calculation unit to be output, a propagation path difference between the direct wave and the first reflected wave, and a hyperbola that passes through the wave source based on the coordinates of the receiver, the receiver and the receiver Obtain a first hyperbolic equation with a focus on the mirror image of the receiver with respect to the first interface, and based on the propagation path difference between the direct wave and the second reflected wave, and the coordinates of the receiver, A hyperbola that passes through the wave source and that obtains a second hyperbola formula that focuses on the receiver and a mirror image of the receiver with respect to the second boundary surface; and a formula for the first hyperbola And an equation of the second hyperbola, and an intersection coordinate calculation unit that obtains the coordinates of the intersection of the first hyperbola and the second hyperbola, which are the coordinates of the wave source.
また、本発明の第3及び第4観点に係る位置推定装置では、前記波源は、前記第1境界面としての海水面と、前記第2境界面としての海底面との間から、前記パルス波である音波を放射するものであり、前記受波器に設けられて、当該受波器の位置における水圧を測定可能な圧力センサと、前記圧力センサが計測した水圧に基づき、前記受波器の座標を求める受波器座標算出部とをさらに有し、前記双曲線取得部は、前記受波器座標算出部が算出した前記受波器の座標を用いて、前記第1双曲線や前記第2双曲線の式を求める。 Moreover, in the position estimation apparatus according to the third and fourth aspects of the present invention, the wave source includes the pulse wave from between the sea surface as the first boundary surface and the sea surface as the second boundary surface. A pressure sensor provided in the receiver and capable of measuring the water pressure at the position of the receiver, and based on the water pressure measured by the pressure sensor, A receiver coordinate calculation unit for obtaining coordinates, wherein the hyperbola acquisition unit uses the coordinates of the receiver calculated by the receiver coordinate calculation unit, and uses the first hyperbola and the second hyperbola. Is obtained.
本発明によれば、波源の座標が求められるので、波源の位置を推定することができる。そして、波源の座標は、一箇所の受波器に受信される直接波と反射波との伝搬経路差に基づき求められる。このため、受波器を複数の地点に設けることを要しない。よって、受波器を複数の地点に設ける場合のように、設備コストが高額にならず、複数の受波器を設置する手間や、複数の受波器の位置を特定する手間を要しない。 According to the present invention, since the coordinates of the wave source are obtained, the position of the wave source can be estimated. And the coordinate of a wave source is calculated | required based on the propagation path difference of the direct wave and reflected wave which are received by one receiver. For this reason, it is not necessary to provide a receiver at a plurality of points. Therefore, unlike the case where the receivers are provided at a plurality of points, the equipment cost is not high, and it is not necessary to install a plurality of receivers or to specify the positions of the plurality of receivers.
また、本発明によれば、直接波と反射波との伝搬時間差を複数の地点ごとに求める反復計算を要しない。このため、短時間で波源の位置を推定することができる。 Furthermore, according to the present invention, it is not necessary to perform iterative calculation for obtaining the propagation time difference between the direct wave and the reflected wave for each of a plurality of points. For this reason, the position of the wave source can be estimated in a short time.
<第1実施形態>
本発明の第1実施形態について詳細に説明する。図1は、第1実施形態の位置推定方法の原理を示す概要図である。
<First Embodiment>
The first embodiment of the present invention will be described in detail. FIG. 1 is a schematic diagram illustrating the principle of the position estimation method according to the first embodiment.
第1実施形態は、海水面W1(第1境界面)と海底面W2(第2境界面)との間から、パルス波である音波を放射する波源Hの位置を、受波器Jを用いて推定するものである。海水面W1や海底面W2は、凹凸のない平面であり、平行である。海水面W1と海底面W2との間は、音波を伝える一様な媒質で満たされている。 In the first embodiment, the position of a wave source H that emits a sound wave that is a pulse wave from between the sea surface W1 (first boundary surface) and the sea bottom surface W2 (second boundary surface) is used as a receiver J. To estimate. The sea water surface W1 and the sea bottom surface W2 are flat surfaces having no irregularities and are parallel to each other. A space between the sea surface W1 and the sea bottom surface W2 is filled with a uniform medium that transmits sound waves.
図1は、高さ方向(深さ方向)をZ軸で表し、水平方向をr軸で表すものである。以下では、図1に示すように、受波器Jが座標(r,zr)にあるときに、波源Hの座標(0,zs)を求める場合を例に説明する。 In FIG. 1, the height direction (depth direction) is represented by the Z axis, and the horizontal direction is represented by the r axis. Hereinafter, as shown in FIG. 1, a case where the coordinates (0, zs) of the wave source H is obtained when the receiver J is at the coordinates (r, zr) will be described as an example.
波源Hから音波が放射されると、受波器Jには、まず、受波器Jと波源Hとを結ぶ直線上を進んだ直接波Dが到達し、次に、海水面W1又は海底面W2で1回反射した反射波R1,R2が受波器Jに到達し、この後、海水面W1及び海底面W2での多重反射波が受波器Jに到達する。 When sound waves are radiated from the wave source H, first, the direct wave D traveling on the straight line connecting the wave receiver J and the wave source H reaches the receiver J, and then the sea surface W1 or the sea bottom. The reflected waves R1 and R2 reflected once by W2 reach the receiver J, and then the multiple reflected waves at the sea surface W1 and the sea bottom W2 reach the receiver J.
海水面W1で1回反射して受波器Jに到達する第1反射波R1の伝搬経路長は、海水面W1に対する波源Hの鏡像H1(以下、嘘波源H1)から直接受波器Jに到達する音波の伝搬経路長に等しい。そして、直接波Dと第1反射波R1との伝搬経路差が一定となる軌跡は、波源Hと嘘波源H1を焦点とし、受波器Jを通過する第1双曲線S1になる。 The propagation path length of the first reflected wave R1 that is reflected once at the seawater surface W1 and reaches the receiver J is the mirror image H1 of the wave source H with respect to the seawater surface W1 (hereinafter referred to as a lie wave source H1) directly to the receiver J. It is equal to the propagation path length of the arriving sound wave. And the locus | trajectory from which the propagation path difference of the direct wave D and 1st reflected wave R1 becomes fixed becomes the 1st hyperbola S1 which passes the receiver J focusing on the wave source H and the lie wave source H1.
また、波源Hから放射された音波のうち、海底面W2で1回反射して受波器Jに到達する第2反射波R2の伝搬経路長は、海底面W2に対する波源Hの鏡像H2(以下、嘘波源H2)から直接受波器Jに到達する音波の伝搬経路長に等しい。そして、直接波Dと第2反射波R2との伝搬経路差が一定となる軌跡は、波源Hと嘘波源H2を焦点とし、受波器Jを通過する第2双曲線S2になる。 Of the sound waves radiated from the wave source H, the propagation path length of the second reflected wave R2 that is reflected once by the sea bottom surface W2 and reaches the receiver J is a mirror image H2 of the wave source H with respect to the sea bottom surface W2 (hereinafter referred to as the following image). , Equal to the propagation path length of the sound wave that reaches the receiver J directly from the lie wave source H2). The locus where the propagation path difference between the direct wave D and the second reflected wave R2 is constant becomes the second hyperbola S2 passing through the receiver J with the wave source H and the lie wave source H2 as the focal points.
上述した第1双曲線S1や第2双曲線S2は、以下の式1で表すことができる。 The first hyperbola S1 and the second hyperbola S2 described above can be expressed by the following Equation 1.
式1の係数aは、直接波Dと反射波Rとの伝搬経路差で表される(第1双曲線S1の式1では、係数aは、直接波Dと第1反射波R1との伝搬経路差で表される。第2双曲線S2の式1では、係数aは、直接波Dと第2反射波R2との伝搬経路差で表される)。式1の係数bは、係数aと、波源HのZ座標zsとから求められる。 The coefficient a in Equation 1 is represented by the propagation path difference between the direct wave D and the reflected wave R (in Equation 1 of the first hyperbola S1, the coefficient a is the propagation path between the direct wave D and the first reflected wave R1. (In equation 1 of the second hyperbola S2, the coefficient a is represented by the propagation path difference between the direct wave D and the second reflected wave R2). The coefficient b in Expression 1 is obtained from the coefficient a and the Z coordinate zs of the wave source H.
そして、受波器JのZ座標zrや、直接波Dと第1反射波R1との伝搬経路差が求められる場合には、係数aやZ(=zr)を実数とし、係数bやrを未知数とする第1双曲線S1の式1を求めることができる。 When the Z coordinate zr of the receiver J or the propagation path difference between the direct wave D and the first reflected wave R1 is obtained, the coefficients a and Z (= zr) are real numbers, and the coefficients b and r are Equation 1 of the first hyperbola S1 as an unknown can be obtained.
また、受波器JのZ座標zrや、直接波Dと第2反射波R2との伝搬経路差が求められる場合には、係数aやZ(=zr)を実数とし、係数bやrを未知数とする第2双曲線S2の式1を求めることができる。 When the Z coordinate zr of the receiver J or the propagation path difference between the direct wave D and the second reflected wave R2 is obtained, the coefficients a and Z (= zr) are real numbers, and the coefficients b and r are Equation 1 of the second hyperbola S2 can be obtained as an unknown number.
そして、上述のように第1,第2双曲線S1,S2の式1が求められる場合には、これら2つの双曲線S1,S2の式1を連立することで、2つの未知数b,rを求めることができる。この結果、求められるrは、受波器Jと波源Hとの間の水平距離に該当する。そしてさらに、係数a,bから、第1,第2双曲線S1,2の共通の焦点である波源HのZ座標zsを求めることができる。 Then, when Equation 1 of the first and second hyperbola S1 and S2 is obtained as described above, two unknowns b and r are obtained by simultaneously using Equation 1 of these two hyperbolas S1 and S2. Can do. As a result, the required r corresponds to the horizontal distance between the receiver J and the wave source H. Further, from the coefficients a and b, the Z coordinate zs of the wave source H which is a common focal point of the first and second hyperbolas S1 and S2 can be obtained.
以上に基づき、第1実施形態では、直接波Dが受波器Jに到達した時刻T1や、第1反射波R1が受波器Jに到達した時刻T2や、第2反射波R2が受波器Jに到達した時刻T3が特定される。 Based on the above, in the first embodiment, the time T1 when the direct wave D reaches the receiver J, the time T2 when the first reflected wave R1 reaches the receiver J, and the second reflected wave R2 are received. The time T3 at which the device J is reached is specified.
そして、直接波Dの到達時刻T1と第1反射波R1の到達時刻T2とに基づき、直接波Dと第1反射波R1との伝搬経路差K1が算出される。また、直接波Dの到達時刻T1と第2反射波R2の到達時刻T3とに基づき、直接波Dと第2反射波R2との伝搬経路差K2が算出される。 Then, based on the arrival time T1 of the direct wave D and the arrival time T2 of the first reflected wave R1, the propagation path difference K1 between the direct wave D and the first reflected wave R1 is calculated. Further, based on the arrival time T1 of the direct wave D and the arrival time T3 of the second reflected wave R2, the propagation path difference K2 between the direct wave D and the second reflected wave R2 is calculated.
また、受波器Jの位置における水圧に基づき、受波器JのZ座標zrが求められる。 Further, the Z coordinate zr of the receiver J is obtained based on the water pressure at the position of the receiver J.
そして、直接波Dと第1反射波R1との伝搬経路差K1と、受波器JのZ座標zrとに基づき、第1双曲線S1の式1が求められる。また、直接波Dと第2反射波R2との伝搬経路差K2と、受波器JのZ座標zrとに基づき、第2双曲線S2の式1が求められる。 Based on the propagation path difference K1 between the direct wave D and the first reflected wave R1 and the Z coordinate zr of the receiver J, Equation 1 of the first hyperbola S1 is obtained. Further, based on the propagation path difference K2 between the direct wave D and the second reflected wave R2 and the Z coordinate zr of the receiver J, Equation 1 of the second hyperbola S2 is obtained.
そして、第1双曲線S1の式1と第2双曲線S2の式1とを連立して、受波器Jと波源Hとの間の水平距離rや、第1,第2双曲線S1,2の共通の焦点のZ座標zsが求められる。 Then, Equation 1 of the first hyperbola S1 and Equation 1 of the second hyperbola S2 are combined, and the horizontal distance r between the receiver J and the wave source H and the common of the first and second hyperbola S1 and S2. The Z coordinate zs of the focal point is obtained.
図2は、上記の処理を実行する位置推定装置Aのハードウェア構成を示している。 FIG. 2 shows a hardware configuration of the position estimation apparatus A that executes the above processing.
位置推定装置Aは、上述の受波器Jと、演算処理装置Eとを備える。 The position estimation device A includes the above-described receiver J and an arithmetic processing device E.
受波器Jには、音圧センサ10と、圧力センサ11とが設けられる。音圧センサ10は、圧電士を備えるものであって、複数配列される。なお、音圧センサ10は、光ファイバ方式のものであってもよい。圧力センサ11は、受波器Jの位置における水圧を測定する。 The receiver J is provided with a sound pressure sensor 10 and a pressure sensor 11. The sound pressure sensor 10 includes a piezoelectrician, and a plurality of the sound pressure sensors 10 are arranged. The sound pressure sensor 10 may be an optical fiber type. The pressure sensor 11 measures the water pressure at the position of the receiver J.
演算処理装置Eは、受波器Jの近傍あるいは受波器Jと一体的に設けられる。演算処理装置Eは、通信回線を介して受波器Jと接続されるものであり、到達時刻特定部20と、経路差算出部21と、双曲線取得部22と、焦点座標算出部23と、受波器座標算出部24とを備える。上記の各部は、例えば回路から実現される。或いは、上記の各部は、CPU(Central Processing Unit)が、外部記憶部に記憶されているプログラムに従った処理を実行することで実現される。 The arithmetic processing unit E is provided in the vicinity of the receiver J or integrally with the receiver J. The arithmetic processing device E is connected to the receiver J via a communication line, and includes an arrival time specifying unit 20, a path difference calculating unit 21, a hyperbola acquiring unit 22, a focal coordinate calculating unit 23, And a receiver coordinate calculation unit 24. Each of the above parts is realized by a circuit, for example. Or each said part is implement | achieved when CPU (Central Processing Unit) performs the process according to the program memorize | stored in the external memory | storage part.
また、演算処理装置Eには、海水面W1と海底面W2との間にある媒質で音が伝わる速さ(以下、音速)や、圧力センサ11が測定した水圧を入力するための入力装置(図示せず)が設けられる。また、演算処理装置Eは、音波の到来方向を判別するためのビームフォーミングと称される信号処理を実行可能である。 In addition, an input device for inputting a speed at which sound is transmitted through a medium between the sea surface W1 and the sea bottom W2 (hereinafter referred to as sound speed) and a water pressure measured by the pressure sensor 11 to the arithmetic processing unit E ( (Not shown) is provided. The arithmetic processing unit E can execute signal processing called beam forming for determining the arrival direction of the sound wave.
次に、図3を参照して、上記の位置推定装置Aで実行される処理を説明する。 Next, with reference to FIG. 3, the process performed by said position estimation apparatus A is demonstrated.
受波器Jの音圧センサ10は、波源Hから発されて、受波器Jに到達する音波を順次受信する(ステップS101)。そして、音圧センサ10は、音波を受信するたびに、音波をAD変換して、演算処理装置Eの到達時刻特定部20に伝送する(ステップS102)。 The sound pressure sensor 10 of the receiver J sequentially receives sound waves emitted from the wave source H and reaching the receiver J (step S101). Each time the sound pressure sensor 10 receives a sound wave, the sound pressure sensor 10 performs AD conversion on the sound wave and transmits it to the arrival time specifying unit 20 of the arithmetic processing device E (step S102).
到達時刻特定部20は、音圧センサ10から音波の信号を受け取るたびに、当該音波が受波器Jに到達した時刻T(以下、到達時刻T)を決定する(ステップS103)。時刻検知の方法としては、信号の立ち上がり点や最大振幅点などから検知する等種々の方法がある。 Each time the arrival time specifying unit 20 receives a sound wave signal from the sound pressure sensor 10, it determines a time T (hereinafter, arrival time T) at which the sound wave reaches the receiver J (step S103). As the time detection method, there are various methods such as detection from a signal rising point or maximum amplitude point.
ついで、到達時刻特定部20は、振幅の大きい3つの音波の信号を選択する。そして、到達時刻特定部20は、これら3つの音波の到達時刻Tのうち、最も早い音波の到達時刻Tを直接波Dの到達時刻T1と特定する。また、到達時刻特定部20は、直接波Dに遅れて到達した音波(2番目、3番目に到達した音波)に対して、演算処理装置E内でのビームフォーミングと称される信号処理により音波の上下の到来方向を判別する。そして、到達時刻特定部20は、上方向から到達した音波を第1反射波R1とし、下方向から到達した音波を第2反射波R2として、これら反射波R1,R2の到達時刻T2,T3を特定する(ステップS104)。 Next, the arrival time specifying unit 20 selects three sound wave signals having large amplitudes. Then, the arrival time specifying unit 20 specifies the earliest arrival time T of the three sound waves as the arrival time T1 of the direct wave D among the arrival times T of the three sound waves. In addition, the arrival time specifying unit 20 applies a sound wave to a sound wave that arrives after the direct wave D (second and third sound waves) by signal processing called beam forming in the arithmetic processing unit E. The direction of arrival above and below is determined. Then, the arrival time specifying unit 20 sets the arrival time T2 and T3 of the reflected waves R1 and R2 as the first reflected wave R1 as the sound wave reaching from the upper direction and the second reflected wave R2 as the sound wave arrived from the lower direction. Specify (step S104).
ついで、経路差算出部21は、直接波Dの到達時刻T1と第1反射波R1の到達時刻T2との間の時間差を、直接波Dと第1反射波R1との伝搬時間差S1として算出する(ステップS105)。 Next, the path difference calculation unit 21 calculates the time difference between the arrival time T1 of the direct wave D and the arrival time T2 of the first reflected wave R1 as the propagation time difference S1 between the direct wave D and the first reflected wave R1. (Step S105).
また、経路差算出部21は、直接波Dの到達時刻T1と第2反射波R2の到達時刻T3との間の時間差を、直接波Dと第2反射波R2との伝搬時間差S2として算出する(ステップS105)。 Further, the path difference calculation unit 21 calculates the time difference between the arrival time T1 of the direct wave D and the arrival time T3 of the second reflected wave R2 as the propagation time difference S2 between the direct wave D and the second reflected wave R2. (Step S105).
ついで、経路差算出部21は、ステップS105で算出された伝搬時間差S1に、入力装置に入力された音速を乗じることで、直接波Dと第1反射波R1との伝搬経路差K1を算出する(ステップS106)。 Next, the path difference calculation unit 21 calculates the propagation path difference K1 between the direct wave D and the first reflected wave R1 by multiplying the propagation time difference S1 calculated in step S105 by the speed of sound input to the input device. (Step S106).
また、経路差算出部21は、ステップS105で算出された伝搬時間差S2に、入力装置に入力された音速を乗じることで、直接波Dと第2反射波R2との伝搬経路差K2を算出する(ステップS106)。 Further, the path difference calculation unit 21 calculates the propagation path difference K2 between the direct wave D and the second reflected wave R2 by multiplying the propagation time difference S2 calculated in step S105 by the speed of sound input to the input device. (Step S106).
ついで、受波器座標算出部24は、圧力センサ11が測定した水圧に基づき、受波器JのZ座標zr(深度)を算出する(ステップS107)。 Next, the receiver coordinate calculation unit 24 calculates the Z coordinate zr (depth) of the receiver J based on the water pressure measured by the pressure sensor 11 (step S107).
ついで、双曲線取得部22は、ステップS106で算出された直接波Dと第1反射波R1との伝搬経路差K1と、ステップS107で算出された受波器JのZ座標zrとに基づき、第1双曲線S1の式1を求める(ステップS108)。 Next, the hyperbola acquisition unit 22 performs the first step based on the propagation path difference K1 between the direct wave D and the first reflected wave R1 calculated in step S106 and the Z coordinate zr of the receiver J calculated in step S107. Formula 1 of one hyperbola S1 is obtained (step S108).
また、双曲線取得部22は、ステップS106で算出された直接波Dと第2反射波R2との伝搬経路差K2と、ステップS107で算出された受波器JのZ座標zrとに基づき、第2双曲線S2の式1を求める(ステップS108)。 Further, the hyperbola acquisition unit 22 performs the first step based on the propagation path difference K2 between the direct wave D and the second reflected wave R2 calculated in step S106 and the Z coordinate zr of the receiver J calculated in step S107. Formula 1 of the two hyperbola S2 is obtained (step S108).
上記のステップS108で求められる第1,第2双曲線S1,S2の式1は、係数aやZ(=zr)を実数とし、係数bやrを未知数とするものである。 Equation 1 of the first and second hyperbola S1 and S2 obtained in the above step S108 is such that the coefficients a and Z (= zr) are real numbers and the coefficients b and r are unknown numbers.
ついで、焦点座標算出部23は、第1双曲線S1の式1と第2双曲線S2の式1とを連立して、未知数b,rを求める(ステップS109)。この結果、求められるrは、受波器Jと波源Hとの間の水平距離に該当する。さらに、焦点座標算出部23は、係数a,bから、第1,第2双曲線S1,S2の共通の焦点である波源HのZ座標zsを求める(ステップS109)。 Next, the focal coordinate calculation unit 23 obtains the unknowns b and r by simultaneously combining the expression 1 of the first hyperbola S1 and the expression 1 of the second hyperbola S2 (step S109). As a result, the required r corresponds to the horizontal distance between the receiver J and the wave source H. Further, the focal coordinate calculation unit 23 obtains the Z coordinate zs of the wave source H which is a common focal point of the first and second hyperbolas S1 and S2 from the coefficients a and b (step S109).
以上のように、第1実施形態によれば、波源HのZ座標zsや、受波器Jと波源Hとの間の水平距離rが求められるので、波源Hの位置を推定することができる。 As described above, according to the first embodiment, since the Z coordinate zs of the wave source H and the horizontal distance r between the receiver J and the wave source H are obtained, the position of the wave source H can be estimated. .
そして、上述の波源HのZ座標zsや水平距離rは、一箇所の受波器Jに受信される直接波Dと反射波R1,R2との伝搬経路差に基づき求められる。このため、受波器Jを複数の地点に設けることを要しない。よって、受波器を複数の地点に設ける場合のように、設備コストが高額にならず、複数の受波器を設置する手間や、複数の受波器の位置を特定する手間を要しない。 The Z coordinate zs and the horizontal distance r of the wave source H are obtained based on the propagation path difference between the direct wave D and the reflected waves R1 and R2 received by one receiver J. For this reason, it is not necessary to provide the receiver J at a plurality of points. Therefore, unlike the case where the receivers are provided at a plurality of points, the equipment cost is not high, and it is not necessary to install a plurality of receivers or to specify the positions of the plurality of receivers.
また従来の総当り法のように、直接波と反射波との伝搬時間差を複数の地点ごとに求める反復計算を要しない。このため、短時間で波源の位置を推定することができる。 Further, unlike the conventional brute force method, it is not necessary to perform iterative calculation for obtaining the propagation time difference between the direct wave and the reflected wave at a plurality of points. For this reason, the position of the wave source can be estimated in a short time.
また、受波器Jの圧力センサ11が計測した水圧に基づき、受波器Jの座標が求められ、当該受波器Jの座標を用いて、第1双曲線S1や第2双曲線S2の式が求められる。このため、受波器Jの位置が既知でない場合や、受波器Jが移動する場合であっても、第1双曲線S1や第2双曲線S2の式を求めて、これらの式に基づき波源Hの座標を求めることができる。 Further, the coordinates of the receiver J are obtained based on the water pressure measured by the pressure sensor 11 of the receiver J, and the equations of the first hyperbola S1 and the second hyperbola S2 are obtained using the coordinates of the receiver J. Desired. Therefore, even when the position of the receiver J is not known or when the receiver J moves, the equations of the first hyperbola S1 and the second hyperbola S2 are obtained, and the wave source H is based on these equations. Can be obtained.
<第2実施形態> Second Embodiment
次に、本発明の第2実施形態について詳細に説明する。図4は、第2実施形態の位置推定方法の原理を示す概要図である。 Next, a second embodiment of the present invention will be described in detail. FIG. 4 is a schematic diagram illustrating the principle of the position estimation method according to the second embodiment.
第2実施形態も、第1実施形態と同様、海水面W1と海底面W2との間から、パルス波である音波を放射する波源Hの位置を、受波器Jを用いて推定するものである。また、第1実施形態と同様、海水面W1や海底面W2は、凹凸がない平面であり、平行である。海水面W1と海底面W2との間は音波を伝える一様な媒質で満たされる。 Similarly to the first embodiment, the second embodiment also uses the receiver J to estimate the position of the wave source H that emits a sound wave that is a pulse wave from between the sea surface W1 and the sea bottom W2. is there. In addition, as in the first embodiment, the sea water surface W1 and the sea bottom surface W2 are flat surfaces having no irregularities and are parallel to each other. A space between the sea surface W1 and the sea floor W2 is filled with a uniform medium that transmits sound waves.
以下では、図4に示すように、受波器Jが座標(0,zr)にあるときに、波源Hの座標(r,zs)を求める場合を例に説明する。 Hereinafter, as illustrated in FIG. 4, a case where the coordinates (r, zs) of the wave source H is obtained when the receiver J is at the coordinates (0, zr) will be described as an example.
波源Hから発せられた音波のうち、海水面W1で1回反射して受波器Jに到達する第1反射波R1の経路長は、海水面W1に対する受波器Jの鏡像J1(以下、嘘受波器J1)に直接到達する音波の経路長に等しい。そして、波源Hから直接受波器Jに到達する直接波Dと、第1反射波R1との伝搬経路差が一定となる軌跡は、受波器Jと嘘受波器J1を焦点とし、波源Hを通過する第1双曲線S3になる。 Of the sound waves generated from the wave source H, the path length of the first reflected wave R1 that is reflected once by the seawater surface W1 and reaches the receiver J is a mirror image J1 of the receiver J with respect to the seawater surface W1 (hereinafter, It is equal to the path length of the sound wave that directly reaches the lie receiver J1). The trajectory in which the propagation path difference between the direct wave D directly reaching the receiver J from the wave source H and the first reflected wave R1 is constant is focused on the receiver J and the lie receiver J1, and the wave source A first hyperbola S3 passing through H is obtained.
また、波源Hから放射された音波のうち、海底面W2で1回反射して受波器Jに到達する第2反射波R2の経路長は、海底面W2に対する受波器Jの鏡像J2(以下、嘘受波器J2)に直接到達する音波の経路長に等しい。そして、波源Hから直接受波器Jに到達する直接波Dと、第2反射波R2との伝搬経路差が一定となる軌跡は、受波器Jと嘘受波器J2を焦点とし、波源Hを通過する第2双曲線S4になる。 Of the sound waves radiated from the wave source H, the path length of the second reflected wave R2 that is reflected once by the sea bottom W2 and reaches the receiver J is the mirror image J2 of the receiver J with respect to the sea bottom W2 ( Hereinafter, it is equal to the path length of the sound wave that directly reaches the lie receiver J2). The locus where the propagation path difference between the direct wave D directly reaching the receiver J from the wave source H and the second reflected wave R2 is constant is focused on the receiver J and the lie receiver J2, and the wave source The second hyperbola S4 passing through H is obtained.
上述した第1双曲線S3や第2双曲線S4は、以下の式2で表すことができる。 The first hyperbola S3 and the second hyperbola S4 described above can be expressed by the following Expression 2.
式2の係数aは、直接波Dと反射波Rとの伝搬経路差で表される(第1双曲線S3の式2では、係数aは、直接波Dと第1反射波R1との伝搬経路差K1で表される。第2双曲線S4の式2では、係数aは、直接波Dと第2反射波R2との伝搬経路差K2で表される)。式2の係数cは、係数aと、受波器JのZ座標zrで表すことができる。 The coefficient a in Expression 2 is represented by the propagation path difference between the direct wave D and the reflected wave R (in Expression 2 of the first hyperbola S3, the coefficient a is the propagation path between the direct wave D and the first reflected wave R1. It is represented by the difference K1.In the second hyperbola S4, the coefficient a is represented by the propagation path difference K2 between the direct wave D and the second reflected wave R2). The coefficient c in Expression 2 can be expressed by the coefficient a and the Z coordinate zr of the receiver J.
受波器JのZ座標zrや、直接波Dと第1反射波R1との伝搬経路差K1が求められる場合には、係数a,cを実数とし、Zやrを未知数とする第1双曲線S3の式2を求めることができる。 When the Z coordinate zr of the receiver J or the propagation path difference K1 between the direct wave D and the first reflected wave R1 is obtained, the first hyperbola with coefficients a and c as real numbers and Z and r as unknown numbers. Equation 2 of S3 can be obtained.
また、受波器JのZ座標zrや、直接波Dと第2反射波R2との伝搬経路差K2が求められる場合には、係数a,cを実数とし、Zやrを未知数とする第2双曲線S4の式2を求めることができる。 When the Z coordinate zr of the receiver J or the propagation path difference K2 between the direct wave D and the second reflected wave R2 is obtained, the coefficients a and c are real numbers, and Z and r are unknown numbers. Equation 2 of the two hyperbola S4 can be obtained.
そして、上述のように第1,第2双曲線S3,S4の式2が求められる場合には、これら2つの双曲線S3,S4の式2を連立することで、2つの未知数Z,rを求めることができる。この結果、求められるZは、第2双曲線S3,S4の交点である波源HのZ座標zsに該当し、求められるrは、受波器Jと波源Hとの間の水平距離(波源Hのr座標)に該当する。 Then, when Equation 2 of the first and second hyperbola S3 and S4 is obtained as described above, two unknowns Z and r are obtained by simultaneous Equation 2 of these two hyperbola S3 and S4. Can do. As a result, the obtained Z corresponds to the Z coordinate zs of the wave source H, which is the intersection of the second hyperbola S3, S4, and the obtained r is the horizontal distance between the receiver J and the wave source H (the wave source H r coordinate).
以上に基づき、第2実施形態では、第1実施形態と同様、直接波Dや反射波R1,R2の到達時刻T1,T2,T3が特定される。そして、これらの到達時刻T1,T2,T3に基づき、直接波Dと第1反射波R1との伝搬経路差K1や、直接波Dと第2反射波R2との伝搬経路差K2が算出される。 Based on the above, in the second embodiment, the arrival times T1, T2, and T3 of the direct wave D and the reflected waves R1 and R2 are specified as in the first embodiment. Based on these arrival times T1, T2 and T3, the propagation path difference K1 between the direct wave D and the first reflected wave R1 and the propagation path difference K2 between the direct wave D and the second reflected wave R2 are calculated. .
そして、受波器Jの位置における水圧に基づき、受波器JのZ座標zrが求められる。 Then, based on the water pressure at the position of the receiver J, the Z coordinate zr of the receiver J is obtained.
そして、直接波Dと第1反射波R1との伝搬経路差K1と、受波器JのZ座標zrとに基づき、第1双曲線S3の式2が求められる。また、直接波Dと第2反射波R2との伝搬経路差K2と、受波器JのZ座標zrとに基づき、第2双曲線S4の式2が求められる。 Based on the propagation path difference K1 between the direct wave D and the first reflected wave R1 and the Z coordinate zr of the receiver J, Equation 2 of the first hyperbola S3 is obtained. Further, based on the propagation path difference K2 between the direct wave D and the second reflected wave R2 and the Z coordinate zr of the receiver J, Equation 2 of the second hyperbola S4 is obtained.
そして、双曲線S3,S4の式2を連立して、第2双曲線S3,S4の交点である波源HのZ座標zsや、受波器Jと波源Hとの間の水平距離rが算出される。 Then, Equation 2 of the hyperbola S3 and S4 is simultaneously provided to calculate the Z coordinate zs of the wave source H that is the intersection of the second hyperbola S3 and S4 and the horizontal distance r between the receiver J and the wave source H. .
図5は、上記の処理を実行する位置推定装置Bのハードウェア構成を示している。 FIG. 5 shows a hardware configuration of the position estimation apparatus B that executes the above processing.
位置推定装置Bは、受波器Jと、演算処理装置Fとを備える。 The position estimation device B includes a receiver J and an arithmetic processing device F.
受波器Jには、音圧センサ10と、圧力センサ11とが設けられる。音圧センサ10や圧力センサ11は、第1実施形態と同様である。このため、詳細な説明を省略する。 The receiver J is provided with a sound pressure sensor 10 and a pressure sensor 11. The sound pressure sensor 10 and the pressure sensor 11 are the same as in the first embodiment. Therefore, detailed description is omitted.
演算処理装置Fは、通信回線を介して受波器Jと接続されるものであり、到達時刻特定部20と、経路差算出部21と、双曲線取得部25と、交点座標算出部26と、受波器座標算出部24とを備える。上記の各部は、例えば回路から構成される。或いは、上記の各部は、CPUが、外部記憶部に記憶されているプログラムに従った処理を実行することで構成される。また、演算処理装置Fには、媒質中の音速や、圧力センサ11が測定した水圧を入力するための入力装置が設けられる。また、演算処理装置Eは、ビームフォーミングと称される信号処理を実行可能である。 The arithmetic processing unit F is connected to the receiver J via a communication line, and includes an arrival time specifying unit 20, a path difference calculation unit 21, a hyperbola acquisition unit 25, an intersection coordinate calculation unit 26, And a receiver coordinate calculation unit 24. Each of the above parts is configured by a circuit, for example. Or each said part is comprised because CPU performs the process according to the program memorize | stored in the external memory | storage part. Further, the arithmetic processing unit F is provided with an input device for inputting the sound velocity in the medium and the water pressure measured by the pressure sensor 11. Further, the arithmetic processing unit E can perform signal processing called beam forming.
次に図6を参照して、上記の位置推定装置Fで実行される処理を説明する。 Next, with reference to FIG. 6, the process performed by said position estimation apparatus F is demonstrated.
ステップS201,S202は、受波器Jで実行され、ステップS203,S204は、到達時刻特定部20で実行され、ステップS205,S206は、経路差算出部21で実行され、ステップS207は受波器座標算出部24で実行される。これらステップS201〜ステップS207は、図3のステップS101〜S107と同様である。よって以下では、ステップS208以降について説明する。 Steps S201 and S202 are executed by the receiver J, steps S203 and S204 are executed by the arrival time specifying unit 20, steps S205 and S206 are executed by the path difference calculating unit 21, and step S207 is received by the receiver. This is executed by the coordinate calculation unit 24. These steps S201 to S207 are the same as steps S101 to S107 in FIG. Therefore, below, step S208 and after are demonstrated.
双曲線取得部25は、ステップS206で算出された直接波Dと第1反射波R1との伝搬経路差K1と、ステップS207で算出された受波器JのZ座標zrとに基づき、第1双曲線S3の式2を求める(ステップS208)。 The hyperbola acquisition unit 25 generates a first hyperbola based on the propagation path difference K1 between the direct wave D and the first reflected wave R1 calculated in step S206 and the Z coordinate zr of the receiver J calculated in step S207. Formula 2 of S3 is obtained (step S208).
また、双曲線取得部25は、ステップS206で算出された直接波Dと第2反射波R2との伝搬経路差K2と、ステップS207で求められた受波器JのZ座標zrとに基づき、第2双曲線S4の式2を求める(ステップS208)。 Further, the hyperbola acquisition unit 25 determines the first based on the propagation path difference K2 between the direct wave D and the second reflected wave R2 calculated in step S206, and the Z coordinate zr of the receiver J calculated in step S207. Equation 2 of the two hyperbola S4 is obtained (step S208).
上記のステップS208で求められる第1,第2双曲線S3,S4の式2は、係数a,cを実数とし、Zやrを未知数とするものである。 Expression 2 of the first and second hyperbolas S3 and S4 obtained in the above step S208 is such that the coefficients a and c are real numbers and Z and r are unknown numbers.
ついで、交点座標算出部26は、第1双曲線S3の式2と第2双曲線S4の式2とを連立して、未知数Z,rを求める(ステップS209)。この処理により、求められるZは、第1,第2双曲線S3,S4の交点である波源HのZ座標zsであり、求められるrは、受波器Jと波源Hとの間の水平距離(波源Hのr座標)である。 Next, the intersection coordinate calculation unit 26 obtains the unknowns Z and r by simultaneously combining the expression 2 of the first hyperbola S3 and the expression 2 of the second hyperbola S4 (step S209). By this processing, Z obtained is the Z coordinate zs of the wave source H that is the intersection of the first and second hyperbolic curves S3 and S4, and r obtained is the horizontal distance between the receiver J and the wave source H ( R coordinate of the wave source H).
以上のように、第2実施形態においても、波源HのZ座標zsや水平距離rが求められるので、波源Hの位置を推定することができる。 As described above, also in the second embodiment, since the Z coordinate zs and the horizontal distance r of the wave source H are obtained, the position of the wave source H can be estimated.
また、第2実施形態においても、一箇所の受波器Jに受信される直接波Dと反射波との伝搬経路差を利用して、波源Hの位置が推定される。このため、受波器Jを複数の地点に設けることを要しない。よって、設備コストが高額にならず、複数の受波器Jを所望の位置に設置する手間や、複数の受波器Jの位置を特定する手間を要しない。また、複数点における直接波Dと反射波との伝搬時間差を求める反復計算を要しないので、短時間で波源H位置を推定可能である。 Also in the second embodiment, the position of the wave source H is estimated using the propagation path difference between the direct wave D and the reflected wave received by one receiver J. For this reason, it is not necessary to provide the receiver J at a plurality of points. Therefore, the equipment cost is not expensive, and the labor for installing the plurality of receivers J at desired positions and the labor for specifying the positions of the plurality of receivers J are not required. In addition, since iterative calculation for obtaining the propagation time difference between the direct wave D and the reflected wave at a plurality of points is not required, the position of the wave source H can be estimated in a short time.
また、受波器Jの圧力センサ11が計測した水圧に基づき、受波器Jの座標が求められるとともに、当該受波器Jの座標を用いて、第1双曲線S3や第2双曲線S4の式が求められる。このため、受波器Jの位置が既知でない場合や、受波器Jが移動する場合であっても、第1双曲線S3や第2双曲線S4の式を求めて、これらの式に基づき波源Hの座標を求めることができる。 Further, the coordinates of the receiver J are obtained based on the water pressure measured by the pressure sensor 11 of the receiver J, and the equations of the first hyperbola S3 and the second hyperbola S4 are obtained using the coordinates of the receiver J. Is required. Therefore, even when the position of the receiver J is not known or when the receiver J moves, the equations of the first hyperbola S3 and the second hyperbola S4 are obtained, and the wave source H is based on these equations. Can be obtained.
なお、本発明は、上記の第1,第2実施形態に限定されず、種々改変することができる。 The present invention is not limited to the first and second embodiments described above, and various modifications can be made.
例えば、上記の第1,第2実施形態では、媒質中の音速が一様である例を示したが、媒質中の音速は一様でなくてもよい。この場合、音速の平均値が演算処理装置E,F(図2,図5)に入力される。そして、図3のステップS106や、図6のステップS206では、音速の平均値を伝搬時間差S1,S2に乗じることで、伝搬経路差K1,K2が算出される。 For example, in the first and second embodiments described above, an example in which the sound speed in the medium is uniform has been shown, but the sound speed in the medium may not be uniform. In this case, the average value of the sound speed is input to the arithmetic processing devices E and F (FIGS. 2 and 5). Then, in step S106 of FIG. 3 and step S206 of FIG. 6, the propagation path differences K1, K2 are calculated by multiplying the propagation speed difference S1, S2 by the average value of the sound speed.
また、第1,第2実施形態では、境界面(海水面W1や海底面W2)が平面である例を示したが、本発明は、境界面に起伏や凸凹がある場合にも適用可能である。境界面に起伏や凸凹がある場合には、その平均平面が、境界面の伸びる方向(図1や図4のr軸に相当)に設定される。 In the first and second embodiments, an example in which the boundary surface (sea surface W1 or sea bottom surface W2) is a plane is shown, but the present invention can also be applied to a case where the boundary surface has undulations or irregularities. is there. If the boundary surface has undulations or irregularities, the average plane is set in the direction in which the boundary surface extends (corresponding to the r-axis in FIGS. 1 and 4).
また、第1,第2実施形態では、圧力センサの測定値に基づき、受波器Jの座標を求める例を示したが、受波器Jが固定されて静止するものである場合には、受波器Jの座標を演算処理装置E,Fに入力して、この入力値に基づき、第1の双曲線や第2の双曲線の式が求められてもよい。 In the first and second embodiments, the example of obtaining the coordinates of the receiver J based on the measurement value of the pressure sensor has been shown. However, when the receiver J is fixed and stationary, The coordinates of the receiver J may be input to the arithmetic processing devices E and F, and the first hyperbola and second hyperbola equations may be obtained based on the input values.
また、第1,第2実施形態では、波源Hが音波を出力する例を示したが、本発明は、波源が音波以外のパルス波(電磁波や弾性波等)を出力する場合にも適用可能である。 In the first and second embodiments, the example in which the wave source H outputs a sound wave has been described. However, the present invention can also be applied when the wave source outputs a pulse wave (such as an electromagnetic wave or an elastic wave) other than the sound wave. It is.
例えば、波源が電磁波や弾性波を出力する場合には、電磁波や弾性波を受信可能な受波器が、第1境界面と第2境界面との間に設けられる。そして、図3のステップS101や図6のステップS201に対応する処理では、上記の受波器に、波源から直接受波器に到達した直接波や、第1境界面で1回反射して受波器に到達した第1反射波や、第2境界面で1回反射して受波器に到達した第2反射波が受信される。そして、図3のステップS106や図6のステップS206に対応する処理では、演算処理装置に入力された光速や弾性波の速度に基づき、直接波と第1,第2反射波との伝搬経路差が算出される。 For example, when the wave source outputs electromagnetic waves or elastic waves, a receiver that can receive the electromagnetic waves and elastic waves is provided between the first boundary surface and the second boundary surface. In the processing corresponding to step S101 in FIG. 3 or step S201 in FIG. 6, the receiver receives the direct wave that reaches the receiver directly from the wave source, or is reflected once by the first boundary surface. The first reflected wave that has reached the wave detector and the second reflected wave that has been reflected once at the second boundary surface and reached the wave receiver are received. In the processing corresponding to step S106 in FIG. 3 or step S206 in FIG. 6, the propagation path difference between the direct wave and the first and second reflected waves is based on the speed of light and the elastic wave input to the arithmetic processing unit. Is calculated.
11 圧力センサ
20 到達時刻特定部
21 経路差算出部
22,25 双曲線取得部
23 焦点座標算出部
24 受波器座標算出部
26 交点座標算出部
A 位置推定装置
D 直接波
J 受波器
H 波源
H1 第1境界面に対する波源Hの鏡像
H2 第2境界面に対する波源Hの鏡像
S1 第1双曲線
S2 第2双曲線
R1 第1反射波
R2 第2反射波
W1 海水面(第1境界面)
W2 海底面(第2境界面)
DESCRIPTION OF SYMBOLS 11 Pressure sensor 20 Arrival time specific | specification part 21 Path | route difference calculation part 22, 25 Hyperbola acquisition part 23 Focus coordinate calculation part 24 Receiver coordinate calculation part 26 Intersection coordinate calculation part A Position estimation apparatus D Direct wave J Receiver H Wave source H1 Mirror image of wave source H with respect to first boundary surface H2 Mirror image of wave source H with respect to second boundary surface S1 First hyperbola S2 Second hyperbola R1 First reflected wave R2 Second reflected wave W1 Seawater surface (first boundary surface)
W2 Sea floor (second boundary surface)
Claims (6)
前記海水面と前記海底面との間に設置された受波器に、前記波源から放射されたパルス波を受信させる受信ステップと、
前記波源から前記受波器に直接到達した直接波の到達時刻、前記海水面で1回反射して前記受波器に到達した第1反射波の到達時刻、及び前記海底面で1回反射して前記受波器に到達した第2反射波の到達時刻を特定する到達時刻特定ステップと、
前記直接波の到達時刻と前記第1反射波の到達時刻とに基づき、前記直接波と前記第1反射波との伝搬経路差を算出し、前記直接波の到達時刻と前記第2反射波の到達時刻とに基づき、前記直接波と前記第2反射波との伝搬経路差を算出する経路差算出ステップと、
前記直接波と前記第1反射波との伝搬経路差と、前記受波器の座標とに基づき、前記受波器を通過する双曲線であって、前記波源と前記海水面に対する前記波源の鏡像とを焦点とする第1双曲線の式を求め、前記直接波と前記第2反射波との伝搬経路差と、前記受波器の座標とに基づき、前記受波器を通過する双曲線であって、前記波源と前記海底面に対する前記波源の鏡像とを焦点とする第2双曲線の式を求める双曲線取得ステップと、
前記第1双曲線の式と前記第2双曲線の式とを連立することで、前記波源の座標である前記第1双曲線及び前記第2双曲線の共通の焦点の座標を求める焦点座標算出ステップと
を備える波源の位置推定方法。 A method for estimating a position of a wave source that emits a pulse wave from between a sea surface and a sea surface ,
In the installed receivers between the sea surface and the sea floor, a reception step of receiving a pulse emitted from the wave source,
The arrival time of the direct wave that has directly reached the receiver from the wave source, the arrival time of the first reflected wave that has reflected once on the sea surface and has reached the receiver, and is reflected once on the sea floor. An arrival time specifying step for specifying the arrival time of the second reflected wave that has reached the receiver;
Based on the arrival time of the direct wave and the arrival time of the first reflected wave, a propagation path difference between the direct wave and the first reflected wave is calculated, and the arrival time of the direct wave and the second reflected wave A path difference calculating step for calculating a propagation path difference between the direct wave and the second reflected wave based on the arrival time;
Based on the propagation path difference between the direct wave and the first reflected wave, and the coordinates of the receiver, it is a hyperbola that passes through the receiver, and is a mirror image of the wave source with respect to the wave source and the sea surface . A hyperbola that passes through the receiver based on the propagation path difference between the direct wave and the second reflected wave and the coordinates of the receiver; A hyperbola acquisition step for obtaining a second hyperbola formula focusing on the wave source and a mirror image of the wave source with respect to the seabed ;
A focal coordinate calculation step for obtaining a common focal point coordinate of the first hyperbola and the second hyperbola as coordinates of the wave source by combining the first hyperbola equation and the second hyperbola equation; Wave source position estimation method.
前記海水面と前記海底面との間に設置された受波器に、前記波源から放射されたパルス波を受信させる受信ステップと、
前記波源から前記受波器に直接到達した直接波の到達時刻、前記海水面で1回反射して前記受波器に到達した第1反射波の到達時刻、及び前記海底面で1回反射して前記受波器に到達した第2反射波の到達時刻を特定する到達時刻特定ステップと、
前記直接波の到達時刻と前記第1反射波の到達時刻とに基づき、前記直接波と前記第1反射波との伝搬経路差を算出し、前記直接波の到達時刻と前記第2反射波の到達時刻とに基づき、前記直接波と前記第2反射波との伝搬経路差を算出する経路差算出ステップと、
前記直接波と前記第1反射波との伝搬経路差と、前記受波器の座標とに基づき、前記波源を通過する双曲線であって、前記受波器と前記海水面に対する前記受波器の鏡像とを焦点とする第1双曲線の式を求め、前記直接波と前記第2反射波との伝搬経路差と、前記受波器の座標とに基づき、前記波源を通過する双曲線であって、前記受波器と前記海底面に対する前記受波器の鏡像とを焦点とする第2双曲線の式を求める双曲線取得ステップと、
前記第1双曲線の式と前記第2双曲線の式とを連立して、前記波源の座標である前記第1双曲線及び前記第2双曲線の交点の座標を求める交点座標算出ステップとを備える波源の位置推定方法。 A method for estimating a position of a wave source that emits a pulse wave from between a sea surface and a sea surface ,
In the installed receivers between the sea surface and the sea floor, a reception step of receiving a pulse emitted from the wave source,
The arrival time of the direct wave that has directly reached the receiver from the wave source, the arrival time of the first reflected wave that has reflected once on the sea surface and has reached the receiver, and is reflected once on the sea floor. An arrival time specifying step for specifying the arrival time of the second reflected wave that has reached the receiver;
Based on the arrival time of the direct wave and the arrival time of the first reflected wave, a propagation path difference between the direct wave and the first reflected wave is calculated, and the arrival time of the direct wave and the second reflected wave A path difference calculating step for calculating a propagation path difference between the direct wave and the second reflected wave based on the arrival time;
Based on the propagation path difference between the direct wave and the first reflected wave, and the coordinates of the receiver, the hyperbola passes through the wave source, and the receiver and the seawater surface A hyperbola that passes through the wave source based on the propagation path difference between the direct wave and the second reflected wave and the coordinates of the receiver; A hyperbola obtaining step for obtaining a second hyperbola formula focusing on the receiver and a mirror image of the receiver with respect to the seabed ;
A position of a wave source comprising: an intersection point coordinate calculating step for obtaining coordinates of an intersection of the first hyperbola and the second hyperbola as coordinates of the wave source by simultaneously combining the expression of the first hyperbola and the expression of the second hyperbola Estimation method.
前記圧力センサが計測した水圧に基づき、前記受波器の座標を求める受波器座標算出ステップをさらに有し、
前記双曲線取得ステップでは、前記受波器座標算出ステップで算出された前記受波器の座標を用いて、前記第1双曲線や前記第2双曲線の式が求められる請求項1又は2に記載の波源の位置推定方法。 The wave source from between the front Kiumi water before Kiumi bottom, which emits a sound wave which is the pulse wave, wherein the wave receiver, capable of measuring pressure at the location of the receivers A pressure sensor is provided,
A receiver coordinate calculation step for obtaining coordinates of the receiver based on the water pressure measured by the pressure sensor;
3. The wave source according to claim 1, wherein, in the hyperbola acquisition step, equations of the first hyperbola and the second hyperbola are obtained using the coordinates of the receiver calculated in the receiver coordinate calculation step. Location estimation method.
前記海水面と前記海底面との間に設置されて、前記波源から放射されたパルス波を受信する受波器と、
前記波源から前記受波器に直接到達した直接波の到達時刻、前記海水面で1回反射して前記受波器に到達した第1反射波の到達時刻、及び前記海底面で1回反射して前記受波器に到達した第2反射波の到達時刻を特定する到達時刻特定部と、
前記直接波の到達時刻と前記第1反射波の到達時刻とに基づき、前記直接波と前記第1反射波との伝搬経路差を算出し、前記直接波の到達時刻と前記第2反射波の到達時刻とに基づき、前記直接波と前記第2反射波との伝搬経路差を算出する経路差算出部と、
前記直接波と前記第1反射波との伝搬経路差と、前記受波器の座標とに基づき、前記受波器を通過する双曲線であって、前記波源と前記海水面に対する前記波源の鏡像とを焦点とする第1双曲線の式を求め、前記直接波と前記第2反射波との伝搬経路差と、前記受波器の座標とに基づき、前記受波器を通過する双曲線であって、前記波源と前記海底面に対する前記波源の鏡像とを焦点とする第2双曲線の式を求める双曲線取得部と、
前記第1双曲線の式と前記第2双曲線の式とを連立することで、前記波源の座標である前記第1双曲線及び前記第2双曲線の共通の焦点の座標を求める焦点座標算出部とを備える位置推定装置。 A device for estimating the position of a wave source that emits a pulse wave from between the sea surface and the sea surface ,
A receiver installed between the sea water surface and the sea bottom surface for receiving a pulse wave radiated from the wave source;
The arrival time of the direct wave that has directly reached the receiver from the wave source, the arrival time of the first reflected wave that has reflected once on the sea surface and has reached the receiver, and is reflected once on the sea floor. An arrival time specifying unit for specifying the arrival time of the second reflected wave that has reached the receiver;
Based on the arrival time of the direct wave and the arrival time of the first reflected wave, a propagation path difference between the direct wave and the first reflected wave is calculated, and the arrival time of the direct wave and the second reflected wave A path difference calculating unit that calculates a propagation path difference between the direct wave and the second reflected wave based on the arrival time;
Based on the propagation path difference between the direct wave and the first reflected wave, and the coordinates of the receiver, it is a hyperbola that passes through the receiver, and is a mirror image of the wave source with respect to the wave source and the sea surface . A hyperbola that passes through the receiver based on the propagation path difference between the direct wave and the second reflected wave and the coordinates of the receiver; A hyperbola acquisition unit for obtaining a formula of a second hyperbola focusing on the wave source and a mirror image of the wave source with respect to the seabed ;
A focal coordinate calculation unit that obtains a common focal point coordinate of the first hyperbola and the second hyperbola as coordinates of the wave source by combining the first hyperbola equation and the second hyperbola equation; Position estimation device.
前記海水面と前記海底面との間に設置されて、前記波源から放射されたパルス波を受信する受波器と、
前記波源から前記受波器に直接到達した直接波の到達時刻、前記海水面で1回反射して前記受波器に到達した第1反射波の到達時刻、及び前記海底面で1回反射して前記受波器に到達した第2反射波の到達時刻を特定する到達時刻特定部と、
前記直接波の到達時刻と前記第1反射波の到達時刻とに基づき、前記直接波と前記第1反射波との伝搬経路差を算出し、前記直接波の到達時刻と前記第2反射波の到達時刻とに基づき、前記直接波と前記第2反射波との伝搬経路差を算出する経路差算出部と、
前記直接波と前記第1反射波との伝搬経路差と、前記受波器の座標とに基づき、前記波源を通過する双曲線であって、前記受波器と前記海水面に対する前記受波器の鏡像とを焦点とする第1双曲線の式を求め、前記直接波と前記第2反射波との伝搬経路差と、前記受波器の座標とに基づき、前記波源を通過する双曲線であって、前記受波器と前記海底面に対する前記受波器の鏡像とを焦点とする第2双曲線の式を求める双曲線取得部と、
前記第1双曲線の式と前記第2双曲線の式とを連立して、前記波源の座標である前記第1双曲線及び前記第2双曲線の交点の座標を求める交点座標算出部とを備える位置推定装置。 A device for estimating the position of a wave source that emits a pulse wave from between the sea surface and the sea surface ,
A receiver installed between the sea water surface and the sea bottom surface for receiving a pulse wave radiated from the wave source;
The arrival time of the direct wave that has directly reached the receiver from the wave source, the arrival time of the first reflected wave that has reflected once on the sea surface and has reached the receiver, and is reflected once on the sea floor. An arrival time specifying unit for specifying the arrival time of the second reflected wave that has reached the receiver;
Based on the arrival time of the direct wave and the arrival time of the first reflected wave, a propagation path difference between the direct wave and the first reflected wave is calculated, and the arrival time of the direct wave and the second reflected wave A path difference calculating unit that calculates a propagation path difference between the direct wave and the second reflected wave based on the arrival time;
Based on the propagation path difference between the direct wave and the first reflected wave, and the coordinates of the receiver, the hyperbola passes through the wave source, and the receiver and the seawater surface A hyperbola that passes through the wave source based on the propagation path difference between the direct wave and the second reflected wave and the coordinates of the receiver; A hyperbola acquisition unit for obtaining an expression of a second hyperbola focusing on the receiver and a mirror image of the receiver with respect to the seabed ;
A position estimation apparatus comprising: an intersection point coordinate calculation unit that obtains the coordinates of the intersection point of the first hyperbola and the second hyperbola, which are the coordinates of the wave source, by combining the first hyperbola equation and the second hyperbola equation .
前記受波器に設けられて、当該受波器の位置における水圧を測定可能な圧力センサと、
前記圧力センサが計測した水圧に基づき、前記受波器の座標を求める受波器座標算出部とをさらに有し、
前記双曲線取得部は、前記受波器座標算出部が算出した前記受波器の座標を用いて、前記第1双曲線や前記第2双曲線の式を求める請求項4又は5に記載の位置推定装置。 The wave source from between the front Kiumi water before Kiumi bottom, which emits a sound wave which is the pulse wave,
A pressure sensor provided in the receiver and capable of measuring the water pressure at the position of the receiver;
A receiver coordinate calculation unit for obtaining coordinates of the receiver based on the water pressure measured by the pressure sensor;
6. The position estimation device according to claim 4, wherein the hyperbola acquisition unit obtains expressions of the first hyperbola and the second hyperbola using the coordinates of the receiver calculated by the receiver coordinate calculation unit. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014025227A JP5716219B1 (en) | 2014-02-13 | 2014-02-13 | Position estimation method and position estimation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014025227A JP5716219B1 (en) | 2014-02-13 | 2014-02-13 | Position estimation method and position estimation apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5716219B1 true JP5716219B1 (en) | 2015-05-13 |
JP2015152376A JP2015152376A (en) | 2015-08-24 |
Family
ID=53277360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014025227A Active JP5716219B1 (en) | 2014-02-13 | 2014-02-13 | Position estimation method and position estimation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5716219B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109901174A (en) * | 2019-02-21 | 2019-06-18 | 哈尔滨工程大学 | High-speed moving object enters the estimation method at water moment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54106184A (en) * | 1978-02-08 | 1979-08-20 | Tech Res & Dev Inst Of Japan Def Agency | Orientating device for radiation source position |
JPH11231039A (en) * | 1998-02-10 | 1999-08-27 | Kaijo Corp | Multi-user underwater positioning device |
JPH11326489A (en) * | 1998-05-20 | 1999-11-26 | Oki Electric Ind Co Ltd | Method and device or calculating sound source position |
JP2000121719A (en) * | 1998-10-20 | 2000-04-28 | Oki Systec Tokai:Kk | Sound source position standardization equipment |
JP2000147084A (en) * | 1998-11-04 | 2000-05-26 | Nec Corp | Method and apparatus for automatically tracking target |
-
2014
- 2014-02-13 JP JP2014025227A patent/JP5716219B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54106184A (en) * | 1978-02-08 | 1979-08-20 | Tech Res & Dev Inst Of Japan Def Agency | Orientating device for radiation source position |
JPH11231039A (en) * | 1998-02-10 | 1999-08-27 | Kaijo Corp | Multi-user underwater positioning device |
JPH11326489A (en) * | 1998-05-20 | 1999-11-26 | Oki Electric Ind Co Ltd | Method and device or calculating sound source position |
JP2000121719A (en) * | 1998-10-20 | 2000-04-28 | Oki Systec Tokai:Kk | Sound source position standardization equipment |
JP2000147084A (en) * | 1998-11-04 | 2000-05-26 | Nec Corp | Method and apparatus for automatically tracking target |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109901174A (en) * | 2019-02-21 | 2019-06-18 | 哈尔滨工程大学 | High-speed moving object enters the estimation method at water moment |
CN109901174B (en) * | 2019-02-21 | 2023-02-03 | 哈尔滨工程大学 | Method for estimating water entry time of high-speed moving target |
Also Published As
Publication number | Publication date |
---|---|
JP2015152376A (en) | 2015-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101257097B1 (en) | Line array sonar and method for detecting target bearing of the same | |
RU2590933C1 (en) | Device for obtaining information on noisy object in sea | |
JP5853489B2 (en) | Target motion estimation system and method | |
CN107942284B (en) | Underwater direction of arrival estimation method and device based on two-dimensional orthogonal non-uniform linear array | |
JP6718098B2 (en) | Position estimation apparatus and method | |
US11835544B2 (en) | Wind speed measuring device and wind speed measuring method | |
CN109541546A (en) | A kind of underwater Long baselines acoustics localization method based on TDOA | |
JP2019095418A (en) | Radio-location method for locating target device contained within region of space | |
JP6724593B2 (en) | Active sonar and control method of active sonar | |
CN104501938A (en) | Method for measuring underwater sound source low frequency radiation sound power in rectangular reverberation water tank arranged in air | |
JP5606151B2 (en) | Radar equipment | |
US9453900B2 (en) | Method and apparatus for three dimensional wavenumber-frequency analysis | |
JP5716219B1 (en) | Position estimation method and position estimation apparatus | |
RU2623831C1 (en) | Method of passive determining coordinates of moving radiation source | |
CN110441779B (en) | Multi-sonobuoy distributed co-location method | |
Nishihara et al. | Position detection of small objects in indoor environments using coded acoustic signal | |
KR101875273B1 (en) | Apparatus and Method for estimating position of acoustic source using Time Difference Of Arrival scheme based on sound wave directly transmitted from acoustic source and sound wave measurement reflected from the ground | |
KR101480834B1 (en) | Target motion analysis method using target classification and ray tracing of underwater sound energy | |
Shatara et al. | An efficient, time-of-flight-based underwater acoustic ranging system for small robotic fish | |
CN110865359A (en) | Underwater acoustic ranging method based on received signal strength | |
JP2006098112A (en) | Underground radar image processing method | |
KR101783822B1 (en) | Method for estimating location of noise source within watercraft | |
RU2660292C1 (en) | Method for determining object immersion depth | |
RU2711432C1 (en) | Method of passive determination of coordinates of hydroacoustic radiation sources | |
JP2018146354A (en) | Sonar image processor, sonar image processing method, and sonar image processing program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150217 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5716219 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |