JP5646164B2 - Branched chitosan derivative - Google Patents

Branched chitosan derivative Download PDF

Info

Publication number
JP5646164B2
JP5646164B2 JP2009293083A JP2009293083A JP5646164B2 JP 5646164 B2 JP5646164 B2 JP 5646164B2 JP 2009293083 A JP2009293083 A JP 2009293083A JP 2009293083 A JP2009293083 A JP 2009293083A JP 5646164 B2 JP5646164 B2 JP 5646164B2
Authority
JP
Japan
Prior art keywords
chitosan
branched
derivative
present
chitosan derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009293083A
Other languages
Japanese (ja)
Other versions
JP2011132369A (en
Inventor
博之 斎本
斎本  博之
稔 森本
稔 森本
伸介 伊福
伸介 伊福
南 三郎
三郎 南
善彦 大村
大村  善彦
敏和 米田
敏和 米田
吉守 高森
吉守 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omura Toryo Co Ltd
Koyo Chemical Co Ltd
Tottori University
Original Assignee
Omura Toryo Co Ltd
Koyo Chemical Co Ltd
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omura Toryo Co Ltd, Koyo Chemical Co Ltd, Tottori University filed Critical Omura Toryo Co Ltd
Priority to JP2009293083A priority Critical patent/JP5646164B2/en
Publication of JP2011132369A publication Critical patent/JP2011132369A/en
Application granted granted Critical
Publication of JP5646164B2 publication Critical patent/JP5646164B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明は、新規分岐キトサン誘導体、その製造方法およびその用途に関する。さらに詳しくは、キトサン側鎖を有するキトサン誘導体、その製造方法およびその用途に関する。   The present invention relates to a novel branched chitosan derivative, a production method thereof and use thereof. More specifically, the present invention relates to a chitosan derivative having a chitosan side chain, a method for producing the chitosan derivative, and a use thereof.

キチンはN−アセチルグルコサミンを繰り返しユニットとする天然由来のムコ多糖の一つである。キトサンも天然由来のムコ多糖の一つであるが、工業的にはキチンの脱アセチル化により製造されている。キチン、キトサンの材料特性は分子量分布、N−アセチル基の置換度の他、化学修飾により導入した機能性置換基により制御されることが知られている。遺伝子キャリヤー、生体接着剤、シーリング剤などの開発をめざした機能化の例も知られているが、水溶性(生体に適した溶媒への溶解性)と機能性(ポリアミンの特性、低粘性)の両立が不十分であったり(特許文献1、非特許文献1、非特許文献2等参照)、キチン、キトサン以外の分子構造を含む(非特許文献3、非特許文献4、非特許文献5等参照)などの問題があった。   Chitin is one of naturally occurring mucopolysaccharides having N-acetylglucosamine as a repeating unit. Chitosan is one of naturally occurring mucopolysaccharides, but industrially produced by deacetylation of chitin. It is known that the material properties of chitin and chitosan are controlled by functional substituents introduced by chemical modification, in addition to molecular weight distribution and N-acetyl group substitution degree. Examples of functionalization aimed at the development of gene carriers, bioadhesives, sealing agents, etc. are also known, but water solubility (solubility in solvents suitable for living organisms) and functionality (polyamine characteristics, low viscosity) (See Patent Document 1, Non-Patent Document 1, Non-Patent Document 2, etc.) and include molecular structures other than chitin and chitosan (Non-Patent Document 3, Non-Patent Document 4, Non-Patent Document 5) Etc.).

キトサンの水溶性向上技術に関する既存技術との比較を表1にまとめた。水溶性改善のためには親水性基を導入する方法が一般的であり、その中でもポリエチレングリコール(PEG)鎖の導入が代表例である(非特許文献6等参照)。しかし、キトサンに対するPEGの割合など、良好な水溶性を付与するには適用可能範囲が限られる。一方、単糖、二糖、オリゴ糖などの比較的短い鎖長の糖側鎖の導入(特許文献1、非特許文献1、非特許文献2等参照)の効果は限定的であり、不十分である。またキトサンオリゴ糖は、非常に高価であり実用的ではない。キトサンを亜硝酸分解して得られる低分子化物を側鎖に導入する方法は簡便ではあるが(非特許文献3、非特許文献4、非特許文献5等参照)、亜硝酸分解すると還元末端が2、5−デヒドロ−D−マンノフラノース残基に変質しているため、キトサン鎖とは異なる構造である。

Figure 0005646164
Table 1 summarizes the comparison of chitosan water solubility improvement technology with existing technologies. In order to improve water solubility, a method of introducing a hydrophilic group is common, and among them, introduction of a polyethylene glycol (PEG) chain is a typical example (see Non-Patent Document 6 and the like). However, the range of applicability is limited to impart good water solubility, such as the ratio of PEG to chitosan. On the other hand, the effects of introduction of sugar side chains with relatively short chain lengths such as monosaccharides, disaccharides and oligosaccharides (see Patent Document 1, Non-Patent Document 1, Non-Patent Document 2, etc.) are limited and insufficient. It is. Chitosan oligosaccharides are very expensive and impractical. Although the method of introducing a low molecular weight product obtained by decomposing chitosan into nitrous acid into the side chain is simple (see Non-patent Document 3, Non-patent Document 4, Non-patent Document 5, etc.), when nitrous acid is decomposed, the reducing end is reduced. Since it is altered to 2,5-dehydro-D-mannofuranose residue, it has a structure different from that of chitosan chain.
Figure 0005646164

国際公開WO0027889号公報International Publication WO0027889

Biomacromol., 2, 1133-1136, 2001.Biomacromol., 2, 1133-1136, 2001. Trends Glycosci. Glycotechnol., 14, 331-341, 2002.Trends Glycosci. Glycotechnol., 14, 331-341, 2002. J. Biomed. Mater. Res. A, 82, 201-212 2007.J. Biomed. Mater. Res. A, 82, 201-212 2007. Acta Biomaterialia, 5, 1575-1581 2009.Acta Biomaterialia, 5, 1575-1581 2009. Biomacromol., 9, 3268-3276, 2008.Biomacromol., 9, 3268-3276, 2008. Carbohydr. Polym., 36, 49-59, 1998.Carbohydr. Polym., 36, 49-59, 1998.

本発明の解決課題は、水溶性(生体に適した溶媒への溶解性)と機能性(ポリアミンの特性、低粘性)が両立した、新規なキトサン誘導体を開発し、多方面に利用することであった。   The problem to be solved by the present invention is to develop a novel chitosan derivative that is compatible with water solubility (solubility in a solvent suitable for a living body) and functionality (polyamine characteristics, low viscosity) and uses it in various fields. there were.

キチン、キトサン(化1)はそのままでは水溶性が十分ではなく、また分子量の増大に伴い粘度が大きく上昇するため、応用、利用範囲の拡大に制限があった。

Figure 0005646164
Chitin and chitosan (Chemical Formula 1) are not sufficiently soluble in water as they are, and the viscosity greatly increases with the increase in molecular weight.
Figure 0005646164

すなわち、キチン(化1で、x+y=1、一般にx<0.1)は通常の溶媒に難溶であり、キトサン(化1で、x+y=1、一般にy<0.2)は、酸性では水溶性を示すものの中性からアルカリ性域では難溶である。本発明者らは、上記解決課題に鑑みて、この問題について種々検討した結果、比較的分子量の大きいキトサン(HMW−キトサン)と比較的分子量の小さいキトサン(LMW−キトサン)との還元的N−アルキル化反応により、良好な水溶性とその水溶液が低い粘度を示す新規な分岐キトサン誘導体が得られることを見出した。さらに、本発明者らは、従来のキトサンは酸を用いて溶解させる必要があり、脱アセチル化度(DDA)約50%の部分アセチル化キトサンまたは部分脱アセチル化キチン(化1で、x=y=約0.5)の場合のみ中性の水に可溶であったが、分岐キトサン誘導体は、酸性水溶液への溶解性が改善されたのみならず、中性の水に対する良好な溶解・分散性を有することも見出した。加えて、本発明者らは、分岐キトサン誘導体が、免疫系を活性化させる作用を有するという、意外かつ顕著な効果も見出した。本発明者らは、これらの知見に基づいて本発明を完成させた。   That is, chitin (chemical formula 1, x + y = 1, generally x <0.1) is hardly soluble in ordinary solvents, and chitosan (chemical formula 1, x + y = 1, generally y <0.2) is acidic. It is hardly soluble in the neutral to alkaline range of water-soluble ones. As a result of various studies on this problem in view of the above problems, the present inventors have found that reductive N− between chitosan having a relatively high molecular weight (HMW-chitosan) and chitosan having a relatively low molecular weight (LMW-chitosan). It has been found that a novel branched chitosan derivative showing good water solubility and low viscosity of the aqueous solution can be obtained by the alkylation reaction. Furthermore, the present inventors need to dissolve conventional chitosan with an acid, and use partially acetylated chitosan or partially deacetylated chitin having a degree of deacetylation (DDA) of about 50% (in formula 1, x = Although it was soluble in neutral water only when y = about 0.5), the branched chitosan derivative not only improved the solubility in acidic aqueous solution, but also had good solubility in neutral water. It has also been found that it has dispersibility. In addition, the present inventors have also found an unexpected and remarkable effect that the branched chitosan derivative has an action of activating the immune system. The present inventors have completed the present invention based on these findings.

すなわち、本発明は下記のものを提供する:
(1)式(I):

Figure 0005646164

[式中、x+y+z=1であり、x、y、zは、それぞれ独立して、0≦x<1、0≦y<1、0<z≦1であり、Rは式(II):
Figure 0005646164

で示されるキトサン側鎖であり、Rは、H、アセチル基、該Rであり、aは0〜500の整数を示し、但し、全てのRは同一でも異なっていてもよい]で表わされる、分岐キトサン誘導体;
(2)(1)記載の分岐キトサン誘導体を含む、低粘度キトサン組成物;
(3)(1)記載の分岐キトサン誘導体を含む、免疫系活性化剤;
(4)(1)記載の分岐キトサン誘導体を含む飲食物;ならびに
(5)主鎖用キトサンと、主鎖用キトサンよりも低分子量の側鎖用キトサンとを、還元的N−アルキル化反応に供することを特徴とする、分岐キトサン誘導体の製造方法;
(6)主鎖用キトサンの重量平均分子量が450kDaよりも小さいものである、(5)記載の製造方法;
(7)主鎖用キトサンの重量平均分子量が80kDaないし190kDaの範囲である、(5)記載の製造方法;ならびに
(8)(5)〜(7)のいずれかに記載の方法により得られる分岐キトサン誘導体。
That is, the present invention provides the following:
(1) Formula (I):
Figure 0005646164

[Wherein, x + y + z = 1, and x, y, z are independently 0 ≦ x <1, 0 ≦ y <1, 0 <z ≦ 1, and R 1 is represented by formula (II):
Figure 0005646164

Wherein R 2 is H, an acetyl group, or R 1 , and a is an integer of 0 to 500, provided that all R 2 may be the same or different.] A branched chitosan derivative represented;
(2) A low-viscosity chitosan composition comprising the branched chitosan derivative according to (1);
(3) an immune system activator comprising the branched chitosan derivative according to (1);
(4) Food and drink containing the branched chitosan derivative according to (1); and (5) Reductive N-alkylation reaction of chitosan for main chain and chitosan for side chain having a lower molecular weight than chitosan for main chain. A method for producing a branched chitosan derivative, comprising:
(6) The production method according to (5), wherein the chitosan for main chain has a weight average molecular weight of less than 450 kDa;
(7) The production method according to (5), wherein the chitosan for main chain has a weight average molecular weight in the range of 80 kDa to 190 kDa; and (8) the branch obtained by the method according to any one of (5) to (7) Chitosan derivative.

本発明の分岐キトサン誘導体はカニ殻、エビ殻由来のキチン、キトサンとその低分子化物を原料とするため、アミノ基のアセチル化度を調整することも容易であり、溶解性を制御することも可能である。本発明の分岐キトサン誘導体は水に対する溶解度が大きく、特に中性付近での溶解度が大きい。本発明の分岐キトサン誘導体の水溶液の粘度も低い。したがって、本発明の分岐キトサン誘導体は、従来キチン、キトサンが利用されていた領域、例えば創傷治癒剤、生体内充填剤、生体接着剤やコーティング剤、さらには医薬品などへの、さらに幅広い応用が可能であり、これを用いて優れた特性を有する製品を製造することができる。加えて、本発明の分岐キトサン誘導体は顕著な免疫系活性化効果を有するので、これを用いて優れた医薬品、健康食品などを製造することもできる。   Since the branched chitosan derivative of the present invention uses chitin derived from crab shell, shrimp shell, chitosan and its low molecular weight product, it is easy to adjust the degree of acetylation of the amino group and to control the solubility. Is possible. The branched chitosan derivative of the present invention has a high solubility in water, particularly in the vicinity of neutrality. The viscosity of the aqueous solution of the branched chitosan derivative of the present invention is also low. Therefore, the branched chitosan derivative of the present invention can be applied to a wider range of applications where chitin and chitosan are conventionally used, such as wound healing agents, biofillers, bioadhesives and coating agents, and pharmaceuticals. This can be used to produce a product having excellent characteristics. In addition, since the branched chitosan derivative of the present invention has a remarkable immune system activation effect, it can be used to produce excellent pharmaceuticals, health foods and the like.

図1は、分岐キトサン誘導体の蛍光スペクトルを示す(励起波長 510nm)。FIG. 1 shows the fluorescence spectrum of a branched chitosan derivative (excitation wavelength 510 nm). 図2は、直鎖型のHMW−キトサンと分岐キトサンの粘度の比較を示すグラフである。FIG. 2 is a graph showing a comparison in viscosity between linear HMW-chitosan and branched chitosan. 図3は、分岐キトサン誘導体、HMW−キトサン、LMW−キトサンを投与した場合のCD4+細胞の割合を比較したグラフである。*P<0.05、**P<0.01。FIG. 3 is a graph comparing the proportion of CD4 + cells when a branched chitosan derivative, HMW-chitosan, and LMW-chitosan were administered. * P <0.05, ** P <0.01. 図4は、分岐キトサン誘導体、HMW−キトサン、LMW−キトサンを投与した場合のNK細胞の割合を比較したグラフである。*P<0.05、**P<0.01。FIG. 4 is a graph comparing the proportion of NK cells when a branched chitosan derivative, HMW-chitosan, and LMW-chitosan are administered. * P <0.05, ** P <0.01. 図5は、分岐キトサン誘導体、HMW−キトサン、LMW−キトサンを投与した場合の血清IL−6増加活性を比較したグラフである。*P<0.05。FIG. 5 is a graph comparing serum IL-6 increasing activity when a branched chitosan derivative, HMW-chitosan, and LMW-chitosan are administered. * P <0.05. 図6は、分岐キトサン誘導体、HMW−キトサン、LMW−キトサンを投与した場合の血清TNF−α増加活性を比較したグラフである。*P<0.05、**P<0.01。FIG. 6 is a graph comparing serum TNF-α increasing activity when a branched chitosan derivative, HMW-chitosan, and LMW-chitosan are administered. * P <0.05, ** P <0.01.

本発明は、1の態様において、式(I):

Figure 0005646164

[式中、x+y+z=1であり、x、y、zは、それぞれ独立して、0≦x<1、0≦y<1、0<z≦1であり、Rは式(II):
Figure 0005646164

で示されるキトサン側鎖であり、Rは、H、アセチル基、該Rであり、aは0〜500の整数を示し、但し、全てのRは同一でも異なっていてもよい]で表わされる、新規な分岐キトサン誘導体を提供する。 In one aspect, the present invention provides a compound of formula (I):
Figure 0005646164

[Wherein, x + y + z = 1, and x, y, z are independently 0 ≦ x <1, 0 ≦ y <1, 0 <z ≦ 1, and R 1 is represented by formula (II):
Figure 0005646164

Wherein R 2 is H, an acetyl group, or R 1 , and a is an integer of 0 to 500, provided that all R 2 may be the same or different.] The novel branched chitosan derivatives represented are provided.

本発明の分岐キトサン誘導体は、グルコサミン残基(本明細書において「キトサンユニット」または「GlcN」と称する場合がある)、N−アセチルグルコサミン残基(本明細書において「キチンユニット」または「GlcNac」と称する場合がある)、および式(II)で示されるR基が2−位のNに結合したグルコサミン残基が結合したものである。本発明の分岐キトサン誘導体中のこれらの残基の割合は、x、y、zで示され、それぞれ独立して、0≦x<1、0≦y<1、0<z≦1である。 The branched chitosan derivative of the present invention comprises a glucosamine residue (sometimes referred to herein as “chitosan unit” or “GlcN”), an N-acetylglucosamine residue (herein referred to as “chitin unit” or “GlcNac”). And a glucosamine residue in which the R 1 group represented by the formula (II) is bonded to N at the 2-position. The proportions of these residues in the branched chitosan derivative of the present invention are indicated by x, y, and z, and are independently 0 ≦ x <1, 0 ≦ y <1, and 0 <z ≦ 1.

xおよびyの割合は、本発明の分岐キトサン誘導体の製造に使用する原料キトサンの種類によって異なり、また、原料キトサンまたは生成した分岐キトサン誘導体をアセチル化または脱アセチル化することによりコントロールすることができる。分岐残基の割合zは(分岐キトサン誘導体中の分岐残基数)/(分岐キトサン誘導体中の全残基数)によって定義されるものであり、本発明の分岐キトサン誘導体の製造方法に関して説明する、原料であるHMW−キトサンとLMW−キトサンの量比を変更することによって、変更可能である。   The ratio of x and y varies depending on the type of raw chitosan used in the production of the branched chitosan derivative of the present invention, and can be controlled by acetylating or deacetylating the raw chitosan or the generated branched chitosan derivative. . The ratio z of branched residues is defined by (number of branched residues in the branched chitosan derivative) / (total number of residues in the branched chitosan derivative). The method for producing the branched chitosan derivative of the present invention will be described. It can be changed by changing the amount ratio of the raw material HMW-chitosan and LMW-chitosan.

aの値は分岐鎖の長さを規定する。通常は、aは1ないし500である。aの値が大きいほど分岐鎖が長くなる。直鎖型またはそれに近い分岐キトサン誘導体は分子鎖どうしが絡まりやすいので水溶液が高粘度となる傾向があり、球状またはそれに近い分岐キトサン誘導体は分子鎖どうしが絡まりにくいので水溶液が低粘度となる傾向があると考えられる。したがって、水溶液の粘度を低くするためにはaの値をある程度大きくする必要があると思われる。

(aに関する記載は正しいでしょうか)
The value of a defines the length of the branched chain. Usually, a is 1 to 500. The larger the value of a, the longer the branched chain. Linear or near-branched chitosan derivatives tend to get entangled in molecular chains, so aqueous solutions tend to be highly viscous.Spherical or near-branched chitosan derivatives tend to get entangled in molecular chains, so aqueous solutions tend to have low viscosity. It is believed that there is. Therefore, it seems that the value of a needs to be increased to some extent in order to reduce the viscosity of the aqueous solution.

(Is the description about a correct?)

本発明の分岐キトサン誘導体の分子量は、用途や必要な物性に応じて幅広く選択あるいは調節することができる。かかる分子量の選択あるいは調節は、本発明の分岐キトサン誘導体の原料である主鎖用キトサン(本明細書において「HMW−キトサン」と称することがある)と側鎖用キトサン(本明細書において「LMW−キトサン」と称することがある)の分子量を選択あるいは調節すること、あるいは還元剤の種類、反応温度、反応時間などの反応条件を選択することによってコントロール可能である(下記の製造方法に関する説明も参照のこと)。一般に、キチンあるいはキトサンの分子量は、酸、アルカリあるいは酵素でのキチン、キトサンの加水分解の条件を調節することによって調節することができ、その手法は当業者に公知である。また、HMW−キトサンの重量平均分子量(Mw)が約450kDaよりも大きい場合は、分岐キトサン誘導体の水溶性が低下し、その水溶液の粘度が上昇する傾向がある。   The molecular weight of the branched chitosan derivative of the present invention can be widely selected or adjusted depending on the application and required physical properties. Such molecular weight is selected or adjusted by chitosan for main chain (sometimes referred to as “HMW-chitosan” in this specification) and chitosan for side chain (hereinafter referred to as “LMW” in this specification), which are raw materials of the branched chitosan derivative of the present invention. (Sometimes referred to as “chitosan”) or by selecting reaction conditions such as the type of reducing agent, reaction temperature, reaction time, etc. See In general, the molecular weight of chitin or chitosan can be adjusted by adjusting the conditions for hydrolysis of chitin and chitosan with acid, alkali or enzyme, and the method is known to those skilled in the art. Moreover, when the weight average molecular weight (Mw) of HMW-chitosan is larger than about 450 kDa, the water solubility of the branched chitosan derivative tends to decrease and the viscosity of the aqueous solution tends to increase.

本発明の分岐キトサン誘導体は、式(I)で示されるもののほか、その修飾体を包含する。ただし、これらの修飾体が式(I)に示される本発明の分岐キトサン誘導体の性質を保持していることが条件である。例えば、本発明の分岐キトサン誘導体の構成糖残基の1つまたはそれ以上が式(I)に示されるもの以外の残基であってもよい。また例えば、本発明の分岐キトサン誘導体の構成糖残基の1つまたはそれ以上において、2−位のNを介して配糖体が形成されていてもよい。また例えば、本発明の分岐キトサン誘導体の構成糖残基の1つまたはそれ以上において、水酸基がメチル化等の修飾を受けていてもよい。また例えば、本発明の分岐キトサン誘導体の構成糖残基の1つまたはそれ以上が非天然型の糖残基であってもよい。また例えば、構成糖残基を連結している結合の1つまたはそれ以上がα−1,4結合以外のものであってもよい。   The branched chitosan derivatives of the present invention include those modified in addition to those represented by the formula (I). However, it is a condition that these modified products retain the properties of the branched chitosan derivative of the present invention represented by the formula (I). For example, one or more of the constituent sugar residues of the branched chitosan derivative of the present invention may be residues other than those shown in formula (I). In addition, for example, a glycoside may be formed via N at the 2-position in one or more of the constituent sugar residues of the branched chitosan derivative of the present invention. For example, the hydroxyl group may be modified by methylation or the like in one or more of the constituent sugar residues of the branched chitosan derivative of the present invention. For example, one or more of the constituent sugar residues of the branched chitosan derivative of the present invention may be a non-natural sugar residue. For example, one or more of the bonds connecting the constituent sugar residues may be other than α-1,4 bonds.

本発明は、もう1つの態様において、主鎖用キトサン(HMW−キトサン)と、主鎖用キトサンよりも低分子量の側鎖用キトサン(LMW−キトサン)とを、還元的N−アルキル化反応に供することを特徴とする、上記の分岐キトサン誘導体の製造方法を提供する。   In another aspect, the present invention provides a reductive N-alkylation reaction of chitosan for main chain (HMW-chitosan) and chitosan for side chain (LMW-chitosan) having a lower molecular weight than chitosan for main chain. A method for producing the branched chitosan derivative is provided.

本発明の分岐キトサン誘導体の原料であるHMW−キトサンおよびLMW−キトサンは、キチンを公知の方法に従って脱アセチル化して用いても良いが、市販キトサンをそのまま用いることができる。また、市販品のキトサンを用いる場合にも、アセチル化反応又は脱アセチル化反応を行って、キトサンユニット及びキチンユニットの割合を所望の値に調整することができる。従って、本発明で用いるキトサンの脱アセチル化度は特に限定されず、好ましくは5%以上、より好ましくは30〜99%の脱アセチル化度を有するものであればよい。なお、キトサンの脱アセチル化度は、例えば、プロトン核磁気共鳴分析により測定することができる。なお、HMW−キトサンおよびLMW−キトサンは直鎖型であってもよいが、すでに側鎖キトサンが付いた分岐キトサン誘導体であってもよい。   HMW-chitosan and LMW-chitosan, which are raw materials for the branched chitosan derivative of the present invention, may be used after deacetylation of chitin according to a known method, but commercially available chitosan can be used as it is. Moreover, also when using a commercially available chitosan, the ratio of a chitosan unit and a chitin unit can be adjusted to a desired value by performing an acetylation reaction or a deacetylation reaction. Therefore, the degree of deacetylation of chitosan used in the present invention is not particularly limited, and it may be any as long as it has a degree of deacetylation of preferably 5% or more, more preferably 30 to 99%. The degree of deacetylation of chitosan can be measured, for example, by proton nuclear magnetic resonance analysis. HMW-chitosan and LMW-chitosan may be linear or branched chitosan derivatives with side chain chitosan already attached.

本発明の分岐キトサン誘導体の製造に供されるHMW−キトサンキトサンは、取り扱い易さの観点から、重量平均分子量(Mw)は約5,000〜約600,000が好ましく、約5,000〜約200,000がより好ましい。また、数平均分子量(Mn)は約1,000〜約500,000が好ましく、約2,000〜約100,000がより好ましいが、これらの分子量に限定されない。ただし、HMW−キトサンの重量平均分子量(Mw)が約450kDaよりも大きい場合は、得られる分岐キトサン誘導体の水溶性が低下し、その水溶液の粘度が上昇する傾向があるので、用いるHMW−キトサンの重量平均分子量は約450kDa未満であることが好ましく、例えば、約80kDa以上約450kDa未満であってもよい。また、LMW−キトサンの分子量(重量平均分子量または数平均分子量)は、HMW−キトサンのそれよりも小さいものである。通常は、LMW−キトサンに含まれる糖残基数は1ないし約500個である。キトサンの重量平均分子量及び数平均分子量は、例えば、ゲルろ過クロマトグラフィー(GPC)により測定することができる。HMW−キトサンおよびLMW−キトサンの分子量(あるいはLMW−キトサンに含まれる糖残基数)は、製造すべき分岐キトサン誘導体の用途や必要な物性に応じて変更することができる。   From the viewpoint of ease of handling, the HMW-chitosan chitosan used for the production of the branched chitosan derivative of the present invention preferably has a weight average molecular weight (Mw) of about 5,000 to about 600,000, and about 5,000 to about 200,000 is more preferred. The number average molecular weight (Mn) is preferably about 1,000 to about 500,000, more preferably about 2,000 to about 100,000, but is not limited to these molecular weights. However, when the weight average molecular weight (Mw) of HMW-chitosan is greater than about 450 kDa, the water solubility of the resulting branched chitosan derivative tends to decrease and the viscosity of the aqueous solution tends to increase. The weight average molecular weight is preferably less than about 450 kDa, and may be, for example, about 80 kDa or more and less than about 450 kDa. The molecular weight (weight average molecular weight or number average molecular weight) of LMW-chitosan is smaller than that of HMW-chitosan. Usually, LMW-chitosan contains 1 to about 500 sugar residues. The weight average molecular weight and number average molecular weight of chitosan can be measured, for example, by gel filtration chromatography (GPC). The molecular weight of HMW-chitosan and LMW-chitosan (or the number of sugar residues contained in LMW-chitosan) can be changed according to the use of the branched chitosan derivative to be produced and the required physical properties.

分岐型キトサンは、分岐度zが約0.01〜約0.6であるものが好ましく、約0.02〜約0.5がより好ましい。分岐度は、還元的N−アルキル化反応に用いるキトサン側鎖の量を調節することにより調整することができる。本明細書において、キトサンの分岐度は、例えば、プロトン核磁気共鳴分析及び元素分析に基づいて算出することができる。   The branched chitosan preferably has a degree of branching z of about 0.01 to about 0.6, more preferably about 0.02 to about 0.5. The degree of branching can be adjusted by adjusting the amount of chitosan side chain used in the reductive N-alkylation reaction. In the present specification, the degree of branching of chitosan can be calculated based on, for example, proton nuclear magnetic resonance analysis and elemental analysis.

HMW−キトサンとLMW−キトサンとの還元的N−アルキル化反応を行うことにより、本発明の分岐キトサン誘導体(式(I))を得ることができる。還元的N−アルキル化反応は、還元剤の存在下で行われ、還元剤として、シアノ水素化ホウ素ナトリウム、水素化ホウ素ナトリウム、水素とPd/C(パラジウム/カーボン)触媒などが挙げられるが、これらに限定されない。還元剤の存在量は、その種類にもよるが、各反応に供される原料100重量部に対して、5〜50重量部が好ましく、5〜20重量部がより好ましい。   The branched chitosan derivative (formula (I)) of the present invention can be obtained by performing a reductive N-alkylation reaction between HMW-chitosan and LMW-chitosan. The reductive N-alkylation reaction is performed in the presence of a reducing agent. Examples of the reducing agent include sodium cyanoborohydride, sodium borohydride, hydrogen and a Pd / C (palladium / carbon) catalyst. It is not limited to these. The amount of the reducing agent is preferably 5 to 50 parts by weight and more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the raw material used for each reaction, although it depends on the type.

還元的N−アルキル化反応に供するHMW−キトサンとLMW−キトサンとの量比は、目的とする分岐キトサンの分岐度〔式(I)におけるz〕に応じて、適宜決定することができる。例えば、式(I)におけるzが0.3である場合には、反応に供するHMW−キトサンの糖残基数の合計とLMW−キトサンのモル比(親水性基/分岐キトサン誘導体の全糖残基)が0.3/1以上となる割合で両者を反応させればよい。   The amount ratio of HMW-chitosan and LMW-chitosan to be subjected to the reductive N-alkylation reaction can be appropriately determined according to the degree of branching of the target branched chitosan [z in formula (I)]. For example, when z in the formula (I) is 0.3, the total number of sugar residues of HMW-chitosan subjected to the reaction and the molar ratio of LMW-chitosan (hydrophilic group / total sugar residue of the branched chitosan derivative) What is necessary is just to make both react in the ratio from which group) becomes 0.3 / 1 or more.

なお、上記製造方法で得られた分岐キトサン誘導体は、公知の方法に従って精製してもよく、例えば、得られた未精製の誘導体を有機溶媒(例、アセトン)中で攪拌した後、吸引ろ過、減圧乾燥することにより精製することができる。本発明の分岐キトサン誘導体は、常法を用いて粉末、溶液、懸濁液などの形態に加工することができる。   The branched chitosan derivative obtained by the above production method may be purified according to a known method. For example, the obtained unpurified derivative is stirred in an organic solvent (eg, acetone), and then suction filtered, It can be purified by drying under reduced pressure. The branched chitosan derivative of the present invention can be processed into a powder, solution, suspension or the like using a conventional method.

本発明の分岐キトサン誘導体は、直鎖状キトサンに比べて水溶性が高く、水溶液の粘度が低いという特徴を有する。この点において、本発明は、本発明の分岐キトサン誘導体を含む低粘度キトサン組成物を提供する。該組成物の溶媒の例としては水、生理食塩水、リン酸緩衝液などの緩衝液、ブドウ糖水溶液、酢酸水溶液、ビタミンC水溶液、クエン酸水溶液などの酸性水溶液、アルコール類、グリコールエーテル類などの各種極性溶媒等、あるいはこれらの混合物が挙げられる。本発明の上記組成物には、必要性や用途に応じて、pH調整用バッファー、塩類または糖類などの等張性調整物質、保存料、ビタミンC、ビタミンB群などの水溶液ビタミン、アラニン、グルタミン酸などのアミノ酸、水溶性ゼラチン、ペプチド、カルボキシメチルセルロース、カルボキシメチルキチン、カルボキシメチルキトサン、キサンタンガム、グアーガムなどの各種多糖類等を含んでいてもよい。上記組成物は、従来キチン、キトサンが利用されていた領域のみならず医薬品や飲食品あるいは化粧品などの分野においても利用可能である。本発明は、例えば、遺伝子キャリヤー、生体接着剤、シーリング剤の他、創傷治癒材、生体適合性フィルム、コーティング材、保湿剤、抗菌剤、吸着剤、ならびに生体免疫活性化剤などの医薬品、健康食品等の製造において利用可能である。   The branched chitosan derivative of the present invention is characterized by higher water solubility and lower aqueous solution viscosity than linear chitosan. In this respect, the present invention provides a low viscosity chitosan composition comprising the branched chitosan derivative of the present invention. Examples of the solvent of the composition include water, physiological saline, phosphate buffer and other buffer solutions, glucose aqueous solution, acetic acid aqueous solution, vitamin C aqueous solution, citric acid aqueous solution and other acidic aqueous solutions, alcohols, glycol ethers and the like. Various polar solvents and the like, or a mixture thereof can be mentioned. The composition of the present invention includes a pH adjusting buffer, isotonicity adjusting substances such as salts or saccharides, preservatives, aqueous vitamins such as vitamin C and vitamin B group, alanine, and glutamic acid, depending on necessity and application. Various polysaccharides such as amino acids, water-soluble gelatin, peptides, carboxymethylcellulose, carboxymethylchitin, carboxymethylchitosan, xanthan gum, guar gum, and the like. The composition can be used not only in the areas where chitin and chitosan are conventionally used, but also in fields such as pharmaceuticals, foods and drinks, and cosmetics. The present invention includes, for example, gene carriers, bioadhesives, sealing agents, wound healing materials, biocompatible films, coating materials, moisturizers, antibacterial agents, adsorbents, bioimmunity activators and other pharmaceuticals, health It can be used in the production of foods.

本発明の分岐キトサン誘導体は、顕著な生体免疫系活性化作用を有する。したがって、本発明は、本発明の分岐キトサン誘導体を含む免疫系活性化剤を提供する。本発明の免疫系活性化剤は、本発明の分岐キトサン誘導体を適当な担体または賦形剤と混合して調製することができる。本発明の免疫系活性化剤の剤形は特に制限はなく、液体(例:溶液、懸濁液)、固体(例:粉末、顆粒、錠剤、カプセル剤)、半固体(例:パスタ、軟膏、チューブ入り)とすることができる。これらの剤形の製造方法は当業者に公知であり、容易に製造することができる。本発明の免疫系活性化剤はあらゆる動物に投与することができる。投与経路は特に制限はないが、経口投与が好ましい。例えば、ヒトに経口投与する場合において、本発明の分岐キトサン誘導体の用量は、医師が患者の状態を見ながら適宜決定することができる。例えば、本発明の分岐キトサン誘導体のヒトへの投与量は、約1mg〜約1000mg/体重/日であってもよく、1日に1回〜数回に分けて投与することもできる。免疫系活性化が必要な期間中、本発明の免疫系活性化剤を投与することができる。   The branched chitosan derivative of the present invention has a remarkable bioimmune system activation action. Accordingly, the present invention provides an immune system activator comprising the branched chitosan derivative of the present invention. The immune system activator of the present invention can be prepared by mixing the branched chitosan derivative of the present invention with an appropriate carrier or excipient. The dosage form of the immune system activator of the present invention is not particularly limited, and is liquid (eg, solution, suspension), solid (eg, powder, granule, tablet, capsule), semi-solid (eg, pasta, ointment) , In a tube). Methods for producing these dosage forms are known to those skilled in the art and can be easily produced. The immune system activator of the present invention can be administered to any animal. The administration route is not particularly limited, but oral administration is preferred. For example, in the case of oral administration to humans, the dose of the branched chitosan derivative of the present invention can be appropriately determined by a doctor while observing the patient's condition. For example, the dosage of the branched chitosan derivative of the present invention to a human may be about 1 mg to about 1000 mg / body weight / day, and can be administered once to several times a day. During the period when immune system activation is required, the immune system activator of the present invention can be administered.

本発明の分岐キトサン誘導体は天然素材キチン、キトサンに由来するものである。したがって、本発明の分岐キトサン誘導体は医薬組成物のほか、飲食物に用いることもできる。この点において、本発明は、本発明の分岐キトサン誘導体を含む飲食物を提供する。飲食物の種類は特に限定されず、例えば、ドリンクやジュースであってもよく、調味料の形態であってもよい。さらに、本発明の分岐キトサン誘導体を食品原料や素材に直接添加してもよく、できあがった食品に添加してもよい。また例えば、本発明の分岐キトサン誘導体を、クッキー、ビスケット、ケーキなどの菓子類や、インスタントスープやインスタント味噌汁の粉の成分として用いてもよい。本発明の分岐キトサン誘導体を含む飲食物は健康食品やいわゆる「トクホ」を包含する。また、本発明の分岐キトサン誘導体を含む飲食物はサプリメントの形態であってもよい。サプリメントの製造は、上記医薬組成物の製造方法に準じて行うことができる。   The branched chitosan derivative of the present invention is derived from natural materials chitin and chitosan. Therefore, the branched chitosan derivative of the present invention can be used for foods and drinks in addition to pharmaceutical compositions. In this respect, the present invention provides a food or drink containing the branched chitosan derivative of the present invention. The kind of food and drink is not particularly limited, and may be, for example, a drink or juice, or may be in the form of a seasoning. Furthermore, the branched chitosan derivative of the present invention may be added directly to a food material or raw material, or may be added to a finished food product. Further, for example, the branched chitosan derivative of the present invention may be used as a component of confectionery such as cookies, biscuits, cakes, instant soup and instant miso soup powder. The food and drink containing the branched chitosan derivative of the present invention includes health foods and so-called “tokuho”. The food and drink containing the branched chitosan derivative of the present invention may be in the form of a supplement. The supplement can be produced according to the method for producing the pharmaceutical composition.

本明細書における用語の意味は、当該分野において一般に認識されている意味に解される。   The meanings of the terms used in this specification are understood to be those generally recognized in the art.

以下に実施例を示して本発明をより詳細かつ具体的に説明するが、実施例はあくまでの例示説明であり、本発明を限定するものではない。   The present invention will be described in more detail and specifically with reference to the following examples, but the examples are only illustrative and do not limit the present invention.

実施例1(分岐キトサン誘導体1aの合成)
キトサン(1.20g、アミノ基として6.99mmol)〔甲陽ケミカル社製、Lot L05261、脱アセチル化度(DDA) 95%、重量平均分子量(Mw) 80,000、数平均分子量(Mn) 21,000〕の1%酢酸溶液(200mL)に、室温で、キトサン〔6.33g、還元末端残基として3.17mmol〕(甲陽ケミカル社製、Lot 1101−13T、DDA 71%、Mw 8,000、Mn 2,000)を加え、12時間攪拌した。その後、シアノ水素化ホウ素ナトリウム(0.40g、6.37mmol)を加え、さらに12時間攪拌した。透析後、凍結乾燥することにより分岐型キトサンを得た(1.65g、DDA 78%)。分岐型キトサンのプロトン核磁気共鳴スペクトル及び赤外吸収スペクトルを以下に示す。
Example 1 (Synthesis of branched chitosan derivative 1a)
Chitosan (1.20 g, 6.99 mmol as amino group) [manufactured by Koyo Chemical Co., Ltd., Lot L05261, degree of deacetylation (DDA) 95%, weight average molecular weight (Mw) 80,000, number average molecular weight (Mn) 21, 000] in a 1% acetic acid solution (200 mL) at room temperature, chitosan [6.33 g, 3.17 mmol as a reducing terminal residue] (manufactured by Koyo Chemical Co., Lot 1101-13T, DDA 71%, Mw 8,000, Mn 2,000) was added and stirred for 12 hours. Thereafter, sodium cyanoborohydride (0.40 g, 6.37 mmol) was added, and the mixture was further stirred for 12 hours. After dialysis, branched chitosan was obtained by lyophilization (1.65 g, DDA 78%). The proton nuclear magnetic resonance spectrum and infrared absorption spectrum of branched chitosan are shown below.

H−NMR(400MHz、DO):δ2.07(NHCOCHのCH由来)、3.19(GlcNのC(2)位のH)、3.80−4.20(GlcNAc残基のC(2)位及び糖残基のC(3)、C(4)、C(5)、C(6)位のH)。 1 H-NMR (400MHz, D 2 O): δ2.07 ( from CH 3 of NHCOCH 3), 3.19 (H of C (2) position of GlcN), 3.80-4.20 (GlcNAc residues C (2) position and sugar residues C (3), C (4), C (5), C (6) position H).

IR(KBr):3700−3100、2931、2887、1640、1548、1417、1383、1319、1155、1072、1031、920cm−1。 IR (KBr): 3700-3100, 2931, 2887, 1640, 1548, 1417, 1383, 1319, 1155, 1072, 1031, 920 cm <-1>.

なお、各ユニットの構成比率は、以下のように算出した。まず、キトサン誘導体(分岐型キトサン誘導体)のzを、下記に示す式A、式Bにより求めた。

脱アセチル化度(DDA)(%)=[(分岐型キトサン誘導体のGlcN残基数)/TR]×100 (式A)

z=(分岐残基数)/TR (式B)

ここで、TRは分岐型キトサン誘導体の総残基数を意味する。分岐残基数は、分岐鎖が結合する残基数を意味し、側鎖の本数と同じである。実施例1で用いた原料キトサンのうち、分子量の大きい方を主鎖キトサン、小さい方を側鎖キトサンとすると、主鎖キトサン(DDA 95%、Mn 21,000)の平均残基分子量及び残基数は、グルコサミン残基分子量(FW)が161、N−アセチルグルコサミン残基(FW)が203であることから

主鎖キトサンの平均残基分子量=161×0.95+203×0.05=163.1

主鎖キトサンの残基数=21000/163.1=129

となる。一方、側鎖キトサン(DDA 71%、Mn 2,000)の平均残基分子量及び残基数は、同様にして算出すると、

側鎖キトサンの平均残基分子量=161×0.71+203×0.29=173.2

側鎖キトサンの残基数=2000/173.2=11.5

となる。また、主鎖キトサンの残基数に対する分岐鎖キトサンの本数の割合をDSとすると、分岐型キトサン誘導体の総残基数、TRは

TR=(主鎖の残基数)+(全側鎖の残基数を合計したもの)
=(主鎖の残基数)+[(側鎖の残基数)×(側鎖の本数)]
=(主鎖の残基数)+[(側鎖の残基数)×〔(主鎖の残基数)×DS〕]
=129+[11.5×〔129×DS〕]

と表わすことができる。実施例1で得られた分岐型キトサンのDDAは78(%)であることから、式Aに上記TRを代入すると

78=(分岐型キトサン誘導体のGlcN残基数)/TR×100
=〔(主鎖のGlcN残基数)+(全側鎖のGlcN残基数を合計したもの)〕/TR×100
=〔(主鎖のGlcN残基数)+[(側鎖のGlcN残基数)×(側鎖の本数)]/TR×100
=〔(主鎖のGlcN残基数)+[(側鎖のGlcN残基数)×〔(主鎖の残基数)×DS〕]/TR×100
=〔(129×0.95)+[(11.5×0.71)×〔129×DS〕]/129+[11.5×〔129×DS〕]×100

となる。これより、DS=0.21と算出でき、さらにこの値を代入して、TR=440となる。また、式Bは、

z=(分岐残基数)/TR
=(側鎖の本数)/TR
=〔(主鎖の残基数)×DS〕]/TR
=〔129×0.21〕/440
=0.06

となった。
The composition ratio of each unit was calculated as follows. First, z of the chitosan derivative (branched chitosan derivative) was determined by the following formula A and formula B.

Deacetylation degree (DDA) (%) = [(number of GlcN residues of branched chitosan derivative) / TR] × 100 (formula A)

z = (number of branched residues) / TR (formula B)

Here, TR means the total number of residues of the branched chitosan derivative. The number of branched residues means the number of residues to which the branched chain is bonded, and is the same as the number of side chains. Of the raw material chitosan used in Example 1, when the main chain chitosan is the larger molecular weight and the side chain chitosan is the smaller one, the average residue molecular weight and residue of the main chain chitosan (DDA 95%, Mn 21,000) The numbers are 161 for the glucosamine residue molecular weight (FW) and 203 for the N-acetylglucosamine residue (FW).

Average residue molecular weight of main chain chitosan = 161 × 0.95 + 203 × 0.05 = 163.1

Number of residues in main chain chitosan = 21000 / 163.1 = 129

It becomes. On the other hand, the average residue molecular weight and the number of residues of side chain chitosan (DDA 71%, Mn 2,000) are calculated in the same manner,

Average molecular weight of side chain chitosan = 161 × 0.71 + 203 × 0.29 = 173.2

Number of residues of side chain chitosan = 2000 / 173.2 = 11.5

It becomes. Further, when the ratio of the number of branched chitosans to the number of residues of main chain chitosan is DS, the total number of residues of the branched chitosan derivative, TR is

TR = (number of residues in main chain) + (total number of residues in all side chains)
= (Number of residues in main chain) + [(number of residues in side chain) × (number of side chains)]
= (Number of residues in main chain) + [(number of residues in side chain) × [(number of residues in main chain) × DS]]
= 129 + [11.5 × [129 × DS]]

Can be expressed as Since the DDA of the branched chitosan obtained in Example 1 is 78 (%), when the above TR is substituted into Formula A,

78 = (number of GlcN residues in branched chitosan derivative) / TR × 100
= [(Number of GlcN residues in main chain) + (Total number of GlcN residues in all side chains)] / TR × 100
= [(Number of GlcN residues in main chain) + [(number of GlcN residues in side chain) × (number of side chains)] / TR × 100
= [(Number of GlcN residues in main chain) + [(Number of GlcN residues in side chain) × [(Number of residues in main chain) × DS]] / TR × 100
= [(129 × 0.95) + [(11.5 × 0.71) × [129 × DS]] / 129+ [11.5 × [129 × DS]] × 100

It becomes. From this, it can be calculated that DS = 0.21, and further, this value is substituted to obtain TR = 440. Formula B is

z = (number of branched residues) / TR
= (Number of side chains) / TR
= [(Number of residues in main chain) x DS]] / TR
= [129 × 0.21] / 440
= 0.06

It became.

次に、分岐型キトサン誘導体のGlcNAc残基、即ち、キチンユニットに対応するyの値は、脱アセチル化度(DDA)との間に、y=1−DDA/100の関係にある。また、H−NMR分析における[3.19(GlcN残基のC(2)位のH)のピーク面積]と、[2.07(GlcNAc残基のNHCOCHのCH由来)のピーク面積]との比率からも算出することができる。この関係は、分岐型キトサンから合成された分岐型キトサン誘導体のH−NMR分析においても同じであり、y=0.22となった。 Next, the GlcNAc residue of the branched chitosan derivative, that is, the value of y corresponding to the chitin unit has a relationship of y = 1−DDA / 100 with the degree of deacetylation (DDA). In addition, the peak area of [3.19 (H at the C (2) position of GlcN residue)] and [2.07 (derived from CH 3 of NHCOCH 3 of GlcNAc residue) in 1 H-NMR analysis. ] And the ratio can also be calculated. This relationship is the same in 1 H-NMR analysis of a branched chitosan derivative synthesized from branched chitosan, and y = 0.22.

また、y=0.22と算出されたことにより、分岐型キトサン誘導体のGlcN残基に対応する(x+z)の値は、x+z=1−y=0.78と算出される。一方、H−NMR分析におけるGlcN残基に対応するピーク、即ち、[3.19(GlcN残基のC(2)位のH)のピーク]は、キトサンユニット、分岐ユニットのいずれにおいても観測されるピークであるため、該ピークの面積は前記2ユニットの合計量と考えることができる。よって、xはx=0.78−0.06=0.72となった。 Further, by calculating y = 0.22, the value of (x + z) corresponding to the GlcN residue of the branched chitosan derivative is calculated as x + z = 1−y = 0.78. On the other hand, the peak corresponding to the GlcN residue in 1 H-NMR analysis, that is, the peak of [3.19 (H at the C (2) position of GlcN residue)] was observed in both the chitosan unit and the branch unit. Therefore, the area of the peak can be considered as the total amount of the two units. Therefore, x was x = 0.78−0.06 = 0.72.

実施例2(分岐キトサン誘導体1bの合成)
キトサン(2.00g、アミノ基として10.3mmol)(和光純薬工業社製、「キトサン5」Lot TSQ4638、DDA 86%、Mw 100,000、Mn 20,000)の1%酢酸溶液(200mL)に、室温で、キトサン(6.33g、還元末端残基として3.15mmol)(甲陽ケミカル社製、Lot 1101−13T、DDA 71%、Mw 8,000、Mn 2,000)を加え、12時間攪拌した。その後、シアノ水素化ホウ素ナトリウム(0.40g、6.37mmol)を加え、さらに12時間攪拌した。透析後、凍結乾燥することにより分岐型キトサンを得た(2.56g、DDA 77%)。
Example 2 (Synthesis of branched chitosan derivative 1b)
1% acetic acid solution (200 mL) of chitosan (2.00 g, 10.3 mmol as amino group) (manufactured by Wako Pure Chemical Industries, “Chitosan 5” Lot TSQ4638, DDA 86%, Mw 100,000, Mn 20,000) At room temperature, chitosan (6.33 g, 3.15 mmol as a reducing terminal residue) (manufactured by Koyo Chemical Co., Lot 1101-13T, DDA 71%, Mw 8,000, Mn 2,000) was added for 12 hours. Stir. Thereafter, sodium cyanoborohydride (0.40 g, 6.37 mmol) was added, and the mixture was further stirred for 12 hours. After dialysis, the branched chitosan was obtained by freeze-drying (2.56 g, DDA 77%).

各ユニットの構成比率は、実施例1と同様にして算出し、x=0.71、y=0.23、z=0.06であった。なお、得られた誘導体の同定は実施例1と同様に行った。 The composition ratio of each unit was calculated in the same manner as in Example 1, and was x = 0.71, y = 0.23, and z = 0.06. The obtained derivative was identified in the same manner as in Example 1.

実施例3(分岐キトサン誘導体1cの合成)
キトサン(2.00g、アミノ基として10.0mmol)(甲陽ケミカル社製、「SK−10」Lot 1023−10、DDA 84%、Mw 140,000、Mn 31,000)の1%酢酸溶液(200mL)に、室温で、キトサン(5.00g、還元末端残基として2.50mmol)(甲陽ケミカル社製、Lot 1101−13T、DDA 71%、Mw 8,000、Mn 2,000)を加え、12時間攪拌した。その後、シアノ水素化ホウ素ナトリウム(0.40g、6.37mmol)を加え、さらに12時間攪拌した。透析後、凍結乾燥することにより分岐型キトサンを得た(2.20g、DDA 76%)。
Example 3 (Synthesis of branched chitosan derivative 1c)
1% acetic acid solution (200 mL) of chitosan (2.00 g, 10.0 mmol as amino group) (manufactured by Koyo Chemical Co., Ltd., “SK-10” Lot 1023-10, DDA 84%, Mw 140,000, Mn 31,000) ) At room temperature with chitosan (5.00 g, 2.50 mmol as a reducing terminal residue) (manufactured by Koyo Chemical Co., Lot 1101-13T, DDA 71%, Mw 8,000, Mn 2,000), Stir for hours. Thereafter, sodium cyanoborohydride (0.40 g, 6.37 mmol) was added, and the mixture was further stirred for 12 hours. After dialysis, branched chitosan was obtained by lyophilization (2.20 g, DDA 76%).

各ユニットの構成比率は、実施例1と同様にして算出し、x=0.69、y=0.24、z=0.07であった。なお、得られた誘導体の同定は実施例1と同様に行った。   The composition ratio of each unit was calculated in the same manner as in Example 1, and was x = 0.69, y = 0.24, and z = 0.07. The obtained derivative was identified in the same manner as in Example 1.

実施例4(分岐キトサン誘導体1dの合成)
キトサン(2.52g、アミノ基として10.0mmol)(共和テクノス社製、「Flonac−c」Lot 93−1−20、DDA 84%、Mw 160,000、Mn 37,000)の1%酢酸溶液(200mL)に、室温で、キトサン(6.33g、還元末端残基として3.15mmol)(甲陽ケミカル社製、Lot 1101−13T、DDA 71%、Mw 8,000、Mn 2,000)を加え、12時間攪拌した。その後、シアノ水素化ホウ素ナトリウム(0.40g、6.37mmol)を加え、さらに12時間攪拌した。透析後、凍結乾燥することにより分岐型キトサンを得た(3.20g、DDA 78%)。
Example 4 (Synthesis of branched chitosan derivative 1d)
1% acetic acid solution of chitosan (2.52 g, 10.0 mmol as an amino group) (manufactured by Kyowa Technos, "Flonac-c" Lot 93-1-20, DDA 84%, Mw 160,000, Mn 37,000) (200 mL) at room temperature with chitosan (6.33 g, 3.15 mmol as a reducing terminal residue) (manufactured by Koyo Chemical Co., Lot 1101-13T, DDA 71%, Mw 8,000, Mn 2,000) And stirred for 12 hours. Thereafter, sodium cyanoborohydride (0.40 g, 6.37 mmol) was added, and the mixture was further stirred for 12 hours. After dialysis, branched chitosan was obtained by lyophilization (3.20 g, DDA 78%).

各ユニットの構成比率は、実施例1と同様にして算出し、x=0.72、y=0.22、z=0.06であった。なお、得られた誘導体の同定は実施例1と同様に行った。   The composition ratio of each unit was calculated in the same manner as in Example 1, and was x = 0.72, y = 0.22, and z = 0.06. The obtained derivative was identified in the same manner as in Example 1.

実施例5(分岐キトサン誘導体1eの合成)
キトサン(2.52g、アミノ基として6.16mmol)(甲陽ケミカル社製、「DAC−50」Lot 107311、DDA 45%、Mw 190,000、Mn 88,000)の1%酢酸溶液(200mL)に、室温で、キトサン〔6.33g、還元末端残基として3.17mmol〕(甲陽ケミカル社製、Lot 1101−13T、DDA 71%、Mw 8,000、Mn 2,000)を加え、12時間攪拌した。その後、シアノ水素化ホウ素ナトリウム(0.40g、6.37mmol)を加え、さらに12時間攪拌した。透析後、凍結乾燥することにより分岐型キトサンを得た(3.25g、DDA 58%)。
Example 5 (Synthesis of branched chitosan derivative 1e)
To a 1% acetic acid solution (200 mL) of chitosan (2.52 g, 6.16 mmol as an amino group) (manufactured by Koyo Chemical Co., Ltd., “DAC-50” Lot 107311, DDA 45%, Mw 190,000, Mn 88,000) At room temperature, chitosan [6.33 g, 3.17 mmol as a reducing terminal residue] (manufactured by Koyo Chemical Co., Lot 1101-13T, 71% DDA, Mw 8,000, Mn 2,000) was added and stirred for 12 hours. did. Thereafter, sodium cyanoborohydride (0.40 g, 6.37 mmol) was added, and the mixture was further stirred for 12 hours. After dialysis, branched chitosan was obtained by lyophilization (3.25 g, DDA 58%).

各ユニットの構成比率は、実施例1と同様にして算出し、x=0.56、y=0.42、z=0.04であった。なお、得られた誘導体の同定は実施例1と同様に行った。   The composition ratio of each unit was calculated in the same manner as in Example 1, and was x = 0.56, y = 0.42, and z = 0.04. The obtained derivative was identified in the same manner as in Example 1.

実施例6 (分岐キトサン誘導体1fの合成)
キトサン(2.00g、アミノ基として10.3mmol)(甲陽ケミカル社製、FM−80L Lot 0817−18、DDA 86%、Mw 450,000、Mn 82,000)の1%酢酸溶液(200mL)に、室温で、キトサン〔6.50g、還元末端残基として3.25mmol〕(甲陽ケミカル社製、Lot 1101−13T、DDA 71%、Mw 8,000、Mn 2,000)を加え、12時間攪拌した。その後、シアノ水素化ホウ素ナトリウム(0.40g、6.37mmol)を加え、さらに12時間攪拌した。透析後、凍結乾燥することにより分岐型キトサンを得た(2.25g、DDA 75%)。
Example 6 (Synthesis of branched chitosan derivative 1f)
To a 1% acetic acid solution (200 mL) of chitosan (2.00 g, 10.3 mmol as an amino group) (manufactured by Koyo Chemical Co., Ltd., FM-80L Lot 0817-18, DDA 86%, Mw 450,000, Mn 82,000) At room temperature, chitosan [6.50 g, 3.25 mmol as a reducing terminal residue] (manufactured by Koyo Chemical Co., Lot 1101-13T, 71% DDA, Mw 8,000, Mn 2,000) was added and stirred for 12 hours. did. Thereafter, sodium cyanoborohydride (0.40 g, 6.37 mmol) was added, and the mixture was further stirred for 12 hours. After dialysis, the branched chitosan was obtained by lyophilization (2.25 g, DDA 75%).

各ユニットの構成比率は、実施例1と同様にして算出し、x=0.69、y=0.25、z=0.06であった。なお、得られた誘導体の同定は実施例1と同様に行った。   The composition ratio of each unit was calculated in the same manner as in Example 1, and was x = 0.69, y = 0.25, and z = 0.06. The obtained derivative was identified in the same manner as in Example 1.

実施例7 (分岐キトサン誘導体1gの合成)
キトサン(2.00g、アミノ基として10.5mmol)(甲陽ケミカル社製、FH−80 Lot 1208−15、DDA 87%、Mw 650,000、Mn 73,000)の1%酢酸溶液(200mL)に、室温で、キトサン〔6.50g、還元末端残基として3.25mmol〕(甲陽ケミカル社製、Lot 1101−13T、DDA 71%、Mw 8,000、Mn 2,000)を加え、12時間攪拌した。その後、シアノ水素化ホウ素ナトリウム(0.40g、6.37mmol)を加え、さらに12時間攪拌した。透析後、凍結乾燥することにより分岐型キトサンを得た(2.25g、DDA 76%)。
Example 7 (Synthesis of 1 g of branched chitosan derivative)
To a 1% acetic acid solution (200 mL) of chitosan (2.00 g, 10.5 mmol as an amino group) (manufactured by Koyo Chemical Co., Ltd., FH-80 Lot 1208-15, DDA 87%, Mw 650,000, Mn 73,000) At room temperature, chitosan [6.50 g, 3.25 mmol as a reducing terminal residue] (manufactured by Koyo Chemical Co., Lot 1101-13T, 71% DDA, Mw 8,000, Mn 2,000) was added and stirred for 12 hours. did. Thereafter, sodium cyanoborohydride (0.40 g, 6.37 mmol) was added, and the mixture was further stirred for 12 hours. After dialysis, branched chitosan was obtained by lyophilization (2.25 g, DDA 76%).

各ユニットの構成比率は、実施例1と同様にして算出し、x=0.70、y=0.24、z=0.06であった。なお、得られた誘導体の同定は実施例1と同様に行った。   The composition ratio of each unit was calculated in the same manner as in Example 1, and was x = 0.70, y = 0.24, and z = 0.06. The obtained derivative was identified in the same manner as in Example 1.

以上の実施例で得られた分岐キトサン誘導体を表2にまとめた。

Figure 0005646164
The branched chitosan derivatives obtained in the above examples are summarized in Table 2.
Figure 0005646164

新規分岐キトサン誘導体1は、主鎖であるHMW−キトサンのアミノ基と側鎖となるLMW−キトサンの還元末端との反応により合成されるため、反応の初期の生成物を模式的に示すと下式のAのようなくし型の構造と考えられる。しかし、その側鎖キトサンに存在するアミノ基も主鎖キトサンに存在するアミノ基と同じ反応性をもち、しかも立体障害を考慮すると側鎖キトサンに存在するアミノ基の方が有利であると考えられるので、反応の進行に伴い分岐型のB、さらに多重分岐型のCの構造に進化すると考えられる。多重分岐型のCの構造は、従来のくし型の構造Aにおける置換度(DS)では認識が困難であり、分岐残基の割合z(表2)を下記のように定義した。なお、上記考察は本発明を限定するものではない。
z=(分岐キトサン誘導体1中の分岐残基数)/(分岐キトサン誘導体1中の全残基数)

Figure 0005646164
Since the novel branched chitosan derivative 1 is synthesized by a reaction between the amino group of HMW-chitosan as the main chain and the reducing end of LMW-chitosan as the side chain, the initial product of the reaction is schematically shown below. It is considered to be a comb-shaped structure like A in the formula. However, the amino group present in the side chain chitosan has the same reactivity as the amino group present in the main chain chitosan, and it is considered that the amino group present in the side chain chitosan is more advantageous in consideration of steric hindrance. Therefore, it is considered that the structure evolves into a branched B and a multi-branched C as the reaction proceeds. The multibranched C structure is difficult to recognize with the degree of substitution (DS) in the conventional comb type structure A, and the ratio z (Table 2) of branched residues is defined as follows. The above discussion does not limit the present invention.
z = (number of branched residues in branched chitosan derivative 1) / (total number of residues in branched chitosan derivative 1)
Figure 0005646164

実施例8 本発明の分岐キトサン誘導体が主鎖であるHMW−キトサンと側鎖となるLMW−キトサンの両方を含むことの証明
表2に示したzの値は、原料キトサンの脱アセチル化度(DDA)と生成物1の脱アセチル化度(DDA)との比較により計算できる。しかし、主鎖であるHMW−キトサンと側鎖となるLMW−キトサンの両方を含むことの直接的な証明は容易ではない。よって、下のスキームに示すように主鎖であるHMW−キトサンと側鎖となるLMW−キトサンを、異なる蛍光波長をもつ蛍光プローブで標識したR−6 とFITC−8を原料に用いて分岐キトサン誘導体11を合成した。図1に示したように生成物11の蛍光スペクトルには、R−6 とFITC−8に固有の蛍光波長(570nm付近と530nm付近)が両方とも観測されたことから、分子内に主鎖であるHMW−キトサンと側鎖となるLMW−キトサンの両方を含むことを確認することができた。

Figure 0005646164
Example 8 Proof that the branched chitosan derivative of the present invention contains both HMW-chitosan as a main chain and LMW-chitosan as a side chain The value of z shown in Table 2 indicates the degree of deacetylation of raw chitosan ( DDA) and the degree of deacetylation (DDA) of product 1 can be calculated. However, it is not easy to prove directly that both the main chain HMW-chitosan and the side chain LMW-chitosan are included. Therefore, as shown in the scheme below, branched chitosan using H-6-chitosan as the main chain and LMW-chitosan as the side chain with R-6 and FITC-8 labeled with fluorescent probes having different fluorescence wavelengths as raw materials. Derivative 11 was synthesized. As shown in FIG. 1, in the fluorescence spectrum of the product 11, both fluorescence wavelengths (near 570 nm and 530 nm) specific to R-6 and FITC-8 were observed. It was confirmed that both HMW-chitosan and side chain LMW-chitosan were included.
Figure 0005646164

実施例9 本発明の分岐キトサン誘導体水溶液の粘度測定
本発明で得られた分岐キトサン誘導体の溶解性と1%酢酸水溶液に溶かした溶液(10mg/ml)の粘度を、表3に示した。原料のHMW−キトサンはいずれも中性の水に溶解しないことから、本発明による多重分岐化は水溶性向上効果が大きいと言える。酸を用いることなく中性水溶液化できることは、本発明の分岐キトサン誘導体の材料としての応用範囲を拡大するものである。

Figure 0005646164
Example 9 Viscosity Measurement of Branched Chitosan Derivative Aqueous Solution of the Present Invention Table 3 shows the solubility of the branched chitosan derivative obtained in the present invention and the viscosity of a solution (10 mg / ml) dissolved in a 1% aqueous acetic acid solution. Since none of the raw material HMW-chitosan dissolves in neutral water, it can be said that the multi-branching according to the present invention has a great effect of improving water solubility. The ability to form a neutral aqueous solution without using an acid expands the application range of the branched chitosan derivative of the present invention as a material.
Figure 0005646164

本発明で得られた分岐キトサン誘導体溶液の粘度と直鎖型のHMW−キトサン溶液の粘度を図2において比較した。原料に用いた直鎖型のHMW−キトサンの粘度は、その分子量が増大するに伴い増大した。しかし、分岐キトサンの粘度はこの範囲ではほぼ一定の値を示した。しかし、表3のEntry 6と7のように、原料に用いた直鎖型のHMW−キトサンの重量平均分子量(Mw)が450kDaよりも大きい場合は水溶性が低下し、大きく粘度が上昇した。従来、キトサンの分子量増大による溶解度低下および溶液粘度の上昇は、注射、注入などの利用方法を制限してきた問題点であったが、本発明によりこの問題が解決された。本発明の分岐キトサン誘導体の応用範囲は、従来のキチン、キトサン系の材料の応用範囲よりもはるかに拡大されたものといえる。   The viscosity of the branched chitosan derivative solution obtained in the present invention and the viscosity of the linear HMW-chitosan solution were compared in FIG. The viscosity of the linear HMW-chitosan used as a raw material increased as its molecular weight increased. However, the viscosity of the branched chitosan was almost constant within this range. However, as shown in Entry 6 and 7 in Table 3, when the weight average molecular weight (Mw) of the linear HMW-chitosan used as the raw material was larger than 450 kDa, the water solubility decreased and the viscosity increased greatly. Conventionally, a decrease in solubility and an increase in solution viscosity due to an increase in the molecular weight of chitosan have been problems that have limited use methods such as injection and injection, but this problem has been solved by the present invention. It can be said that the application range of the branched chitosan derivative of the present invention is far wider than the application range of conventional chitin and chitosan-based materials.

実施例10 本発明の分岐キトサン誘導体の免疫系活性化作用
(1)実験方法
(a)マウスへの投与ならびに生体サンプルの採取
ICRマウス(メス、10週齢)を1週間以上予備飼育した後、実験に供した。マーゲンゾンデを用いて分岐キトサン誘導体(表2のIa)、HMW−キトサン(Mw=80,000)、LMW−キトサン(Mw=8,000)を、それぞれ2mg/0.2ml/headで、1日1回3日間連続して胃内投与した。コントロール群としては、分岐キトサン誘導体群およびLMW−キトサン群に対しては水投与群、HMW−キトサン群に対しては酢酸水溶液投与群を用いた。3回目投与1〜2時間後にジエチルエーテル麻酔下にて心臓穿刺法にて血液を採取し、血液採取後に脾臓を摘出した。採取した血液から常法にて血清を得て、血清サイトカイン濃度の測定に供した。本発明の分岐キトサン誘導体を上記のごとく動物に投与した場合、動物に対する毒性は認められなかった。
Example 10 Immune System Activating Action of Branched Chitosan Derivative of the Present Invention (1) Experimental Method (a) Administration to Mice and Collection of Biological Samples After ICR mice (female, 10 weeks old) were preliminarily raised for 1 week or more, It used for experiment. Branched chitosan derivatives (Ia in Table 2), HMW-chitosan (Mw = 80,000), and LMW-chitosan (Mw = 8,000) were respectively used at 2 mg / 0.2 ml / head for 1 day. Intragastric administration was performed once for 3 consecutive days. As the control group, a water administration group was used for the branched chitosan derivative group and the LMW-chitosan group, and an acetic acid aqueous solution administration group was used for the HMW-chitosan group. One to two hours after the third administration, blood was collected by cardiac puncture under diethyl ether anesthesia, and the spleen was removed after blood collection. Serum was obtained from the collected blood by a conventional method and subjected to measurement of serum cytokine concentration. When the branched chitosan derivative of the present invention was administered to animals as described above, toxicity to the animals was not observed.

(b)脾細胞の調製
摘出した脾臓はFBS0.5%加PBS(以下PBS)に浸し(3〜4ml)、ピンンセットを用いて周囲の結合組織を取り除いた。PBSを交換し(3〜4ml)、24G注射針ならびに1mlプラスチックシリンジの内筒を用いて細胞を浮遊させた。浮遊した細胞液を42μmナイロンメッシュで濾過し1200rpmで5分間遠心分離し、上清を捨てた。溶血剤を加えよく混和し、同様に遠心分離した。上清を捨てPBSを加え、同様に再び遠心分離した。細胞数が1x10/mlとなるようにPBSにて希釈し、細胞液とした。
(B) Preparation of splenocytes The excised spleen was immersed in PBS (hereinafter referred to as PBS) with 0.5% FBS (3-4 ml), and the surrounding connective tissue was removed using a pincette. The PBS was changed (3 to 4 ml), and the cells were suspended using a 24G needle and an inner cylinder of a 1 ml plastic syringe. The suspended cell solution was filtered through a 42 μm nylon mesh, centrifuged at 1200 rpm for 5 minutes, and the supernatant was discarded. A hemolytic agent was added and mixed well, followed by centrifugation in the same manner. The supernatant was discarded and PBS was added and centrifuged again in the same manner. The solution was diluted with PBS so that the number of cells was 1 × 10 7 / ml to obtain a cell solution.

溶血剤は以下のようにして調製した。NHCl 82.9g、KHCO 10g、EDTA・2Na(株式会社同仁化学研究所、Kumamoto、Japan)0.372gを1リットルの超純粋水に溶解し4℃で保存した。使用時にはさらに超純粋水で10倍希釈した。 The hemolytic agent was prepared as follows. NH 4 Cl 82.9 g, KHCO 3 10 g, EDTA · 2Na (Dojindo Laboratories, Inc., Kumamoto, Japan) 0.372 g was dissolved in 1 liter of ultrapure water and stored at 4 ° C. At the time of use, it was further diluted 10 times with ultrapure water.

(c)免疫細胞活性の測定
以下の抗体を使用した:
CD4+細胞(ヘルパーT細胞)活性測定用としてFITC rat anti−mouse CD4:BD(Pharmingen,USA);および
ナチュラルキラー(NK)T細胞活性測定用としてRAT ANTI MOUSE NKG2A/C/E:FITC(フナコシ株式会社、Tokyo,Japan)。
各抗体は最終希釈倍率が1:200となるようにPBSにて希釈して抗体液とした。エッペンドルフチューブに細胞液((b)で調製)100μlおよび抗体液100μlを加え、遮光し4℃で20分間反応させた。反応終了後、PBSを500μl加えよく混和し、4℃にて1200rpmで5分間遠心分離した。上清除去後PBSを500μl加え、測定に供した。フローサイトメトリーを用いて蛍光強度を測定することにより各免疫細胞の割合を測定した。
(C) Measurement of immune cell activity The following antibodies were used:
FITC rat anti-mouse CD4: BD (Pharmingen, USA) for measuring CD4 + cell (helper T cell) activity; and RAT ANTI MOUSE NKG2A / C / E: FITC (funakoshi stock) for measuring natural killer (NK) T cell activity Company, Tokyo, Japan).
Each antibody was diluted with PBS so that the final dilution ratio was 1: 200 to prepare an antibody solution. To the Eppendorf tube, 100 μl of the cell solution (prepared in (b)) and 100 μl of the antibody solution were added and allowed to react at 4 ° C. for 20 minutes in the dark. After completion of the reaction, 500 μl of PBS was added and mixed well, followed by centrifugation at 1200 rpm for 5 minutes at 4 ° C. After removing the supernatant, 500 μl of PBS was added and used for measurement. The proportion of each immune cell was measured by measuring the fluorescence intensity using flow cytometry.

(d)血清サイトカイン濃度測定
上記(a)で得た血清サンプルに、Flowcytomix Mouse Th1/Th2 10plex Kit(Bendermedsystem、USA)を適用して、製造元の指示に従ってインターロイキン−6(IL−6)およびTNF−α量を測定した。
(D) Measurement of serum cytokine concentration To the serum sample obtained in (a) above, Flowcytomix Mouse Th1 / Th2 10plex Kit (Bendermedsystem, USA) was applied, and interleukin-6 (IL-6) and TNF were applied according to the manufacturer's instructions. The amount of -α was measured.

(2)実験結果
ヘルパーT細胞の割合は分岐キトサン誘導体で有意に上昇し、コントロール(蒸留水群)の2倍近い割合となった。HMW−キトサンは酢酸の成績と差がなく、LMW−キトサンにも効果は認められなかった(図3)。NK細胞の割合は分岐キトサン誘導体でコントロール、HMW−キトサンよりも有意に上昇し、コントロール(蒸留水群)の約12倍の割合となった(図4)。血清IL−6、TNF−α量も分岐キトサン誘導体で有意に増加し、IL−6はコントロール(蒸留水群)よりも約15倍増加し、TNF−αはコントロール(蒸留水群)よりも約10倍増加した(図5、図6)。以上の結果から分岐キトサン誘導体は明らかにヘルパーT細胞のTh−1、Th−2を活性化させ、バランスとしては細胞性免疫を賦活する成績が得られた。この活性効果はHMW−キトサン、LMW−キトサンにはなく、分岐キトサン誘導体独自の特徴である。このように、本発明の分岐キトサン誘導体は顕著な生体免疫系活性化作用を有することが判明した。
(2) Experimental results The proportion of helper T cells was significantly increased by the branched chitosan derivative, and was nearly twice that of the control (distilled water group). HMW-chitosan was not different from the results of acetic acid, and LMW-chitosan was not effective (FIG. 3). The proportion of NK cells was significantly higher than that of the control and HMW-chitosan with the branched chitosan derivative, and was about 12 times that of the control (distilled water group) (FIG. 4). Serum IL-6 and TNF-α levels are also significantly increased by the branched chitosan derivative, IL-6 is increased about 15 times compared to the control (distilled water group), and TNF-α is about 15 times higher than the control (distilled water group). It increased 10 times (FIGS. 5 and 6). From the above results, the branched chitosan derivative clearly activated Th-1 and Th-2 of helper T cells, and as a balance, the result of activating cellular immunity was obtained. This active effect is not present in HMW-chitosan and LMW-chitosan, but is a unique feature of branched chitosan derivatives. Thus, it was found that the branched chitosan derivative of the present invention has a remarkable bioimmune system activation action.

本発明は、キトサンに多重分岐構造を付与することにより水溶性の向上と水溶液の粘性を低く保つ分子形態の両立を達成したものである。したがって、従来キチン、キトサンが利用されていた領域のみならず医薬品や飲食品などの分野においても利用可能である。本発明は、例えば、遺伝子キャリヤー、生体接着剤、シーリング剤の他、創傷治癒材、生体適合性フィルム、コーティング材、ならびに生体免疫活性化剤などの医薬品、健康食品等の製造において利用可能である。   In the present invention, by providing a multi-branched structure to chitosan, the improvement in water solubility and the molecular form that keeps the viscosity of an aqueous solution low can be achieved. Therefore, it can be used not only in areas where chitin and chitosan have been conventionally used, but also in fields such as pharmaceuticals and foods and drinks. The present invention can be used, for example, in the manufacture of pharmaceuticals such as gene carriers, bioadhesives, sealing agents, wound healing materials, biocompatible films, coating materials, bioimmunity activators, health foods, and the like. .

Claims (6)

式(I):
Figure 0005646164

[式中、x+y+z=1であり、x、y、zは、それぞれ独立して、0≦x<1、0≦y<1、0<z≦1であり、Rは、
Figure 0005646164

で示されるキトサン側鎖であり、Rは、H、アセチル基、該Rであり、aは0〜500の整数を示し、但し、全てのRは同一でも異なっていてもよい]で表わされる、分岐キトサン誘導体であって、置換度が0.13〜0.21である分岐キトサン誘導体。
Formula (I):
Figure 0005646164

[Wherein, x + y + z = 1, and x, y, z are independently 0 ≦ x <1, 0 ≦ y <1, 0 <z ≦ 1, and R 1 is
Figure 0005646164

Wherein R 2 is H, an acetyl group, or R 1 , and a is an integer of 0 to 500, provided that all R 2 may be the same or different.] A branched chitosan derivative having a degree of substitution of 0.13 to 0.21.
分岐度が0.05〜0.06である請求項1記載の分岐キトサン誘導体。   The branched chitosan derivative according to claim 1, which has a degree of branching of 0.05 to 0.06. 1%酢酸水溶液に溶かした溶液(10mg/ml)の粘度が2.2〜5.6cPである請求項1または2記載の分岐キトサン誘導体。   The branched chitosan derivative according to claim 1 or 2, wherein the viscosity of a solution (10 mg / ml) dissolved in a 1% aqueous acetic acid solution is 2.2 to 5.6 cP. 請求項1〜3のいずれか1項記載の分岐キトサン誘導体を含む低粘度キトサン組成物。   A low-viscosity chitosan composition comprising the branched chitosan derivative according to claim 1. 請求項1〜3のいずれか1項記載の分岐キトサン誘導体を含む飲食物。   A food or drink comprising the branched chitosan derivative according to any one of claims 1 to 3. 式(I):
Figure 0005646164

[式中、x+y+z=1であり、x、y、zは、それぞれ独立して、0≦x<1、0≦y<1、0<z≦1であり、Rは、
Figure 0005646164

で示されるキトサン側鎖であり、Rは、H、アセチル基、該Rであり、aは0〜500の整数を示し、但し、全てのRは同一でも異なっていてもよい]で表わされる、分岐キトサン誘導体を含む免疫系活性化剤。
Formula (I):
Figure 0005646164

[Wherein, x + y + z = 1, and x, y, z are independently 0 ≦ x <1, 0 ≦ y <1, 0 <z ≦ 1, and R 1 is
Figure 0005646164

Wherein R 2 is H, an acetyl group, or R 1 , and a is an integer of 0 to 500, provided that all R 2 may be the same or different.] An immune system activator comprising a branched chitosan derivative.
JP2009293083A 2009-12-24 2009-12-24 Branched chitosan derivative Expired - Fee Related JP5646164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293083A JP5646164B2 (en) 2009-12-24 2009-12-24 Branched chitosan derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293083A JP5646164B2 (en) 2009-12-24 2009-12-24 Branched chitosan derivative

Publications (2)

Publication Number Publication Date
JP2011132369A JP2011132369A (en) 2011-07-07
JP5646164B2 true JP5646164B2 (en) 2014-12-24

Family

ID=44345471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293083A Expired - Fee Related JP5646164B2 (en) 2009-12-24 2009-12-24 Branched chitosan derivative

Country Status (1)

Country Link
JP (1) JP5646164B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3494990A4 (en) * 2016-08-04 2020-03-25 Zenoaq Resource Co. Ltd. Immunostimulator, pharmaceutical composition, and food or beverage

Also Published As

Publication number Publication date
JP2011132369A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
Xie et al. Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review
Guo et al. Carrageenan oligosaccharides: A comprehensive review of preparation, isolation, purification, structure, biological activities and applications
Zia et al. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites
CN104822382B9 (en) Galactose-branched carbohydrate compounds for the treatment of diabetic nephropathy and related diseases
JP4194839B2 (en) Method for producing pectin hydrolyzate
Jayakumar et al. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications
EP1483299B1 (en) Cell wall derivatives from biomass and preparation thereof
Chaudhari et al. Therapeutic and industrial applications of curdlan with overview on its recent patents
Li et al. Preparation and in vitro immunomodulatory effect of curdlan sulfate
Ul-Islam et al. Chitosan-based nanostructured biomaterials: Synthesis, properties, and biomedical applications
JP2006516988A (en) Pharmaceutical composition comprising an active agent and chitosan for sustained drug release or mucoadhesion
Xu et al. Characterization and immunological evaluation of low-molecular-weight alginate derivatives
WO2020108495A1 (en) Beta-glucan solid dispersion and preparation method therefor
WO2001064756A1 (en) Salmon-origin chondroitin sulfate
Mahmoud et al. Chitin, chitosan and glucan, properties and applications
JP5907489B2 (en) Hydrogels derived from chitosan derivatives
Muthusamy et al. Microbial pullulan for food, biomedicine, cosmetic, and water treatment: a review
Iqbal et al. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications
Freitas et al. Modification of chicha gum: Antibacterial activity, ex vivo mucoadhesion, antioxidant activity and cellular viability
Qiu et al. Aminated β-Glucan with immunostimulating activities and collagen composite sponge for wound repair
JPH03204804A (en) Skin cosmetic
CN110358098A (en) A kind of PEG bridging mannose-modified chitosan derivatives and preparation method thereof
JP5646164B2 (en) Branched chitosan derivative
Grobler et al. Cytotoxicity of low, medium and high molecular weight chitosan’s on balb/c 3t3 mouse fibroblast cells at a 75-85% de-acetylation degree
Sun et al. Hydrophobic lappaconitine loaded into iota-carrageenan by one step self-assembly

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5646164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees