JP5686563B2 - Magnesium hydroxide fine particles and magnesium oxide fine particles, and methods for producing them - Google Patents

Magnesium hydroxide fine particles and magnesium oxide fine particles, and methods for producing them Download PDF

Info

Publication number
JP5686563B2
JP5686563B2 JP2010217166A JP2010217166A JP5686563B2 JP 5686563 B2 JP5686563 B2 JP 5686563B2 JP 2010217166 A JP2010217166 A JP 2010217166A JP 2010217166 A JP2010217166 A JP 2010217166A JP 5686563 B2 JP5686563 B2 JP 5686563B2
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
magnesium
fine particles
aqueous solution
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010217166A
Other languages
Japanese (ja)
Other versions
JP2012072004A (en
Inventor
善久 大崎
善久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateho Kagakukogyo KK
Original Assignee
Tateho Kagakukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45893003&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5686563(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tateho Kagakukogyo KK filed Critical Tateho Kagakukogyo KK
Priority to JP2010217166A priority Critical patent/JP5686563B2/en
Priority to PCT/JP2011/072083 priority patent/WO2012043564A1/en
Priority to CN2011800470868A priority patent/CN103140446A/en
Priority to KR1020137010610A priority patent/KR101495777B1/en
Priority to TW100134937A priority patent/TWI529133B/en
Publication of JP2012072004A publication Critical patent/JP2012072004A/en
Application granted granted Critical
Publication of JP5686563B2 publication Critical patent/JP5686563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、粒子径が小さく、かつ均一な高純度水酸化マグネシウム微粒子及び高純度酸化マグネシウム微粒子、並びにそれらの製造方法に関する。   The present invention relates to high-purity magnesium hydroxide fine particles and high-purity magnesium oxide fine particles having a small particle diameter and uniform, and methods for producing them.

水酸化マグネシウム及び酸化マグネシウムは、様々な分野で使用される無機材料であり、前者の用途としては、添加剤、樹脂フィラー、高機能性材料、及び触媒等が挙げられ、後者の用途としては、耐火物、添加剤、樹脂フィラー、高機能性材料、電磁鋼材料、及び触媒等が挙げられる。これらの用途を含め、水酸化マグネシウム及び酸化マグネシウムは、純度が高く、粒子径が小さく、かつ均一な微粒子形態であることが要求されることが多い。   Magnesium hydroxide and magnesium oxide are inorganic materials used in various fields. Examples of the former use include additives, resin fillers, high-functional materials, and catalysts, and the latter use includes Examples include refractories, additives, resin fillers, highly functional materials, electromagnetic steel materials, and catalysts. Including these applications, magnesium hydroxide and magnesium oxide are often required to have high purity, small particle size, and uniform fine particle form.

粒子径が小さく、かつ均一な水酸化マグネシウムを製造する方法としては、アルカリ物質、次いで界面活性剤を添加することにより、10nm〜1000nmの水酸化マグネシウム微粒子を調製する方法が提案されている(特許文献1参照)。しかし、具体例ではアルカリ添加量が多く、オートクレーブ容器から不純物が溶出し、不純物が混入しうるという問題があった。   As a method for producing uniform magnesium hydroxide having a small particle size, a method of preparing magnesium hydroxide fine particles of 10 nm to 1000 nm by adding an alkaline substance and then a surfactant has been proposed (patent) Reference 1). However, in the specific example, there was a problem that the amount of alkali added was large and impurities were eluted from the autoclave container, and impurities could be mixed.

また、塩化マグネシウムとアルカリ物質とを水性媒体中で水熱反応させて水酸化マグネシウムを製造する方法において、ホウ酸、ケイ酸又はこれらの水可溶性塩を添加して、得られる水酸化マグネシウムのアスペクト比を任意に制御する方法も提案されている(特許文献2参照)。しかし、この方法では、粒子径に関して制御が困難であり、均一な粒子径の微粒子を得ることができないという問題があった。   Further, in a method for producing magnesium hydroxide by hydrothermal reaction of magnesium chloride and an alkaline substance in an aqueous medium, an aspect of magnesium hydroxide obtained by adding boric acid, silicic acid or a water-soluble salt thereof. A method for arbitrarily controlling the ratio has also been proposed (see Patent Document 2). However, this method has a problem that it is difficult to control the particle size, and fine particles having a uniform particle size cannot be obtained.

特開2009−62214号公報JP 2009-62214 A 特開2005−200300号公報JP 2005-200300 A

本発明は、上記問題を解決し、粒子径が小さく、かつ均一な高純度水酸化マグネシウム微粒子及び高純度酸化マグネシウム微粒子、並びにそれらの製造方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide uniform high-purity magnesium hydroxide fine particles and high-purity magnesium oxide fine particles having a small particle diameter and a method for producing them.

本発明は、BET比表面積が5m/g以上、レーザ回折散乱式粒度分布測定による体積基準の累積50%粒子径(D50)が0.1〜0.5μm、レーザ回折散乱式粒度分布測定による体積基準の累積10%粒子径(D10)と体積基準の累積90%粒子径(D90)との比D90/D10が10以下である、純度99.5質量%以上の水酸化マグネシウム微粒子に関する。 The present invention has a BET specific surface area of 5 m 2 / g or more, a volume-based cumulative 50% particle diameter (D 50 ) of 0.1 to 0.5 μm by laser diffraction scattering particle size distribution measurement, and laser diffraction scattering particle size distribution measurement. The ratio D 90 / D 10 of the volume-based cumulative 10% particle size (D 10 ) to the volume-based cumulative 90% particle size (D 90 ) by 10 is 10 or less, and the purity is 99.5% by mass or more. It relates to magnesium fine particles.

また、本発明は、BET比表面積が5m/g以上、レーザ回折散乱式粒度分布測定による体積基準の累積50%粒子径(D50)が0.1〜0.5μm、レーザ回折散乱式粒度分布測定による体積基準の累積10%粒子径(D10)と体積基準の累積90%粒子径(D90)との比D90/D10が10以下である、純度99.5質量%以上の酸化マグネシウム微粒子に関する。 Further, the present invention has a BET specific surface area of 5 m 2 / g or more, a volume-based cumulative 50% particle diameter (D 50 ) of 0.1 to 0.5 μm by laser diffraction scattering particle size distribution measurement, and a laser diffraction scattering particle size. The ratio D 90 / D 10 of the volume-based cumulative 10% particle diameter (D 10 ) and the volume-based cumulative 90% particle diameter (D 90 ) by distribution measurement is 10 or less, and the purity is 99.5% by mass or more. It relates to magnesium oxide fine particles.

さらに、本発明は、
塩化マグネシウム水溶液を用意する工程(A);
塩化マグネシウム水溶液を、1〜18Nのアルカリ水溶液と、反応率101〜210mol%で反応させて、水酸化マグネシウムスラリーを得る工程(B);
水酸化マグネシウムスラリーを、撹拌しながら、101〜200℃の温度で保持して、水熱処理された水酸化マグネシウムスラリーを得る工程(C);並びに
水熱処理された水酸化マグネシウムスラリーを濾過、水洗及び乾燥させて、水酸化マグネシウム微粒子を得る工程(D)
を含む、水酸化マグネシウム微粒子の製造方法に関する。
Furthermore, the present invention provides
Preparing a magnesium chloride aqueous solution (A);
A step (B) of obtaining a magnesium hydroxide slurry by reacting an aqueous magnesium chloride solution with an alkaline aqueous solution of 1 to 18 N at a reaction rate of 101 to 210 mol%;
The magnesium hydroxide slurry is maintained at a temperature of 101 to 200 ° C. with stirring to obtain a hydrothermally treated magnesium hydroxide slurry (C); and the hydrothermally treated magnesium hydroxide slurry is filtered, washed and Step of drying to obtain magnesium hydroxide fine particles (D)
The manufacturing method of the magnesium hydroxide microparticles | fine-particles containing this.

加えて、本発明は、上記水酸化マグネシウム微粒子又は上記製造方法で得られた水酸化マグネシウム微粒子を、大気雰囲気中で、500〜1500℃で焼成する工程(E)を含む、酸化マグネシウム微粒子の製造方法に関する。   In addition, the present invention provides the production of magnesium oxide fine particles, comprising the step (E) of firing the magnesium hydroxide fine particles or the magnesium hydroxide fine particles obtained by the production method in an air atmosphere at 500 to 1500 ° C. Regarding the method.

本発明の水酸化マグネシウム微粒子及び酸化マグネシウム微粒子は、高純度であり、粒子径が小さく、かつ均一であり、様々な分野で有用性が高い。また、本発明の製造方法によれば、上記のような微粒子を容易に調製することができ、利便性が高い。   The magnesium hydroxide fine particles and magnesium oxide fine particles of the present invention are highly pure, have a small particle size and are uniform, and are highly useful in various fields. In addition, according to the production method of the present invention, the fine particles as described above can be easily prepared, which is highly convenient.

本発明の水酸化マグネシウム微粒子は、BET比表面積が5m/g以上であり、レーザ回折散乱式粒度分布測定による体積基準の累積50%粒子径(D50)が0.1〜0.5μmであり、レーザ回折散乱式粒度分布測定による体積基準の累積10%粒子径(D10)と体積基準の累積90%粒子径(D90)との比D90/D10が10以下である。このような水酸化マグネシウム微粒子は、粒子形状が小さく、反応性に優れるため、添加剤、樹脂フィラー、及び触媒等に適し、また、粒子形状が小さく、粒度にバラツキが少なく、分散性に優れるため、高機能性材料等へも好適に使用できる。本発明の水酸化マグネシウム微粒子のBET比表面積は好ましくは10m/g以上であり、D50は好ましくは0.2〜0.5μmであり、D90/D10は好ましくは5以下である。 The magnesium hydroxide fine particles of the present invention have a BET specific surface area of 5 m 2 / g or more, and a volume-based cumulative 50% particle diameter (D 50 ) by laser diffraction scattering type particle size distribution measurement is 0.1 to 0.5 μm. Yes, the ratio D 90 / D 10 of the volume-based cumulative 10% particle diameter (D 10 ) and the volume-based cumulative 90% particle diameter (D 90 ) by laser diffraction scattering type particle size distribution measurement is 10 or less. Since such magnesium hydroxide fine particles have a small particle shape and excellent reactivity, they are suitable for additives, resin fillers, catalysts, and the like, and also have a small particle shape, little variation in particle size, and excellent dispersibility. Also, it can be suitably used for highly functional materials. The BET specific surface area of the magnesium hydroxide fine particles of the present invention is preferably 10 m 2 / g or more, D 50 is preferably 0.2 to 0.5 μm, and D 90 / D 10 is preferably 5 or less.

本発明の水酸化マグネシウム微粒子は、純度が99.5質量%以上である。この範囲であれば、不純物の溶出が極めて抑えられ、高機能性材料に好適に使用できる。本発明の水酸化マグネシウム微粒子の純度は好ましくは99.9質量%以上である。   The magnesium hydroxide fine particles of the present invention have a purity of 99.5% by mass or more. If it is this range, the elution of an impurity will be suppressed extremely and it can use it suitably for a highly functional material. The purity of the magnesium hydroxide fine particles of the present invention is preferably 99.9% by mass or more.

本明細書において、純度は、対象微粒子中の不純物元素(Ag、Al、B、Ba、Bi、Cd、Cl、Co、Cr、Cu、Fe、Ga、In、K、Li、Mn、Mo、Na、Ni、P、Pb、S、Si、Sr、Tl、V、Zn、Ti及びZr)の含有量を測定し、これらの合計含有量を100質量%から差し引いた値とする。本明細書において、高純度とは、上記のようにして算出した純度が99.5質量%以上であることをいうものとする。
測定対象となる不純物元素(Ag、Al、B、Ba、Bi、Cd、Co、Cr、Cu、Fe、Ga、In、K、Li、Mn、Mo、Na、Ni、P、Pb、S、Si、Sr、Tl、V、Zn、Ti及びZr)は、ICP発光分析装置を使用して、試料を酸に溶解した後、質量を測定し、Cl量は、分光光度計を使用して、試料を酸に溶解した後、質量を測定した値とする。
In the present specification, the purity refers to the impurity element (Ag, Al, B, Ba, Bi, Cd, Cl, Co, Cr, Cu, Fe, Ga, In, K, Li, Mn, Mo, Na in the target fine particles. , Ni, P, Pb, S, Si, Sr, Tl, V, Zn, Ti, and Zr) are measured, and the total content is subtracted from 100% by mass. In the present specification, high purity means that the purity calculated as described above is 99.5% by mass or more.
Impurity elements to be measured (Ag, Al, B, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, Mn, Mo, Na, Ni, P, Pb, S, Si , Sr, Tl, V, Zn, Ti, and Zr), using an ICP emission spectrometer, the sample was dissolved in acid, then the mass was measured, and the Cl amount was measured using a spectrophotometer. Is dissolved in an acid and the mass is measured.

本発明の水酸化マグネシウム微粒子は、Fe、Ti、Ni、Cr、Mo及びMnの合計含有量が500質量ppm以下であることが好ましい。これらの合計含有量が500質量ppm以下であると、金属不純物の溶出が極めて抑えられ、添加剤、樹脂フィラー、高機能性材料に好適に使用できる。合計含有量は、より好ましくは450質量ppm以下である。   The magnesium hydroxide fine particles of the present invention preferably have a total content of Fe, Ti, Ni, Cr, Mo and Mn of 500 mass ppm or less. When the total content of these is 500 mass ppm or less, elution of metal impurities is extremely suppressed, and it can be suitably used for additives, resin fillers, and highly functional materials. The total content is more preferably 450 ppm by mass or less.

本発明の水酸化マグネシウム微粒子は、塩素の含有量が500質量ppm以下であることが好ましい。この含有量が500質量ppm以下であると、焼成によって酸化マグネシウム微粒子を得る際に粒子成長が極めて抑えられ、微細な酸化マグネシウム粉末を得ることができる。含有量は、より好ましくは450質量ppm以下である。   The magnesium hydroxide fine particles of the present invention preferably have a chlorine content of 500 mass ppm or less. When the content is 500 mass ppm or less, particle growth is extremely suppressed when obtaining magnesium oxide fine particles by firing, and a fine magnesium oxide powder can be obtained. The content is more preferably 450 ppm by mass or less.

本発明の水酸化マグネシウム微粒子は、体積平均粒子径(Dv)と数平均粒子径(Dn)との比Dv/Dnが1〜10であることが好ましい。このDv/Dnが1〜10であると、インク定着剤用途に使用した場合のインク定着性、樹脂等に添加した際の耐熱性、難燃性、屈曲性機能、及び触媒機能に優れ、かつ耐酸性、耐湿性が良くなる。Dv/Dnは、より好ましくは1〜8である。   In the magnesium hydroxide fine particles of the present invention, the ratio Dv / Dn between the volume average particle diameter (Dv) and the number average particle diameter (Dn) is preferably 1 to 10. When this Dv / Dn is 1 to 10, it is excellent in ink fixability when used for an ink fixing agent, heat resistance when added to a resin, flame retardancy, flexibility function, and catalyst function, and Improves acid resistance and moisture resistance. Dv / Dn is more preferably 1-8.

本発明の酸化マグネシウム微粒子は、BET比表面積が5m/g以上であり、レーザ回折散乱式粒度分布測定による体積基準の累積50%粒子径(D50)が0.1〜0.5μmであり、レーザ回折散乱式粒度分布測定による体積基準の累積10%粒子径(D10)と体積基準の累積90%粒子径(D90)との比D90/D10が10以下である。このような酸化マグネシウム微粒子は、粒子形状が小さく、反応性に優れるため、耐火物、添加剤、樹脂フィラー、電磁鋼材料、及び触媒等に適し、また、粒子形状が小さく、粒度にバラツキが少なく、分散性に優れるため、高機能性材料等へも好適に使用できる。
本発明の酸化マグネシウム微粒子のBET比表面積は好ましくは20m/g以上、より好ましくは40m/g以上であり、D50は好ましくは0.2〜0.4μmであり、D90/D10は好ましくは5以下である。
The magnesium oxide fine particles of the present invention have a BET specific surface area of 5 m 2 / g or more, and a volume-based cumulative 50% particle diameter (D 50 ) measured by laser diffraction scattering type particle size distribution is 0.1 to 0.5 μm. The ratio D 90 / D 10 between the volume-based cumulative 10% particle diameter (D 10 ) and the volume-based cumulative 90% particle diameter (D 90 ) measured by laser diffraction / scattering particle size distribution measurement is 10 or less. Since such magnesium oxide fine particles have a small particle shape and excellent reactivity, they are suitable for refractories, additives, resin fillers, electromagnetic steel materials, catalysts, and the like, and also have a small particle shape and little variation in particle size. Because of its excellent dispersibility, it can be suitably used for highly functional materials.
The BET specific surface area of the magnesium oxide fine particles of the present invention is preferably 20 m 2 / g or more, more preferably 40 m 2 / g or more, D 50 is preferably 0.2 to 0.4 μm, and D 90 / D 10 Is preferably 5 or less.

本発明の酸化マグネシウム微粒子は、純度が99.5質量%以上である。この範囲であれば、不純物の溶出が極めて抑えられ、高機能性材料に好適に使用できる。本発明の酸化マグネシウム微粒子の純度は好ましくは99.9質量%以上である。   The magnesium oxide fine particles of the present invention have a purity of 99.5% by mass or more. If it is this range, the elution of an impurity will be suppressed extremely and it can use it suitably for a highly functional material. The purity of the magnesium oxide fine particles of the present invention is preferably 99.9% by mass or more.

本発明の酸化マグネシウム微粒子は、Fe、Ti、Ni、Cr、Mo及びMnの合計含有量が500質量ppm以下であることが好ましい。これらの合計含有量が500質量ppm以下であると、金属不純物の溶出が極めて抑えられ、添加剤、樹脂フィラー、高機能性材料に好適に使用できる。合計含有量は、より好ましくは、450質量ppm以下である。   The magnesium oxide fine particles of the present invention preferably have a total content of Fe, Ti, Ni, Cr, Mo and Mn of 500 mass ppm or less. When the total content of these is 500 mass ppm or less, elution of metal impurities is extremely suppressed, and it can be suitably used for additives, resin fillers, and highly functional materials. The total content is more preferably 450 mass ppm or less.

本発明の酸化マグネシウム微粒子は、塩素の含有量が500質量ppm以下であることが好ましい。この含有量が500質量ppm以下であると塩素の溶出が極めて抑えられ、添加剤、樹脂フィラー、高機能性材料に好適に使用できる。含有量は、より好ましくは、450質量ppm以下である。   The magnesium oxide fine particles of the present invention preferably have a chlorine content of 500 mass ppm or less. When the content is 500 mass ppm or less, elution of chlorine is extremely suppressed, and it can be suitably used for additives, resin fillers, and highly functional materials. The content is more preferably 450 ppm by mass or less.

本発明の酸化マグネシウム微粒子は、体積平均粒子径(Dv)と数平均粒子径(Dn)との比Dv/Dnが1〜10であることが好ましい。このDv/Dnが1〜10であると、インク定着剤用途に使用した場合のインク定着性、樹脂等に添加した際の耐熱性、難燃性、屈曲性機能、光の拡散効果、及び触媒効果に優れ、かつ耐酸性、耐湿性が良くなる、より好ましくは1〜8である。   In the magnesium oxide fine particles of the present invention, the ratio Dv / Dn of the volume average particle diameter (Dv) to the number average particle diameter (Dn) is preferably 1 to 10. When this Dv / Dn is 1 to 10, ink fixability when used for an ink fixing agent, heat resistance when added to a resin, flame retardancy, flexibility function, light diffusion effect, and catalyst It is excellent in an effect, and acid resistance and moisture resistance become good, More preferably, it is 1-8.

本発明の酸化マグネシウム微粒子は、クエン酸活性度(最終反応率40%、20.0℃)が20〜2000秒であることが好ましい。このクエン酸活性度が20〜2000秒であると、鉄との反応性が優れ、電磁鋼材料として、電磁鋼板用絶縁材及び圧粉鉄心用絶縁被膜材に好適に使用できる。クエン酸活性度は、好ましくは、20〜500秒である。   The magnesium oxide fine particles of the present invention preferably have a citric acid activity (final reaction rate 40%, 20.0 ° C.) of 20 to 2000 seconds. When the citric acid activity is 20 to 2000 seconds, the reactivity with iron is excellent, and it can be suitably used as an electromagnetic steel material for an insulating material for an electromagnetic steel sheet and an insulating coating material for a dust core. The citric acid activity is preferably 20 to 500 seconds.

本発明の水酸化マグネシウム微粒子は、
塩化マグネシウム水溶液を用意する工程(A);
塩化マグネシウム水溶液を、1〜18Nのアルカリ水溶液と、反応率101〜210mol%で反応させて、水酸化マグネシウムスラリーを得る工程(B);
水酸化マグネシウムスラリーを、撹拌しながら、101〜200℃の温度で保持して、水熱処理された水酸化マグネシウムスラリーを得る工程(C);並びに
水熱処理された水酸化マグネシウムスラリーを濾過、水洗及び乾燥させて、水酸化マグネシウム微粒子を得る工程(D)
を含む方法によって、得ることができる。
The magnesium hydroxide fine particles of the present invention are
Preparing a magnesium chloride aqueous solution (A);
A step (B) of obtaining a magnesium hydroxide slurry by reacting an aqueous magnesium chloride solution with an alkaline aqueous solution of 1 to 18 N at a reaction rate of 101 to 210 mol%;
The magnesium hydroxide slurry is maintained at a temperature of 101 to 200 ° C. with stirring to obtain a hydrothermally treated magnesium hydroxide slurry (C); and the hydrothermally treated magnesium hydroxide slurry is filtered, washed and Step of drying to obtain magnesium hydroxide fine particles (D)
Can be obtained by a method comprising

工程(A)は、塩化マグネシウム水溶液を用意する工程である。塩化マグネシウム水溶液は、濃度0.1〜10mol/Lが好ましい。濃度が0.1mol/L未満であると、生産効率が悪くなる。また、濃度が10mol/Lより高いと水酸化マグネシウムスラリーの粘度が高くなり、ハンドリングが悪くなる。塩化マグネシウム水溶液の濃度は、好ましくは0.5〜5mol/Lである。   Step (A) is a step of preparing an aqueous magnesium chloride solution. The magnesium chloride aqueous solution preferably has a concentration of 0.1 to 10 mol / L. When the concentration is less than 0.1 mol / L, the production efficiency is deteriorated. On the other hand, when the concentration is higher than 10 mol / L, the viscosity of the magnesium hydroxide slurry increases and handling becomes worse. The concentration of the magnesium chloride aqueous solution is preferably 0.5 to 5 mol / L.

工程(A)は、例えば、
粗塩化マグネシウム水溶液を用意する工程(A−1);
粗塩化マグネシウム水溶液を、1〜18Nのアルカリ水溶液と、反応率1〜30mol%で反応させて、粗水酸化マグネシウムスラリーを得る工程(A−2);及び
粗水酸化マグネシウムスラリーに、凝集剤を添加した後、水酸化マグネシウムを濾過して、濾液として塩化マグネシウム溶液を得るか、又は凝集剤を添加し、水酸化マグネシウムを凝集沈殿させ、上澄液として塩化マグネシウム水溶液を得る工程(A−3)
を含むことができる。
Step (A) is, for example,
Preparing a crude magnesium chloride aqueous solution (A-1);
A step of reacting a crude magnesium chloride aqueous solution with a 1-18 N alkaline aqueous solution at a reaction rate of 1 to 30 mol% to obtain a crude magnesium hydroxide slurry (A-2); and a flocculant in the crude magnesium hydroxide slurry After the addition, the magnesium hydroxide is filtered to obtain a magnesium chloride solution as a filtrate, or a flocculant is added to cause the magnesium hydroxide to coagulate and precipitate to obtain a magnesium chloride aqueous solution as a supernatant (A-3 )
Can be included.

工程(A−1)は、粗塩化マグネシウム溶液を用意する工程である。例えば、塩化マグネシウム(塩化マグネシウムとしては、塩化マグネシウム6水和物若しくは無水塩化マグネシウム、又は海水、かん水、若しくは苦汁を用いることができる)に純水(イオン交換樹脂に通して電気伝導率を0.1μS/cm以下まで精製した水)を添加することにより粗塩化マグネシウム水溶液とすることができる。粗塩化マグネシウム水溶液は、濃度0.5〜10mol/Lとすることができ、好ましくは1〜5mol/Lであり、より好ましくは2〜4mol/Lである。   Step (A-1) is a step of preparing a crude magnesium chloride solution. For example, magnesium chloride (magnesium chloride hexahydrate or anhydrous magnesium chloride, seawater, brine, or bitter juice can be used as magnesium chloride) and pure water (through an ion exchange resin having an electric conductivity of 0. By adding water purified to 1 μS / cm or less, a crude magnesium chloride aqueous solution can be obtained. The concentration of the crude magnesium chloride aqueous solution can be 0.5 to 10 mol / L, preferably 1 to 5 mol / L, and more preferably 2 to 4 mol / L.

工程(A−2)は、粗塩化マグネシウム水溶液に対して、反応率1〜30mol%となるように、1〜18Nのアルカリ水溶液を反応させて、粗水酸化マグネシウムスラリーを得る工程である。反応率とは、塩化マグネシウムすべてが、水酸化マグネシウムとなるのに必要なアルカリ量を100mol%として算出した値とする。   Step (A-2) is a step of obtaining a crude magnesium hydroxide slurry by reacting a 1-18N alkaline aqueous solution with a crude magnesium chloride aqueous solution so that the reaction rate is 1-30 mol%. The reaction rate is a value calculated assuming that the amount of alkali necessary for all magnesium chloride to become magnesium hydroxide is 100 mol%.

アルカリ水溶液としては、水酸化ナトリウム水溶液を使用することができ、濃度は1〜18mol/Lとすることができ、好ましくは5〜18mol/Lであり、より好ましくは10〜18mol/Lである。   As the alkaline aqueous solution, an aqueous sodium hydroxide solution can be used, and the concentration can be 1 to 18 mol / L, preferably 5 to 18 mol / L, more preferably 10 to 18 mol / L.

工程(A−3)は、粗水酸化マグネシウムスラリーに、凝集剤を添加した後、水酸化マグネシウムを濾過して、濾液として塩化マグネシウム溶液を得るか、又は凝集剤を添加し、水酸化マグネシウムを凝集沈殿させ、上澄液として塩化マグネシウム水溶液を得る工程である。   In the step (A-3), after adding a flocculant to the crude magnesium hydroxide slurry, the magnesium hydroxide is filtered to obtain a magnesium chloride solution as a filtrate, or the flocculant is added and the magnesium hydroxide is added. This is a step of coagulating and precipitating to obtain an aqueous magnesium chloride solution as the supernatant.

凝集剤としては、アクリルアミド・アクリル酸ナトリウム共重合物、アクリルアミド・アクリルアミド−2−メチルプロパンスルホン酸ナトリウム共重合物、ポリアクリルアミド、アルキルアミノメタクリレート第4級アンモニウム塩重合物、アルキルアミノアクリレート第4級アンモニウム塩・アクリルアミド共重合物、ポリアミジン塩酸塩等を主成分とした凝集剤を適宜選択し用いることができ、アクリルアミド・アクリル酸ナトリウム共重合物が好ましい。凝集剤の添加量は、粗水酸化マグネシウムスラリー中の乾燥水酸化マグネシウム量に対して、100〜1000質量ppmとすることができる。   As the flocculant, acrylamide / sodium acrylate copolymer, acrylamide / sodium acrylamide-2-methylpropanesulfonate copolymer, polyacrylamide, alkylaminomethacrylate quaternary ammonium salt polymer, alkylaminoacrylate quaternary ammonium A flocculant mainly composed of a salt / acrylamide copolymer, polyamidine hydrochloride or the like can be appropriately selected and used, and an acrylamide / sodium acrylate copolymer is preferred. The addition amount of the flocculant can be 100-1000 mass ppm with respect to the amount of dry magnesium hydroxide in the crude magnesium hydroxide slurry.

このようにして得られた塩化マグネシウム水溶液の濃度を調整し、濃度0.1〜10.0mol/Lの塩化マグネシウム水溶液とすることができる。   The concentration of the magnesium chloride aqueous solution thus obtained can be adjusted to obtain a magnesium chloride aqueous solution having a concentration of 0.1 to 10.0 mol / L.

工程(B)は、塩化マグネシウム水溶液を、1〜18Nのアルカリ水溶液と、反応率101〜210mol%で反応させて、水酸化マグネシウムスラリーを得る工程である。反応率が101mol%未満であると、水酸化マグネシウムスラリーの水熱処理中に結晶が成長しすぎ、粒子径が大きくなりすぎる。また、反応率が210mol%より高くなると、オートクレーブ容器から特定元素(Fe、Ti、Ni、Cr、Mo及びMn)が溶出し不純物が混入しやすくなる。反応率は、好ましくは103〜200mol%であり、より好ましくは105〜180%である。   Step (B) is a step of obtaining a magnesium hydroxide slurry by reacting an aqueous magnesium chloride solution with an alkaline aqueous solution of 1 to 18 N at a reaction rate of 101 to 210 mol%. When the reaction rate is less than 101 mol%, crystals grow too much during the hydrothermal treatment of the magnesium hydroxide slurry, and the particle size becomes too large. Further, when the reaction rate is higher than 210 mol%, the specific elements (Fe, Ti, Ni, Cr, Mo, and Mn) are eluted from the autoclave container and impurities are easily mixed. The reaction rate is preferably 103 to 200 mol%, more preferably 105 to 180%.

アルカリ水溶液は、濃度1〜18mol/Lの水酸化ナトリウム水溶液が好ましい。水酸化ナトリウム水溶液の濃度が1mol/L未満であると、生産効率が悪くなる。また、濃度が18mol/Lより高くなると、水酸化マグネシウムスラリーの粘度が高くなり、ハンドリングが悪くなる。水酸化ナトリウム水溶液の濃度は、好ましくは4〜16mol/Lである。   The alkaline aqueous solution is preferably a sodium hydroxide aqueous solution having a concentration of 1 to 18 mol / L. When the concentration of the sodium hydroxide aqueous solution is less than 1 mol / L, the production efficiency is deteriorated. Moreover, when a density | concentration becomes higher than 18 mol / L, the viscosity of a magnesium hydroxide slurry will become high and handling will worsen. The concentration of the sodium hydroxide aqueous solution is preferably 4 to 16 mol / L.

工程(C)は、水酸化マグネシウムスラリーを、撹拌しながら、101〜200℃の温度で保持して、水熱処理された水酸化マグネシウムスラリーを得る工程である。   Step (C) is a step of obtaining a magnesium hydroxide slurry hydrothermally treated by holding the magnesium hydroxide slurry at a temperature of 101 to 200 ° C. while stirring.

水熱処理は、水酸化マグネシウムスラリーを、例えば、オートクレーブを用いて、101℃〜200℃で、攪拌しながら保持することにより行うことができる。水熱処理温度が101℃より低いと結晶が成長せず、凝集粒子が生成して分散が悪くなる。また水熱処理温度が200℃より高いと結晶が成長しすぎ、粒子径が大きくなりすぎる傾向がある。水熱処理温度は好ましくは105℃〜150℃である。水熱処理時間は、0.5〜3時間とすることができる。水熱処理時間がこの範囲であると、結晶成長及び粒子径を適切な範囲に制御することができる。水熱処理時間は好ましくは1〜2時間である。   The hydrothermal treatment can be performed by holding the magnesium hydroxide slurry at 101 ° C. to 200 ° C. with stirring, for example, using an autoclave. When the hydrothermal treatment temperature is lower than 101 ° C., crystals do not grow, and aggregated particles are generated, resulting in poor dispersion. On the other hand, when the hydrothermal treatment temperature is higher than 200 ° C., crystals grow too much and the particle size tends to be too large. The hydrothermal treatment temperature is preferably 105 ° C to 150 ° C. The hydrothermal treatment time can be 0.5 to 3 hours. When the hydrothermal treatment time is within this range, the crystal growth and the particle diameter can be controlled within appropriate ranges. The hydrothermal treatment time is preferably 1 to 2 hours.

均一な粒子径を有する、安定した微粒子を得るために、必要であれば、水熱処理に付す水酸化マグネシウムスラリーの濃度を、純水を投入して、30g/L〜150g/Lに調節してもよい。   In order to obtain stable fine particles having a uniform particle diameter, if necessary, the concentration of the magnesium hydroxide slurry subjected to hydrothermal treatment is adjusted to 30 g / L to 150 g / L by adding pure water. Also good.

工程(D)は、水熱された水酸化マグネシウムスラリーを濾過、水洗及び乾燥させて、水酸化マグネシウム微粒子を得る工程である。   The step (D) is a step of obtaining magnesium hydroxide fine particles by filtering, washing and drying the hydrothermal magnesium hydroxide slurry.

工程(D)は、例えば、
水熱処理された水酸化マグネシウムスラリーを濾過、水洗して、第一の水酸化マグネシウムケーキを得る工程(D−1);
第一の水酸化マグネシウムケーキに、乾燥水酸化マグネシウム質量基準量に対して5〜100倍の純水を加え、攪拌した後、濾過、水洗して、第二の水酸化マグネシウムケーキを得る工程(D−2);
第一の水酸化マグネシウムケーキの代わりに、第二の水酸化マグネシウムケーキに対して、工程(D−2)を1〜20回繰り返し、高純度水酸化マグネシウムケーキを得る工程(D−3);及び
高純度水酸化マグネシウムケーキを乾燥させて、水酸化マグネシウム微粒子を得る工程(D−4);
を含むことができる。
Step (D) is, for example,
Step (D-1) of filtering and washing the hydrothermally treated magnesium hydroxide slurry to obtain a first magnesium hydroxide cake;
Step of adding 5 to 100 times pure water to the first magnesium hydroxide cake relative to the dry magnesium hydroxide mass reference amount and stirring, followed by filtration and washing with water to obtain a second magnesium hydroxide cake ( D-2);
Instead of the first magnesium hydroxide cake, the step (D-2) is repeated 1 to 20 times for the second magnesium hydroxide cake to obtain a high purity magnesium hydroxide cake (D-3); And drying the high purity magnesium hydroxide cake to obtain magnesium hydroxide fine particles (D-4);
Can be included.

工程(D−1)は、水熱処理された水酸化マグネシウムスラリーを濾過し、水洗することにより、第一の水酸化マグネシウムケーキを得る工程である。水洗は、乾燥水酸化マグネシウムに対して、質量基準で5〜100倍、好ましくは20〜50倍の純水を濾過の後に投入することにより行うことができる。   The step (D-1) is a step of obtaining a first magnesium hydroxide cake by filtering and washing the hydrothermally treated magnesium hydroxide slurry. The washing with water can be performed by adding 5 to 100 times, preferably 20 to 50 times, pure water after filtration with respect to dry magnesium hydroxide.

工程(D−2)は、第一の水酸化マグネシウムケーキに、乾燥水酸化マグネシウム質量基準量に対して5〜100倍の純水を加え、攪拌した後、濾過、水洗して、第二の水酸化マグネシウムケーキを得る工程であり、リパルプ洗浄の工程である。この工程では、例えば、第一の水酸化マグネシウムケーキの乾燥水酸化マグネシウム対して、質量基準で5〜100倍の純水を投入し、第二の水酸化マグネシウムスラリーを得て、この第二の水酸化マグネシウムスラリーを、攪拌した後、濾過、水洗して、第二の水酸化マグネシウムケーキを得ることができる。攪拌は、例えば、10〜50℃で、100〜800rpmの回転速度で0.5〜5時間で行うことができる。攪拌終了後、濾過は、濾紙等を用いて行うことができ、水洗は、乾燥水酸化マグネシウムに対して、質量基準で5〜100倍の純水を投入することにより行うことができる。   In the step (D-2), 5 to 100 times pure water is added to the first magnesium hydroxide cake with respect to the dry magnesium hydroxide mass reference amount, stirred, filtered, washed with water, This is a step of obtaining a magnesium hydroxide cake, and a step of repulp washing. In this step, for example, 5 to 100 times pure water is added on a mass basis with respect to the dried magnesium hydroxide of the first magnesium hydroxide cake to obtain a second magnesium hydroxide slurry. The magnesium hydroxide slurry can be stirred and then filtered and washed with water to obtain a second magnesium hydroxide cake. Stirring can be performed, for example, at 10 to 50 ° C. and at a rotation speed of 100 to 800 rpm for 0.5 to 5 hours. Filtration can be performed after completion | finish of stirring using a filter paper etc., and water washing can be performed by throwing in 5-100 times pure water on a mass basis with respect to dry magnesium hydroxide.

工程(D−3)は、第一の水酸化マグネシウムケーキの代わりに、第二の水酸化マグネシウムケーキに対して、工程(D−2)のリパルプ洗浄を1回として、これを1〜20回繰り返し、高純度水酸化マグネシウムケーキを得る工程である。   In the step (D-3), instead of the first magnesium hydroxide cake, the repulp washing in the step (D-2) is performed once for the second magnesium hydroxide cake, and this is performed 1 to 20 times. This process is repeated to obtain a high purity magnesium hydroxide cake.

工程(D−4)は、高純度水酸化マグネシウムケーキを乾燥させて、水酸化マグネシウム微粒子を得る工程である。   Step (D-4) is a step of drying the high purity magnesium hydroxide cake to obtain magnesium hydroxide fine particles.

このようにして、本発明の水酸化マグネシウム粒子を得ることができる。   In this way, the magnesium hydroxide particles of the present invention can be obtained.

本発明の酸化マグネシウム微粒子は、本発明の水酸化マグネシウム微粒子を、大気雰囲気中で、500〜1200℃で焼成する工程(E)に付すことにより得ることができる。   The magnesium oxide fine particles of the present invention can be obtained by subjecting the magnesium hydroxide fine particles of the present invention to a step (E) of firing at 500 to 1200 ° C. in an air atmosphere.

この工程では、例えば、水酸化マグネシウム微粒子を、大気雰囲気中で、昇温速度1〜20℃/分(好ましくは3〜10℃/分、より好ましくは6℃/分)で500℃〜1200℃、好ましくは600〜800℃まで昇温し、昇温後、500℃〜1200℃、好ましくは600〜800℃で0.1〜5時間焼成することにより、本発明の酸化マグネシウム微粒子を得ることができる。また、工程(D−3)で得られた高純度水酸化マグネシウムケーキを乾燥させて、軽くほぐした後に、上記の焼成処理に付してもよい。   In this step, for example, magnesium hydroxide fine particles are heated in the air at a rate of temperature increase of 1 to 20 ° C./min (preferably 3 to 10 ° C./min, more preferably 6 ° C./min) to 500 ° C. to 1200 ° C. The magnesium oxide fine particles of the present invention can be obtained by heating up to 600 to 800 ° C. and firing the mixture at 500 to 1200 ° C., preferably 600 to 800 ° C. for 0.1 to 5 hours. it can. Moreover, after drying the high purity magnesium hydroxide cake obtained at the process (D-3) and loosening lightly, you may attach | subject to said baking processing.

このようにして、高純度であり、粒子径が小さく、かつ均一である水酸化マグネシウム微粒子及び酸化マグネシウム微粒子を容易に調製することができる。   In this way, it is possible to easily prepare magnesium hydroxide fine particles and magnesium oxide fine particles that are highly pure, have a small particle size, and are uniform.

本発明の水酸化マグネシウム微粒子及び酸化マグネシウム微粒子は、様々な分野で有用性が高い。例えば、水酸化マグネシウム微粒子の用途としては、添加剤としては、インクジェット用紙のインク定着剤等、樹脂フィラーとしては、二次電池用のセパレータ耐熱層の原料、難燃剤、フィルムシートの改質剤(耐熱性、屈曲性向上)等、高機能性材料としては、燃料電池用セラミックの原料、蛍光体原料、超伝導薄膜下地用の原料、トンネル磁気抵抗素子(TMR素子)用のトンネル障壁原料等、触媒としては、排水処理、及び排ガス処理等が挙げられる。また、酸化マグネシウム微粒子の用途としては、高機能性材料、及び触媒等が挙げられる。また、酸化マグネシウム微粒子は、その活性の高さを活かして 耐火物としては、セラミック焼結助剤等、添加剤としては、インクジェット用紙のインク定着剤等、樹脂フィラーとしては、二次電池用のセパレータ耐熱層の原料、フィルムシートの改質剤(耐熱性、屈曲性向上)等、高機能性材料としては、LED封止樹脂の屈折率調整剤、光拡散剤、燃料電池用セラミックの原料、蛍光体原料、超伝導薄膜下地用の原料、トンネル磁気抵抗素子(TMR素子)用のトンネル障壁原料等、電磁鋼材料としては、電磁鋼板用絶縁材の原料、圧粉鉄心用絶縁被膜材等、触媒としては、排水処理、及び排ガス処理等用に好適である。   The magnesium hydroxide fine particles and the magnesium oxide fine particles of the present invention are highly useful in various fields. For example, as the use of magnesium hydroxide fine particles, as an additive, an ink fixing agent for ink jet paper, etc., as a resin filler, a raw material for a separator heat-resistant layer for a secondary battery, a flame retardant, a film sheet modifier ( High performance materials such as heat resistance and flexibility), such as fuel cell ceramic raw material, phosphor raw material, superconducting thin film base material, tunnel magnetoresistive element (TMR element) tunnel barrier raw material, etc. Examples of the catalyst include wastewater treatment and exhaust gas treatment. Moreover, as a use of magnesium oxide microparticles | fine-particles, a highly functional material, a catalyst, etc. are mentioned. Magnesium oxide microparticles make use of their high activity, such as ceramic sintering aids as refractories, ink fixing agents for inkjet paper as additives, and resin fillers for secondary batteries. As a high-functional material such as a separator heat-resistant layer raw material, a film sheet modifier (heat resistance and flexibility improvement), an LED sealing resin refractive index adjuster, a light diffusing agent, a fuel cell ceramic raw material, Phosphor raw material, raw material for superconducting thin film, tunnel barrier material for tunnel magnetoresistive element (TMR element), etc., as electromagnetic steel material, raw material for insulating material for electromagnetic steel sheet, insulating coating material for dust core, etc. The catalyst is suitable for wastewater treatment, exhaust gas treatment, and the like.

以下、本発明について、実施例によってさらに詳細に説明する。ただし、本発明は、これらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

得られた水酸化マグネシウム微粒子及び酸化マグネシウム微粒子の粒子径、比表面積、純度及び活性度は、以下の方法によって測定した。   The particle diameter, specific surface area, purity and activity of the obtained magnesium hydroxide fine particles and magnesium oxide fine particles were measured by the following methods.

(1)レーザ回折散乱式粒度分布測定
レーザ回折散乱式粒度分布測定装置(商品名:MT3300、日機装社製)を使用して、体積基準の累積10%粒子径(D10)、体積基準の累積50%粒子径(D50)及び体積基準の累積90%粒子径(D90)を測定した。体積平均粒子径(Dv)及び数平均粒子径(Dn)も同様に上記装置で測定した。
(1) a laser diffraction scattering particle size distribution measurement laser diffraction scattering particle size distribution measuring apparatus (trade name: MT3300, manufactured by Nikkiso Co., Ltd.) was used, a cumulative 10% particle diameter on a volume basis (D 10), the cumulative volume-based The 50% particle size (D 50 ) and the volume-based cumulative 90% particle size (D 90 ) were measured. The volume average particle diameter (Dv) and the number average particle diameter (Dn) were also measured with the above apparatus.

(2)BET比表面積測定法
比表面積測定装置(商品名:Macsorb1210、マウンテック社製)を使用して、ガス吸着法のBET法により比表面積を測定した。
(2) BET specific surface area measuring method Using a specific surface area measuring device (trade name: Macsorb 1210, manufactured by Mountec Co., Ltd.), the specific surface area was measured by the BET method of gas adsorption.

(3)水酸化マグネシウム及び酸化マグネシウム不純物元素の質量測定法
測定対象となる不純物元素(Ag、Al、B、Ba、Bi、Cd、Co、Cr、Cu、Fe、Ga、In、K、Li、Mn、Mo、Na、Ni、P、Pb、S、Si、Sr、Tl、V、Zn、Ti及びZr)は、ICP発光分析装置(商品名:SPS−5100、セイコーインスツルメンツ製)を使用して、試料を酸に溶解した後、質量を測定した。
Cl量は、分光光度計(商品名:UV−2550、島津製作所製)を使用して、試料を酸に溶解した後、質量を測定した。
(3) Magnesium hydroxide and magnesium oxide impurity element mass measurement method Impurity elements to be measured (Ag, Al, B, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, Mn, Mo, Na, Ni, P, Pb, S, Si, Sr, Tl, V, Zn, Ti and Zr) are obtained using an ICP emission spectrometer (trade name: SPS-5100, manufactured by Seiko Instruments Inc.). After dissolving the sample in acid, the mass was measured.
The amount of Cl was measured using a spectrophotometer (trade name: UV-2550, manufactured by Shimadzu Corporation) after dissolving the sample in acid.

(4)純度測定法
水酸化マグネシウム及び酸化マグネシウム微粒子の純度は、100質量%から上記の「水酸化マグネシウム及び酸化マグネシウム不純物量測定法」で測定した不純物元素の質量の合計を差し引いた値として算出した。
(4) Purity measurement method The purity of magnesium hydroxide and magnesium oxide fine particles is calculated as a value obtained by subtracting the total mass of impurity elements measured by the above-mentioned “magnesium hydroxide and magnesium oxide impurity amount measurement method” from 100% by mass. did.

(5)クエン酸活性度(40%)の測定方法
0.4Nクエン酸水溶液100mlが酸化マグネシウムの中和量の40%に相当するように、酸化マグネシウム微粒子2.02gを秤量し、30.0℃で、当該クエン酸水溶液を攪拌している中に当該酸化マグネシウム微粒子を加え、クエン酸の全てが酸化マグネシウムと反応するまでの時間、すなわち、pH7を越えるまでの時間を測定した。
(5) Method of measuring citric acid activity (40%) 2.02 g of magnesium oxide fine particles were weighed so that 100 ml of 0.4N citric acid aqueous solution corresponded to 40% of the neutralized amount of magnesium oxide, and 30.0 The magnesium oxide fine particles were added to the citric acid aqueous solution while stirring the citric acid aqueous solution at a temperature, and the time until all of the citric acid reacted with magnesium oxide, that is, the time until pH 7 was exceeded was measured.

〔実施例1〕
粗塩化マグネシウム水溶液として、純度90質量%以上、濃度3.5mol/Lのものを用意した。この塩化マグネシウム水溶液に純水(イオン交換樹脂に通して電気伝導率を0.1μS/cm以下まで精製した水)を添加することにより濃度を調整し、濃度2.0mol/Lの粗塩化マグネシウム水溶液とした。
[Example 1]
A crude magnesium chloride aqueous solution having a purity of 90% by mass or more and a concentration of 3.5 mol / L was prepared. The concentration was adjusted by adding pure water (water purified by passing through an ion exchange resin to have an electric conductivity of 0.1 μS / cm or less) to this magnesium chloride aqueous solution, and a crude magnesium chloride aqueous solution having a concentration of 2.0 mol / L. It was.

次に、濃度2.0mol/Lの粗塩化マグネシウム水溶液に対して、反応率20mol%となるように、濃度17.84mol/Lの水酸化ナトリウム水溶液を添加して反応させ、さらに、凝集剤としてアクリルアミド・アクリル酸ソーダ共重合物を、生成水酸化マグネシウムに対して500質量ppm添加し、水酸化マグネシウムを凝集沈殿させ、上澄液を取り出すことにより、塩化マグネシウム水溶液を得た。   Next, a sodium hydroxide aqueous solution with a concentration of 17.84 mol / L was added to the crude magnesium chloride aqueous solution with a concentration of 2.0 mol / L so as to achieve a reaction rate of 20 mol%. An acrylamide / sodium acrylate copolymer was added in an amount of 500 ppm by mass to the produced magnesium hydroxide, the magnesium hydroxide was coagulated and precipitated, and the supernatant was taken out to obtain an aqueous magnesium chloride solution.

得られた塩化マグネシウム水溶液の濃度を調整し、濃度2.0mol/Lの塩化マグネシウム水溶液とした。この塩化マグネシウム水溶液を、反応率200mol%となるように濃度17.84mol/Lの水酸化ナトリウム水溶液と反応させて、濃度100g/Lの水酸化マグネシウムスラリーを調製した。   The concentration of the obtained magnesium chloride aqueous solution was adjusted to obtain a magnesium chloride aqueous solution having a concentration of 2.0 mol / L. This magnesium chloride aqueous solution was reacted with a sodium hydroxide aqueous solution having a concentration of 17.84 mol / L so that the reaction rate was 200 mol% to prepare a magnesium hydroxide slurry having a concentration of 100 g / L.

得られた水酸化マグネシウムスラリーを、オートクレーブを用いて150℃で1時間攪拌しながら保持し、水熱処理(加熱攪拌処理)を行った。水熱処理された第一の水酸化マグネシウムスラリーを濾過し、水洗することにより、第一の水酸化マグネシウムケーキを得た。水洗は、乾燥水酸化マグネシウムに対して、質量基準で40倍の純水を濾過の後に投入することにより行った。   The obtained magnesium hydroxide slurry was held with stirring at 150 ° C. for 1 hour using an autoclave, and subjected to hydrothermal treatment (heated stirring treatment). The first magnesium hydroxide slurry subjected to hydrothermal treatment was filtered and washed with water to obtain a first magnesium hydroxide cake. Washing with water was performed by adding 40 times the pure water after mass filtration to the dried magnesium hydroxide.

次に、得られた第一の水酸化マグネシウムケーキに対して、リパルプ洗浄を行った。リパルプ洗浄では、まず、第一の水酸化マグネシウムケーキの乾燥水酸化マグネシウムに対して、質量基準で40倍の純水を投入し、第二の水酸化マグネシウムスラリーを得た。次に、この第二の水酸化マグネシウムスラリーを、常温で攪拌装置を用いて、500rpmの回転速度で1時間攪拌し、さらに攪拌終了後の第二の水酸化マグネシウムスラリーを、濾紙を用いて濾過し、乾燥水酸化マグネシウムに対して、質量基準で20倍の純水を濾過の後投入し、水洗することにより、第二の水酸化マグネシウムケーキを得た。上述のリパルプ洗浄を1回として、リパルプ洗浄をさらに10回繰り返すことにより、高純度水酸化マグネシウムケーキを得た。高純度水酸化マグネシウムケーキを乾燥して、高純度水酸化マグネシウム微粒子を得た。   Next, repulp washing was performed on the obtained first magnesium hydroxide cake. In the repulp washing, first, 40 times pure water was added on a mass basis with respect to the dried magnesium hydroxide of the first magnesium hydroxide cake to obtain a second magnesium hydroxide slurry. Next, the second magnesium hydroxide slurry is stirred at room temperature using a stirrer at a rotation speed of 500 rpm for 1 hour, and the second magnesium hydroxide slurry after the stirring is further filtered using filter paper. Then, with respect to the dried magnesium hydroxide, 20 times as much pure water was added after filtration and washed with water to obtain a second magnesium hydroxide cake. The above-described repulp washing was performed once, and the repulp washing was further repeated 10 times to obtain a high purity magnesium hydroxide cake. The high purity magnesium hydroxide cake was dried to obtain high purity magnesium hydroxide fine particles.

〔実施例2〕
塩化マグネシウム水溶液と水酸化ナトリウム水溶液との反応における反応率を120mol%とし、水熱処理時間を0.5時間とした以外は、実施例1と同様に行なった。
[Example 2]
The reaction was performed in the same manner as in Example 1 except that the reaction rate in the reaction between the magnesium chloride aqueous solution and the sodium hydroxide aqueous solution was 120 mol% and the hydrothermal treatment time was 0.5 hour.

〔実施例3〕
塩化マグネシウム水溶液と水酸化ナトリウム水溶液との反応における反応率を105mol%とし、水熱処理時間を3時間とした以外は、実施例1と同様に行なった。
Example 3
The same procedure as in Example 1 was performed except that the reaction rate in the reaction between the magnesium chloride aqueous solution and the sodium hydroxide aqueous solution was 105 mol% and the hydrothermal treatment time was 3 hours.

〔実施例4〕
水熱処理温度を130℃にし、水酸化ナトリウム水溶液を純水で8.92mol/Lに希釈した以外は、実施例1と同様に行った。
Example 4
The same procedure as in Example 1 was carried out except that the hydrothermal treatment temperature was 130 ° C. and the aqueous sodium hydroxide solution was diluted to 8.92 mol / L with pure water.

〔実施例5〕
水熱処理温度を105℃にし、水熱処理に付す水酸化マグネシウムスラリーを、130g/Lとした以外は実施例1と同様に行なった。
Example 5
The hydrothermal treatment temperature was set to 105 ° C., and the same procedure as in Example 1 was performed except that the magnesium hydroxide slurry subjected to the hydrothermal treatment was changed to 130 g / L.

〔実施例6〕
水酸化ナトリウム水溶液を純水で4.96mol/Lに希釈した以外は実施例1と同様に行なった。
Example 6
The same operation as in Example 1 was carried out except that the aqueous sodium hydroxide solution was diluted to 4.96 mol / L with pure water.

〔実施例7〕
水熱処理に付す水酸化マグネシウムスラリーを純水で希釈し、50g/Lとした以外は実施例1と同様に行なった。
Example 7
The same operation as in Example 1 was conducted except that the magnesium hydroxide slurry subjected to hydrothermal treatment was diluted with pure water to 50 g / L.

〔比較例1〕
塩化マグネシウム水溶液と水酸化ナトリウム水溶液との反応における反応率を250mol%とした以外は、実施例1と同様に行なった。
[Comparative Example 1]
The same procedure as in Example 1 was conducted except that the reaction rate in the reaction between the magnesium chloride aqueous solution and the sodium hydroxide aqueous solution was 250 mol%.

〔比較例2〕
塩化マグネシウム水溶液と水酸化ナトリウム水溶液との反応における反応率を90mol%とした以外は、実施例1と同様に行なった。
[Comparative Example 2]
The same procedure as in Example 1 was performed except that the reaction rate in the reaction between the magnesium chloride aqueous solution and the sodium hydroxide aqueous solution was 90 mol%.

〔比較例3〕
塩化マグネシウム水溶液と水酸化ナトリウム水溶液との反応における反応率を105mol%とし、水熱処理を行わなかった以外は、実施例1と同様に行なった。
[Comparative Example 3]
The reaction was performed in the same manner as in Example 1 except that the reaction rate in the reaction between the magnesium chloride aqueous solution and the sodium hydroxide aqueous solution was 105 mol%, and hydrothermal treatment was not performed.

〔比較例4〕
水酸化ナトリウム水溶液を純水で21mol/Lにした以外は実施例1と同様に行なった。
[Comparative Example 4]
It carried out similarly to Example 1 except having changed the sodium hydroxide aqueous solution into 21 mol / L with pure water.

〔実施例8〕
実施例1で作成した水酸化マグネシウム微粒子を、大気雰囲気中で、1000℃で1時間焼成することにより、酸化マグネシウム微粒子を得た。
Example 8
The magnesium hydroxide fine particles prepared in Example 1 were baked at 1000 ° C. for 1 hour in an air atmosphere to obtain magnesium oxide fine particles.

〔実施例9〕
実施例3で作成した水酸化マグネシウム微粒子を、大気雰囲気中で、600℃で1時間焼成することにより、酸化マグネシウム微粒子を得た。
Example 9
The magnesium hydroxide fine particles prepared in Example 3 were baked at 600 ° C. for 1 hour in an air atmosphere to obtain magnesium oxide fine particles.

〔比較例5〕
実施例1で作成した水酸化マグネシウム微粒子を、大気雰囲気中で、1400℃で1時間焼成することにより、酸化マグネシウム微粒子を得た。
[Comparative Example 5]
The magnesium hydroxide fine particles prepared in Example 1 were fired at 1400 ° C. for 1 hour in the air atmosphere to obtain magnesium oxide fine particles.

以上の実施例及び比較例によって得られた水酸化マグネシウム微粒子に関する測定結果を表1に示し、酸化マグネシウム微粒子に関する測定結果を表2に示す。   Table 1 shows the measurement results regarding the magnesium hydroxide fine particles obtained by the above Examples and Comparative Examples, and Table 2 shows the measurement results regarding the magnesium oxide fine particles.

実施例の水酸化マグネシウム微粒子及び酸化マグネシウム微粒子は、いずれも純度99.9質量%以上であり、粒子径が小さく、かつ均一であった。   The magnesium hydroxide fine particles and the magnesium oxide fine particles in the examples both had a purity of 99.9% by mass or more, had a small particle size, and were uniform.

Figure 0005686563
Figure 0005686563

Figure 0005686563
Figure 0005686563

本発明の水酸化マグネシウム微粒子及び酸化マグネシウム微粒子は、高純度であり、粒子径が小さく、かつ均一であり、分散性が良いため(粒度分布がシャープなことより)様々な分野で有用性が高い。また、本発明の製造方法によれば、上記のような微粒子を容易に調製することができ、利便性が高い。例えば、水酸化マグネシウム微粒子の用途としては、添加剤、樹脂フィラー、高機能性材料、及び触媒等が挙げられる。
具体的には、添加剤としては、インクジェット用紙のインク定着剤等;樹脂フィラーとしては、二次電池用のセパレータ耐熱層の原料、難燃剤、フィルムシートの改質剤(耐熱性、屈曲性向上)等;高機能性材料としては、燃料電池用セラミックの原料、蛍光体原料、超伝導薄膜下地用の原料、トンネル磁気抵抗素子(TMR素子)用のトンネル障壁原料等;触媒としては、排水処理、及び排ガス処理等の用途に用いることができる。
また、酸化マグネシウム微粒子の用途としては、耐火物、添加剤、樹脂フィラー、高機能性材料、電磁鋼材料及び触媒等が挙げられる。
具体的には、耐火物としては、セラミック焼結助剤等;添加剤としては、インクジェット用紙のインク定着剤等;樹脂フィラーとしては、二次電池用のセパレータ耐熱層の原料、フィルムシートの改質剤(耐熱性、屈曲性向上)等;高機能性材料としては、LED封止樹脂の屈折率調整剤、光拡散剤、燃料電池用セラミックの原料、蛍光体原料、超伝導薄膜下地用の原料、トンネル磁気抵抗素子(TMR素子)用のトンネル障壁原料等;電磁鋼材料としては、電磁鋼板用絶縁材の原料、圧粉鉄心用絶縁被膜材等;触媒としては、排水処理、及び排ガス処理等の用途に用いることができる。
The magnesium hydroxide fine particles and the magnesium oxide fine particles of the present invention are highly useful in various fields because of their high purity, small particle size, uniformness, and good dispersibility (because the particle size distribution is sharp). . In addition, according to the production method of the present invention, the fine particles as described above can be easily prepared, which is highly convenient. For example, the use of magnesium hydroxide fine particles includes additives, resin fillers, highly functional materials, and catalysts.
Specifically, as additives, ink fixing agents for inkjet paper, etc .; as resin fillers, raw materials for separator heat-resistant layers for secondary batteries, flame retardants, film sheet modifiers (improved heat resistance and flexibility) High-functional materials include fuel cell ceramic raw materials, phosphor raw materials, raw materials for superconducting thin films, tunnel magnetoresistive elements (TMR elements) tunnel barrier raw materials, etc .; And can be used for applications such as exhaust gas treatment.
Examples of the use of the magnesium oxide fine particles include refractories, additives, resin fillers, highly functional materials, electromagnetic steel materials, and catalysts.
Specifically, as refractories, ceramic sintering aids, etc .; as additives, ink fixing agents for inkjet paper, etc .; as resin fillers, raw materials for separator heat-resistant layers for secondary batteries, film sheet modifications Quality materials (improving heat resistance and flexibility), etc .; as high-functional materials, refractive index adjusting agent for LED sealing resin, light diffusing agent, raw material for ceramic for fuel cell, phosphor raw material, superconducting thin film base Raw materials, tunnel barrier raw materials for tunnel magnetoresistive elements (TMR elements), etc .; as electromagnetic steel materials, raw materials for insulating materials for magnetic steel sheets, insulating coating materials for dust cores, etc .; as catalysts, wastewater treatment and exhaust gas treatment It can be used for such applications.

Claims (4)

塩化マグネシウム水溶液を用意する工程(A)
塩化マグネシウム水溶液を、1〜18Nのアルカリ水溶液と、反応率101〜210mol%で反応させて、水酸化マグネシウムスラリーを得る工程(B);
水酸化マグネシウムスラリーを、撹拌しながら、101〜200℃の温度で保持して、水熱処理された水酸化マグネシウムスラリーを得る工程(C);並びに
水熱処理された水酸化マグネシウムスラリーを濾過、水洗及び乾燥させて、水酸化マグネシウム微粒子を得る工程(D)
を含み、
工程(D)が、
水熱処理された水酸化マグネシウムスラリーを濾過、水洗して、第一の水酸化マグネシウムケーキを得る工程(D−1);
第一の水酸化マグネシウムケーキに、乾燥水酸化マグネシウム質量基準量に対して5〜100倍の純水を加え、攪拌した後、濾過、水洗して、第二の水酸化マグネシウムケーキを得る工程(D−2);
第一の水酸化マグネシウムケーキの代わりに、第二の水酸化マグネシウムケーキに対して、工程(D−2)を1〜20回繰り返し、高純度水酸化マグネシウムケーキを得る工程(D−3);及び
高純度水酸化マグネシウムケーキを乾燥させて、水酸化マグネシウム微粒子を得る工程(D−4);
を含む、水酸化マグネシウム微粒子の製造方法。
Step of preparing a magnesium chloride aqueous solution (A)
A step (B) of obtaining a magnesium hydroxide slurry by reacting an aqueous magnesium chloride solution with an alkaline aqueous solution of 1 to 18 N at a reaction rate of 101 to 210 mol%;
The magnesium hydroxide slurry is maintained at a temperature of 101 to 200 ° C. with stirring to obtain a hydrothermally treated magnesium hydroxide slurry (C); and the hydrothermally treated magnesium hydroxide slurry is filtered, washed and Step of drying to obtain magnesium hydroxide fine particles (D)
Only including,
Step (D)
Step (D-1) of filtering and washing the hydrothermally treated magnesium hydroxide slurry to obtain a first magnesium hydroxide cake;
Step of adding 5 to 100 times pure water to the first magnesium hydroxide cake relative to the dry magnesium hydroxide mass reference amount and stirring, followed by filtration and washing with water to obtain a second magnesium hydroxide cake ( D-2);
Instead of the first magnesium hydroxide cake, the step (D-2) is repeated 1 to 20 times for the second magnesium hydroxide cake to obtain a high purity magnesium hydroxide cake (D-3); as well as
Drying the high purity magnesium hydroxide cake to obtain magnesium hydroxide fine particles (D-4);
The manufacturing method of magnesium hydroxide microparticles | fine-particles containing .
工程(A)が、
粗塩化マグネシウム水溶液を用意する工程(A−1);
粗塩化マグネシウムを、1〜18Nのアルカリ水溶液と、反応率が1〜30mol%で反応させて、粗水酸化マグネシウムスラリーを得る工程(A−2);及び
粗水酸化マグネシウムスラリーに、凝集剤を添加した後、水酸化マグネシウムを濾過して、濾液として塩化マグネシウム溶液を得るか、又は凝集剤を添加し、水酸化マグネシウムを凝集沈殿させ、上澄液として塩化マグネシウム水溶液を得る工程(A−3)
を含む、請求項記載の水酸化マグネシウム微粒子の製造方法。
Step (A) is
Preparing a crude magnesium chloride aqueous solution (A-1);
A step of reacting crude magnesium chloride with a 1-18 N alkaline aqueous solution at a reaction rate of 1-30 mol% to obtain a crude magnesium hydroxide slurry (A-2); and a flocculant in the crude magnesium hydroxide slurry After the addition, the magnesium hydroxide is filtered to obtain a magnesium chloride solution as a filtrate, or a flocculant is added to cause the magnesium hydroxide to coagulate and precipitate to obtain a magnesium chloride aqueous solution as a supernatant (A-3 )
The containing process according to claim 1, wherein the magnesium hydroxide particles.
塩化マグネシウム水溶液を用意する工程(A)Step of preparing a magnesium chloride aqueous solution (A)
塩化マグネシウム水溶液を、1〜18Nのアルカリ水溶液と、反応率101〜210mol%で反応させて、水酸化マグネシウムスラリーを得る工程(B);A step (B) of obtaining a magnesium hydroxide slurry by reacting an aqueous magnesium chloride solution with an alkaline aqueous solution of 1 to 18 N at a reaction rate of 101 to 210 mol%;
水酸化マグネシウムスラリーを、撹拌しながら、101〜200℃の温度で保持して、水熱処理された水酸化マグネシウムスラリーを得る工程(C);並びにStep (C) of obtaining a magnesium hydroxide slurry hydrothermally treated by holding the magnesium hydroxide slurry at a temperature of 101 to 200 ° C. while stirring; and
水熱処理された水酸化マグネシウムスラリーを濾過、水洗及び乾燥させて、水酸化マグネシウム微粒子を得る工程(D)Step (D) of obtaining magnesium hydroxide fine particles by filtering, washing and drying the hydrothermally treated magnesium hydroxide slurry
を含み、Including
工程(A)が、Step (A) is
粗塩化マグネシウム水溶液を用意する工程(A−1);Preparing a crude magnesium chloride aqueous solution (A-1);
粗塩化マグネシウムを、1〜18Nのアルカリ水溶液と、反応率が1〜30mol%で反応させて、粗水酸化マグネシウムスラリーを得る工程(A−2);及びA step of reacting crude magnesium chloride with a 1-18N aqueous alkali solution at a reaction rate of 1-30 mol% to obtain a crude magnesium hydroxide slurry (A-2); and
粗水酸化マグネシウムスラリーに、凝集剤を添加した後、水酸化マグネシウムを濾過して、濾液として塩化マグネシウム溶液を得るか、又は凝集剤を添加し、水酸化マグネシウムを凝集沈殿させ、上澄液として塩化マグネシウム水溶液を得る工程(A−3)After adding the flocculant to the crude magnesium hydroxide slurry, the magnesium hydroxide is filtered to obtain a magnesium chloride solution as the filtrate, or the flocculant is added to coagulate and precipitate the magnesium hydroxide, and as the supernatant Step of obtaining an aqueous magnesium chloride solution (A-3)
を含む、水酸化マグネシウム微粒子の製造方法。The manufacturing method of magnesium hydroxide microparticles | fine-particles containing.
求項のいずれか1項記載の方法で得られた水酸化マグネシウム微粒子を、大気雰囲気中で、500〜1500℃で焼成する工程(E)を含む、酸化マグネシウム微粒子の製造方法。 The Motomeko 1 - magnesium hydroxide fine particles obtained in 3 any one of claims way, in an air atmosphere, comprising the step (E) is fired at 500 to 1500 ° C., the manufacturing method of the magnesium oxide particles.
JP2010217166A 2010-09-28 2010-09-28 Magnesium hydroxide fine particles and magnesium oxide fine particles, and methods for producing them Active JP5686563B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010217166A JP5686563B2 (en) 2010-09-28 2010-09-28 Magnesium hydroxide fine particles and magnesium oxide fine particles, and methods for producing them
PCT/JP2011/072083 WO2012043564A1 (en) 2010-09-28 2011-09-27 Magnesium hydroxide microparticles, magnexium oxide microparticles, and method for producing each
CN2011800470868A CN103140446A (en) 2010-09-28 2011-09-27 Magnesium hydroxide microparticles, magnexium oxide microparticles, and method for producing each
KR1020137010610A KR101495777B1 (en) 2010-09-28 2011-09-27 Magnesium hydroxide microparticles, magnesium oxide microparticles, and method for producing each
TW100134937A TWI529133B (en) 2010-09-28 2011-09-28 Method for producing magnesium hydroxide microparticle and magnesium oxide microparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010217166A JP5686563B2 (en) 2010-09-28 2010-09-28 Magnesium hydroxide fine particles and magnesium oxide fine particles, and methods for producing them

Publications (2)

Publication Number Publication Date
JP2012072004A JP2012072004A (en) 2012-04-12
JP5686563B2 true JP5686563B2 (en) 2015-03-18

Family

ID=45893003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010217166A Active JP5686563B2 (en) 2010-09-28 2010-09-28 Magnesium hydroxide fine particles and magnesium oxide fine particles, and methods for producing them

Country Status (5)

Country Link
JP (1) JP5686563B2 (en)
KR (1) KR101495777B1 (en)
CN (1) CN103140446A (en)
TW (1) TWI529133B (en)
WO (1) WO2012043564A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042287A1 (en) * 2012-09-13 2014-03-20 協和化学工業株式会社 Loosely aggregated thin film magnesium oxide particles
CN104755424A (en) * 2012-10-31 2015-07-01 宇部材料工业株式会社 Magnesium oxide powder
JP2016106160A (en) * 2013-03-25 2016-06-16 神島化学工業株式会社 Magnesium oxide particle, resin composition, rubber composition and molding
JP5846392B2 (en) * 2013-03-29 2016-01-20 Jfeスチール株式会社 MgO for annealing separator and method for producing the same
JP6300020B2 (en) * 2014-06-16 2018-03-28 パナソニックIpマネジメント株式会社 Resin composition for printed wiring board, prepreg for printed wiring board, laminate, metal-clad laminate, printed wiring board, and magnesium oxide
JP6168173B2 (en) * 2015-01-30 2017-07-26 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP2016199460A (en) * 2015-04-10 2016-12-01 協和化学工業株式会社 Separation agent for annealing for grain oriented silicon steel sheet
EP3438291B1 (en) 2016-03-30 2020-06-24 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separator, and grain-oriented electromagnetic steel sheet
JP6494555B2 (en) 2016-03-30 2019-04-03 タテホ化学工業株式会社 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP6472767B2 (en) 2016-03-30 2019-02-20 タテホ化学工業株式会社 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator
WO2018159986A1 (en) * 2017-02-28 2018-09-07 전남대학교산학협력단 Method for preparing high-purity magnesium hydroxide
KR102082873B1 (en) * 2017-02-28 2020-02-28 전남대학교산학협력단 Method for manufacturing magnesium hydroxide
US20200194762A1 (en) * 2017-06-02 2020-06-18 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide used for nonaqueous secondary battery separator, nonaqueous secondary battery separator, and nonaqueous secondary battery
CN107344727A (en) * 2017-06-09 2017-11-14 苏州市泽镁新材料科技有限公司 A kind of preparation method of hexagonal plate nano-sized magnesium hydroxide material
JP7454335B2 (en) * 2018-03-28 2024-03-22 タテホ化学工業株式会社 Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JP7454334B2 (en) * 2018-03-28 2024-03-22 タテホ化学工業株式会社 Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
KR102560453B1 (en) * 2018-08-09 2023-07-27 조인트 스탁 컴퍼니 카우스티크 Active high-purity magnesium oxide and its production method
CN109775733B (en) * 2019-03-28 2021-05-04 青海大学 Preparation method of nano molybdenum oxide hybrid magnesium hydroxide flame retardant
CN112098257A (en) * 2019-06-17 2020-12-18 南京倍立达欧陆装饰艺术工程有限公司 Magnesium oxide activity detection method
CN110498435B (en) * 2019-09-29 2021-08-31 北京镁德百世科技有限公司 Method for purifying magnesium hydroxide and method for recovering magnesium hydroxide from magnesium air battery and preparing magnesium oxide therefrom
JP2022186528A (en) * 2021-06-04 2022-12-15 セトラスホールディングス株式会社 Bactericidal composition containing magnesium hydroxide fine particle and osteoclast differentiation inhibitory composition
CN115491477B (en) * 2021-06-18 2024-01-12 协和化学工业株式会社 Method for producing annealing separator, and grain-oriented electrical steel sheet
KR20240051289A (en) * 2021-09-27 2024-04-19 우베 마테리알즈 가부시키가이샤 Magnesium oxide powder, vulcanizing agent composition for rubber, rubber composition, method for producing magnesium oxide powder
CN114804163B (en) * 2022-05-16 2024-02-13 安徽大学绿色产业创新研究院 Method for preparing flame retardant magnesium hydroxide by wet dechlorination of industrial magnesium hydroxide

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2320133C (en) * 1998-12-14 2007-05-22 Kyowa Chemical Industry Co., Ltd. Magnesium hydroxide particles, method of the production thereof, and resin composition containing the same
JP3965270B2 (en) * 2000-04-19 2007-08-29 宇部マテリアルズ株式会社 Highly dispersible high purity magnesium hydroxide powder, method for producing the same, and magnesium hydroxide slurry
CN1332116A (en) * 2001-08-20 2002-01-23 杜以波 Homogeneous fluid process of preparing nanometer magnesium hydroxide
JP4849807B2 (en) * 2005-02-21 2012-01-11 宇部マテリアルズ株式会社 Magnesium oxide fine particle dispersion
JP4698448B2 (en) * 2006-03-13 2011-06-08 新日本製鐵株式会社 MgO for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with excellent magnetic properties and glass coating properties using the same
JP5016993B2 (en) * 2007-06-27 2012-09-05 タテホ化学工業株式会社 Magnesium oxide particle aggregate and method for producing the same
JP5125258B2 (en) * 2007-06-29 2013-01-23 堺化学工業株式会社 Spherical magnesium oxide particles and method for producing the same
JP5128882B2 (en) * 2007-09-05 2013-01-23 関東電化工業株式会社 Magnesium hydroxide fine particles and method for producing the same
CN101475197B (en) * 2009-01-09 2011-05-25 中国科学院青海盐湖研究所 Method for preparing ultra-fine high dispersing magnesium hydrate flame retardant from saline lake bittern or bischofite

Also Published As

Publication number Publication date
KR20130081293A (en) 2013-07-16
KR101495777B1 (en) 2015-02-25
TW201219307A (en) 2012-05-16
JP2012072004A (en) 2012-04-12
WO2012043564A1 (en) 2012-04-05
TWI529133B (en) 2016-04-11
CN103140446A (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5686563B2 (en) Magnesium hydroxide fine particles and magnesium oxide fine particles, and methods for producing them
JP5415215B2 (en) Magnesium oxide powder having excellent dispersibility and method for producing the same
JP6370309B2 (en) Magnetic hydrotalcite complex and method for producing the same
JP5069865B2 (en) High purity magnesium hydroxide powder and method for producing the same
JP6951022B2 (en) Magnesium hydroxide particles with slow growth rate and low aspect ratio and their manufacturing method
JP4288452B2 (en) Method for producing Mg-Al hydrotalcite-type particle powder, chlorine-containing resin stabilizer and chlorine-containing resin composition
JP5125258B2 (en) Spherical magnesium oxide particles and method for producing the same
WO2014126075A1 (en) Rod-like magnesium hydroxide particle and rod-like magnesium oxide particle each having high specific surface area, and methods respectively for producing said particles
JP2008110915A (en) Tin-doped indium oxide powder
JP4332691B2 (en) Method for producing Mg-Al hydrotalcite type particle powder, chlorine-containing resin stabilizer and Mg-Al type hydrotalcite type particle powder
JP5296993B2 (en) Yttrium oxide powder
TWI432380B (en) Cube - like magnesia powder and its preparation method
WO2013039055A1 (en) Spherical magnesium hydroxide particles and magnesium oxide particles having a large specific surface area, as well as method for producing same
JP4926835B2 (en) Magnesium oxide powder
JP5486751B2 (en) Rod-shaped indium tin oxide powder and method for producing the same
JP2011102229A (en) Minute ito powder with high crystallinity and application thereof, and method for producing the same
JP6986149B2 (en) Zinc oxide powder and zinc oxide sintered body for producing zinc oxide sintered body, and a method for producing these.
JP2008137845A (en) Method of producing magnesium oxide
JP7011061B2 (en) Zinc oxide powder and zinc oxide sintered body for producing zinc oxide sintered body, and a method for producing these.
JP6031177B2 (en) Spherical magnesium hydroxide particles having a high specific surface area and method for producing the same
JPH0651568B2 (en) Method for producing fine zirconium oxide powder
JP2024537667A (en) Nano-sized polyhedral α-alumina particles and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150120

R150 Certificate of patent or registration of utility model

Ref document number: 5686563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250