JP5594041B2 - Gas concentration measuring device - Google Patents

Gas concentration measuring device Download PDF

Info

Publication number
JP5594041B2
JP5594041B2 JP2010228512A JP2010228512A JP5594041B2 JP 5594041 B2 JP5594041 B2 JP 5594041B2 JP 2010228512 A JP2010228512 A JP 2010228512A JP 2010228512 A JP2010228512 A JP 2010228512A JP 5594041 B2 JP5594041 B2 JP 5594041B2
Authority
JP
Japan
Prior art keywords
light
laser
laser light
quarter
polarizing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010228512A
Other languages
Japanese (ja)
Other versions
JP2012083159A (en
Inventor
英二 入佐
康彦 古山
宣之 西居
淳 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2010228512A priority Critical patent/JP5594041B2/en
Publication of JP2012083159A publication Critical patent/JP2012083159A/en
Application granted granted Critical
Publication of JP5594041B2 publication Critical patent/JP5594041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、波長可変型の半導体レーザを用いてサンプルセル内のガスの濃度を測定するガス濃度測定装置に関する。   The present invention relates to a gas concentration measuring apparatus for measuring a gas concentration in a sample cell using a wavelength tunable semiconductor laser.

波長可変型ダイオードレーザ分光吸収法(TDLAS)は、レーザ光の周波数を変調することにより測定ガスの微小な吸収を高感度で検出し、測定ガスの濃度を測定できる方法である。   The wavelength tunable diode laser spectral absorption method (TDLAS) is a method that can detect the minute absorption of the measurement gas with high sensitivity by modulating the frequency of the laser beam and measure the concentration of the measurement gas.

測定ガスの濃度を測定する装置として、特許文献1に記載された技術が知られている。図5は、特許文献1に記載された従来のガス濃度測定装置の構成図である。図5に示すガス濃度測定装置は、波長可変型の半導体レーザ1、サンプルセル2、受光素子3、レーザ駆動部4、演算処理部5を有している。   As an apparatus for measuring the concentration of a measurement gas, a technique described in Patent Document 1 is known. FIG. 5 is a configuration diagram of a conventional gas concentration measuring apparatus described in Patent Document 1. In FIG. The gas concentration measuring apparatus shown in FIG. 5 includes a wavelength tunable semiconductor laser 1, a sample cell 2, a light receiving element 3, a laser driving unit 4, and an arithmetic processing unit 5.

レーザ駆動部4は、半導体レーザ1を駆動するもので、半導体レーザ1の発振波長を一定周期で変調する。半導体レーザ1は、発振波長が一定周期で変調されたレーザ光を発生し、発生したレーザ光をサンプルセル2に導く。サンプルセル2は、測定ガスを封入し、半導体レーザ1からのレーザ光を測定ガスを介して受光素子3に導く。このとき、測定ガスが封入されたサンプルセル2を通過したレーザ光は、ガス濃度に応じて測定ガスに吸収される。   The laser drive unit 4 drives the semiconductor laser 1 and modulates the oscillation wavelength of the semiconductor laser 1 at a constant period. The semiconductor laser 1 generates laser light whose oscillation wavelength is modulated at a constant period, and guides the generated laser light to the sample cell 2. The sample cell 2 encloses a measurement gas and guides the laser light from the semiconductor laser 1 to the light receiving element 3 through the measurement gas. At this time, the laser light that has passed through the sample cell 2 in which the measurement gas is sealed is absorbed by the measurement gas according to the gas concentration.

受光素子5は、サンプルセル2内の測定ガスにより吸収されて減少された透過光量を検出する。演算処理部5は、例えばロックインアンプなどであり、受光素子3で検出された透過光量内の変調信号の2倍周波数を同期検波することによりサンプルセル2内の測定ガスの濃度を測定する。   The light receiving element 5 detects the amount of transmitted light that is absorbed and reduced by the measurement gas in the sample cell 2. The arithmetic processing unit 5 is, for example, a lock-in amplifier, and measures the concentration of the measurement gas in the sample cell 2 by synchronously detecting twice the frequency of the modulation signal in the transmitted light amount detected by the light receiving element 3.

特開2001−21493号公報JP 2001-21493 A

しかしながら、半導体レーザ1から放たれたレーザ光が受光素子3で反射し、戻り光となって半導体レーザ1の発光部に入射するとき、誘導放出が混乱し、光の強度が変動し、共振器でのレーザ光の発振が不安定になってしまう。   However, when the laser light emitted from the semiconductor laser 1 is reflected by the light receiving element 3 and enters the light emitting portion of the semiconductor laser 1 as return light, the stimulated emission is confused, the intensity of the light fluctuates, and the resonator The oscillation of the laser beam at becomes unstable.

また、半導体レーザ1から放たれたレーザ光が受光素子3で反射され、光軸上の窓やセルの内壁などの光軸上で再反射し、再反射されたレーザ光が受光素子3に再入射されるとき、その往復分が光路差となり、フリンジノイズとなる。測定されるガスの温度変化によって光路差が変化するため、干渉の明暗が動く。その結果、レーザ光の信号強度が時間的に変化し、ガス濃度を正確に測定することができなかった。
本発明の課題は、半導体レーザへの戻り光及びフリンジノイズを大幅に低減することができるガス濃度測定装置を提供することにある。
In addition, the laser light emitted from the semiconductor laser 1 is reflected by the light receiving element 3 and re-reflected on the optical axis such as a window on the optical axis or the inner wall of the cell. When incident, the reciprocal part becomes an optical path difference, which causes fringe noise. Since the optical path difference changes depending on the temperature change of the gas to be measured, the brightness of interference moves. As a result, the signal intensity of the laser beam changed with time, and the gas concentration could not be measured accurately.
An object of the present invention is to provide a gas concentration measuring apparatus capable of significantly reducing the return light to the semiconductor laser and the fringe noise.

本発明に係るガス濃度測定装置は、上記課題を解決するために、レーザ光を発生する波長可変型の半導体レーザと、前記半導体レーザからのレーザ光の偏光の向きに合わせて傾き角度が設定され、前記半導体レーザからのレーザ光の内の特定の偏光方向を持つレーザ光を通過させる第1の偏光板と、前記第1の偏光板に対して45°傾けて配置され、記第1の偏光板からのレーザ光を円偏光させる第1の1/4波長板と、ガスを封入し且つ前記第1の1/4波長板からのレーザ光を入射するサンプルセルと、前記レーザ光の進行方向から見て、前記第1の1/4波長板の傾き角度と同じ傾き角度に設定され、前記サンプルセルからのレーザ光を直線偏光させる第2の1/4波長板と、前記レーザ光の進行方向から見て、前記第1の偏光板の傾き角度と同じ角度に設定され、前記第2の1/4波長板からのレーザ光の内の特定の偏光方向を持つレーザ光を通過させる第2の偏光板と、前記第2の偏光板からのレーザ光を受光する受光素子とを備えることを特徴とする。 In order to solve the above problems, the gas concentration measuring apparatus according to the present invention has a wavelength tunable semiconductor laser that generates laser light and an inclination angle that is set in accordance with the direction of polarization of the laser light from the semiconductor laser. A first polarizing plate that transmits laser light having a specific polarization direction of laser light from the semiconductor laser, and a first polarizing plate that is disposed at an angle of 45 ° with respect to the first polarizing plate. A first quarter-wave plate that circularly polarizes laser light from the plate; a sample cell that encloses a gas and that receives laser light from the first quarter-wave plate; and a traveling direction of the laser light , The second quarter-wave plate that is set to the same tilt angle as that of the first quarter-wave plate and linearly polarizes the laser beam from the sample cell, and the progress of the laser beam The tilt of the first polarizing plate when viewed from the direction It is set to the same angle, and the second polarizing plate that transmits laser light having a specific polarization direction of the laser light from the second quarter wave plate, from the second polarizer And a light receiving element for receiving laser light.

本発明によれば、半導体レーザとサンプルセルとの間に第1の偏光板及び第1の偏光板に対して45°傾けて配置された第1の1/4波長板を配置し、サンプルセルと受光素子との間にレーザ光の進行方向から見て、第1の偏光板の傾き角度と同じ角度に設定された第2の偏光板及びレーザ光の進行方向から見て、第1の1/4波長板の傾き角度と同じ傾き角度に設定された第2の1/4波長板をアイソレータとして設けたので、半導体レーザへの戻り光及びフリンジノイズを大幅に低減することができる。

According to the present invention, the first quarter-wave plate disposed at 45 ° with respect to the first polarizing plate and the first polarizing plate is disposed between the semiconductor laser and the sample cell. and when viewed from the traveling direction of the laser beam between the light receiving element, as viewed from the second traveling direction of the polarizing plate and the laser beam is set to the same angle as the inclination angle of the first polarizer, the first 1 Since the second quarter-wave plate set at the same tilt angle as the quarter-wave plate is provided as an isolator, the return light to the semiconductor laser and the fringe noise can be greatly reduced.

実施例1のガス濃度測定装置の構成図である。It is a block diagram of the gas concentration measuring apparatus of Example 1. 実施例1のガス濃度測定装置においてレーザ光の光軸に対する偏向板と1/4波長板との配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the deflection | deviation plate with respect to the optical axis of a laser beam, and the quarter wavelength plate in the gas concentration measuring apparatus of Example 1. FIG. 実施例1のガス濃度測定装置においてレーザ光がP方向に進むときの1/4波長板の傾き角度を示す図である。It is a figure which shows the inclination angle of the quarter wavelength plate when a laser beam advances to a P direction in the gas concentration measuring apparatus of Example 1. FIG. 実施例1のガス濃度測定装置においてレーザ光がQ方向に進むときの1/4波長板の傾き角度を示す図である。It is a figure which shows the inclination angle of the quarter wavelength plate when a laser beam advances to a Q direction in the gas concentration measuring apparatus of Example 1. FIG. 従来のガス濃度測定装置の構成図である。It is a block diagram of the conventional gas concentration measuring apparatus.

以下、本発明のガス濃度測定装置の実施の形態を図面に基づいて詳細に説明する。   Embodiments of a gas concentration measuring apparatus according to the present invention will be described below in detail with reference to the drawings.

図1は、実施例1のガス濃度測定装置の構成図である。図1に示す実施例1のガス濃度測定装置は、図5に示すガス濃度装置に対して、さらに、半導体レーザ1とサンプルセル2との間に、偏光板(第1の偏光板に対応)6と1/4波長板(第1の1/4波長板に対応)8とを設け、サンプルセル2と受光素子3との間に、偏光板(第2の偏光板に対応)7と1/4波長板(第2の1/4波長板に対応)9とをアイソレータとして設けたことを特徴とする。   FIG. 1 is a configuration diagram of a gas concentration measuring apparatus according to the first embodiment. 1 further includes a polarizing plate (corresponding to the first polarizing plate) between the semiconductor laser 1 and the sample cell 2 compared to the gas concentration device shown in FIG. 6 and a quarter wave plate (corresponding to the first quarter wave plate) 8, and polarizing plates (corresponding to the second polarizing plate) 7 and 1 between the sample cell 2 and the light receiving element 3. A quarter wave plate (corresponding to the second quarter wave plate) 9 is provided as an isolator.

なお、図1に示すその他の構成は、図5に示す構成と同一であるので、同一部分には同一符号を付し、その説明は省略する。ここでは、偏光板6,7と1/4波長板8,9とを説明する。   1 is the same as the configuration shown in FIG. 5, the same parts are denoted by the same reference numerals, and the description thereof is omitted. Here, the polarizing plates 6 and 7 and the quarter wave plates 8 and 9 will be described.

偏光板6,7は、特定の偏光方向を持つ光を通過させる光学素子である。偏光板6は、図2(a)に示すように、半導体レーザ1からのレーザ光の偏光の向きに合わせて傾き角度が設定され、半導体レーザ1からのレーザ光の偏光の向きに合わせた直線偏光されたレーザ光を通過させる。   The polarizing plates 6 and 7 are optical elements that allow light having a specific polarization direction to pass therethrough. As shown in FIG. 2A, the polarizing plate 6 has an inclination angle set in accordance with the polarization direction of the laser light from the semiconductor laser 1, and is a straight line in accordance with the polarization direction of the laser light from the semiconductor laser 1. Pass polarized laser light.

1/4波長板8は、図2(a)に示すように、偏光板6の傾き角度に対して例えば時計方向に45°傾けて配置され、偏光板6からの直線偏光されたレーザ光を円偏光させてサンプルセル2に導く。   As shown in FIG. 2A, the quarter-wave plate 8 is disposed, for example, by 45 ° clockwise with respect to the inclination angle of the polarizing plate 6, and the linearly polarized laser light from the polarizing plate 6 is received. Circularly polarized light is guided to the sample cell 2.

偏光板7は、図2(b)に示すように、レーザ光の進行方向から見て、偏光板6の傾き角度と同じ傾き角度に設定されている。1/4波長板9は、図2(b)に示すように、レーザ光の進行方向から見て、1/4波長板8の傾き角度と同じ傾き角度に設定されている。   As shown in FIG. 2B, the polarizing plate 7 is set to the same tilt angle as the tilt angle of the polarizing plate 6 when viewed from the traveling direction of the laser beam. As shown in FIG. 2B, the quarter wavelength plate 9 is set to the same tilt angle as the tilt angle of the quarter wavelength plate 8 when viewed from the traveling direction of the laser beam.

1/4波長板9は、サンプルセル2からの円偏光されたレーザ光を直線偏光させる。偏光板7は、1/4波長板9からの直線偏光されたレーザ光を通過させて受光素子3に導く。なお、図2(a)、図2(b)において、Oはレーザ光の光軸を示している。   The quarter wave plate 9 linearly polarizes the circularly polarized laser beam from the sample cell 2. The polarizing plate 7 passes the linearly polarized laser light from the quarter wavelength plate 9 and guides it to the light receiving element 3. 2A and 2B, O represents the optical axis of the laser beam.

次に、このように構成された実施例1のガス濃度測定装置の動作を、図3及び図4を用いて詳細に説明する。図3は、実施例1のガス濃度測定装置においてレーザ光がP方向に進むときの1/4波長板8,9の傾き角度を示す図である。   Next, the operation of the gas concentration measuring apparatus according to the first embodiment configured as described above will be described in detail with reference to FIGS. FIG. 3 is a diagram illustrating the inclination angles of the quarter-wave plates 8 and 9 when the laser light travels in the P direction in the gas concentration measurement apparatus of the first embodiment.

まず、可干渉距離が短い半導体レーザ1から放たれたレーザ光は、直線偏光であり、このレーザ光の偏光の向きに偏光板6が合わせられているので、偏光板6を通過したレーザ光は、偏光板6の傾き角度を持つ直線偏光となる。このときの偏光板6の傾き角度を持つ直線偏光信号は、図3(a)においてV1で示している。   First, the laser light emitted from the semiconductor laser 1 having a short coherence distance is linearly polarized light, and the polarizing plate 6 is aligned with the polarization direction of the laser light. The linearly polarized light having the tilt angle of the polarizing plate 6 is obtained. The linearly polarized light signal having the tilt angle of the polarizing plate 6 at this time is indicated by V1 in FIG.

そして、偏光板6に対して時計方向に45°傾いて配置された1/4波長板8により、図3(a)に示すように、直線偏光信号V1(90°成分)と偏光信号V2(0°成分)とが合成されて直線偏光が円偏光C1に変換される。   Then, as shown in FIG. 3 (a), a linearly polarized light signal V1 (90 ° component) and a polarized light signal V2 ( The linearly polarized light is converted into circularly polarized light C1.

次に、偏光板7に対して時計方向に45°傾いて配置された1/4波長板9により、図3(b)に示すように、円偏光C1が直線偏光(信号V1)に変換される。   Next, as shown in FIG. 3 (b), the circularly polarized light C1 is converted into linearly polarized light (signal V1) by the quarter wavelength plate 9 disposed at 45 ° clockwise with respect to the polarizing plate 7. The

また、直線偏光されたレーザ光の偏光の向きに合せるように偏光板7が配置されているので、偏光板7を通過したレーザ光は、偏光板7の傾き角度を持つ直線偏光となり、受光素子3で受光される。   Further, since the polarizing plate 7 is arranged so as to match the polarization direction of the linearly polarized laser light, the laser light that has passed through the polarizing plate 7 becomes linearly polarized light having the inclination angle of the polarizing plate 7, and the light receiving element. 3 is received.

一方、受光素子3の受光面で反射されて戻ってくるレーザ光(戻り光)は、偏光板7を通過して1/4波長板9を通過すると、直線偏光が円偏光に戻る。この戻り光は、円偏光の向きが逆向きになっている。   On the other hand, when the laser light (returned light) reflected and returned by the light receiving surface of the light receiving element 3 passes through the polarizing plate 7 and passes through the quarter wavelength plate 9, the linearly polarized light returns to circularly polarized light. This return light has a circularly polarized light in the reverse direction.

このときの動作を図4を用いて説明する。図4は、レーザ光がQ方向に進むとき、即ち戻り光のときの1/4波長板8,9の傾き角度を示す図である。図4(a)(b)に示すように、1/4波長板8,9は、戻り光のときには、直線偏光信号V3(90°成分で直線偏光信号V1と同じ)に対して反時計方向に45°傾いている。   The operation at this time will be described with reference to FIG. FIG. 4 is a diagram showing the tilt angles of the quarter-wave plates 8 and 9 when the laser light travels in the Q direction, that is, when it is return light. As shown in FIGS. 4A and 4B, the quarter-wave plates 8 and 9 are counterclockwise with respect to the linearly polarized signal V3 (same as the linearly polarized signal V1 with a 90 ° component) when returning light. Tilted 45 °.

受光素子3からの戻り光は、偏光板7により直線偏光されて、図4(a)に示すように、直線偏光信号V3(90°成分)となって1/4波長板9に導かれる。   The return light from the light receiving element 3 is linearly polarized by the polarizing plate 7 and is guided to the quarter-wave plate 9 as a linearly polarized signal V3 (90 ° component) as shown in FIG.

偏光板7に対して反時計方向に45°傾いて配置された1/4波長板9により、図4(a)に示すように、直線偏光信号V3(90°成分)と偏光信号V4(180°成分)とが合成されて直線偏光が円偏光に変換される。   As shown in FIG. 4 (a), a linearly polarized light signal V3 (90 ° component) and a polarized light signal V4 (180) are provided by a quarter wave plate 9 that is inclined 45 ° counterclockwise with respect to the polarizing plate 7. The linearly polarized light is converted into circularly polarized light.

次に、偏光板6に対して反時計方向に45°傾いて配置された1/4波長板8により、図4(b)に示すように、円偏光が直線偏光(信号V4)に変換される。この直線偏光(信号V4)の向きは、半導体レーザ1から放たれたレーザ光の直線偏光(信号V1)とは90°傾いている。   Next, the circularly polarized light is converted into linearly polarized light (signal V4) as shown in FIG. 4 (b) by the quarter wavelength plate 8 which is disposed 45 ° counterclockwise with respect to the polarizing plate 6. The The direction of the linearly polarized light (signal V4) is inclined by 90 ° with respect to the linearly polarized light (signal V1) of the laser light emitted from the semiconductor laser 1.

このため、戻り光は、偏光板6によりブロックされることで、半導体レーザ1へ戻り光が入射されず、安定にレーザ発振させることができる。   For this reason, the return light is blocked by the polarizing plate 6 so that the return light is not incident on the semiconductor laser 1 and the laser oscillation can be stably performed.

また、半導体レーザ1から放たれたレーザ光は受光素子3で反射され、光軸上の窓やサンプルセル2の内壁等で再反射し、再反射されたレーザ光が受光素子3に再入射されるとき、この往復分が光路差となり、フリンジノイズとなっていた。   The laser light emitted from the semiconductor laser 1 is reflected by the light receiving element 3, re-reflected by the window on the optical axis, the inner wall of the sample cell 2, etc., and the re-reflected laser light is incident on the light receiving element 3 again. This round trip was an optical path difference and fringe noise.

これに対して、実施例1のガス濃度測定装置では、受光素子3からのレーザ光が1/4波長板9に入射されるときには、図4(a)に示すように、1/4波長板9は、直線偏光信号V3に対して反時計方向に45°に傾いており、サンプルセル2からのレーザ光が1/4波長板9に入射されるときには、図3(b)に示すように、1/4波長板9は、直線偏光信号V1に対して時計方向に45°に傾いている。   On the other hand, in the gas concentration measuring apparatus according to the first embodiment, when the laser light from the light receiving element 3 is incident on the quarter wavelength plate 9, as shown in FIG. 9 is inclined 45 ° counterclockwise with respect to the linearly polarized light signal V3, and when the laser light from the sample cell 2 is incident on the quarter-wave plate 9, as shown in FIG. The quarter-wave plate 9 is inclined 45 ° clockwise with respect to the linearly polarized light signal V1.

即ち、受光素子3からのレーザ光が1/4波長板9に入射されるときと、サンプルセル2からのレーザ光が1/4波長板9に入射されるときでは、円偏光の向きが逆向きとなっている。そのため、サンプルセル2からのレーザ光が1/4波長板9により円偏光が直線偏波(信号V2)に変換される。この直線偏波(信号V2)の向きは、受光素子3からのレーザ光の直線偏波(信号V3)とは90°傾いている。このため、光軸上の窓やサンプルセル2の内壁等で再反射されたレーザ光は、偏光板7によりブロックされることで受光素子3に入射されない。このため、フリンジノイズを大幅に低減することができる。
なお、実施例1のガス濃度測定装置では、アイソレータとして、半導体レーザ1とサンプルセル2との間に、偏光板6と1/4波長板8とを設け、サンプルセル2と受光素子3との間に、偏光板7と1/4波長板9とを設けたが、アイソレータとして、半導体レーザ1とサンプルセル2との間及びサンプルセル2と受光素子3との間に、ファラデーローテータなどを設けても良い。
That is, when the laser light from the light receiving element 3 is incident on the quarter-wave plate 9 and when the laser light from the sample cell 2 is incident on the quarter-wave plate 9, the direction of circularly polarized light is reversed. It is facing. Therefore, the circularly polarized light of the laser light from the sample cell 2 is converted into linearly polarized light (signal V2) by the quarter wavelength plate 9. The direction of this linearly polarized wave (signal V2) is inclined by 90 ° with respect to the linearly polarized wave (signal V3) of the laser light from the light receiving element 3. For this reason, the laser light re-reflected by the window on the optical axis or the inner wall of the sample cell 2 is blocked by the polarizing plate 7 and is not incident on the light receiving element 3. For this reason, fringe noise can be significantly reduced.
In the gas concentration measuring apparatus of Example 1, a polarizing plate 6 and a quarter wavelength plate 8 are provided as an isolator between the semiconductor laser 1 and the sample cell 2, and the sample cell 2 and the light receiving element 3 are provided. A polarizing plate 7 and a quarter-wave plate 9 are provided between them. As an isolator, a Faraday rotator is provided between the semiconductor laser 1 and the sample cell 2 and between the sample cell 2 and the light receiving element 3. May be.

本発明に係るガス濃度測定装置は、ガス分析装置に利用可能である。   The gas concentration measuring apparatus according to the present invention can be used for a gas analyzer.

1 半導体レーザ
2 サンプルセル
3 受光素子
4 レーザ駆動部
5 演算処理部
6,7 偏向板
8,9 1/4波長板
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Sample cell 3 Light receiving element 4 Laser drive part 5 Arithmetic processing part 6, 7 Deflection plate 8, 9 1/4 wavelength plate

Claims (1)

レーザ光を発生する波長可変型の半導体レーザと、
前記半導体レーザからのレーザ光の偏光の向きに合わせて傾き角度が設定され、前記半導体レーザからのレーザ光の内の特定の偏光方向を持つレーザ光を通過させる第1の偏光板と、
前記第1の偏光板に対して45°傾けて配置され、記第1の偏光板からのレーザ光を円偏光させる第1の1/4波長板と、
ガスを封入し且つ前記第1の1/4波長板からのレーザ光を入射するサンプルセルと、
前記レーザ光の進行方向から見て、前記第1の1/4波長板の傾き角度と同じ傾き角度に設定され、前記サンプルセルからのレーザ光を直線偏光させる第2の1/4波長板と、
前記レーザ光の進行方向から見て、前記第1の偏光板の傾き角度と同じ角度に設定され、前記第2の1/4波長板からのレーザ光の内の特定の偏光方向を持つレーザ光を通過させる第2の偏光板と、
前記第2の偏光板からのレーザ光を受光する受光素子と、
を備えることを特徴とするガス濃度測定装置。
A wavelength tunable semiconductor laser that generates laser light;
A first polarizing plate having a tilt angle set in accordance with a direction of polarization of laser light from the semiconductor laser, and passing laser light having a specific polarization direction of laser light from the semiconductor laser;
A first quarter-wave plate disposed at an angle of 45 ° with respect to the first polarizing plate and circularly polarizing laser light from the first polarizing plate;
A sample cell enclosing gas and receiving laser light from the first quarter-wave plate;
A second quarter-wave plate that is set to the same tilt angle as that of the first quarter-wave plate as viewed from the traveling direction of the laser beam and linearly polarizes the laser beam from the sample cell; ,
Laser light having a specific polarization direction within the laser light from the second quarter-wave plate set to the same angle as the tilt angle of the first polarizing plate when viewed from the traveling direction of the laser light A second polarizing plate that passes through,
A light receiving element for receiving the laser light from the second polarizing plate;
A gas concentration measuring device comprising:
JP2010228512A 2010-10-08 2010-10-08 Gas concentration measuring device Expired - Fee Related JP5594041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010228512A JP5594041B2 (en) 2010-10-08 2010-10-08 Gas concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228512A JP5594041B2 (en) 2010-10-08 2010-10-08 Gas concentration measuring device

Publications (2)

Publication Number Publication Date
JP2012083159A JP2012083159A (en) 2012-04-26
JP5594041B2 true JP5594041B2 (en) 2014-09-24

Family

ID=46242187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010228512A Expired - Fee Related JP5594041B2 (en) 2010-10-08 2010-10-08 Gas concentration measuring device

Country Status (1)

Country Link
JP (1) JP5594041B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128842A (en) * 1984-07-18 1986-02-08 Toshiba Corp Apparatus for detecting gas concentration
JPS634434A (en) * 1986-06-24 1988-01-09 Matsushita Electric Ind Co Ltd Optical pickup
GB8625530D0 (en) * 1986-10-24 1986-11-26 Goodall D M Optical apparatus
US5037202A (en) * 1990-07-02 1991-08-06 International Business Machines Corporation Measurement of size and refractive index of particles using the complex forward-scattered electromagnetic field
JPH04102048A (en) * 1990-08-22 1992-04-03 Akitetsu Mizuno Laser type method and apparatus for measuring air transmission in tunnel
US6057923A (en) * 1998-04-20 2000-05-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical path switching based differential absorption radiometry for substance detection
JP3343680B2 (en) * 1999-07-12 2002-11-11 日本酸素株式会社 Laser spectrometer
JP2002250708A (en) * 2001-02-26 2002-09-06 Asahi Kasei Corp Laser measuring instrument
BRPI0417255B1 (en) * 2003-12-03 2018-02-14 Fpinnovations APPARATUS FOR DETERMINING RELATED PHASE LEADS AND GUIDELINES OF DIFFERENT LAYERS IN A BIRREFRINGENT CELLULAR FIBER SPECIMEN, AND METHOD FOR DETERMINING FIBER RELATED FIBRARY LEADING INTACTA
JP4713531B2 (en) * 2007-03-26 2011-06-29 日本電信電話株式会社 Airborne particulate matter measurement device

Also Published As

Publication number Publication date
JP2012083159A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
US10928313B2 (en) Optical absorption spectroscopy based gas analyzer systems and methods
US8441644B2 (en) Method and apparatus for the photo-acoustic identification and quantification of analyte species in a gaseous or liquid medium
JP5381400B2 (en) Quantum interferometers, atomic oscillators, and magnetic sensors
US8659758B2 (en) Laser based cavity enhanced optical absorption gas analyzer with laser feedback optimization
US8659759B2 (en) Laser based cavity enhanced optical absorption gas analyzer
US11448596B2 (en) Method to measure the refractive index of a sample using surface plasmon polaritons
CN109839606B (en) Novel atomic magnetometer device and detection method
US10921191B2 (en) Atomic sensing method and chip-scale atomic sensor
US20170268930A1 (en) Spectroscopic Apparatus and Method
US20240319082A1 (en) Optical device, spectroscopic device, and spectroscopic method
JP4853255B2 (en) Gas analyzer
JP5594041B2 (en) Gas concentration measuring device
JP6395089B2 (en) Densitometer and concentration measuring method
JP4094975B2 (en) Concentration measuring device
JP4290142B2 (en) Photothermal conversion measuring apparatus and method
JP2008139200A (en) Impurity analyzing method and impurity analyzer
US20230085489A1 (en) Laser Interferometer
JP4838012B2 (en) Photothermal conversion measuring device
JP2021156853A (en) Gas analyser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R151 Written notification of patent or utility model registration

Ref document number: 5594041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees