JP5653555B1 - Two-component mixed ion sustained release mucosal preparation composition - Google Patents

Two-component mixed ion sustained release mucosal preparation composition Download PDF

Info

Publication number
JP5653555B1
JP5653555B1 JP2014113584A JP2014113584A JP5653555B1 JP 5653555 B1 JP5653555 B1 JP 5653555B1 JP 2014113584 A JP2014113584 A JP 2014113584A JP 2014113584 A JP2014113584 A JP 2014113584A JP 5653555 B1 JP5653555 B1 JP 5653555B1
Authority
JP
Japan
Prior art keywords
glass
release
ion sustained
ion
sustained release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014113584A
Other languages
Japanese (ja)
Other versions
JP2015227315A (en
Inventor
秀二 坂本
秀二 坂本
祐司 定金
祐司 定金
中塚 稔之
稔之 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shofu Inc
Original Assignee
Shofu Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shofu Inc filed Critical Shofu Inc
Priority to JP2014113584A priority Critical patent/JP5653555B1/en
Priority to EP15150487.5A priority patent/EP2949311B1/en
Priority to US14/593,103 priority patent/US11648184B2/en
Application granted granted Critical
Publication of JP5653555B1 publication Critical patent/JP5653555B1/en
Publication of JP2015227315A publication Critical patent/JP2015227315A/en
Priority to US16/059,446 priority patent/US11559471B2/en
Priority to US18/130,664 priority patent/US20230255857A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dental Preparations (AREA)

Abstract

【課題】歯科用粘膜調整材組成物にイオン徐放性ガラスを含有することによって形態修正時における切削感が良好であり、かつフッ化物イオンを含む各種イオンの徐放効果により残存歯質の強化と二次的な齲蝕の発生抑制、細菌・真菌の付着及び増殖抑制等の予防的機能を兼備した歯科用粘膜調整材組成物の提供。【解決手段】粉材と液材から成る二成分混和型イオン徐放性粘膜調整材組成物であって、(a)非架橋性(メタ)アクリレート系ポリマー(b)イオン徐放性ガラスを含む粉材成分と(c)可塑材(d)有機溶媒を含む液材成分とからなる構成とする二成分混和型イオン徐放性粘膜調整材組成物。【選択図】なしDisclosed is a dental mucosa-adjusting material composition containing an ion sustained-release glass, which has a good cutting feeling upon form modification and strengthens the remaining tooth by the effect of sustained release of various ions including fluoride ions. And provision of a dental mucosal preparation composition having preventive functions such as suppression of secondary caries, bacterial and fungal adhesion, and growth. A two-component mixed ionic sustained release mucosal preparation composition comprising a powder material and a liquid material, comprising (a) a non-crosslinkable (meth) acrylate polymer (b) an ionic sustained release glass. A two-component mixed ion sustained release mucosal preparation composition comprising a powder material component and (c) a plastic material (d) a liquid material component containing an organic solvent. [Selection figure] None

Description

本発明は、二成分から構成される歯科用粘膜調整材組成物に関するものである。より具体的には、本発明は、歯科用粘膜調整材組成物にイオン徐放性ガラスを含有することによって形態修正時における切削感が良好であり、かつフッ化物イオンを含む各種イオンの徐放効果により残存歯質の強化と二次的な齲蝕の発生抑制、細菌・真菌の付着及び増殖抑制等の予防的機能を兼備した歯科用粘膜調整材組成物に関する。 The present invention relates to a dental mucosa preparation material composition comprising two components. More specifically, the present invention provides a dental mucosal preparation composition containing an ion sustained-release glass that has a good cutting feeling during shape correction, and also provides a sustained release of various ions including fluoride ions. The present invention relates to a composition for preparing a dental mucous membrane that has preventive functions such as strengthening of residual tooth and suppressing the occurrence of secondary caries, bacterial and fungal adhesion, and growth inhibition.

歯牙を喪失した患者に装着する補綴装置である全部床義歯及び部分床義歯は、歯牙に相当する人工歯と、歯肉に相当する義歯床から構成される。
義歯は患者の粘膜面に合わせて製作されるため、使用開始時においては患者の粘膜に良く適合し、通常であれば何ら問題なく咀嚼・嚥下・発音などの機能回復効果を発揮する。しかし長期間使用を続けると、患者の顎堤が吸収する等により、義歯床との適合が悪くなることがある。
粘膜面と義歯床の適合が悪くなった場合、義歯が局所的に強く当たることにより、口腔粘膜の発赤、及び腫脹が発生することがある。そのような症例においては、義歯床を新しく作り変える必要がある。その場合、一般的には、義歯床に粘膜調整材と呼ばれる柔らかい材料を塗布した状態で使用することにより、患者の負担を軽減したまま粘膜面の発赤、及び腫脹を回復する手法が用いられる。さらにその後、粘膜調整材を義歯床用裏装材と呼ばれる硬化性材料に置換することにより、より患者の粘膜面に適合した義歯床に作り変える、裏装または裏打ちという手法が用いられる。
このような粘膜調整材は、非架橋性(メタ)アクリレート系ポリマーを主成分とする粉材と、可塑材及びエタノール等の有機溶媒を主成分とする液材から構成される。この粉材と液材を混合し、流動性があるうちに義歯床の粘膜面に盛り上げ、流動性が低下した頃に口腔内に装着させ一定時間保持した後、義歯を口腔外に取り出し、余剰分のトリミングする方法が一般に行われている。
従来の歯科用粘膜調整材組成物は、非架橋性(メタ)アクリレート系ポリマーと可塑材が主成分であるために、粉材と液材が非常に馴染みにくく操作性が悪いばかりでなく、混合・膨潤した状態においても非常に柔らかい性状を維持しており、義歯床に対する塗布性、及び形態修正時における切削性に課題があることが知られている。例えば、粘膜調整時に形態修正をする際、切削性が悪いと研削材の回転部に歯科用粘膜調整材組成物の一部が絡みつき作業性が悪いという課題が認められる。さらに従来の粘膜調整材は、硬化性でないために粘膜面にプラーク等の汚れが付着しやすく、また細菌や真菌等が増殖することから、衛生面においても大きな課題を有していた。
A complete denture and a partial denture, which are prosthetic devices attached to a patient who has lost a tooth, are composed of an artificial tooth corresponding to a tooth and a denture base corresponding to a gingiva.
Since the denture is manufactured according to the mucosal surface of the patient, it is well adapted to the mucous membrane of the patient at the start of use, and normally exhibits functional recovery effects such as mastication, swallowing, and pronunciation without any problems. However, if it is used for a long time, the patient's jaw ridge may absorb, etc., and the fit with the denture base may be deteriorated.
When the fit between the mucosal surface and the denture base deteriorates, redness and swelling of the oral mucosa may occur due to the strong contact of the denture locally. In such cases, it is necessary to redesign the denture base. In that case, generally, a technique is used in which reddening and swelling of the mucosal surface are reduced while reducing the burden on the patient by using a denture base coated with a soft material called a mucosa adjusting material. Further, a method of lining or lining is used in which the mucous membrane adjusting material is replaced with a curable material called a denture base lining material to make a denture base more suitable for the mucosal surface of the patient.
Such a mucous membrane adjusting material is comprised from the powder material which has a non-crosslinkable (meth) acrylate type polymer as a main component, and the liquid material which has organic solvents, such as a plasticizer and ethanol, as a main component. This powder material and liquid material are mixed, and while it is fluid, it is raised on the mucosal surface of the denture base, and when the fluidity decreases, it is placed in the oral cavity and held for a certain period of time. A method of trimming the minute is generally performed.
Conventional dental mucosal preparation composition is mainly composed of non-crosslinkable (meth) acrylate polymer and plastic material, so powder material and liquid material are not very familiar and operability is poor and mixing -It is known that it maintains a very soft property even in a swollen state, and has problems in applicability to a denture base and machinability at the time of form correction. For example, when modifying the form during mucosal adjustment, there is a problem that if the cutting property is poor, a part of the dental mucosa adjusting material composition is entangled with the rotating part of the abrasive and the workability is poor. Furthermore, since the conventional mucosa-adjusting materials are not curable, dirt such as plaque tends to adhere to the mucosal surface, and bacteria and fungi proliferate.

さらに従来から部分床義歯の場合、鈎歯と呼ばれる残存歯にクラスプを掛けて義歯を固定するが、その鈎歯が清掃しにくく、また義歯の存在により不潔部位となるために、う蝕が発症しやすいことも課題であった。
以上のように、粘膜調整材はその使用方法及び口腔内の過酷な環境において多くの課題を有している。これらの課題を改善する従来技術として、粘膜調整材または粘膜調整材を含む義歯全体をコーティングする材料の改善方法が提案されている。例えば、汚れが付着しにくい成分、切削性が向上する成分、またはフッ素等のイオンを徐放する成分を粘膜調整材または前記コーティング材料に配合する等の発明がこれに該当する。
Furthermore, in the case of partial dentures in the past, the denture is fixed by applying a clasp to the remaining tooth called the tooth decay, but the tooth decay is difficult to clean, and the presence of the denture makes it an unclean part, causing caries. It was also an issue to be easy to do.
As described above, the mucosa-adjusting material has many problems in its usage and severe environment in the oral cavity. As a conventional technique for improving these problems, there has been proposed a method for improving a mucosa-adjusting material or a material for coating the entire denture including the mucosa-adjusting material. For example, an invention in which a component that hardly adheres to dirt, a component that improves machinability, or a component that gradually releases ions such as fluorine is blended in the mucosa adjusting material or the coating material corresponds to this.

特許文献1にはフルオロアルキル基を両末端に有する鎖状化合物、重合性単量体、重合開始材を含むことにより、プラーク等の付着を抑制することを特徴とする歯面または歯科用補綴物へのコーティング用重合性組成物が開示されている。しかし、この特許においては、歯科用組成物にフルオロアルキル基を両末端に有する鎖状化合物を配合することにより、プラークの付着は抑制できるものの、該鎖状化合物は有機成分であり材料の硬さは大きく向上しないため、切削性は不十分であり、依然として作業性は悪いという課題が認められていた。また粉材と液材の馴染みは悪くなるため操作性は低下し、混和物を義歯床に塗布する際の塗布性も低下するというデメリットも生じてしまう。さらに細菌や真菌等が増殖することについては改善されておらず、衛生面においても大きな課題を有していた。 Patent Document 1 discloses a tooth surface or dental prosthesis characterized by containing a chain compound having a fluoroalkyl group at both ends, a polymerizable monomer, and a polymerization initiator to suppress adhesion of plaque and the like. A polymerizable composition for coating is disclosed. However, in this patent, although the adhesion of plaque can be suppressed by blending a dental composition with a chain compound having fluoroalkyl groups at both ends, the chain compound is an organic component and the hardness of the material. However, there was a problem that the machinability was insufficient and the workability was still poor. In addition, since the familiarity between the powder material and the liquid material is deteriorated, the operability is lowered, and the applicability when the mixture is applied to the denture base is also reduced. Furthermore, the growth of bacteria, fungi and the like has not been improved, and there has been a major problem in terms of hygiene.

特許文献2にはオルガノポリシロキサン、オルガノハイドロジェンポリシロキサン、シリコーン樹脂系充填材、ヒドロシリル化触媒を含むことにより、切削性が向上することを特徴とする歯科用粘膜調整材が開示されている。しかし、この特許においては、歯科用粘膜調整材にシリコーン樹脂系充填材を配合することにより、切削性を向上しているものの、該シリコーン系樹脂充填材は有機成分であり材料の硬さは大きく向上しないため、その効果は不十分であり、依然として作業性は悪いという課題が認められていた。また粉材と液材の馴染みは悪くなるため操作性は低下し、混和物を義歯床に塗布する際の塗布性も低下するというデメリットも生じてしまう。さらに細菌や真菌等が増殖することについては改善されておらず、衛生面においても大きな課題を有していた。 Patent Document 2 discloses a dental mucosa-adjusting material characterized in that cutting performance is improved by including an organopolysiloxane, an organohydrogenpolysiloxane, a silicone resin filler, and a hydrosilylation catalyst. However, in this patent, although the machinability is improved by adding a silicone resin filler to the dental mucosa adjusting material, the silicone resin filler is an organic component and the hardness of the material is large. Since it did not improve, the effect was inadequate, and the subject that workability | operativity was still bad was recognized. In addition, since the familiarity between the powder material and the liquid material is deteriorated, the operability is lowered, and the applicability when the mixture is applied to the denture base is also reduced. Furthermore, the growth of bacteria, fungi and the like has not been improved, and there has been a major problem in terms of hygiene.

特許文献3には、フッ素含有環式ホスファゼン化合物、または該化合物を繰り返し単位とするポリマー及びコポリマーを配合することによりフッ素徐放性を有する、部分床義歯または裏装材に利用可能な歯科用レジン組成物が開示されている。しかし、この特許においては、歯科用組成物にホスファゼン化合物を配合することにより、フッ素徐放性を付与させる特徴があるものの、該フォスファゼン化合物は有機成分であり、切削性及び表面硬さについては従来技術と変わらず、依然として作業性は悪いという課題が認められていた。また粉材と液材の馴染みは悪くなるため操作性は低下し、混和物を義歯床に塗布する際の塗布性も低下するというデメリットも生じてしまう。さらに細菌や真菌等が増殖することについては改善されておらず、衛生面においても大きな課題を有していた。
Patent Document 3 discloses a dental resin that can be used for a partial denture or a lining material having a fluorine sustained release property by blending a fluorine-containing cyclic phosphazene compound, or a polymer and copolymer having the compound as a repeating unit. A composition is disclosed. However, in this patent, the phosphazene compound is an organic component, although it has a feature of imparting a sustained release of fluorine by blending a phosphazene compound into a dental composition. The same problem as technology was still recognized that workability was still poor. In addition, since the familiarity between the powder material and the liquid material is deteriorated, the operability is lowered, and the applicability when the mixture is applied to the denture base is also reduced. Furthermore, the growth of bacteria, fungi and the like has not been improved, and there has been a major problem in terms of hygiene.

特許第4673310Patent No. 4673310 特許第4231949Patent No. 4231949 特許第3452613Patent No.3452613

そのため、粉材と液材を混合する際の馴染みが良好であり、混合・膨潤後において流動性が無くなった混和物を義歯床に塗布する作業及び、形態修正時の切削感が良好であり、さらに細菌や真菌等の繁殖を抑制し、かつフッ化物イオンを含む各種イオンの徐放性を有する予防的機能を兼備した歯科用粘膜調整材組成物が望まれていた。そこで本発明の目的は、粉材と液材の馴染み、塗布性及び切削性に優れ、さらに部分床義歯において不潔部位になりやすい鈎歯の脱灰を抑制できるフッ化物イオンを含む各種イオンのイオン徐放性を有した歯科用粘膜調整材組成物を提供することにある。 Therefore, the familiarity when mixing the powder material and the liquid material is good, the work of applying the mixture lost fluidity after mixing and swelling to the denture base, and the cutting feeling at the time of form correction is good, Furthermore, there has been a demand for a dental mucosa-adjusting material composition that has a preventive function that suppresses the growth of bacteria, fungi, and the like and has a sustained release of various ions including fluoride ions. Therefore, the object of the present invention is to improve the compatibility of powder and liquid materials, excellent coating properties and cutting properties, and ions of various ions including fluoride ions that can suppress the decalcification of tooth decay that tends to be unclean sites in partial dentures. An object of the present invention is to provide a dental mucosa preparation material composition having sustained release properties.

本発明者らは、上記課題を達成するために鋭意研究した結果、粘膜調整材の粉材に非架橋性(メタ)アクリレート系ポリマー、イオン徐放性ガラスを配合し、また液材に可塑材、有機溶媒を含む二成分混和型イオン徐放性粘膜調整材組成物を提供することにより、粘膜調整材に適した特性を発現させ、この課題を解決するに至った。本発明は上記知見に基づくものである。すなわち、本発明者らは本発明において以下の発明を提供する。
具体的には、
粉材と液材から成る二成分混和型イオン徐放性粘膜調整材組成物であって、
(a)非架橋性(メタ)アクリレート系ポリマー、
(b)イオン徐放性ガラスを含む粉材成分と
(c)可塑材、
(d)有機溶媒を含む液材成分とから構成されることを特徴とする二成分混和型イオン徐放性粘膜調整材組成物である。
また、前記二成分混和型イオン徐放性粘膜調整材組成物に粉材成分として(e)充填材を含んでいることを特徴とする二成分混和型イオン徐放性粘膜調整材組成物である。
また、(b)イオン徐放性ガラスが少なくともフッ化物イオンを徐放することを特徴とする
二成分混和型イオン徐放性粘膜調整材組成物である。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have blended a non-crosslinkable (meth) acrylate polymer and an ion sustained-release glass into the powder material of the mucosa-adjusting material, and a plastic material as the liquid material By providing a two-component mixed ion sustained-release mucosal preparation composition containing an organic solvent, the present inventors have developed characteristics suitable for the mucosal preparation and have solved this problem. The present invention is based on the above findings. That is, the present inventors provide the following inventions in the present invention.
In particular,
A two-component mixed ion sustained-release mucosal preparation composition comprising a powder material and a liquid material,
(A) non-crosslinkable (meth) acrylate polymer,
(B) a powder material component including ion sustained-release glass and (c) a plastic material,
(D) A two-component mixed ion sustained-release mucosal preparation composition comprising a liquid material component containing an organic solvent.
In addition, the two-component mixed ion sustained-release mucosal preparation material composition includes (e) a filler as a powder material component. .
Further, (b) a two-component mixed ion sustained-release mucosal preparation composition characterized in that the ion sustained-release glass at least releases fluoride ions.

また、(b)イオン徐放性ガラスがフッ化物イオンを徐放し、更に2〜4価のイオン及びホウ酸イオンのうち一種類以上のイオンを徐放するイオン徐放性ガラスであることが好ましい。
また、(b)イオン徐放性ガラスがフッ化物イオンを徐放し、さらにストロンチウムイオン、アルミニウムイオン及びホウ酸イオンの内から一種類以上のイオンを徐放するイオン徐放性ガラスであることが好ましい。さらに、少なくともフッ化物イオン、ストロンチウムイオン及びホウ酸イオンを徐放することが好ましい。
In addition, (b) ion sustained-release glass is preferably an ion sustained-release glass that releases fluoride ions, and further releases one or more kinds of ions among divalent to tetravalent ions and borate ions. .
Further, (b) the ion sustained release glass is preferably an ion sustained release glass that releases fluoride ions, and further releases one or more kinds of ions from strontium ions, aluminum ions, and borate ions. . Furthermore, it is preferable to gradually release at least fluoride ions, strontium ions, and borate ions.

上記の本発明により以下の諸効果がもたらされる。本発明の二成分混和型イオン徐放性粘膜調整材組成物は、非架橋性(メタ)アクリレート系ポリマー及びイオン徐放性ガラスを含む粉材と、可塑材及び有機溶媒を含む液材から構成することによって、混和時に粉材と液材の馴染みが良好で、また混和物を義歯床に塗布することが容易であり、さらに材料が適度に硬くなるために形態修正時における優れた切削性を発現させることができる。そして良好な切削性を有することから、材料表面にプラーク等の汚れがつきにくく、細菌・真菌等の増殖が抑制されるため、審美的・衛生的にも優れた義歯を提供できる。さらにイオン徐放性ガラスを含有することにより、フッ化物イオンや他のイオン種が持続的に徐放するだけでなく、各種イオンを外部から取り込んで再度徐放することができるリチャージャブル粘膜調整材組成物であり、特に部分床義歯において不潔部位になりやすい鈎歯の脱灰抑制に加えて、周辺部位においても歯質強化、二次齲蝕抑制、脱灰抑制、再石灰化、細菌の活性抑制、歯周病の発症等にも影響を与えるなど口腔内環境の健全化に対して優れた効果を発現することも期待できる。 The following effects are brought about by the present invention described above. The two-component mixed ion sustained-release mucosal preparation composition of the present invention comprises a powder material containing a non-crosslinkable (meth) acrylate polymer and an ion sustained-release glass, and a liquid material containing a plasticizer and an organic solvent. By doing so, the familiarity of the powder and liquid materials during mixing is good, the mixture is easy to apply to the denture base, and since the material is reasonably hard, it has excellent machinability at the time of form correction Can be expressed. And since it has good machinability, it is difficult for dirt such as plaque to adhere to the surface of the material and the growth of bacteria, fungi and the like is suppressed, so that it is possible to provide a denture excellent in aesthetic and hygiene. Furthermore, by containing an ion sustained release glass, not only the sustained release of fluoride ions and other ionic species, but also a rechargeable mucosa conditioning material composition that can take various ions from the outside and release them again. In addition to dental caries demineralization that tends to be unclean, especially in partial dentures, in addition to dentin strengthening, secondary caries inhibition, demineralization inhibition, remineralization, bacterial activity inhibition in the surrounding area, It can also be expected to exert excellent effects on the health of the oral environment, such as affecting the onset of periodontal disease.

以下に本発明を詳細に説明する。
本発明の二成分混和型イオン徐放性粘膜調整材組成物は、
(a)非架橋性(メタ)アクリレート系ポリマー、
(b)イオン徐放性ガラスを含む粉材成分と
(c)可塑材、
(d)有機溶媒を含む液材成分とから構成されていることを特徴とする。
The present invention is described in detail below.
The two-component mixed ion sustained release mucosal preparation composition of the present invention is
(A) non-crosslinkable (meth) acrylate polymer,
(B) a powder material component including ion sustained-release glass and (c) a plastic material,
(D) It is comprised from the liquid material component containing an organic solvent, It is characterized by the above-mentioned.

本発明の二成分混和型イオン徐放性粘膜調整材組成物に用いることができる(a)非架橋性(メタ)アクリレート系ポリマーは単官能性(メタ)アクリレート系重合性単量体により膨潤するものであれば特に限定されず、単官能性(メタ)アクリレート系重合性単量体を単独に重合させたポリマーや数種類の単官能性(メタ)アクリレート系重合性単量体を共重合させたポリマー、さらに単官能性(メタ)アクリレート系重合性単量体と他の単官能性重合性単量体と共に共重合させたポリマー等が何等制限なく用いることができる。それらの非架橋性(メタ)アクリレート系ポリマーを具体的に例示するとポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリプロピル(メタ)アクリレート、ポリイソプロピル(メタ)アクリレート、ポリイソブチル(メタ)アクリレート、ポリブチル(メタ)アクリレート等の単独重合ポリマーやメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート等の中から二種類以上組み合わせた共重合コポリマー等が挙げられるが、これらに限定されるものではない。これらの非架橋性(メタ)アクリレート系ポリマーは単独だけでなく、複数を組み合わせて用いることができる。
これらの非架橋性(メタ)アクリレート系ポリマーの中でもポリメチルメタクリレート、ポリエチルメタクリレート、メチルメタクリレートとエチルメタクリレートの共重合コポリマーを用いることが好ましい。
The (a) non-crosslinkable (meth) acrylate polymer that can be used in the two-component mixed ion sustained-release mucosal preparation composition of the present invention is swollen by a monofunctional (meth) acrylate polymerizable monomer. If it is a thing, it will not specifically limit, The polymer which polymerized the monofunctional (meth) acrylate type | system | group polymerizable monomer independently and several types of monofunctional (meth) acrylate type | system | group polymerizable monomers were copolymerized A polymer, a polymer copolymerized with a monofunctional (meth) acrylate polymerizable monomer and another monofunctional polymerizable monomer, and the like can be used without any limitation. Specific examples of these non-crosslinkable (meth) acrylate polymers include polymethyl (meth) acrylate, polyethyl (meth) acrylate, polypropyl (meth) acrylate, polyisopropyl (meth) acrylate, polyisobutyl (meth) acrylate, Homopolymerized polymers such as polybutyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl A copolymer copolymer obtained by combining two or more kinds of (meth) acrylates and the like may be mentioned, but is not limited thereto. These non-crosslinkable (meth) acrylate polymers can be used not only alone but also in combination.
Among these non-crosslinkable (meth) acrylate polymers, it is preferable to use polymethyl methacrylate, polyethyl methacrylate, and a copolymer copolymer of methyl methacrylate and ethyl methacrylate.

これら非架橋性(メタ)アクリレート系ポリマーの重合方法については何等制限はなく、乳化重合、懸濁重合等のいずれの重合方法で製造されたものであっても何等問題なく用いることができる。これらの非架橋性(メタ)アクリレート系ポリマーの形状は球状、破砕状、中空状のいずれの形状であっても何等制限なく用いることができるが、好ましくは球状である。非架橋性(メタ)アクリレート系ポリマーの平均粒子径(50%)は1〜300μmの範囲であれば何等制限なく用いることができるが、好ましくは1〜200μmの範囲、さらに好ましくは5〜150μmの範囲である。また、非架橋性(メタ)アクリレート系ポリマーの重量平均分子量は1万〜200万の範囲であれば何等制限なく用いることができるが、好ましくは5万〜150万の範囲であり、さらに好ましくは10万〜150万である。 There is no restriction | limiting about the polymerization method of these non-crosslinkable (meth) acrylate type polymers, Even if it manufactured by any polymerization methods, such as emulsion polymerization and suspension polymerization, it can be used without any problem. The shape of these non-crosslinkable (meth) acrylate polymers can be used without any limitation as long as it is spherical, crushed or hollow, but is preferably spherical. The average particle diameter (50%) of the non-crosslinkable (meth) acrylate polymer can be used without any limitation as long as it is in the range of 1 to 300 μm, preferably in the range of 1 to 200 μm, more preferably in the range of 5 to 150 μm. It is a range. The weight average molecular weight of the non-crosslinkable (meth) acrylate polymer can be used without any limitation as long as it is in the range of 10,000 to 2,000,000, preferably in the range of 50,000 to 1,500,000, more preferably 100,000 to 1.5 million.

また、有機充填材、無機充填材、有機・無機複合充填材、有機・無機化合物、有機・無機顔料等の表面を前記非架橋性(メタ)アクリレート系ポリマーで被覆する等の表面改質処理や複合化処理等を行う等の二次的な加工を施したものについても、何等制限なく用いることができる。 In addition, surface modification treatment such as coating the surface of an organic filler, an inorganic filler, an organic / inorganic composite filler, an organic / inorganic compound, an organic / inorganic pigment with the non-crosslinkable (meth) acrylate polymer, What performed secondary processing, such as performing a compounding process, can also be used without any limitation.

本発明の二成分混和型イオン徐放性粘膜調整材組成物における非架橋性(メタ)アクリレート系ポリマーの含有量は10〜80重量%の範囲であれば何等制限なく用いることができるが、好ましくは20〜80重量%、さらに好ましくは30〜70重量%である。
非架橋性(メタ)アクリレート系ポリマーの含有量が10重量%未満の場合は可塑材が過剰となり、弾性が維持できなくなるため、操作性及び粘膜調整能が低下する等の問題がある。一方、80重量%を越える場合は、非架橋性(メタ)アクリレート系ポリマーが過剰となり、混合・膨潤した材料が硬すぎて、操作性が低下する等の問題がある。
本発明の二成分混和型イオン徐放性粘膜調整材組成物はイオン徐放性ガラスを含み、そのガラスからガラス組成に基因したイオンが持続的に徐放することを特徴とする。
The content of the non-crosslinkable (meth) acrylate polymer in the two-component mixed ion sustained-release mucosal preparation composition of the present invention can be used without any limitation as long as it is in the range of 10 to 80% by weight. Is 20 to 80% by weight, more preferably 30 to 70% by weight.
When the content of the non-crosslinkable (meth) acrylate polymer is less than 10% by weight, the plasticizer becomes excessive and elasticity cannot be maintained. On the other hand, when it exceeds 80% by weight, the non-crosslinkable (meth) acrylate-based polymer becomes excessive, and the mixed and swollen material is too hard, resulting in a decrease in operability.
The two-component mixed ion sustained-release mucosa preparation material composition of the present invention contains an ion sustained-release glass, and ions based on the glass composition are sustainedly released from the glass.

本発明に用いるイオン徐放性ガラスはガラス骨格を形成する1種類以上のガラス骨格形成元素とガラス骨格を修飾する1種類以上のガラス修飾元素を含んだガラスであれば何等制限なく用いることができる。また、本発明においてはガラス組成によってガラス骨格形成元素又はガラス修飾元素になりうる元素、いわゆるガラス両性元素はガラス骨格形成元素の範疇として含めるものである。イオン徐放性ガラスに含まれるガラス骨格形成元素を具体的に例示するとシリカ、アルミニウム、ボロン、リン等が挙げられるが、単独だけでなく複数を組み合わせて用いることができる。また、ガラス修飾元素を具体的に例示するとフッ素、臭素、ヨウ素等のハロゲン類元素、ナトリウム、リチウム等のアルカリ金属類元素、カルシウム、ストロンチウム等のアルカリ土類金属類元素等が挙げられるが、単独だけでなく複数を組み合わせて用いることができる。これらの中でもガラス骨格形成元素としてシリカ、アルミニウム、ボロンを含み、且つガラス修飾元素としてフッ素、ナトリウム、ストロンチウムを含むことが好ましく、具体的にはストロンチウム、ナトリウムを含んだシリカガラス、フルオロアルミノシリケートガラス、フルオロボロシリケートガラス、フルオロアルミノボロシリケートガラス等が挙げられる。さらに、フッ化物イオン、ストロンチウムイオン、アルミニウムイオン、ホウ酸イオンを徐放する観点から、より好ましくはナトリウム、ストロンチウムを含んだフルオロアルミノボロシリケートガラスであり、そのガラス組成範囲はSiO2 15〜35質量%、Al2O3 15〜30質量%、B2O3 5〜20質量%、SrO 20〜45質量%、F 5〜15質量%、Na2O 0〜10質量%となる。このガラス組成は元素分析、ラマンスペクトルおよび蛍光X線分析等の機器分析を用いることにより確認することができるが、いずれかの分析方法による実測値がこれらの組成範囲に合致していれ何等問題はない。 The ion sustained-release glass used in the present invention can be used without any limitation as long as it contains one or more glass skeleton-forming elements that form a glass skeleton and one or more glass-modifying elements that modify the glass skeleton. . In the present invention, an element that can be a glass skeleton forming element or a glass modifying element depending on the glass composition, so-called glass amphoteric element, is included as a category of the glass skeleton forming element. Specific examples of the glass skeleton-forming elements contained in the sustained-release glass include silica, aluminum, boron, phosphorus and the like, but they can be used alone or in combination. Specific examples of glass modifying elements include halogen elements such as fluorine, bromine and iodine, alkali metal elements such as sodium and lithium, alkaline earth metal elements such as calcium and strontium, etc. In addition to the above, a plurality can be used in combination. Among these, it is preferable to include silica, aluminum, and boron as glass skeleton forming elements, and fluorine, sodium, and strontium as glass modifying elements. Specifically, silica glass including strontium and sodium, fluoroaluminosilicate glass, Examples thereof include fluoroborosilicate glass and fluoroaluminoborosilicate glass. Further, from the viewpoint of sustained release of fluoride ions, strontium ions, aluminum ions, and borate ions, more preferred is fluoroaluminoborosilicate glass containing sodium and strontium, and the glass composition range is SiO2 15-35 mass%. Al2O3 15-30% by mass, B2O3 5-20% by mass, SrO 20-45% by mass, F 5-15% by mass, Na2O 0-10% by mass. This glass composition can be confirmed by using instrumental analysis such as elemental analysis, Raman spectrum, and fluorescent X-ray analysis. However, if the measured values by any analytical method match these composition ranges, there is no problem. Absent.

これらのガラスの製造方法においては特に制限はなく、溶融法あるいはゾルーゲル法等の製造方法で製造することができる。その中でも溶融炉を用いた溶融法で製造する方法が原料の選択も含めたガラス組成の設計のし易さから好ましい。
本発明に用いるイオン徐放性ガラスは非晶質構造であるが、一部結晶質構造を含んでいても何等問題はなく、さらにそれらの非晶質構造を有するガラスと結晶構造を有するガラスの混合物であっても何等問題はない。ガラス構造が非晶質であるか否かの判断はX線回折分析や透過型電子顕微鏡等の分析機器を用いて行うことができる。その中でも本発明に用いるイオン徐放性ガラスは外部環境におけるイオン濃度との平衡関係により各種イオンが徐放することから、均質な構造である非晶質構造であることが好ましい。
There is no restriction | limiting in particular in the manufacturing method of these glass, It can manufacture by manufacturing methods, such as a melting method or a sol-gel method. Among these, a method of producing by a melting method using a melting furnace is preferable from the viewpoint of easiness of designing a glass composition including selection of raw materials.
Although the ion sustained-release glass used in the present invention has an amorphous structure, there is no problem even if it includes a part of a crystalline structure. Further, the glass having the amorphous structure and the glass having the crystalline structure are not problematic. There is no problem even if it is a mixture. Whether the glass structure is amorphous or not can be determined using an analytical instrument such as an X-ray diffraction analysis or a transmission electron microscope. Among them, the ion sustained-release glass used in the present invention preferably has an amorphous structure having a homogeneous structure because various ions are gradually released by an equilibrium relationship with the ion concentration in the external environment.

本発明に用いるイオン徐放性ガラスからの各種イオンの徐放はガラスの粒子径によって影響を受けるため湿式又は/及び乾式の粉砕、分級、篩い分け等の方法により粒子径を制御する必要がある。そのため本発明に用いるイオン徐放性ガラスの粒子径(50%)は0.01〜100μmの範囲であれば特に制限はないものの、好ましくは0.01〜50μmの範囲、さらに好ましくは0.1〜5μmの範囲である。また、ガラスの形状は球状、板状、破砕状、鱗片状等の任意の形状でよく、特に何等制限はないが、好ましくは球状あるいは破砕状である。 Since the sustained release of various ions from the ion sustained-release glass used in the present invention is affected by the particle size of the glass, it is necessary to control the particle size by methods such as wet or / and dry pulverization, classification, and sieving. . Therefore, the particle size (50%) of the ion sustained-release glass used in the present invention is not particularly limited as long as it is in the range of 0.01 to 100 μm, but is preferably in the range of 0.01 to 50 μm, more preferably 0.1. It is in the range of ˜5 μm. The shape of the glass may be any shape such as a spherical shape, a plate shape, a crushed shape, and a scale shape, and is not particularly limited, but is preferably a spherical shape or a crushed shape.

さらにイオン徐放性ガラスからのイオン徐放性を高めるために、ガラス表面を表面処理することにより機能化してイオン徐放性を向上させることが好ましい態様である。表面処理に用いる表面処理材を具体的に例示すると界面活性剤、脂肪酸、有機酸、無機酸、モノマー、ポリマー、各種カップリング材、シラン化合物、金属アルコキシド化合物及びその部分縮合物等が挙げられる。好ましくは酸性ポリマー及びシラン化合物を表面処理材として用いることである。 Furthermore, in order to enhance the sustained release of ions from the sustained-release glass, it is preferable that the surface of the glass be functionalized to improve the sustained release of ions. Specific examples of the surface treatment material used for the surface treatment include surfactants, fatty acids, organic acids, inorganic acids, monomers, polymers, various coupling materials, silane compounds, metal alkoxide compounds and partial condensates thereof. Preferably, an acidic polymer and a silane compound are used as the surface treatment material.

この酸性ポリマー及びシラン化合物を表面処理材として用いてイオン徐放性ガラスを表面処理する製造方法、具体的にはシラン化合物によりイオン徐放性ガラス表面を被覆した後に、酸性ポリマーにより表面処理する方法を以下に例示する。

粉砕等によって所望の平均粒径に微粉砕されたイオン徐放性ガラスを含有する水性分散体中に、一般式(I)
Method for surface treatment of ion sustained release glass using this acidic polymer and silane compound as surface treatment material, specifically, method of surface treatment with acid polymer after coating ion sustained release glass surface with silane compound Is exemplified below.

In an aqueous dispersion containing an ion sustained-release glass finely pulverized to a desired average particle size by pulverization or the like, a general formula (I)

Figure 0005653555
(式中、ZはRO-、Xはハロゲン、YはOH-、Rは炭素数が8以下の有機基、n、m、Lは0から4の整数で、n+m+L=4である)で表されるシラン化合物を混合し、これを系中で加水分解または部分加水分解してシラノール化合物を経て、次いでこれを縮合させて、イオン徐放性ガラス表面を被覆する。
Figure 0005653555
(Wherein Z is RO-, X is halogen, Y is OH-, R is an organic group having 8 or less carbon atoms, n, m and L are integers from 0 to 4 and n + m + L = 4). The silane compound is mixed and hydrolyzed or partially hydrolyzed in the system to pass through the silanol compound, which is then condensed to coat the ion-release glass surface.

上記のポリシロキサン処理方法は、シラン化合物の加水分解及び縮合とガラス表面へのポリシロキサン処理を同一系内で同時に行っているが、シラン化合物の加水分解及び縮合を別の系で行って低縮合シラン化合物(オリゴマー)を生成させ、それをイオン徐放性ガラスを含有する水性分散体に混合する表面処理方法でも効率よくイオン徐放性ガラス表面にポリシロキサン被膜を形成することが可能である。より好ましくは市販の低縮合シラン化合物(オリゴマー)を用い、低縮合生成過程を経ず混合するポリシロキサン処理方法である。この方法が好ましい理由としては、シラン化合物単量体を用いる場合はポリシロキサン処理工程で多量の水が存在することから、縮合が3次元的に起こり、自己縮合が優位に進行し、均一なポリシロキサン被膜をガラス表面に形成することができないと考えられる。 In the above polysiloxane treatment method, the hydrolysis and condensation of the silane compound and the polysiloxane treatment on the glass surface are simultaneously carried out in the same system, but the hydrolysis and condensation of the silane compound are carried out in a separate system to reduce the condensation. A surface treatment method in which a silane compound (oligomer) is generated and mixed with an aqueous dispersion containing an ion sustained-release glass can efficiently form a polysiloxane film on the surface of the ion sustained-release glass. More preferably, it is a polysiloxane treatment method in which a commercially available low-condensation silane compound (oligomer) is used and mixed without undergoing a low-condensation production process. The reason why this method is preferred is that when a silane compound monomer is used, a large amount of water is present in the polysiloxane treatment step, so condensation occurs three-dimensionally, self-condensation proceeds predominately, and uniform poly It is considered that a siloxane film cannot be formed on the glass surface.

一方低縮合シラン化合物(オリゴマー)を用いる場合は、ある長さのポリシロキサン主鎖を有するユニット単位でガラス表面にポリシロキサン被膜を均一に形成することが可能と考えられる。またこの低縮合シラン化合物(オリゴマー)の形状は特に制限はないが3次元体のものよりも直鎖状の方が良く、またその重合度においても長いものほど縮合反応性が劣り、イオン徐放性ガラス表面上のポリシロキサン被膜の形成が悪くなることから、好ましい重合度は2〜20の範囲であり、より好ましくは2〜6である。その時の分子量は500〜600の範囲である。 On the other hand, when a low-condensation silane compound (oligomer) is used, it is considered possible to form a polysiloxane film uniformly on the glass surface with unit units having a polysiloxane main chain of a certain length. The shape of the low-condensation silane compound (oligomer) is not particularly limited, but it is preferably linear rather than three-dimensional, and the longer the degree of polymerization, the poorer the condensation reactivity, and the sustained release of ions. The degree of polymerization is preferably in the range of 2 to 20, more preferably 2 to 6, because the formation of the polysiloxane film on the surface of the porous glass becomes poor. The molecular weight at that time is in the range of 500 to 600.

上記水性分散体中でのポリシロキサン処理は比較的低速の撹拌状態下で行われ、温度は室温から100℃の範囲、より好ましくは室温から50℃の範囲であり、撹拌時間は通常数分から数十時間、より好ましくは30分〜4時間の範囲で行われる。撹拌は特別な方法を必要とするものではなく、一般業界で通常に使用されている設備を採用して行うことができる。例えば万能混合撹拌機やプラネタリーミキサー等のスラリー状のものを撹拌できる撹拌機を用いて撹拌すればよい。撹拌温度は水性媒体が揮発しない温度、つまり水性媒体の沸点以下の温度であれば何等問題はない。撹拌時間はシラン化合物または低縮合シラン化合物の種類または添加量、ガラスの種類、粒子径及びその水性分散体中に占める割合、水性媒体の種類及び水性分散体中に占める割合により、縮合して形成するゲル化速度が影響を受けることから、調節しなければならなく、またゲルが形成されるまで行わなければならない。撹拌速度は速すぎるとゲル構造が崩れ、均一な被膜が形成されないため、低速で行う必要がある。 The polysiloxane treatment in the aqueous dispersion is carried out under relatively slow stirring conditions, the temperature is in the range of room temperature to 100 ° C., more preferably in the range of room temperature to 50 ° C., and the stirring time is usually several minutes to several minutes. Ten hours, more preferably 30 minutes to 4 hours. Stirring does not require a special method, and can be performed by using equipment normally used in the general industry. For example, stirring may be performed using a stirrer that can stir slurry like a universal mixing stirrer or a planetary mixer. There is no problem if the stirring temperature is a temperature at which the aqueous medium does not volatilize, that is, a temperature below the boiling point of the aqueous medium. The stirring time is formed by condensation depending on the type or addition amount of the silane compound or low-condensed silane compound, the type of glass, the particle size and the proportion of the aqueous dispersion, the type of aqueous medium, and the proportion of the aqueous dispersion. The gelation rate to be affected is affected and must be adjusted and must be done until a gel is formed. If the stirring speed is too high, the gel structure will collapse and a uniform film will not be formed.

また上記の水性媒体とは水及びアルコールから構成される。アルコールを加えることにより乾燥工程においてイオン徐放性ガラスの凝集性を軽減させ、より解砕性を向上させる多大な効果がある。好ましいアルコールとしては炭素数2〜10のアルコール類であるが、炭素数が10以上のアルコールの添加は沸点が高く溶媒を乾燥除去するために長時間を要する。具体的なアルコールとしては、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、t−ブチルアルコール、iso−ブチルアルコール、n−ペンチルアルコール、iso−アミルアルコール、n−ヘキシルアルコールn−ヘプチルアルコール、n−オクチルアルコール、n−ドデシルアルコールが挙げられ、より好ましくは炭素数2〜4のアルコール、例えばエチルアルコール、n−プロピルアルコール、iso−プロピルアルコールが好適に使用される。上記アルコールの添加量は水に対して5〜100重量部、好ましくは5〜20重量部である。添加量が100重量部以上になると乾燥工程が複雑になる等の問題が生じる。またガラスの含有量は水性媒体に対して25〜100重量部の範囲であり、好ましくは30〜75重量部の範囲である。含有量が100重量部を超える場合は縮合によるゲル化速度が速く、均一なポリシロキサン被膜層を形成しにくく、また25重量部より少ない場合、撹拌状態下でガラスが沈降したり水性媒体中で相分離が発生したりする。また、イオン徐放性ガラス表面を被覆するシラン化合物の添加量はイオン徐放性ガラス100重量部に対して、シラン化合物のSiをSiO2 換算して0.1〜10重量部の範囲であり、好ましくは0.1〜4重量部である。添加量が0.1重量部以下の場合は、ポリシロキサン被膜層形成の効果がなく、一次粒子まで解砕できず凝集したものになり、10重量部以上では乾燥後の固化物が硬すぎて解砕することができない。
The aqueous medium is composed of water and alcohol. Addition of alcohol has a great effect of reducing the cohesiveness of the ion sustained-release glass in the drying step and further improving the crushability. Preferred alcohols are alcohols having 2 to 10 carbon atoms, but the addition of alcohols having 10 or more carbon atoms has a high boiling point and requires a long time to dry and remove the solvent. Specific alcohols include ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, t-butyl alcohol, iso-butyl alcohol, n-pentyl alcohol, iso-amyl alcohol, n-hexyl alcohol n-heptyl. Alcohol, n-octyl alcohol, and n-dodecyl alcohol are mentioned, More preferably, C2-C4 alcohol, for example, ethyl alcohol, n-propyl alcohol, iso-propyl alcohol, is used suitably. The addition amount of the alcohol is 5 to 100 parts by weight, preferably 5 to 20 parts by weight with respect to water. When the added amount is 100 parts by weight or more, problems such as a complicated drying process occur. The glass content is in the range of 25 to 100 parts by weight, preferably 30 to 75 parts by weight, based on the aqueous medium. When the content exceeds 100 parts by weight, the gelation rate by condensation is fast and it is difficult to form a uniform polysiloxane coating layer. When the content is less than 25 parts by weight, the glass settles under stirring or in an aqueous medium. Phase separation may occur. The amount of the silane compound to coat the ion sustained release glass surface relative to 100 parts by weight of ion-controlled release glass, a Si of the silane compound in the range of 0.1 to 10 parts by weight in terms of SiO2 The amount is preferably 0.1 to 4 parts by weight. When the addition amount is 0.1 parts by weight or less, there is no effect of forming a polysiloxane coating layer, and even primary particles cannot be crushed and agglomerated, and when 10 parts by weight or more, the solidified product after drying is too hard. It cannot be crushed.

「ゲル」状態にある系を、乾燥し水性媒体を除去して固化させる。乾燥は、熟成と焼成の2段階からなり、前者はゲル構造の生長と水性媒体の除去を、後者はゲル構造の強化を目的としている。前者はゲル構造にひずみを与えず、かつ水性媒体を除去することから静置で行う必要があり、箱型の熱風乾燥器等の設備が好ましい。熟成温度は室温から100℃の範囲で、より好ましくは40〜80℃の範囲である。温度がこの範囲以下の場合は、水性媒体除去が不十分であり、範囲以上の場合は急激に揮発し、ゲル構造に欠陥が生じたり、ガラス表面から剥離したりする恐れがある。熟成時間は乾燥器等の能力にもよるため、水性媒体が充分除去できる時間ならば何等問題はない。 The system in the “gel” state is dried and solidified by removing the aqueous medium. Drying consists of two stages of aging and baking, the former aiming at growth of the gel structure and removal of the aqueous medium, and the latter aiming at strengthening the gel structure. The former does not distort the gel structure and removes the aqueous medium, so it is necessary to perform it stationary, and equipment such as a box-type hot air dryer is preferable. The aging temperature is in the range of room temperature to 100 ° C, more preferably in the range of 40 to 80 ° C. When the temperature is below this range, the aqueous medium is not sufficiently removed. When the temperature is above this range, it rapidly volatilizes, which may cause defects in the gel structure or peel off from the glass surface. The aging time depends on the ability of the drier and the like, so there is no problem as long as the aqueous medium can be sufficiently removed.

一方焼成工程は昇温と係留に分かれ、前者は目標温度まで徐々に長時間かけて昇温する方がよく、急激な温度はゲル分散体の熱伝導が悪いため、ゲル構造内にクラックが生じる可能性がある。後者は一定温度での焼成である。焼成温度は100〜350℃の範囲であり、よりこのましくは100〜200℃である。 On the other hand, the firing process is divided into temperature rise and mooring, and the former is better to gradually raise the temperature to the target temperature over a long period of time, and the rapid temperature causes poor heat conduction of the gel dispersion, thus causing cracks in the gel structure there is a possibility. The latter is firing at a constant temperature. The firing temperature is in the range of 100 to 350 ° C, more preferably 100 to 200 ° C.

以上のように乾燥によりゲルから水性媒体を除去し、収縮した固化物が得られる。固化物はイオン徐放性ガラスの凝集状態ではあるが、単なるイオン徐放性ガラスの凝集物ではなく、個々の微粒子の境界面には縮合により形成されたポリシロキサンが介在している。したがって次の工程としてこの固化物をポリシロキサン処理前のイオン徐放性ガラス相当に解砕すると、その表面がポリシロキサンで被覆されたイオン徐放性ガラスが得られる。ここで「ポリシロキサン処理前のイオン徐放性ガラス相当に解砕する」とは、ポリシロキサンで被覆されたイオン徐放性ガラスの一次粒子に解砕することであり、元のイオン徐放性ガラスと異なる点は個々の微粒子がポリシロキサンで被覆されていることである。ただし、問題ない程度なら2次凝集物を含んでもよい。固化物の解砕は、せん断力または衝撃力を加えることにより容易に可能であり、解砕方法としては、例えばヘンシェルミキサー、クロスロータリミキサー、スーパーミキサー等を用いて行いことができる。 As described above, the aqueous medium is removed from the gel by drying, and a contracted solidified product is obtained. Although the solidified product is an agglomerated state of ion sustained-release glass, it is not simply an agglomerate of ion-sustained-release glass, and polysiloxane formed by condensation is present at the interface between the individual fine particles. Therefore, when this solidified product is crushed to the equivalent of ion-controlled release glass before the polysiloxane treatment as the next step, an ion-controlled release glass whose surface is coated with polysiloxane is obtained. Here, “crush to the equivalent of an ion sustained release glass before the polysiloxane treatment” means to break up into primary particles of the ion sustained release glass coated with polysiloxane, and the original ion sustained release. The difference from glass is that the individual particles are coated with polysiloxane. However, secondary agglomerates may be included as long as there is no problem. The solidified material can be easily crushed by applying a shearing force or an impact force. As a pulverizing method, for example, a Henschel mixer, a cross rotary mixer, a super mixer, or the like can be used.

一般式(I)で表されるシラン化合物の例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラアリロキシシラン、テトラブトキシシラン、テトラキス(2-エチルヘキシロキシ)シラン、トリメトキシクロロシラン、トリエトキシクロロシラン、トリイソプロポキシクロロシラン、トリメトキシヒドロキシシラン、ジエトキシジクロロシラン、テトラフェノキシシラン、テトラクロロシラン、水酸化ケイ素(酸化ケイ素水和物)等が例示でき、より好ましくはテトラメトキシシランおよびテトラエトキシシランである。また一般式(I)で表されるシラン化合物で示される凝集体であることがより好ましい。
また一般式(I)で表されるシラン化合物の低縮合体であることがより好ましい。例えばテトラメトキシシランおよびテトラエトキシシランを部分加水分解して縮合させた低縮合シラン化合物である。これらの化合物は単独または組み合わせて使用することができる。
Examples of the silane compound represented by the general formula (I) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraallyloxysilane, tetrabutoxysilane, tetrakis (2-ethylhexyloxy) silane, and trimethoxychlorosilane. , Triethoxychlorosilane, triisopropoxychlorosilane, trimethoxyhydroxysilane, diethoxydichlorosilane, tetraphenoxysilane, tetrachlorosilane, silicon hydroxide (silicon oxide hydrate), etc., more preferably tetramethoxysilane and tetra Ethoxysilane. Moreover, it is more preferable that it is an aggregate shown with the silane compound represented by general formula (I).
Moreover, it is more preferable that it is a low condensate of the silane compound represented by general formula (I). For example, it is a low condensation silane compound obtained by condensing tetramethoxysilane and tetraethoxysilane by partial hydrolysis. These compounds can be used alone or in combination.

またポリシロキサン処理時に一般式(I)で表されるシラン化合物の一部としてオルガノシラン化合物も添加することができる。具体的にオルガノシロキサン化合物を例示すると、メチルトリメトキシシラン、エチルトリメトキシシラン、メトキシトリプロピルシラン、プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメトキシシラン、γメルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、3−アミノプロピルトリエトキシシラン、メチルトリクロロシラン、フェニルトリクロロシラン等が例示でき、特に好ましくはメチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリエトキシシラン、フェニルトリクロロシランである。これらの化合物は単独または組み合わせて使用することができる。しかしこれらはポリシロキサン層内において有機基が存在するため、ポリシロキサン層形成時のひずみを受ける可能性があり、機械的強度に問題が生じることがある。このため少量の添加にとどめておく必要がある。またポリシロキサン処理時に一般式(I)で表されるシラン化合物の一部として、他の金属のアルコキシド化合物、ハロゲン化物、水和酸化物、硝酸塩、炭酸塩も添加することができる。 Moreover, an organosilane compound can also be added as a part of silane compound represented by general formula (I) at the time of polysiloxane treatment. Specific examples of organosiloxane compounds include methyltrimethoxysilane, ethyltrimethoxysilane, methoxytripropylsilane, propyltriethoxysilane, hexyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (β-methoxy Ethoxy) silane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropylmethoxysilane, γmercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, 3-aminopropyltriethoxysilane, methyltrichlorosilane, phenyl Examples include trichlorosilane and the like, and methyltrimethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane, and phenyltrichlorosilane are particularly preferable. These compounds can be used alone or in combination. However, since these organic groups exist in the polysiloxane layer, they may be subjected to distortion during the formation of the polysiloxane layer, which may cause a problem in mechanical strength. For this reason, it is necessary to keep only a small amount. Further, alkoxide compounds, halides, hydrated oxides, nitrates, and carbonates of other metals can be added as part of the silane compound represented by the general formula (I) during the polysiloxane treatment.

前記工程で得られたポリシロキサンで被覆されたイオン徐放性ガラスは酸性ポリマーと反応させる酸性ポリマー処理を施すことによって本発明の最も好ましい表面処理イオン徐放性ガラスを得ることができる。酸性ポリマー処理は乾式流動型の撹拌機であれば業界で一般に使用されている設備を用いることができ、ヘンシルミキサー、スーパーミキサー、ハイスピードミキサー等が挙げられる。ポリシロキサン被膜が形成されたイオン徐放性ガラスへの酸性ポリマーの反応は、酸性ポリマー溶液を含浸や噴霧等により接触させることにより行うことができる。例えばポリシロキサン被覆イオン徐放性ガラスを乾式流動させ、その流動させた状態で上部から酸性ポリマー溶液を分散させ、十分撹拌するだけでよい。このとき酸性ポリマー溶液の分散法は特に制限はないが、均一に分散できる滴下またはスプレー方式がより好ましい。また反応は室温付近で行うことが好ましく、温度が高くなると酸反応性元素と酸性ポリマーの反応が速くなり、酸性ポリマー相の形成が不均一になる。
熱処理後、熱処理物の解砕は剪断力または衝撃力を加えることにより容易に可能であり、解砕方法としては上記反応に用いた設備などで行うことができる。
The most preferable surface-treated ion sustained-release glass of the present invention can be obtained by subjecting the ion sustained-release glass coated with the polysiloxane obtained in the above step to an acidic polymer treatment to react with an acidic polymer. For the acidic polymer treatment, equipment generally used in the industry can be used as long as it is a dry flow type stirrer, and examples thereof include a Hensyl mixer, a super mixer, and a high speed mixer. The reaction of the acidic polymer with the ion sustained-release glass on which the polysiloxane film is formed can be carried out by contacting the acidic polymer solution by impregnation or spraying. For example, it is only necessary to dry-flow polysiloxane-coated ion sustained-release glass, disperse the acidic polymer solution from above in the flowed state, and sufficiently stir. At this time, the method for dispersing the acidic polymer solution is not particularly limited, but a dropping or spraying method capable of uniformly dispersing is more preferable. In addition, the reaction is preferably performed at around room temperature. When the temperature is increased, the reaction between the acid-reactive element and the acidic polymer is accelerated, and the formation of the acidic polymer phase becomes uneven.
After the heat treatment, the heat-treated product can be easily crushed by applying a shearing force or an impact force, and the crushing method can be performed with the equipment used for the above reaction.

反応に用いる酸性ポリマー溶液の調製に用いる溶媒は、酸性ポリマーが溶解する溶媒であれば何等問題はなく、水、エタノール、エタノール、アセトン等が挙げられる。これらの中で特に好ましいのは水であり、これは酸性ポリマーの酸性基が解離し、イオン徐放性ガラスの表面と均一に反応することができる。
酸性ポリマー溶液中に溶解したポリマーの重量分子量は2000〜50000の範囲であり、5000〜40000の範囲にある。2000未満の重量平均分子量を有する酸性ポリマーで処理した表面処理イオン徐放性ガラスはイオン徐放性が低くなる傾向にある。50000を超える重量平均分子量を有する酸性ポリマーは酸性ポリマー溶液の粘性が上がり、酸性ポリマー処理を行うことが困難となる。また酸性ポリマー溶液中に占める酸性ポリマー濃度は3〜25重量%の範囲が好ましく、より好ましくは8〜20重量%の範囲である。酸性ポリマー濃度3重量%未満になると上記で述べた酸性ポリマー相が脆弱になる。また酸性ポリマー濃度が25重量%を超えるとポリシロキサン層(多孔質)を拡散しにくくなる反面、イオン徐放性ガラスに接触すると酸−塩基反応が速く、反応中に硬化が始まり凝集が起こる等の問題が生じる。またポリシロキサンで被覆されたイオン徐放性ガラスに対する酸性ポリマー溶液の添加量は6〜40重量%の範囲が好ましく、より好ましくは10〜30重量%である。この添加量で換算するとポリシロキサン被覆イオン徐放性ガラスに対する酸性ポリマー量は1〜7重量%、また水量は10〜25重量%の範囲が最適値である。
The solvent used for the preparation of the acidic polymer solution used for the reaction is not a problem as long as the acidic polymer is soluble, and water, ethanol, ethanol, acetone, and the like can be mentioned. Among these, water is particularly preferable, and the acidic group of the acidic polymer is dissociated and can react uniformly with the surface of the ion sustained-release glass.
The weight molecular weight of the polymer dissolved in the acidic polymer solution is in the range of 2000-50000 and in the range of 5000-40000. Surface-treated ion sustained release glass treated with an acidic polymer having a weight average molecular weight of less than 2000 tends to have low ion sustained release. An acidic polymer having a weight average molecular weight exceeding 50,000 increases the viscosity of the acidic polymer solution, making it difficult to perform the acidic polymer treatment. The acidic polymer concentration in the acidic polymer solution is preferably in the range of 3 to 25% by weight, more preferably in the range of 8 to 20% by weight. When the acidic polymer concentration is less than 3% by weight, the acidic polymer phase described above becomes brittle. Further, when the acidic polymer concentration exceeds 25% by weight, it becomes difficult to diffuse the polysiloxane layer (porous). On the other hand, when it comes into contact with the ion-releasing glass, the acid-base reaction is fast, and during the reaction, curing starts and aggregation occurs. Problem arises. Moreover, the addition amount of the acidic polymer solution with respect to the ion sustained release glass coated with polysiloxane is preferably in the range of 6 to 40% by weight, more preferably 10 to 30% by weight. In terms of this addition amount, the optimal value is 1 to 7% by weight for the amount of acidic polymer and 10 to 25% by weight for the amount of water relative to the polysiloxane-coated ion sustained release glass.

上記の方法によりポリシロキサンで被覆されたイオン徐放性ガラスの表面に酸性ポリマー反応相を形成するために用いることのできる酸性ポリマーは、酸性基として、リン酸残基、ピロリン酸残基、チオリン酸残基、カルボン酸残基、スルホン酸基等の酸性基を有する重合性単量体の共重合体または単独重合体である。このような重合性単量体としては、例えばアクリル酸、メタクリル酸、2-クロロアクリル酸、3-クロロアクリル酸、アコニット酸、メサコン酸、マレイン酸、イタコン酸、フマール酸、グルタコン酸、シトラコン酸、4-(メタ)アクリロイルオキシエトキシカルボニルフタル酸、4-(メタ)アクリロイルオキシエトキシカルボニルフタル酸無水物、5-(メタ)アクリロイルアミノペンチルカルボン酸、11-(メタ)アクリロイルオキシ-1,1-ウンデカンジカルボン酸、2-(メタ)アクリロイルオキシエチルジハイドロジェンホスフェート、10-(メタ)アクリロイルオキシデシルジハイドロジェンホスフェート、20-(メタ)アクリロイルオキシエイコシルジハイドロジェンホスフェート、1,3-ジ(メタ)アクリロイルオキシプロピル-2-ジハイドロジェンホスフェート、2-(メタ)アクリロイルオキシエチルフェニルリン酸、2-(メタ)アクリロイルオキシエチル2'-ブロモエチルリン酸、(メタ)アクリロイルオキシエチルフェニルホスホネート、ピロリン酸ジ(2-(メタ)アクリロイルオキシエチル)、2-(メタ)アクリロイルオキシエチルジハイドロジェンジチオホスホスフェート、10-(メタ)アクリロイルオキシデシルジハイドロジェンチオホスフェート等が列挙できる。これらの重合体の中でも酸反応性元素との酸-塩基反応が比較的遅い、α-β不飽和カルボン酸の単独重合体または共重合体が好ましい。より好ましくはアクリル酸重合体、アクリル酸-マレイン酸共重合体、アクリル酸-イタコン酸共重合体である。 The acidic polymer that can be used to form an acidic polymer reaction phase on the surface of an ion sustained-release glass coated with polysiloxane by the above-described method includes phosphoric acid residues, pyrophosphoric acid residues, thiophosphorus as acidic groups. It is a copolymer or a homopolymer of a polymerizable monomer having an acid group such as an acid residue, a carboxylic acid residue, or a sulfonic acid group. Examples of such polymerizable monomers include acrylic acid, methacrylic acid, 2-chloroacrylic acid, 3-chloroacrylic acid, aconitic acid, mesaconic acid, maleic acid, itaconic acid, fumaric acid, glutaconic acid, and citraconic acid. 4- (meth) acryloyloxyethoxycarbonylphthalic acid, 4- (meth) acryloyloxyethoxycarbonylphthalic anhydride, 5- (meth) acryloylaminopentylcarboxylic acid, 11- (meth) acryloyloxy-1,1- Undecane dicarboxylic acid, 2- (meth) acryloyloxyethyl dihydrogen phosphate, 10- (meth) acryloyloxydecyl dihydrogen phosphate, 20- (meth) acryloyloxyeicosyl dihydrogen phosphate, 1,3-di ( (Meth) acryloyloxypropyl-2-dihydrogen Sulfate, 2- (meth) acryloyloxyethylphenyl phosphate, 2- (meth) acryloyloxyethyl 2′-bromoethyl phosphate, (meth) acryloyloxyethyl phenylphosphonate, di (2- (meth) acryloyloxy pyrophosphate) Ethyl), 2- (meth) acryloyloxyethyl dihydrogen dithiophosphophosphate, 10- (meth) acryloyloxydecyl dihydrogenthiophosphate, and the like. Among these polymers, homopolymers or copolymers of α-β unsaturated carboxylic acids, which have a relatively slow acid-base reaction with acid-reactive elements, are preferred. More preferred are acrylic acid polymers, acrylic acid-maleic acid copolymers, and acrylic acid-itaconic acid copolymers.

本発明に用いるイオン徐放性ガラスはガラス組成に基因したイオン種を持続的に徐放することが特徴であり、金属フッ化物等の水への溶解によって一時的に多量を放出するものとは異なるものである。
以下の手法によってイオン徐放性ガラス又は他のフィラーがイオン徐放性を有しているか否かを判断することができる。
蒸留水100gに対してイオン徐放性ガラス又は他のフィラーを0.1g加え、1時間撹拌させた時の蒸留水中に徐放したイオン濃度(F1)又はイオン種に起因した元素濃度(F1)と、2時間撹拌した時の蒸留水中に徐放したイオン濃度(F1)又はイオン種に起因した元素濃度(F2)が下式(1)の関係を満足する場合をイオン徐放とみなすことができる。
F2 > F1 ・・・・式(1)

また、イオン徐放性ガラスから徐放するイオンが複数ある場合は、すべてのイオン濃度又は元素濃度が式(1)を満足する必要はなく、少なくとも一つのイオン濃度又は元素濃度が式(1)を満足した場合をイオン徐放とみなすことができる。
本発明に用いるイオン徐放性ガラスはイオン徐放の効果に基因する酸中和能を有していることが好ましい。酸中和能はpHを4.0に調整した乳酸水溶液10gに対してイオン徐放性ガラスを0.1g加え、5分間撹拌させた時のpH変化を測定することにより確認することできる。その時のpHが5.5以上、より好ましくは6.0以上、最も好ましくは6.5以上を示したとき酸中和能が発現するとみなすことができる。
The ion sustained-release glass used in the present invention is characterized by the sustained release of ionic species based on the glass composition, and it releases a large amount temporarily by dissolution of metal fluoride or the like in water. Is different.
It can be determined whether or not the ion sustained-release glass or other filler has ion sustained-release properties by the following method.
Addition of 0.1 g of ion sustained-release glass or other filler to 100 g of distilled water, ion concentration (F1) sustained release in distilled water when stirred for 1 hour, or element concentration due to ion species (F1) In addition, when the concentration of ions (F1) that is slowly released in distilled water when stirred for 2 hours or the element concentration (F2) due to the ion species satisfies the relationship of the following formula (1), it can be regarded as ion sustained release. it can.
F2> F1... Formula (1)

In addition, when there are a plurality of ions that are slowly released from the ion sustained-release glass, it is not necessary that all ion concentrations or element concentrations satisfy the formula (1), and at least one ion concentration or element concentration is the formula (1). Can be considered as sustained release of ions.
The ion sustained-release glass used in the present invention preferably has an acid neutralization ability due to the effect of ion sustained release. Acid neutralizing ability can be confirmed by adding 0.1 g of ion sustained-release glass to 10 g of lactic acid aqueous solution whose pH is adjusted to 4.0 and measuring pH change when stirring for 5 minutes. When the pH at that time is 5.5 or more, more preferably 6.0 or more, and most preferably 6.5 or more, it can be considered that acid neutralization ability is expressed.

イオン徐放性ガラスの含有量は、二成分混和型イオン徐放性粘膜調整材組成物の総量に対して1〜60重量%であることが好ましく、さらに好ましくは3〜60重量%の範囲である。イオン徐放性ガラスの含有量が1重量%未満の場合はイオン徐放量が不足し歯質強化、二次齲蝕抑制等の効果が期待できない。一方、60重量%を越える場合は二成分混和型イオン徐放性粘膜調整材組成物の粘度が高くなり操作性の低下等の問題が生じる。 The content of the ion sustained-release glass is preferably 1 to 60% by weight, more preferably 3 to 60% by weight, based on the total amount of the two-component mixed ion sustained-release mucosal preparation composition. is there. When the content of the sustained-release glass is less than 1% by weight, the sustained-release amount of the ion is insufficient, and effects such as strengthening the tooth structure and suppressing secondary caries cannot be expected. On the other hand, when it exceeds 60% by weight, the viscosity of the two-component mixed ion sustained-release mucosal preparation composition becomes high, resulting in problems such as a decrease in operability.

本発明の二成分混和型イオン徐放性粘膜調整材組成物に用いることができる(c)可塑材は特に限定されず、公知のものが何等制限なく用いることができる。可塑材を具体的に例示すると、ジメチルフタレート、ジエチルフタレート、ジブヂルフタレート、ジヘプチルフタレート、ジオクチルフタレート、ジイソデシルフタレート、ブチルベンジルフタレート、ジイソノニルフタレート、エチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等のフタル酸エステル、ジブチルアジペート、ジブチルジグリコールアジペート、ジブチルセバチート、ジオクチルセバチート、ジブチルマレエート、ジブチルフマレート等のフタル酸以外の二塩基酸エステル、グリセロールトリアセテート等のグリセリンエステル、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート等のリン酸エステル、安息香酸ベンジル,安息香酸エチル,安息香酸ブチル,安息香酸アミル等のカルボン酸エステル等が挙げられるが、これらに限定されるものではない。これらの可塑材は単独だけでなく、複数を組みわせて用いることができる。
これら可塑材の中でもカルボン酸エステルが好ましく、より好ましくは安息香酸ベンジル,ジブチルセバチート,ジブヂルフタレート等である。
The (c) plasticizer that can be used in the two-component mixed ion sustained release mucosal preparation composition of the present invention is not particularly limited, and any known plasticizer can be used without any limitation. Specific examples of the plastic material include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diheptyl phthalate, dioctyl phthalate, diisodecyl phthalate, butyl benzyl phthalate, diisononyl phthalate, ethyl phthalyl ethyl glycolate, butyl phthalyl butyl glycolate, etc. Phthalate esters, dibutyl adipate, dibutyl diglycol adipate, dibutyl sebacate, dioctyl sebacate, dibutyl maleate, dibutyl fumarate and other dibasic acid esters, glycerol triacetate and other glycerin esters, tributyl phosphate, tributyl phosphate Phosphate esters such as octyl phosphate and triphenyl phosphate, benzyl benzoate, ethyl benzoate, butyl benzoate, and benzoic acid Carboxylic acid esters such as Le, and the like, but not limited thereto. These plastic materials can be used not only alone but also in combination.
Among these plasticizers, carboxylic acid esters are preferable, and benzyl benzoate, dibutyl sebacate, dibutyl phthalate, and the like are more preferable.

本発明の二成分混和型イオン徐放性粘膜調整材組成物における可塑材の含有量は使用方法、使用目的、組成等によって適宜調製することができるが、1〜70重量%の範囲であれば何等制限なく、用いることができる。好ましくは1〜60重量%の範囲、さらに好ましくは20〜50重量%の範囲である。可塑剤の含有量が1%未満の場合は非架橋性(メタ)アクリレート系ポリマーが過剰となり、混合・膨潤した材料が硬すぎて、操作性が低下する等の問題がある。一方、60重量%を越える場合は可塑材が過剰となり、弾性が維持できなくなるため、操作性及び粘膜調整能が低下する等の問題がある。 The content of the plasticizer in the two-component mixed ion sustained-release mucosal preparation composition of the present invention can be appropriately adjusted depending on the method of use, purpose of use, composition, etc., but if it is in the range of 1 to 70% by weight. It can be used without any limitation. Preferably it is the range of 1 to 60 weight%, More preferably, it is the range of 20 to 50 weight%. When the content of the plasticizer is less than 1%, the non-crosslinkable (meth) acrylate polymer becomes excessive, and the mixed and swollen material is too hard, resulting in a decrease in operability. On the other hand, when it exceeds 60% by weight, the plasticizer becomes excessive and elasticity cannot be maintained, so that there is a problem that operability and mucous membrane adjustment ability are lowered.

本発明の二成分混和型イオン徐放性粘膜調整材組成物に用いることができる(d)有機溶媒は特に限定されず、公知のものが何等制限なく用いることができる。有機溶媒を具体的に例示すると、メタノール、エタノール、イソプロピルアルコール、イソブチルアルコール等のアルコール類、メチルエチルケトン、アセトン等のケトン類、ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化アルキル類が挙げられるが、これらに限定されるものではない。これらの有機溶媒は単独だけでなく、複数を組みわせて用いることができる。
これら有機溶媒の中でもアルコール類が好ましく、より好ましくはエタノール、イソプロピルアルコール等である。
The (d) organic solvent that can be used in the two-component mixed ion sustained-release mucosal preparation composition of the present invention is not particularly limited, and any known organic solvent can be used without any limitation. Specific examples of the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol and isobutyl alcohol, ketones such as methyl ethyl ketone and acetone, and alkyl halides such as dichloromethane, chloroform and carbon tetrachloride. It is not limited to. These organic solvents can be used alone or in combination.
Among these organic solvents, alcohols are preferable, and ethanol, isopropyl alcohol, and the like are more preferable.

本発明の二成分混和型イオン徐放性粘膜調整材組成物における有機溶媒の含有量は使用方法、使用目的、組成等によって適宜調整することができるが、1〜30重量%の範囲であれば何等制限なく、用いることができる。好ましくは1〜20重量%の範囲、さらに好ましくは5〜15重量%の範囲である。有機溶媒の含有量が1%未満の場合は、非架橋性(メタ)アクリレート系ポリマーと可塑材の膨潤速度が遅く、粘膜調整材としての操作性が低下する。一方、30重量%を越える場合は、有機溶媒の溶出による材料の性状変化が大きい等、材料特性に問題が生じる。
本発明の二成分混和型イオン徐放性粘膜調整材組成物に用いることができる(e)充填材は特に限定されず、可塑材及び有機溶媒に対して膨潤しないものであれば有機成分、無機成分及びそれらの混合物または複合物でも何等制限なく使用することができる。
The content of the organic solvent in the two-component mixed ion sustained-release mucosal preparation composition of the present invention can be appropriately adjusted depending on the method of use, the purpose of use, the composition, etc. It can be used without any limitation. Preferably it is the range of 1-20 weight%, More preferably, it is the range of 5-15 weight%. When the content of the organic solvent is less than 1%, the swelling speed of the non-crosslinkable (meth) acrylate polymer and the plasticizer is slow, and the operability as a mucosa adjusting material is lowered. On the other hand, when it exceeds 30% by weight, there are problems in material properties such as a large change in the properties of the material due to elution of the organic solvent.
The (e) filler that can be used in the two-component mixed ion sustained-release mucosal preparation composition of the present invention is not particularly limited, and any organic component or inorganic material can be used as long as it does not swell with plasticizers and organic solvents. The components and mixtures or composites thereof can be used without any limitation.

充填材を具体的に例示すると水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、炭酸カルシウム、炭酸ストロンチウム等の炭酸塩、酸化アルミニウム等の金属酸化物、フッ化バリウム、フッ化カルシウム、フッ化ストロンチウム等の金属フッ化物、タルク、カオリン、クレー、雲母、ヒドロキシアパタイト、シリカ、石英等の無機系充填材、ポリ酢酸ビニル、ポリビニルアルコール、スチレンーブタジエンゴム等のエラストマー類、単官能性(メタ)アクリレート系重合性単量体と二個以上の官能基を有する重合性単量体を共重合させた架橋性(メタ)アクリレート系ポリマー等の有機系充填材、無機充填材の表面を重合性単量体により重合被覆したもの、無機充填材と重合単量体を混合・重合させた後、適当な粒子径に粉砕したもの、あるいは、予め重合性単量体中に充填材を分散させて乳化重合または懸濁重合させたもの等、有機‐無機複合系充填材等が挙げられるが、これらに限定されるものではない。
これらの充填材は単独だけでなく、複数を組み合わせて用いることができる。
Specific examples of the filler include metal hydroxides such as aluminum hydroxide, calcium hydroxide and magnesium hydroxide, carbonates such as calcium carbonate and strontium carbonate, metal oxides such as aluminum oxide, barium fluoride and fluoride. Metal fluorides such as calcium and strontium fluoride, inorganic fillers such as talc, kaolin, clay, mica, hydroxyapatite, silica and quartz, elastomers such as polyvinyl acetate, polyvinyl alcohol and styrene-butadiene rubber, monofunctional Surface of organic fillers and inorganic fillers such as crosslinkable (meth) acrylate polymers obtained by copolymerizing a polymerizable (meth) acrylate polymerizable monomer and a polymerizable monomer having two or more functional groups Polymerized with a polymerizable monomer, mixed and polymerized with inorganic filler and polymerized monomer, Examples include, but are not limited to, those pulverized to a particle size, or those obtained by pre-dispersing a filler in a polymerizable monomer and emulsion polymerization or suspension polymerization, and organic-inorganic composite fillers. Is not to be done.
These fillers can be used not only alone but also in combination.

これら充填材は球状、針状、板状、破砕状、鱗片状等の任意の形状の充填材を用いることができる。また充填材の平均粒子径(50%)は0.1〜100μmの範囲であれば特に制限はないものの、好ましくは1〜50μmの範囲、さらに好ましくは1〜10μmの範囲である。 As these fillers, fillers having an arbitrary shape such as a spherical shape, a needle shape, a plate shape, a crushed shape, and a scale shape can be used. The average particle diameter (50%) of the filler is not particularly limited as long as it is in the range of 0.1 to 100 μm, but is preferably in the range of 1 to 50 μm, and more preferably in the range of 1 to 10 μm.

さらに充填材の表面を、表面処理剤等を用いた表面処理法により多機能化してもよく、これらの表面処理充填材も何等制限なく用いることができる。充填材の表面を多機能化するために用いる表面処理剤を具体的に例示すると界面活性剤、脂肪酸、有機酸、無機酸、各種カップリング材、金属アルコキシド化合物等が挙げられる。また表面処理方法を具体的に例示すると充填材を流動させた状態で上部から表面処理剤を噴霧する方法、表面処理剤を含んだ溶液中に充填材を分散させる方法及び充填材表面に数種類の表面処理剤を多層処理する方法等が挙げられる。しかしながら表面処理剤及び表面処理方法は、これらに限定されるものではない。また、これらの表面処理剤や表面処理方法はそれぞれ単独または複合的に組み合わせて用いることができる。 Furthermore, the surface of the filler may be multifunctional by a surface treatment method using a surface treatment agent or the like, and these surface treatment fillers can be used without any limitation. Specific examples of the surface treatment agent used to make the surface of the filler multifunctional include surfactants, fatty acids, organic acids, inorganic acids, various coupling materials, metal alkoxide compounds, and the like. Specific examples of the surface treatment method include a method of spraying a surface treatment agent from the top in a state where the filler is flowed, a method of dispersing the filler in a solution containing the surface treatment agent, and several types on the surface of the filler. The method etc. which carry out multilayer processing of the surface treating agent are mentioned. However, the surface treatment agent and the surface treatment method are not limited to these. These surface treatment agents and surface treatment methods can be used alone or in combination.

本発明の二成分混和型イオン徐放性粘膜調整材組成物における充填材の含有量は特に限定されないものの、二成分混和型イオン徐放性粘膜調整材組成物の総量に対しての1〜50重量%の範囲であることが好ましく、さらに好ましくは1〜20重量%の範囲である。充填材の含有量が1重量%未満の場合はその添加効果が得られず、切削性がほとんど向上しない。一方、50重量%を越える場合は二成分混和型イオン徐放性粘膜調整材組成物中における非架橋性(メタ)アクリレート系ポリマーの含有量が少なくなるために、単官能性(メタ)アクリレート系重合性単量体等の浸透・膨潤が均一に起こらず、その結果材料特性に問題が生じる。 Although the content of the filler in the two-component mixed ion sustained-release mucosal preparation composition of the present invention is not particularly limited, it is 1 to 50 relative to the total amount of the two-component mixed ion sustained-release mucosal preparation composition. It is preferably in the range of% by weight, more preferably in the range of 1 to 20% by weight. When the content of the filler is less than 1% by weight, the effect of addition cannot be obtained, and the machinability is hardly improved. On the other hand, when the content exceeds 50% by weight, the content of the non-crosslinkable (meth) acrylate polymer in the two-component mixed ion sustained-release mucosal preparation composition is reduced, so that the monofunctional (meth) acrylate type Infiltration and swelling of the polymerizable monomer and the like do not occur uniformly, resulting in problems in material properties.

また、本発明の二成分混和型イオン徐放性粘膜調整材組成物には、上記の(a)〜(e)の成分以外に、フュームドシリカに代表される賦形材、2−ヒドロキシ−4−メチルベンゾフェノンのような紫外線吸収材、(メタ)アクリレート系重合性単量体、重合開始材、ハイドロキノン、ハイドロキノンモノメチルエーテル、2、5−ジターシャリーブチル−4−メチルフェノール等の重合禁止材、変色防止材、抗菌材、着色顔料、その他の従来公知の添加材等の成分を必要に応じて任意に添加できる。
In addition to the components (a) to (e) described above, the two-component mixed ion sustained release mucosal preparation composition of the present invention includes a shaping material represented by fumed silica, 2-hydroxy- UV absorbers such as 4-methylbenzophenone, (meth) acrylate polymerizable monomers, polymerization initiators, polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, 2,5-ditertiary butyl-4-methylphenol, Components such as anti-discoloring materials, antibacterial materials, color pigments, and other conventionally known additives can be optionally added as necessary.

以下に本発明の実施例及び比較例について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例及び比較例にて調製した二成分混和型イオン徐放性粘膜調整材組成物の性能を評価する試験方法は次の通りである。 EXAMPLES Examples and comparative examples of the present invention will be specifically described below, but the present invention is not limited to these examples. The test method for evaluating the performance of the two-component mixed ion sustained-release mucosal preparation composition prepared in Examples and Comparative Examples is as follows.

〔切削性〕
目的:二成分混和型イオン徐放性粘膜調整材組成物の切削性を評価する。
方法:本発明の二成分混和型イオン徐放性粘膜調整材組成物を1.2g(粉材):1mL(液材)の割合で混合・膨潤させた後、混合物をステンレス製金型(20φ×2mm:円盤状)に充填した後、ナイロンフィルムを介してガラス板で圧接し、30分間放置することにより試験体を作製した。試験体を技工用カーバイドバーにより切削し、その切削性を以下の4段階で評価した。
◎・・・切削性が非常に良好であり、切削面に凹凸が認められない。
○・・・切削性が良好であり、切削面にわずかに凹凸が認められる。
△・・・粘膜調整材が研削材に絡みつき、切削しにくい。または切削面にやや凹凸が認められる。
×・・・粘膜調整材が研削材に絡みつき、切削しにくい。または切削面に凹凸が認められる。
[Machinability]
Objective: To evaluate the machinability of a two-component mixed ion sustained release mucosal preparation composition.
Method: After mixing and swelling the two-component mixed ion sustained-release mucosal preparation material composition of the present invention at a ratio of 1.2 g (powder material): 1 mL (liquid material), the mixture was made into a stainless steel mold (20φ). × 2 mm: disk shape), and then pressed with a glass plate through a nylon film and left for 30 minutes to prepare a test specimen. The specimen was cut with a technical carbide bar, and the machinability was evaluated in the following four stages.
A: The machinability is very good and no irregularities are observed on the cut surface.
○: Good machinability and slight irregularities are observed on the cut surface.
Δ: The mucous membrane adjusting material is entangled with the abrasive and difficult to cut. Or some unevenness | corrugation is recognized by the cutting surface.
X: The mucosa adjusting material is entangled with the abrasive and difficult to cut. Or irregularities are observed on the cut surface.

〔フッ素放出量の測定評価〕
目的:二成分混和型イオン徐放性粘膜調整材組成物からのフッ素放出特性を評価する。
方法:本発明の二成分混和型イオン徐放性粘膜調整材組成物を1.2g(粉材):1mL(液材)の割合で混合・膨潤させた後、混合物をステンレス製金型(15φ×1mm:円盤状)に充填した後、ナイロンフィルムを介してガラス板で圧接し、30分間放置することにより試験体を作製した。試験体を5mLの蒸留水が入ったプラスチック製容器に入れ、密封後37℃恒温器中に1週間放置した。1週間後容器を恒温器から取り出し、円盤状試験体から溶出したフッ素量をフッ素イオン複合電極(Model 96-09:オリオンリサーチ社製)及びイオンメーター(Model 720A:オリオンリサーチ社製)を用いて測定した。測定時にイオン強度調整剤としてTISABIII(オリオンリサーチ社製)を0.5mL添加した。また検量線の作成は0.02、0.1、1、10、50ppmの標準液を用いて行った。フッ素放出量は0.2ppm以上が好ましく、0.5ppm以上がさらに好ましい。
[Measurement evaluation of fluorine release amount]
Objective: To evaluate the release characteristics of fluorine from a two-component mixed ion sustained release mucosal preparation composition.
Method: After mixing and swelling the two-component mixed ion sustained-release mucosa preparation material composition of the present invention at a ratio of 1.2 g (powder material): 1 mL (liquid material), the mixture was made into a stainless steel mold (15φ). × 1 mm: disk-shaped), and then pressed with a glass plate through a nylon film and allowed to stand for 30 minutes to prepare a test specimen. The test specimen was placed in a plastic container containing 5 mL of distilled water, sealed, and left in a 37 ° C. incubator for 1 week. One week later, the container was taken out of the incubator, and the amount of fluorine eluted from the disk-shaped specimen was measured using a fluorine ion composite electrode (Model 96-09: manufactured by Orion Research) and an ion meter (Model 720A: manufactured by Orion Research). It was measured. At the time of measurement, 0.5 mL of TISABIII (manufactured by Orion Research) was added as an ionic strength adjusting agent. A calibration curve was prepared using standard solutions of 0.02, 0.1, 1, 10, and 50 ppm. The fluorine release amount is preferably 0.2 ppm or more, and more preferably 0.5 ppm or more.

〔イオン放出量の測定評価〕
目的:二成分混和型イオン徐放性粘膜調整材組成物からのイオン放出特性を評価する。
方法:本発明の二成分混和型イオン徐放性粘膜調整材組成物を1.2g(粉材):1mL(液材)の割合で混合・膨潤させた後、混合物をステンレス製金型(15φ×1mm:円盤状)に充填した後、ナイロンフィルムを介してガラス板で圧接し、30分間放置することにより試験体を作製した。試験体を5mLの蒸留水が入ったプラスチック製容器に入れ、密封後37℃恒温器中に1週間放置した。1週間後容器を恒温器から取り出し、円盤状試験体から溶出したイオン量についてICP発光分析装置を用いて測定した。なお、各金属イオン量は、各イオンの標準試料(1ppm、2.5ppm、5ppm、10ppm)から求めた検量線を用いて換算した。
[Measurement evaluation of ion release amount]
Objective: To evaluate ion release characteristics from a two-component mixed ion sustained release mucosal preparation composition.
Method: After mixing and swelling the two-component mixed ion sustained-release mucosa preparation material composition of the present invention at a ratio of 1.2 g (powder material): 1 mL (liquid material), the mixture was made into a stainless steel mold (15φ). × 1 mm: disk-shaped), and then pressed with a glass plate through a nylon film and allowed to stand for 30 minutes to prepare a test specimen. The test specimen was placed in a plastic container containing 5 mL of distilled water, sealed, and left in a 37 ° C. incubator for 1 week. One week later, the container was taken out of the incubator, and the amount of ions eluted from the disk-shaped test specimen was measured using an ICP emission spectrometer. The amount of each metal ion was converted using a calibration curve obtained from a standard sample (1 ppm, 2.5 ppm, 5 ppm, 10 ppm) of each ion.

[イオン徐放性ガラス及び各種フィラーの酸中和能の評価]
本発明に用いるイオン徐放性ガラスの酸中和能を以下の方法で評価した。pHを4.0に調整した乳酸水溶液10gに対してイオン徐放性ガラス及び各種フィラーを0.1g加え、5分間撹拌した後のpHをpHメーター(D-51:堀場製作所)を用いて測定することにより評価した。
[Evaluation of acid neutralization ability of ion sustained-release glass and various fillers]
The acid neutralization ability of the ion sustained-release glass used in the present invention was evaluated by the following method. 0.1 g of ion-releasing glass and various fillers were added to 10 g of lactic acid aqueous solution whose pH was adjusted to 4.0, and the pH after stirring for 5 minutes was measured using a pH meter (D-51: Horiba Seisakusho). It was evaluated by doing.

〔二成分混和型イオン徐放性粘膜調整材組成物の酸中和能の評価〕
目的:二成分混和型イオン徐放性粘膜調整材組成物の酸中和能を評価する。
方法:本発明の二成分混和型イオン徐放性粘膜調整材組成物を1.2g(粉材):1mL(液材)の割合で混合・膨潤させた後、混合物をステンレス製金型(15φ×1mm:円盤状)に充填した後、ナイロンフィルムを介してガラス板で圧接し、30分間放置することにより試験体を作製した。試験体を5mLの乳酸水溶液(pH4.0に調整)中に浸漬した。その後、6時間及び24時間経過後の乳酸水溶液のpHをpHメーター(D-51:堀場製作所)を用いて測定した。
[Evaluation of acid neutralization ability of two-component mixed ion sustained-release mucosal preparation composition]
Objective: To evaluate the acid neutralization ability of a two-component mixed ion sustained release mucosal preparation composition.
Method: After mixing and swelling the two-component mixed ion sustained-release mucosa preparation material composition of the present invention at a ratio of 1.2 g (powder material): 1 mL (liquid material), the mixture was made into a stainless steel mold (15φ). × 1 mm: disk-shaped), and then pressed with a glass plate through a nylon film and allowed to stand for 30 minutes to prepare a test specimen. The test body was immersed in a 5 mL aqueous lactic acid solution (adjusted to pH 4.0). Thereafter, the pH of the aqueous lactic acid solution after 6 hours and 24 hours was measured using a pH meter (D-51: Horiba Seisakusho).

本発明の実施例及び比較例に使用した成分名及びその略号を以下に示す。
PEMA50:ポリメチルメタクリレート(平均粒子径(D50):50μm、重量平均分子量:30万、形状:球状)
F1:イオン徐放性ガラス1
F2:イオン徐放性ガラス2
F3:イオン徐放性ガラス3
BB:安息香酸ベンジル
DBS:ジブチルセバチート
DBP:ジブチルフタレート
EtOH:エタノール
PMMA−C:架橋ポリメチルメタクリレート(MMA:95部及び1G5部から成るポリメチルメタクリレート、平均粒子径(D50):10μm、形状:球状)
The names of components and their abbreviations used in Examples and Comparative Examples of the present invention are shown below.
PEMA50: Polymethylmethacrylate (average particle diameter (D50): 50 μm, weight average molecular weight: 300,000, shape: spherical)
F1: Ion sustained release glass 1
F2: Ion sustained release glass 2
F3: Ion sustained release glass 3
BB: Benzyl benzoate
DBS: Dibutyl sebacate
DBP: Dibutyl phthalate
EtOH: ethanol
PMMA-C: Cross-linked polymethyl methacrylate (MMA: polymethyl methacrylate consisting of 95 parts and 1G5 parts, average particle size (D50): 10 μm, shape: spherical)

[イオン徐放性ガラス1の製造]
二酸化ケイ素、酸化アルミニウム、酸化ホウ素、フッ化ナトリウム、炭酸ストロンチウムの各種原料(ガラス組成:SiO2 23.8質量%、Al2O3 16.2質量%、B2O3 10.5質量%、SrO 35.6質量%、Na2O 2.3質量%、F11.6質量%)をボールミルを用いて均一に混合し原料混合品を調製した後、その原料混合品を溶融炉中で1400℃にて溶融した。その融液を溶融炉から取り出し冷鋼板上、ロールまたは水中で冷却してガラスを生成した。4連式振動ミルのアルミナポット(内容積3.6リットル)中に直径6mmφのアルミナ玉石4kgを投入後、上記で得たガラスを500g投入して40時間粉砕を行い、イオン徐放性ガラス1を得た。このイオン徐放性ガラス1の50%平均粒子径をレーザー回折式粒度測定機(マイクロトラックSPA:日機装社製)により測定した結果、1.2μmであった。このイオン徐放性ガラス1から放出されるイオンに基因した元素量(フッ化物イオンのみイオン量)を測定し、(1)式への適合性を確認した。その結果を表1に示した。
[Production of ion sustained-release glass 1]
Various raw materials of silicon dioxide, aluminum oxide, boron oxide, sodium fluoride, strontium carbonate (glass composition: SiO 2 23.8% by mass, Al 2 O 3 16.2% by mass, B 2 O 3 10.5% by mass, SrO 35.6% by mass, Na2O 2.3 mass%, F11.6 mass%) were uniformly mixed using a ball mill to prepare a raw material mixture, and the raw material mixture was melted at 1400 ° C. in a melting furnace. The melt was taken out of the melting furnace and cooled on a cold steel plate in a roll or water to produce glass. After 4 kg of alumina cobblestone with a diameter of 6 mmφ is put into an alumina pot (3.6 liters) of a 4-spindle vibration mill, 500 g of the glass obtained above is added and pulverized for 40 hours. Got. The 50% average particle size of the ion sustained-release glass 1 was measured by a laser diffraction particle size analyzer (Microtrac SPA: manufactured by Nikkiso Co., Ltd.) and found to be 1.2 μm. The amount of elements based on the ions released from the ion sustained-release glass 1 (the amount of ions of fluoride ions only) was measured, and the compatibility with the formula (1) was confirmed. The results are shown in Table 1.

[イオン徐放性ガラス2の製造]
以下に示すポリシロキサン処理及び酸性ポリマー処理を行い表面処理したイオン徐放性ガラス2を得た。
前述のイオン徐放性ガラス1を500g、シラン化合物(予めテトラメトキシシラン5g、水1000g及びエタノール100gを2時間室温で撹拌し得られたシラン化合物の低縮合物)を万能混合攪拌機に投入し、90分間撹拌混合した。その後、140℃にて熱処理を30時間施し、熱処理物を得た。この熱処理物をヘンシェルミキサーを用いて解砕し、ポリシロキサン被覆イオン徐放性ガラスを得た。このポリシロキサンで被覆されたイオン徐放性ガラス500gを撹拌しつつ、酸性ポリマー水溶液(ポリアクリル酸水溶液:ポリマー濃度13重量%、重量平均分子量20000;ナカライ社製)をヘンシェルミキサーを用いて噴霧した。その後、熱処理(100℃3時間)を施し、表面処理したイオン徐放性ガラス2を製造した。このイオン徐放性ガラス2の50%平均粒子径をレーザー回折式粒度測定機(マイクロトラックSPA:日機装社製)により測定した結果、1.3μmであった。この表面処理したイオン徐放性ガラス2から放出されるイオンに基因した元素量(フッ化物イオンのみイオン量)を測定し、(1)式への適合性を確認した。その結果を表1に示した。
[Production of ion sustained-release glass 2]
An ion sustained-release glass 2 subjected to the surface treatment by the following polysiloxane treatment and acidic polymer treatment was obtained.
500 g of the above-mentioned ion sustained-release glass 1 and a silane compound (a low condensate of a silane compound obtained by previously stirring 5 g of tetramethoxysilane, 1000 g of water and 100 g of ethanol for 2 hours at room temperature) were put into a universal mixing stirrer. Stir and mix for 90 minutes. Thereafter, heat treatment was performed at 140 ° C. for 30 hours to obtain a heat-treated product. This heat-treated product was pulverized using a Henschel mixer to obtain polysiloxane-coated ion sustained-release glass. While stirring 500 g of this ion-release glass coated with polysiloxane, an acidic polymer aqueous solution (polyacrylic acid aqueous solution: polymer concentration 13 wt%, weight average molecular weight 20000; manufactured by Nacalai Co., Ltd.) was sprayed using a Henschel mixer. . Thereafter, heat treatment (100 ° C. for 3 hours) was performed to produce a surface-treated ion sustained-release glass 2. The 50% average particle size of the ion sustained-release glass 2 was 1.3 μm as a result of measurement by a laser diffraction particle size measuring device (Microtrac SPA: manufactured by Nikkiso Co., Ltd.). The amount of elements based on the ions released from the surface-treated ion sustained release glass 2 (the amount of ions of fluoride ions only) was measured, and the suitability for the formula (1) was confirmed. The results are shown in Table 1.

[イオン徐放性ガラス3の製造]
二酸化ケイ素、酸化アルミニウム、酸化ホウ素、フッ化ナトリウム、炭酸ストロンチウムの各種原料を混合後、1400℃にてその混合物を溶融してガラス(ガラス組成:SiO2 19.8質量%、Al2O3 19.8質量%、B2O3 11.7質量%、SrO 35.0質量%、Na2O 2.3質量%、F11.4質量%)を得た。次に生成したガラスを振動ミルを用いて10時間粉砕し、ガラス3を得た。前述のガラス3を500g、シラン化合物(予めテトラメトキシシラン10g、水1500g、エタノール100g、メタノール70g及びイソプロパノール50gを2時間室温で撹拌し得られたシラン化合物の低縮合物)を万能混合攪拌機に投入し、90分間撹拌混合した。その後、140℃にて熱処理を30時間施し、熱処理物を得た。この熱処理物をヘンシェルミキサーを用いて解砕し、ポリシロキサンで被覆したイオン徐放性ガラスを得た。このポリシロキサンで被覆したガラス500gを撹拌しつつ、酸性ポリマー水溶液(ポリアクリル酸水溶液:ポリマー濃度13重量%、重量平均分子量20000;ナカライ社製)をヘンシェルミキサーを用いて噴霧した。その後、熱処理(100℃3時間)を施し、表面処理したイオン徐放性ガラス3を製造した。
この表面処理したイオン徐放性ガラス3の50%平均粒子径をレーザー回折式粒度測定機(マイクロトラックSPA:日機装社製)により測定した結果、3.1μmであった。この表面処理したイオン徐放性ガラス3から放出されるイオンに基因した元素量(フッ化物イオンのみイオン量)を測定し、(1)式への適合性を確認した。その結果を表1に示した。
[Production of ion sustained-release glass 3]
After mixing various raw materials of silicon dioxide, aluminum oxide, boron oxide, sodium fluoride and strontium carbonate, the mixture was melted at 1400 ° C. to make glass (glass composition: 19.8% by mass of SiO 2, 19.8% by mass of Al 2 O 3 B2O3 11.7% by mass, SrO 35.0% by mass, Na2O 2.3% by mass, F11.4% by mass). Next, the produced | generated glass was grind | pulverized for 10 hours using the vibration mill, and the glass 3 was obtained. 500 g of the glass 3 described above and a silane compound (a low condensate of a silane compound obtained by previously stirring 10 g of tetramethoxysilane, 1500 g of water, 100 g of ethanol, 70 g of methanol and 50 g of isopropanol at room temperature for 2 hours) are put into a universal mixing stirrer. And stirred for 90 minutes. Thereafter, heat treatment was performed at 140 ° C. for 30 hours to obtain a heat-treated product. This heat-treated product was crushed using a Henschel mixer to obtain an ion sustained-release glass coated with polysiloxane. While stirring 500 g of this glass coated with polysiloxane, an acidic polymer aqueous solution (polyacrylic acid aqueous solution: polymer concentration 13 wt%, weight average molecular weight 20000; manufactured by Nacalai Co., Ltd.) was sprayed using a Henschel mixer. Thereafter, heat treatment (100 ° C. for 3 hours) was performed to produce surface-treated ion sustained-release glass 3.
The surface-treated ion sustained-release glass 3 had a 50% average particle size of 3.1 μm as a result of measurement by a laser diffraction particle size measuring device (Microtrac SPA: manufactured by Nikkiso Co., Ltd.). The amount of elements based on the ions released from the surface-treated ion sustained-release glass 3 (the amount of ions of fluoride ions only) was measured, and the suitability for the formula (1) was confirmed. The results are shown in Table 1.

Figure 0005653555

表2及び表3の調合組成に従い、粉材及び液材をそれぞれ調製した。
Figure 0005653555

According to the formulation composition of Table 2 and Table 3, the powder material and the liquid material were prepared, respectively.

Figure 0005653555
Figure 0005653555

Figure 0005653555
Figure 0005653555

Figure 0005653555
Figure 0005653555

Figure 0005653555
Figure 0005653555

実施例1〜6本発明の構成要件(a)〜(d)及び(e)を含有した二成分混和型イオン徐放性粘膜調整材組成物であり、表4に示すように、良好な切削性を有することが確認できる。さらに表5に示すように、イオン徐放性ガラスを含有している効果によりフッ化物イオンを含む6種類のイオンが徐放していることが認められ、特に部分床義歯においては不潔部位になりやすい鈎歯の脱灰抑制が期待できる。また酸中和能の評価から、二成分混和型イオン徐放性粘膜調整材組成物はpH4.0の乳酸水溶液を6時間経過後にはpH5前後、24時間後にはpH6前後にまで中和しており、酸中和能を有していることが確認できた。
比較例1は本発明の構成要件の中でも(b)イオン徐放性ガラスを含んでいない二成分混和型イオン徐放性粘膜調整材組成物であり、表4が示すように切削性が悪く、かつフッ素を含むイオン徐放性を有しないことが確認された。また酸中和能を有していないことが確認された。
比較例2は本発明の構成要件の中でも(c)有機溶媒を含んでいない二成分混和型イオン徐放性粘膜調整材組成物であり、表4が示すように試験体が作製不可能であることが確認された。
 
Examples 1 to 6 are two-component mixed ion sustained-release mucosal conditioner compositions containing the constitutional requirements (a) to (d) and (e) of the present invention. Can be confirmed. Furthermore, as shown in Table 5, it is recognized that six types of ions including fluoride ions are sustainedly released due to the effect of containing an ion sustained-release glass, and in particular, in a partial denture, it tends to be a dirty part. Anti-decalcification of tooth decay can be expected. In addition, from the evaluation of the acid neutralizing ability, the two-component mixed ion sustained-release mucosal preparation composition neutralizes a pH 4.0 lactic acid aqueous solution to about pH 5 after 6 hours and to about pH 6 after 24 hours. It was confirmed that it has acid neutralizing ability.
Comparative Example 1 is a two-component mixed ion sustained release mucosal preparation composition that does not contain (b) ion sustained release glass among the constituent requirements of the present invention, and as shown in Table 4, the machinability is poor, In addition, it was confirmed that there was no sustained release of ions containing fluorine. Moreover, it was confirmed that it has no acid neutralizing ability.
Comparative Example 2 is a two-component mixed ion sustained-release mucosal preparation composition that does not contain an organic solvent among the constituent requirements of the present invention, and as shown in Table 4, a test specimen cannot be prepared. It was confirmed.
 

Claims (4)

粉材と液材から成る二成分混和型イオン徐放性粘膜調整材組成物であって
(a)非架橋性(メタ)アクリレート系ポリマー
(b)イオン徐放性ガラスを含む粉材成分と
(c)可塑材
(d)有機溶媒を含む液材成分とから構成され、
イオン徐放性ガラス (b)の組成範囲は
SiO2 15〜35質量%、
Al2O3 15〜30質量%、
B2O3 5〜20質量%、
SrO 20〜45質量%、
F 5〜15質量%、
Na2O 0〜10質量%であり、シラン化合物によりイオン徐放性ガラス表面を被覆した後に、酸性ポリマーにより表面処理されていることを特徴とする二成分混和型イオン徐放性粘膜調整材組成物。
A two-component mixed ion sustained-release mucosal preparation composition comprising a powder material and a liquid material, comprising: (a) a non-crosslinkable (meth) acrylate polymer (b) a powder material component comprising ion-release glass ( c) a plastic material (d) composed of a liquid material component containing an organic solvent,
The composition range of ion sustained release glass (b) is
SiO2 15-35% by mass,
Al2O3 15-30% by mass,
B2O3 5-20% by mass,
20 to 45% by mass of SrO,
F 5-15% by mass,
A Na2 O 0 wt%, after coating the ion sustained release glass surface with a silane compound, a two-component mixing type ion sustained release tissue conditioner composition characterized that you have been surface treated with an acidic polymer.
イオン徐放性ガラス (b)がIon sustained release glass (b)
pHを4.0に調整した乳酸水溶液10gに対してイオン徐放性ガラスを0.1g加え、5分間撹拌させた時のpH変化を測定することにより確認することできる。その時のpHが5.5以上であることを特徴とする請求項1に記載の二成分混和型イオン徐放性義歯床用関連材料組成物。This can be confirmed by adding 0.1 g of ion-releasing glass to 10 g of lactic acid aqueous solution whose pH is adjusted to 4.0 and measuring the pH change when stirring for 5 minutes. The pH is 5.5 or more at that time, the two-component mixed ion sustained release denture base related material composition according to claim 1.
ポリシロキサン被覆イオン徐放性ガラスに対する酸性ポリマーの量は1〜7重量%であることを特徴とする請求項1に記載の二成分混和型イオン徐放性義歯床用関連材料組成物。2. The two-component mixed ion sustained-release denture base-related material composition according to claim 1, wherein the amount of the acidic polymer relative to the polysiloxane-coated ion sustained-release glass is 1 to 7 wt%. イオン徐放性ガラス表面を被覆するシラン化合物の添加量はイオン徐放性ガラス100重量部に対して、シラン化合物のSiをSiO2に換算して0.1〜10重量部であることを特徴とする請求項1に記載の二成分混和型イオン徐放性義歯床用関連材料組成物。The addition amount of the silane compound covering the surface of the ion sustained-release glass is 0.1 to 10 parts by weight in terms of Si of the silane compound converted to SiO 2 with respect to 100 parts by weight of the ion sustained-release glass. The two-component mixed ion sustained release denture base related material composition according to claim 1.
JP2014113584A 2014-05-30 2014-05-30 Two-component mixed ion sustained release mucosal preparation composition Active JP5653555B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014113584A JP5653555B1 (en) 2014-05-30 2014-05-30 Two-component mixed ion sustained release mucosal preparation composition
EP15150487.5A EP2949311B1 (en) 2014-05-30 2015-01-08 Dental composition containing ion sustained-release glass
US14/593,103 US11648184B2 (en) 2014-05-30 2015-01-09 Dental composition containing ion sustained-release glass
US16/059,446 US11559471B2 (en) 2014-05-30 2018-08-09 Dental composition containing ion sustained-release glass
US18/130,664 US20230255857A1 (en) 2014-05-30 2023-04-04 Dental composition containing ion sustained-release glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014113584A JP5653555B1 (en) 2014-05-30 2014-05-30 Two-component mixed ion sustained release mucosal preparation composition

Publications (2)

Publication Number Publication Date
JP5653555B1 true JP5653555B1 (en) 2015-01-14
JP2015227315A JP2015227315A (en) 2015-12-17

Family

ID=52339858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014113584A Active JP5653555B1 (en) 2014-05-30 2014-05-30 Two-component mixed ion sustained release mucosal preparation composition

Country Status (1)

Country Link
JP (1) JP5653555B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091679B1 (en) * 2016-03-29 2017-03-08 株式会社松風 Droplet generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291017A (en) * 1995-04-17 1996-11-05 G C:Kk Flexible backing material composition for denture base
JPH10279414A (en) * 1997-03-27 1998-10-20 Thera Patent Gmbh & Co Kg G Fur Ind Schutzrechte Composite material for suppressing dental plaque
JP2004168747A (en) * 2002-11-21 2004-06-17 Shiyoufuu:Kk Plaque deposition suppressing film
JP2006225281A (en) * 2005-02-15 2006-08-31 Tokuyama Corp Mucosa regulating material for dental use
JP2010229072A (en) * 2009-03-27 2010-10-14 Gc Corp Soft lining material composition for dentistry
JP2011132189A (en) * 2009-12-25 2011-07-07 Tokuyama Dental Corp Mucosa regulating material for dental use
JP2011229839A (en) * 2010-04-30 2011-11-17 Gc Corp Block for fabricating denture base

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291017A (en) * 1995-04-17 1996-11-05 G C:Kk Flexible backing material composition for denture base
JPH10279414A (en) * 1997-03-27 1998-10-20 Thera Patent Gmbh & Co Kg G Fur Ind Schutzrechte Composite material for suppressing dental plaque
JP2004168747A (en) * 2002-11-21 2004-06-17 Shiyoufuu:Kk Plaque deposition suppressing film
JP2006225281A (en) * 2005-02-15 2006-08-31 Tokuyama Corp Mucosa regulating material for dental use
JP2010229072A (en) * 2009-03-27 2010-10-14 Gc Corp Soft lining material composition for dentistry
JP2011132189A (en) * 2009-12-25 2011-07-07 Tokuyama Dental Corp Mucosa regulating material for dental use
JP2011229839A (en) * 2010-04-30 2011-11-17 Gc Corp Block for fabricating denture base

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014031591; 渡邉一弘 他: 'S-PRG フィラー含有MMA 常温重合レジンの抗プラーク性' 岐歯学誌 39巻,3号, 2013, pp.127-139 *

Also Published As

Publication number Publication date
JP2015227315A (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5653551B1 (en) Ion sustained release oral care composition
JP5117194B2 (en) Dental glass composition
JP6734659B2 (en) Sealer composition for root canal filling
JP2023159376A (en) Glass ionomer cement composition for dental luting with good removability
JP3481660B2 (en) Fillers and dental composites containing fillers
JP5653555B1 (en) Two-component mixed ion sustained release mucosal preparation composition
JP5653554B1 (en) Two-component mixed ion sustained release related denture base material composition
JP5653549B1 (en) Ion sustained release dental resin temporary sealant composition
JP5653553B1 (en) Ion sustained release gum composition
US11382839B2 (en) Ion sustained-release dental hydraulic temporary sealing material composition
JP5653552B1 (en) Ion sustained release varnish composition
EP3205326B1 (en) Two-paste type sealer composition for root canal filling
JP5786102B1 (en) Characteristic fillers in acidic polymer processing methods
JP2022077007A (en) Dental glass ionomer cement composition suitable for mechanical mixing
JP5653550B1 (en) Neutralization promoting ion sustained release dental film
JP2015227310A (en) Ion sustained-release thermoplastic sheet composition
JP6928417B2 (en) Method for producing ion-releasing functional composite fine particles
JP7365776B2 (en) Glass ionomer cement composition for dental luting with good removability
JP2019115430A (en) Dental brush hair material containing ion sustained-release glass particle
JP2024094189A (en) Dental porcelain paste containing inorganic salt
JP2016222542A (en) Dental glass ionomer cement composition
JP2018020986A (en) Periodontitis treatment composition and periodontitis treatment composition kit comprising the same
WO2015046514A1 (en) Composite filler for glass ionomer cement for dental use and production method therefor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141118

R150 Certificate of patent or registration of utility model

Ref document number: 5653555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250