JP5671850B2 - Method for producing glass particulate deposit - Google Patents

Method for producing glass particulate deposit Download PDF

Info

Publication number
JP5671850B2
JP5671850B2 JP2010145345A JP2010145345A JP5671850B2 JP 5671850 B2 JP5671850 B2 JP 5671850B2 JP 2010145345 A JP2010145345 A JP 2010145345A JP 2010145345 A JP2010145345 A JP 2010145345A JP 5671850 B2 JP5671850 B2 JP 5671850B2
Authority
JP
Japan
Prior art keywords
glass
reaction vessel
exhaust port
gas
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010145345A
Other languages
Japanese (ja)
Other versions
JP2012006799A (en
Inventor
雅之 櫻井
雅之 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010145345A priority Critical patent/JP5671850B2/en
Publication of JP2012006799A publication Critical patent/JP2012006799A/en
Application granted granted Critical
Publication of JP5671850B2 publication Critical patent/JP5671850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、複数本のガラス合成用バーナを用いた多バーナ多層付け法に用いて好適なガラス微粒子堆積体の製造方法に関する。   The present invention relates to a method for producing a glass fine particle deposit suitable for use in a multi-burner multi-layering method using a plurality of glass synthesis burners.

光ファイバなどのガラス製品を製造するためのガラス母材の製造方法として、複数本のガラス微粒子合成用バーナで構成されたバーナ列と反応容器内に長手方向の軸線を固定して支持され軸回りに回転する棒状の出発材とを相対的に往復移動させ、各ガラス微粒子合成用バーナで合成されたガラス微粒子をそれぞれ出発材上に堆積させ、かつ隣合うバーナにてガラス微粒子を堆積させた(スス付けした)範囲が連続して一つのガラス微粒子堆積体を形成するガラス母材の製造方法(MMD法;多バーナ多層付け法)が知られている(例えば特許文献1,2参照)。   As a method of manufacturing a glass base material for manufacturing glass products such as optical fibers, a longitudinal axis is supported by fixing a longitudinal axis in a burner array composed of a plurality of glass fine particle synthesis burners and a reaction vessel. The rod-shaped starting material rotating in a reciprocating manner was relatively reciprocated to deposit the glass particles synthesized by each glass particle synthesizing burner on each starting material, and the glass particles were deposited by the adjacent burner ( A glass base material manufacturing method (MMD method; multi-burner multi-layering method) is known (see, for example, Patent Documents 1 and 2).

MMD法では、反応容器のガラス微粒子合成用バーナ側の壁面に開口した空気導入口より反応容器内にクリーンエアを流し、クリーンエアを反応容器の空気導入口と対向する壁面に開口した排気口から排気する。この際、クリーンエアの風速が遅いと、反応容器内に余剰のガラス微粒子(浮遊スス)が充満し、レーザを用いた制御などでスス付けを制御している場合、レーザが受光できず、安定したスス付けができなくなる。クリーンエアの風速を速めるためには、第一にクリーンエアの導入・排出量を増やす、第二に反応容器全体をコンパクトにすることが考えられるが、クリーンエアの導入・排出量を増やすには設備の大型化が必要になるとともに、導入・排出量を増やせば本来堆積すべきススの剥がれが生じたりする。また、反応容器全体をコンパクトにすれば、熱源となるスス体やバーナ火炎に容器内壁が接近することとなり、反応容器の劣化など設備に大きな熱負荷がかかる。   In the MMD method, clean air is allowed to flow into the reaction vessel from the air inlet opening on the wall of the reaction vessel on the side of the glass particle synthesis burner, and the clean air is discharged from the outlet opening on the wall facing the air inlet of the reaction vessel. Exhaust. At this time, if the wind speed of clean air is slow, excess glass particles (floating soot) will be filled in the reaction vessel, and if the sooting is controlled by control using a laser, the laser will not be able to receive light and stable. I can't do soot. In order to increase the wind speed of clean air, it is conceivable to increase the amount of clean air introduced and discharged first, and secondly to make the entire reaction vessel compact, but to increase the amount of clean air introduced and discharged It is necessary to increase the size of the equipment, and if the amount of introduction and discharge is increased, the soot that should be deposited may be peeled off. Further, if the entire reaction vessel is made compact, the inner wall of the vessel approaches a soot body or burner flame that becomes a heat source, and a large heat load is applied to the equipment such as deterioration of the reaction vessel.

効率的な排気を目的として、特許文献1に開示される技術はガラス微粒子堆積体を通過し、このガラス微粒子堆積体を挟んでバーナと反対側へ流れる流体の流速を、2m/秒以上4m/秒以下とし、特許文献2に開示される技術はガラス母材の近傍におけるガスの流速を0.1m/秒以上としているが、設備能力としてここまで風速を速くできなかったり、また、この風速にしても安定したスス付けができなかったりする場合があった。   For the purpose of efficient evacuation, the technique disclosed in Patent Document 1 passes through the glass particulate deposit, and the flow rate of the fluid flowing to the opposite side of the burner across the glass particulate deposit is 2 m / second or more to 4 m / second. In the technology disclosed in Patent Document 2, the gas flow velocity in the vicinity of the glass base material is set to 0.1 m / second or more. However, there were cases where stable sooting was not possible.

特開2008−179518号公報JP 2008-179518 A 特開2006−160551号公報JP 2006-160551 A

本発明は上記状況に鑑みてなされたもので、その目的は、設備全体を必要以上に大きくすることなく、余剰ガラス微粒子を効率的に排気できるガラス微粒子堆積体の製造方法を提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a method for producing a glass fine particle deposit capable of efficiently exhausting excess glass fine particles without making the entire facility unnecessarily large. .

本発明に係る上記目的は、下記構成により達成される。
(1) 回転する出発ロッドに対向して複数本のガラス微粒子合成用バーナを配置し、
前記出発ロッドと前記ガラス微粒子合成用バーナとを該出発ロッドの軸方向に相対的に往復移動させ、
前記ガラス微粒子合成用バーナで合成されるガラス微粒子を前記出発ロッドの表面に順次堆積させるガラス微粒子堆積体の製造方法であって、
反応容器の前記ガラス微粒子合成用バーナ側の壁面に開口した空気導入口より該反応容器内にクリーンエアを流し、
前記クリーンエアを含む気体を前記反応容器の空気導入口と対向する壁面に開口した排気口から排気し、その際、前記排気口が設けられた高さ位置において、前記出発ロッドの中心位置から前記排気口側の空間における最も前記気体の流速が速くなる位置での製造開始から終了までの前記気体の平均速度を、0.88m/s以上2m/s未満とすることを特徴とするガラス微粒子堆積体の製造方法。
The above object of the present invention is achieved by the following configuration.
(1) Arrange a plurality of glass fine particle synthesis burners facing the rotating starting rod,
Reciprocally moving the starting rod and the glass fine particle synthesis burner in the axial direction of the starting rod;
A method for producing a glass particulate deposit, wherein glass particulates synthesized by the glass particulate synthesis burner are sequentially deposited on the surface of the starting rod,
Clean air is allowed to flow into the reaction vessel from the air inlet opening in the wall surface of the reaction vessel on the glass fine particle synthesis burner side,
The gas containing the clean air is exhausted from an exhaust port opened on a wall surface facing the air inlet of the reaction vessel, and at that time, at a height position where the exhaust port is provided, the center position of the starting rod is The glass fine particle deposition characterized in that the average velocity of the gas from the start to the end of the production at the position where the flow velocity of the gas is highest in the space on the exhaust port side is 0.88 m / s or more and less than 2 m / s. Body manufacturing method.

このガラス微粒子堆積体の製造方法によれば、排気口が設けられた高さ位置において、出発ロッドの中心位置から排気口側の空間における最もクリーンエアの流速が速くなる位置での製造開始から終了までのクリーンエアの平均速度を規定することで、反応容器内に滞留する余剰ススを効率よく排気することができる。   According to this method for producing a glass particulate deposit, from the start of production at a position where the flow velocity of clean air is highest in the space on the exhaust port side from the center position of the starting rod at the height position where the exhaust port is provided, the process ends. By defining the average speed of clean air up to this point, surplus soot retained in the reaction vessel can be efficiently exhausted.

本発明に係るガラス微粒子堆積体の製造方法によれば、MMD法でスス付けする際、反応容器内の特定の領域を通過するクリーンエアの平均速度を規定することで余剰ススを効率的に排出でき、安定にスス付けを行うことができる。   According to the method for producing a glass particulate deposit according to the present invention, when sooting is performed by the MMD method, excess soot is efficiently discharged by defining an average speed of clean air passing through a specific region in the reaction vessel. And stable sooting.

本発明に係る製造方法に用いられる装置の概念を模式的に表した構成図である。It is a block diagram which represented typically the concept of the apparatus used for the manufacturing method which concerns on this invention. 図1に示した反応容器の内部を模式的に表した平面図である。It is the top view which represented typically the inside of the reaction container shown in FIG.

以下、本発明の実施の形態を図面を参照して説明する。
図1は本発明に係る製造方法に用いられる装置の概念を模式的に表した構成図である。
ガラス母材製造装置31の主要部は、複数本(この例では8本)のガラス微粒子合成用バーナ(バーナ)13からなるバーナ列と、空気導入口21と、排気口25を有する反応容器19で構成されている。このガラス母材製造装置31において出発ロッド11の上下を支持棒33,33で保持して、トラバース装置35,35により回転させつつ上下に往復移動させながら、出発ロッド11の周囲にバーナ13で生成されるガラス微粒子を堆積させて(スス付けして)ガラス微粒子堆積体17を製造する。バーナ13にはガス供給装置37が接続され、ガス供給装置37はバーナ13に原料ガス(SiCl4など)や可燃性・助燃性ガス(H2、O2)、不活性ガス、などのガスを供給する。排気口25からは所定量のガスの排気を行い、反応容器19内に浮遊する、ガラス微粒子堆積体17に堆積しなかったガラス微粒子(浮遊スス)を排出しながら堆積を行うようになされている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram schematically showing the concept of an apparatus used in the manufacturing method according to the present invention.
The main part of the glass base material manufacturing apparatus 31 is a reaction vessel 19 having a plurality of (in this example, 8) burner rows composed of glass fine particle synthesis burners (burners) 13, an air inlet 21, and an exhaust port 25. It consists of In this glass base material manufacturing apparatus 31, the upper and lower sides of the starting rod 11 are held by the support bars 33, 33, and are generated by the burner 13 around the starting rod 11 while being reciprocated up and down while being rotated by the traverse devices 35, 35. The glass fine particles deposited body 17 is manufactured by depositing (sooting) the glass fine particles. A gas supply device 37 is connected to the burner 13, and the gas supply device 37 supplies a gas such as a raw material gas (such as SiCl 4 ), flammable / combustible gas (H 2 , O 2 ), or an inert gas to the burner 13. Supply. A predetermined amount of gas is exhausted from the exhaust port 25, and deposition is performed while discharging glass fine particles (floating soot) floating in the reaction vessel 19 and not deposited on the glass fine particle deposition body 17. .

各バーナ13の近傍には外径センサ39が取り付けられ、外径センサ39はガラス微粒子堆積体17の主としてそのバーナ13で生成されたガラス微粒子が堆積している部分(各バーナ13によるガラス微粒子の堆積部)の外径を検出する。外径センサ39は、ガラス微粒子堆積体17の外径を光学的に測定する。例えば、レーザ等の光線をガラス微粒子堆積体17に側方から照射し、反射光の変位位置(センサ39とガラス微粒子堆積体17との距離)からガラス微粒子堆積体17の外径を求める。   An outer diameter sensor 39 is attached in the vicinity of each burner 13, and the outer diameter sensor 39 is a portion of the glass fine particle deposit 17 in which glass fine particles generated mainly by the burner 13 are deposited (glass fine particles produced by each burner 13. The outer diameter of the accumulation part) is detected. The outer diameter sensor 39 optically measures the outer diameter of the glass fine particle deposit 17. For example, a light beam such as a laser is irradiated on the glass particulate deposit 17 from the side, and the outer diameter of the glass particulate deposit 17 is obtained from the displacement position of the reflected light (the distance between the sensor 39 and the glass particulate deposit 17).

空気導入口21には反応容器19の中に清浄化ガスであるクリーンエア23を供給するための不図示のクリーンエア供給装置(清浄化ガス供給手段)が接続される。ガラス母材製造装置31では、反応容器19のバーナ13側の壁面に開口した空気導入口21より反応容器19内にクリーンエア23を流し、クリーンエア23を含んだ気体29を反応容器19の空気導入口21と対向する壁面に開口した排気口25から排気する。排気口25は、図中に実線で描いたように上下方向に複数(この例では3つ)としても、単一としてもよい。また、空気導入口21は、上下方向、或いは左右方向(図1の紙面垂直方向)に複数のものを配設してよく、図中に二点鎖線で示したように上下方向に連続するスリット状の開口としてもよい。   A clean air supply device (cleaning gas supply means) (not shown) for supplying clean air 23 as a cleaning gas into the reaction vessel 19 is connected to the air inlet 21. In the glass base material manufacturing apparatus 31, clean air 23 is caused to flow into the reaction container 19 from the air inlet 21 opened on the wall surface of the reaction container 19 on the burner 13 side, and the gas 29 including the clean air 23 is supplied to the air in the reaction container 19. It exhausts from the exhaust port 25 opened on the wall surface facing the introduction port 21. The exhaust port 25 may be plural (three in this example) in the vertical direction as depicted by a solid line in the drawing, or may be single. Also, a plurality of air inlets 21 may be arranged in the vertical direction or in the horizontal direction (perpendicular to the plane of the drawing in FIG. 1), and as shown by the two-dot chain line in the figure, the slits are continuous in the vertical direction. It is good also as a shape-like opening.

図2は図1に示した反応容器の内部を模式的に表した平面図である。
ガラス母材製造装置31では、排気口25が設けられた高さ(排気口の中心部の高さ、排気口が複数ある場合についても排気口毎に同様に考える)位置において、反応容器内のガラス微粒子堆積体17の中心位置より排気口25側の領域27での最も気体の流速が速くなる位置における気体29の平均速度が、特定の範囲に規定されている。図2の場合、この領域27は、ガラス微粒子堆積体17を挟み左右対称に形成されている。
FIG. 2 is a plan view schematically showing the inside of the reaction vessel shown in FIG.
In the glass base material manufacturing apparatus 31, at the height at which the exhaust port 25 is provided (the height of the central portion of the exhaust port, the case where there are a plurality of exhaust ports is considered similarly for each exhaust port), The average velocity of the gas 29 at a position where the flow velocity of the gas is highest in the region 27 on the exhaust port 25 side from the center position of the glass particulate deposit 17 is defined in a specific range. In the case of FIG. 2, the region 27 is formed symmetrically with the glass fine particle deposit 17 interposed therebetween.

反応容器19は、図2に示す平面視でガラス微粒子堆積体17の中心Oがほぼ中央に位置するように配置される。クリーンエア23は、空気導入口21から反応容器19内へ導入され、ガラス微粒子堆積体17の両側R,Lを通り、合流して排気口25から排気される。   The reaction vessel 19 is arranged so that the center O of the glass particulate deposit 17 is located substantially at the center in a plan view shown in FIG. The clean air 23 is introduced into the reaction vessel 19 from the air introduction port 21, passes through both sides R and L of the glass particulate deposit 17, joins, and is exhausted from the exhaust port 25.

空気導入口21から排気口25までの間に一様な流れが形成されている場合、その中に平面視円形の物体、すなわちガラス微粒子堆積体17が配置されると、クリーンエア23は、ガラス微粒子堆積体の周囲に沿って流れることになる。クリーンエア23の流れが非常に遅い場合、浮遊ススの搬送作用が十分に得られず、その結果、反応容器19内の浮遊ススが増大してしまうこととなる。スス付けでは、上記したようなレーザを用いた制御などを行っている場合があるが、浮遊ススが増加すると、レーザが受光できず、安定したスス付けができない。   In the case where a uniform flow is formed between the air inlet 21 and the exhaust outlet 25, when a circular object in plan view, that is, the glass particulate deposit 17 is disposed therein, the clean air 23 is made of glass. It will flow along the periphery of the particulate deposit. When the flow of the clean air 23 is very slow, the floating soot transfer function cannot be sufficiently obtained, and as a result, the floating soot in the reaction vessel 19 increases. In sooting, control using a laser as described above may be performed. However, if floating soot increases, the laser cannot receive light and stable sooting cannot be performed.

このため、クリーンエア23の流れを速くする必要が生じる。流速を速めるためには、クリーンエアの導入・排出量を増やすのが簡単であるが、クリーンエアの導入・排出量を増やすには設備の大型化が必要になり、また速くしすぎると乱流などが発生して本来堆積すべきススの剥がれが生じたり、バーナの火炎を乱したりしてしまう。反応容器全体をコンパクトにして流速を上げる方法も考えられるが、熱源となるスス体やバーナ火炎に容器内壁を近づけすぎると、反応容器が劣化してしまうことがある。このため、設備能力を必要以上に大きくすることなく、また、反応容器を必要以上にスス体に近づけることなく、クリーンエアを含む気体の流速を速くすることが求められる。   For this reason, it is necessary to make the flow of the clean air 23 faster. In order to increase the flow velocity, it is easy to increase the amount of clean air introduced and discharged. However, to increase the amount of clean air introduced and discharged, it is necessary to increase the size of the equipment. May occur, causing the soot to peel off, and disturbing the burner flame. Although a method of increasing the flow rate by making the entire reaction container compact is conceivable, if the inner wall of the container is too close to a soot body or a burner flame as a heat source, the reaction container may be deteriorated. For this reason, it is required to increase the flow rate of the gas containing clean air without increasing the facility capacity more than necessary and without bringing the reaction vessel closer to the soot body than necessary.

そこで、本ガラス母材製造装置31では、余剰ススを効率的に排気口25へ搬送できるように構成したことを特徴としている。すなわち、反応容器内のガラス微粒子堆積体17の周囲を通過して排気口25に達する、排気口側の空間領域27におけるクリーンエア23を含む気体29の平均速度を特定の範囲に設定している。特に、排気口側のこの領域での流速を速くすることにより、排気口25に向かってスムースな流れができるので、効率よく余剰ススを排出することができる。   Therefore, the present glass base material manufacturing apparatus 31 is characterized in that it is configured so that surplus soot can be efficiently conveyed to the exhaust port 25. That is, the average velocity of the gas 29 including the clean air 23 in the space region 27 on the exhaust port side passing through the periphery of the glass particulate deposit 17 in the reaction vessel and reaching the exhaust port 25 is set to a specific range. . In particular, by increasing the flow velocity in this region on the exhaust port side, a smooth flow can be made toward the exhaust port 25, so that excess soot can be efficiently discharged.

具体的には、この領域27においてガラス微粒子堆積体17と反応容器19との距離を狭めることで、クリーンエア23を含む気体29の風速が空気導入口21でのクリーンエア23の供給時よりも上昇するようになされている。このように、バーナとは反対側の、加熱面からは最も遠い排気口側の壁面を接近させ、排気口側の一部の空間を適当な間隔に狭めることで、設備能力を必要以上に大きくせず、また反応容器を劣化させることなく、余剰ススを効率よく排出する。
反応容器19は、排出口側の形状が導入口側の形状と異なり、ガラス微粒子堆積体17の下流側直後から左右の内壁19a,19bが略45°の傾斜角度で接近するようにして狭められ、排気口25に至る。片側の領域27を代表例に述べれば、領域27は、中心Oと内壁19aの二つの点P,Qを通る二本の線分OP,OQと、内壁19aおよび表面15とに囲まれた範囲(図2中の斜線部分)となる。ここで、線分OQと仮想線CLとのなす角度θ1は12°程度、線分OPと仮想線CLとのなす角度θ2は52°程度となるようにしておくのが望ましい。また、内壁19aとガラス微粒子堆積体17の表面との距離は、最小(スス堆積終了時)で290mm程度になるように設定しておくのがよい。これ以上近づけると、内壁が劣化する可能性が高くなる。
Specifically, by reducing the distance between the glass particulate deposit 17 and the reaction vessel 19 in this region 27, the wind speed of the gas 29 including the clean air 23 is higher than when the clean air 23 is supplied at the air inlet 21. It is made to rise. In this way, by making the wall on the exhaust port side farthest from the heating surface opposite to the burner approach, and narrowing the space on the exhaust port side to an appropriate interval, the facility capacity is increased more than necessary. Without excess and without deteriorating the reaction vessel, the excess soot is discharged efficiently.
The shape of the reaction vessel 19 on the outlet side is different from the shape on the inlet side, and is narrowed so that the left and right inner walls 19a and 19b approach at an inclination angle of about 45 ° immediately after the downstream side of the glass particulate deposit 17. To the exhaust port 25. To describe the region 27 on one side as a representative example, the region 27 is a region surrounded by two line segments OP and OQ passing through two points P and Q of the center O and the inner wall 19a, and the inner wall 19a and the surface 15. (Hatched portion in FIG. 2). Here, it is desirable that the angle θ1 formed by the line segment OQ and the virtual line CL is about 12 °, and the angle θ2 formed by the line segment OP and the virtual line CL is about 52 °. The distance between the inner wall 19a and the surface of the glass fine particle deposit 17 is preferably set to be about 290 mm at the minimum (at the end of soot deposition). When closer than this, the possibility of deterioration of the inner wall increases.

この領域27が狭められることで、ガラス微粒子堆積体17の排気側の流路断面が小さくなり、風速が増す。つまり、空気導入口21からの風量を増やすことなく領域27での風速が増すようになされている。   By narrowing the region 27, the cross section of the flow path on the exhaust side of the glass particulate deposit 17 is reduced, and the wind speed is increased. That is, the wind speed in the region 27 is increased without increasing the air volume from the air inlet 21.

領域27は、ガラス微粒子堆積体17の堆積が進むにつれて外径が大きくなり、領域27の流路は次第に小さくなる方向に変化する。したがって、導入するクリーンエア流量が同じであれば、製造開始から終了までに流速は変化する。本構成では、領域27における製造開始から終了までのクリーンエア23を含む気体29の平均速度(∫v(t)dt/∫dt)が特定の範囲である0.88m/s以上とするように規定されている。この数値は実際のガラス母材製造装置の運用にて経験値として得られたもので、反応容器内温度、クリーンエア23を含む気体29の粘性、ガラス微粒子の質量等との因果関係により定まるものと推察される。なお、領域27における気体29の速度の上限は特に設けられないが、あまり速すぎると(2m/sを超えると)コスト面(設備容量)で不利になり、また、バーナ13の火炎が乱れる問題があるため、それほど大きくできない。   The outer diameter of the region 27 increases as the deposition of the glass particulate deposit 17 progresses, and the flow path of the region 27 changes in a direction of gradually decreasing. Therefore, if the flow rate of clean air to be introduced is the same, the flow rate changes from the start to the end of production. In this configuration, the average velocity (∫v (t) dt / ∫dt) of the gas 29 including the clean air 23 from the start to the end in the region 27 is set to a specific range of 0.88 m / s or more. It is prescribed. This numerical value is obtained as an empirical value in the actual operation of the glass base material manufacturing apparatus, and is determined by the causal relationship with the temperature in the reaction vessel, the viscosity of the gas 29 including the clean air 23, the mass of the glass fine particles, etc. It is guessed. In addition, although the upper limit of the velocity of the gas 29 in the region 27 is not particularly provided, if it is too fast (over 2 m / s), it is disadvantageous in terms of cost (equipment capacity), and the flame of the burner 13 is disturbed. Because there is, can not be so large.

次に、上記装置を用いたガラス微粒子堆積体の製造方法について説明する。
ガラス母材製造装置31では、回転する出発ロッド11に対向した複数本のバーナ13を均等間隔に配置し、このバーナ13を出発ロッド11と相対移動させる。そして、バーナ13で合成されるガラス微粒子を出発ロッド11の周囲に順次堆積させて行く。
その際、排気口25が設けられた高さ位置において、反応容器内のガラス微粒子堆積体17の中心位置より排気口25側の領域27での最も気体29の流速が速くなる位置における製造開始から終了までの気体29の平均速度を、0.88m/s以上に保ってスス付けを行う。
Next, the manufacturing method of the glass particulate deposit body using the said apparatus is demonstrated.
In the glass base material manufacturing apparatus 31, a plurality of burners 13 facing the rotating starting rod 11 are arranged at equal intervals, and the burner 13 is moved relative to the starting rod 11. Then, glass particles synthesized by the burner 13 are sequentially deposited around the starting rod 11.
At that time, at the height position where the exhaust port 25 is provided, from the start of production at a position where the flow velocity of the gas 29 is highest in the region 27 on the exhaust port 25 side from the center position of the glass particulate deposit 17 in the reaction vessel. Sooting is performed while maintaining the average velocity of the gas 29 until the end at 0.88 m / s or more.

この領域27での平均速度を規定することで、反応容器内に滞留する余剰ススが低減する。風量を減らすことによりコストを下げることができる(クリーンエア設備能力を下げられる)が、単純に風量を減らしただけでは余剰ススがうまく排気できない。本構成では、ガラス微粒子堆積体17の特に排気口25側の風速が重要であることを見出したことによりその実現が可能となっている。   By defining the average speed in this region 27, the excess soot staying in the reaction vessel is reduced. The cost can be reduced by reducing the air volume (the capacity of the clean air facility can be reduced), but the excess soot cannot be exhausted well by simply reducing the air volume. In this configuration, it is possible to realize this by finding that the wind speed of the glass particulate deposit 17 particularly on the exhaust port 25 side is important.

したがって、本実施の形態によるガラス微粒子堆積体17の製造方法によれば、MMD法でスス付けする際、反応容器内の特定の範囲を通過する気体29の平均速度を特定の範囲に設定することで余剰ススを効率的に排出でき、余剰ススを減らしつつ、安定にスス付けを行うことができる。   Therefore, according to the manufacturing method of the glass particulate deposit 17 according to the present embodiment, when sooting by the MMD method, the average velocity of the gas 29 passing through the specific range in the reaction vessel is set to the specific range. Therefore, surplus soot can be discharged efficiently, and soot can be stably added while reducing surplus soot.

図1に示したガラス母材製造装置31を用い、上記領域27におけるクリーンエアを含む気体の平均速度を変えてガラス微粒子の堆積を行った。
出発ロッドに直径40mm、長さ2100mmのコアガラスロッドを使用し、多バーナ多層付け法にて、ガラス原料(四塩化珪素)ガスを投入し、コアガラスロッドの外周にガラス微粒子を堆積させた。その際、最も流速が速くなる位置における気体の平均速度、初速・終速、およびその結果(製品が不良となったかどうか)を表1に示す。
Using the glass base material manufacturing apparatus 31 shown in FIG. 1, glass fine particles were deposited while changing the average velocity of the gas containing clean air in the region 27.
A core glass rod having a diameter of 40 mm and a length of 2100 mm was used as a starting rod, and a glass raw material (silicon tetrachloride) gas was introduced by a multi-burner multi-layering method to deposit glass fine particles on the outer periphery of the core glass rod. Table 1 shows the average gas velocity at the position where the flow velocity becomes the fastest, the initial velocity and the final velocity, and the results (whether the product is defective).

Figure 0005671850
Figure 0005671850

実施例1,2の条件では、浮遊ススの増加が認められず、安定したスス付けが行えた。
比較例1の条件では、浮遊ススにより反応容器中が見渡せなくなり、外径センサの動作不良により、成長速度、外径が変動し、製品が不良となった。
Under the conditions of Examples 1 and 2, no increase in floating soot was observed, and stable sooting could be performed.
Under the conditions of Comparative Example 1, the inside of the reaction vessel could not be looked over due to floating soot, and the growth rate and outer diameter fluctuated due to malfunction of the outer diameter sensor, resulting in a defective product.

なお、上記の実施の形態では、MMD法により多孔質ガラス母材を製造する方法を対象として説明したが、本発明のガラス微粒子堆積体の製造方法は、出発材の両端を把持部で把持して回転させながら、その長手方向に沿ってガラス微粒子合成用のバーナを往復移動させ、回転する出発材の外周面にガラス微粒子を堆積させ、多孔質ガラス母材を成長させていく、所謂OVD法によってガラス微粒子堆積体を製造する方法においても同様に採用することができる。   In the above embodiment, the method for producing a porous glass base material by the MMD method has been described. However, in the method for producing a glass fine particle deposit according to the present invention, both ends of the starting material are grasped by grasping portions. A so-called OVD method in which a porous glass base material is grown by reciprocating a burner for synthesizing glass fine particles along its longitudinal direction while rotating the glass fine particles to deposit glass fine particles on the outer peripheral surface of the rotating starting material. In the same manner, the method can be employed in the method for producing the glass fine particle deposit.

本発明は設備全体を必要以上に大きくすることなく、余剰ガラス微粒子を効率的に排気する場合に有効である。安定にスス付けを実施することにより特性の均一なガラス母材を製造でき、例えば光ファイバ母材としての利用が可能であり、本発明を利用した光ファイバにおいては品質安定性が向上する。また、その他の用途のガラス母材の製造方法として広範囲な利用可能性を有するものである。   The present invention is effective in efficiently exhausting excess glass fine particles without making the entire facility unnecessarily large. By carrying out sooting stably, a glass base material with uniform characteristics can be manufactured, and for example, it can be used as an optical fiber base material. In an optical fiber using the present invention, quality stability is improved. Further, it has a wide range of applicability as a method for producing a glass base material for other uses.

11 出発ロッド
13 ガラス微粒子合成用バーナ
15 表面
17 ガラス微粒子堆積体
19 反応容器
21 空気導入口
23 クリーンエア
25 排気口
27 領域
11 Starting rod 13 Burner 15 for glass fine particle synthesis Surface 17 Glass fine particle deposit 19 Reaction vessel 21 Air inlet 23 Clean air 25 Exhaust port 27 Area

Claims (1)

回転する出発ロッドに対向して複数本のガラス微粒子合成用バーナを配置し、
前記出発ロッドと前記ガラス微粒子合成用バーナとを該出発ロッドの軸方向に相対的に往復移動させ、
前記ガラス微粒子合成用バーナで合成されるガラス微粒子を前記出発ロッドの表面に順次堆積させるガラス微粒子堆積体の製造方法であって、
反応容器の前記ガラス微粒子合成用バーナ側の壁面に開口した空気導入口より該反応容器内にクリーンエアを流し、
前記クリーンエアを含む気体を前記反応容器の空気導入口と対向する壁面に開口した排気口から排気し、その際、前記排気口が設けられた高さ位置において、前記出発ロッドの中心位置から前記排気口側の空間における最も前記気体の流速が速くなる位置での製造開始から終了までの前記気体の平均速度を、0.88m/s以上2m/s未満とすることを特徴とするガラス微粒子堆積体の製造方法。
A plurality of glass fine particle synthesis burners are arranged facing the rotating starting rod,
Reciprocally moving the starting rod and the glass fine particle synthesis burner in the axial direction of the starting rod;
A method for producing a glass particulate deposit, wherein glass particulates synthesized by the glass particulate synthesis burner are sequentially deposited on the surface of the starting rod,
Clean air is allowed to flow into the reaction vessel from the air inlet opening in the wall surface of the reaction vessel on the glass fine particle synthesis burner side,
The gas containing the clean air is exhausted from an exhaust port opened on a wall surface facing the air inlet of the reaction vessel, and at that time, at a height position where the exhaust port is provided, the center position of the starting rod is The glass fine particle deposition characterized in that the average velocity of the gas from the start to the end of the production at the position where the flow velocity of the gas is highest in the space on the exhaust port side is 0.88 m / s or more and less than 2 m / s. Body manufacturing method.
JP2010145345A 2010-06-25 2010-06-25 Method for producing glass particulate deposit Active JP5671850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010145345A JP5671850B2 (en) 2010-06-25 2010-06-25 Method for producing glass particulate deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010145345A JP5671850B2 (en) 2010-06-25 2010-06-25 Method for producing glass particulate deposit

Publications (2)

Publication Number Publication Date
JP2012006799A JP2012006799A (en) 2012-01-12
JP5671850B2 true JP5671850B2 (en) 2015-02-18

Family

ID=45537799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010145345A Active JP5671850B2 (en) 2010-06-25 2010-06-25 Method for producing glass particulate deposit

Country Status (1)

Country Link
JP (1) JP5671850B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2706877T3 (en) 2014-11-13 2019-04-01 Gerresheimer Glas Gmbh Filter of machine particles for forming glass, plunger unit, blow head, blow head support and machine for forming glass adapted to said filter or comprising it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3521903B2 (en) * 2001-08-09 2004-04-26 住友電気工業株式会社 Method for producing porous glass base material
JP4379319B2 (en) * 2004-12-06 2009-12-09 住友電気工業株式会社 Manufacturing method of glass base material
JP5012042B2 (en) * 2007-01-25 2012-08-29 住友電気工業株式会社 Manufacturing method of glass base material

Also Published As

Publication number Publication date
JP2012006799A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JPH039047B2 (en)
EP1988062B1 (en) Device and method for manufacturing an optical preform
JP2018145065A (en) Method and apparatus for manufacturing glass fine particle deposit
JP6245648B2 (en) Optical fiber preform manufacturing method
CN108349780B (en) Method for manufacturing glass base material for optical fiber
JP5671850B2 (en) Method for producing glass particulate deposit
WO2003062159A1 (en) Method of manufacturing glass particulate sedimentary body, and method of manufacturing glass base material
US20030015004A1 (en) Apparatus for producing glass particles deposit
US7441417B2 (en) Outside vapor deposition apparatus for making optical fiber preform
JP4379319B2 (en) Manufacturing method of glass base material
JP4424232B2 (en) Method for producing porous glass base material
JP5012042B2 (en) Manufacturing method of glass base material
US20050199014A1 (en) Apparatus for producing glass particles deposit
JP2007210829A (en) Method for producing glass microparticle deposit and method for producing glass body
CN103992029A (en) Porous glass base material manufacturing burner and optical fiber porous glass base material manufacturing apparatus
CN111032587B (en) Method for producing glass microparticle-deposited body, method for producing glass base material, and glass microparticle-deposited body
KR102545711B1 (en) Apparatus and method for manufacturing porous glass preform
JP7170555B2 (en) Manufacturing method of porous glass base material for optical fiber
JP5342514B2 (en) Burner for glass fine particle synthesis and method for producing glass fine particle deposit
JP4530687B2 (en) Method for producing porous glass preform for optical fiber
JP5598872B2 (en) Optical fiber preform manufacturing method
JP2004269285A (en) Production method for fine glass particle deposit
JP2003119035A (en) Method of manufacturing porous glass preform
WO2022158421A1 (en) Device for manufacturing optical fiber preform and method for manufacturing optical fiber preform
US11370690B2 (en) Apparatus and method for manufacturing glass preforms for optical fibers

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5671850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250