JP5586067B2 - Micromechanical vibrator and manufacturing method thereof - Google Patents

Micromechanical vibrator and manufacturing method thereof Download PDF

Info

Publication number
JP5586067B2
JP5586067B2 JP2011111521A JP2011111521A JP5586067B2 JP 5586067 B2 JP5586067 B2 JP 5586067B2 JP 2011111521 A JP2011111521 A JP 2011111521A JP 2011111521 A JP2011111521 A JP 2011111521A JP 5586067 B2 JP5586067 B2 JP 5586067B2
Authority
JP
Japan
Prior art keywords
vibrator
electrode
insulating layer
opening
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011111521A
Other languages
Japanese (ja)
Other versions
JP2012244349A (en
Inventor
浩司 山口
玲皇 米谷
直 石原
伸一 割澤
駿次郎 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
University of Tokyo NUC
Original Assignee
Nippon Telegraph and Telephone Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, University of Tokyo NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011111521A priority Critical patent/JP5586067B2/en
Publication of JP2012244349A publication Critical patent/JP2012244349A/en
Application granted granted Critical
Publication of JP5586067B2 publication Critical patent/JP5586067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Micromachines (AREA)

Description

本発明は、共振周波数を可逆的に制御することが可能な微小機械振動子とその製造方法に関するものである。   The present invention relates to a micromechanical vibrator capable of reversibly controlling a resonance frequency and a manufacturing method thereof.

微小機械振動子の共振周波数の可逆的な制御手法として、これまでのところ機械振動子加振時に付加デバイスを用いて静電吸引力を作用させ歪印加することにより電気的に周波数を制御する手法(非特許文献1)が報告されている。このような手法に加え、微小機械振動子の共振周波数の可逆的な制御手法として、探針を用いて振動子の実効的な長さを変化させ共振周波数を制御する手法(非特許文献2)や、カーボンナノチューブの構造特性を利用して共振周波数を制御する手法(非特許文献3)等が用いられていた。   As a reversible control method of the resonance frequency of a micro mechanical vibrator, so far, a method of electrically controlling the frequency by applying an electrostatic attraction force and applying strain using an additional device when vibrating the mechanical vibrator (Non-Patent Document 1) has been reported. In addition to such a method, as a reversible control method of the resonance frequency of the micro mechanical vibrator, a technique of controlling the resonance frequency by changing the effective length of the vibrator using a probe (Non-patent Document 2) In addition, a method of controlling the resonance frequency using the structural characteristics of carbon nanotubes (Non-Patent Document 3) has been used.

W.Y.Fung,E.N.Dattoli,and W.Lu,“Radio frequency nanowire resonators and in situ frequency tuning”,Appl.Phys.Lett.94,p.203104,2009W.Y.Fung, E.N.Dattoli, and W.Lu, “Radio frequency nanowire resonators and in situ frequency tuning”, Appl. Phys. Lett. 94, p. 203104, 2009 M.Zalalutdinov,B.Ilic,D.Czaplewski,A.Zehnder,H.G.Craighead,and J.M.Parpia,“Frequency-tunable micromechanical oscillator”,Appl.Phys.Lett.,Vol.77,No.20,p.3287-3289,2000M.Zalalutdinov, B.Ilic, D.Czaplewski, A.Zehnder, HGCraighead, and JMParpia, “Frequency-tunable micromechanical oscillator”, Appl.Phys.Lett., Vol.77, No.20, p.3287- 3289, 2000 K.Jensen,C.Girit,W.Mickelson,and A.Zettl,“Tunable Nanoresonators Constructed from Telescoping Nanotubes”,PRL 96,p.215503,2006K.Jensen, C.Girit, W.Mickelson, and A.Zettl, “Tunable Nanoresonators Constructed from Telescoping Nanotubes”, PRL 96, p.215503, 2006

非特許文献2、非特許文献3に開示された手法では、共振周波数変化率が数100%に達する周波数制御が実現されているものの、センサ等のデバイスへ組み込むことが難しいという問題点があった。その理由は、振動子の実効的な長さを変化させたり振動子の構造を変化させたりする手法では大きな可動構造が必要であり、一つのデバイスとして作製するためには複雑な加工プロセスが必要となり、センサに組み込むことが難しくなるからである。特に、カーボンナノチューブを用いる場合には、カーボンナノチューブを選択的に配置することが難しく、作製はより困難となる。   The methods disclosed in Non-Patent Document 2 and Non-Patent Document 3 have a problem that it is difficult to incorporate into a device such as a sensor, although the frequency control in which the resonance frequency change rate reaches several hundred% is realized. . The reason is that the method of changing the effective length of the vibrator or changing the structure of the vibrator requires a large movable structure, and a complex processing process is required to produce a single device. This is because it becomes difficult to incorporate the sensor into the sensor. In particular, when carbon nanotubes are used, it is difficult to selectively arrange the carbon nanotubes, which makes the production more difficult.

また、非特許文献1に開示された手法では、デバイスへ組み込むことが容易であるものの、微小機械振動子の共振周波数変化率が数10%程度であり、変化率100%を超える広帯域の共振周波数制御は達成されていなかった。
デバイスに組み込んだ微小機械振動子の作製誤差を補正する場合や、微小機械振動子をセンシングデバイスに応用する場合には、デバイスに組み込むことが容易な電気的な手法でより広い周波数帯域の共振周波数制御を実現できることが必要である。
Further, although the method disclosed in Non-Patent Document 1 can be easily incorporated into a device, the resonance frequency change rate of the micromechanical vibrator is about several tens of percent, and a wide-band resonance frequency exceeding 100% change rate. Control was not achieved.
When correcting manufacturing errors of micromechanical vibrators embedded in devices or when applying micromechanical vibrators to sensing devices, the resonance frequency of a wider frequency band can be easily integrated into the device. It is necessary to be able to realize control.

本発明は、上記課題を解決するためになされたもので、振動子内に共振周波数制御機構を組み込むことが容易で、かつ広い周波数帯域での共振周波数制御が可能な微小機械振動子を提供することを目的とする。   The present invention has been made to solve the above problems, and provides a micromechanical vibrator that can easily incorporate a resonance frequency control mechanism in the vibrator and can perform resonance frequency control in a wide frequency band. For the purpose.

本発明の微小機械振動子は、基板上に形成された絶縁層と、この絶縁層上に形成された第1の電極と、前記絶縁層上に形成された第2の電極と、両端もしくは一端が前記第1の電極に接続され、この第1の電極で固定されていない一部が前記絶縁層に形成された開口部内に突出するように形成される振動子部と、一端が前記第2の電極に接続され、この第2の電極で固定されていない方の縁部が前記開口部内に突出した振動子部の縁部と前記基板の水平面方向で対向するように形成され、前記振動子部との間に静電引力を発生させる制御極部とを備えることを特徴とするものである。 The micromechanical vibrator of the present invention includes an insulating layer formed on a substrate, a first electrode formed on the insulating layer, a second electrode formed on the insulating layer, both ends or one end. There is connected to the first electrode, and the vibrator portion made form such that a portion not fixed with the first electrode projects into said opening formed in the insulating layer, wherein one end first is connected to the second electrode, made form so as to face in the horizontal plane direction of the second edge of which is not fixed in the electrode of the edge of the vibrator portion projecting into said opening said substrate, said And a control pole part that generates an electrostatic attractive force between the vibrator part and the vibrator part .

また、本発明の微小機械振動子は、基板上に形成された絶縁層と、前記基板上に形成された第1の電極と、前記絶縁層上に形成された第2の電極と、下面の一部が前記第1の電極に接続され、この第1の電極で固定されていない一部が前記第1の電極の周囲の絶縁層に形成された開口部内に突出するように前記第1の電極上に形成される振動子部と、縁部が前記第2の電極に接続され、この第2の電極で固定されていない方の縁部が前記開口部内に突出した振動子部の縁部と前記基板の水平面方向で対向するように形成され、前記振動子部との間に静電引力を発生させる制御極部とを備えることを特徴とするものである。 The micromechanical vibrator of the present invention includes an insulating layer formed on a substrate, a first electrode formed on the substrate, a second electrode formed on the insulating layer, and a lower surface. A part of the first electrode is connected to the first electrode, and a part not fixed by the first electrode protrudes into an opening formed in an insulating layer around the first electrode. The vibrator portion formed on the electrode and the edge portion of the vibrator portion whose edge portion is connected to the second electrode and the edge portion not fixed by the second electrode protrudes into the opening portion. and the made form so as to face in the horizontal plane direction of the substrate, is characterized in that a control electrode section to generate an electrostatic attraction between the transducer unit.

また、本発明の微小機械振動子の製造方法は、基板上に形成された絶縁層の上に第1、第2の電極を形成する電極形成工程と、前記第1、第2の電極間の領域もしくは前記第1、第2の電極で囲まれた領域の絶縁層をエッチングして開口部を形成する開口部形成工程と、両端もしくは一端が前記第1の電極に接続され、この第1の電極で固定されていない一部が前記絶縁層に形成された開口部内に突出する振動子部を前記開口部に露出した基板上に形成すると共に、一端が前記第2の電極に接続され、この第2の電極で固定されていない方の縁部が前記開口部内に突出した振動子部の縁部と対向する制御極部を前記開口部に露出した基板上に形成する振動子部および制御極部形成工程と、前記開口部内の露出している基板をエッチングして、前記開口部内に突出している振動子部と制御極部とが前記基板から浮いた状態になるように前記基板に凹部を形成する凹部形成工程とを備えることを特徴とするものである。
また、本発明の微小機械振動子の製造方法の1構成例において、前記振動子部および制御極部形成工程は、前記振動子部と前記制御極部とを連結する連結部を形成する工程を含み、さらに、前記凹部形成工程の後に、前記連結部を除去する連結部除去工程を備えることを特徴とするものである。
Further, the method for manufacturing a micromechanical vibrator of the present invention includes an electrode forming step of forming first and second electrodes on an insulating layer formed on a substrate, and between the first and second electrodes. An opening forming step of etching the insulating layer in the region or the region surrounded by the first and second electrodes to form an opening, and both ends or one end thereof are connected to the first electrode. A vibrator part protruding into the opening formed in the insulating layer is formed on the substrate exposed in the opening, and one end is connected to the second electrode. A vibrator part and a control pole in which a control pole part is formed on the substrate exposed in the opening part so that the edge part not fixed by the second electrode faces the edge part of the vibrator part protruding into the opening part. Etching the substrate exposed in the opening and the part forming step; It is characterized in that the serial opening vibrator portion which projects into and the control electrode portion and a concave portion forming step of forming a recess in the substrate such that a floating state from the substrate.
Further, in one configuration example of the method for manufacturing a micromechanical vibrator of the present invention, the vibrator part and the control electrode part forming step include a process of forming a connecting part that connects the vibrator part and the control electrode part. And further comprising a connecting portion removing step of removing the connecting portion after the recess forming step.

また、本発明の微小機械振動子の製造方法は、基板上に形成された絶縁層の上に第1、第2の電極を形成する電極形成工程と、両端もしくは一端が前記第1の電極に接続された振動子部を前記絶縁層上に形成すると共に、一端が前記第2の電極に接続され、この第2の電極に接続されていない方の縁部が前記振動子部の縁部と対向する制御極部を前記絶縁層上に形成する振動子部および制御極部形成工程と、前記第1、第2の電極間の領域もしくは前記第1、第2の電極で囲まれた領域の絶縁層をエッチングして、前記振動子部の前記第1の電極で固定されていない方の一部と前記制御極部の前記第2の電極で固定されていない方の一部とが前記基板から浮いた状態になるように前記絶縁層に開口部を形成する開口部形成工程とを備え、前記振動子部および制御極部形成工程は、前記振動子部と前記制御極部とを連結する連結部を形成する工程を含み、さらに、前記開口部形成工程の後に、前記連結部を除去する連結部除去工程を備えることを特徴とするものである。 The method for manufacturing a micromechanical vibrator of the present invention includes an electrode forming step of forming first and second electrodes on an insulating layer formed on a substrate, and both ends or one end of the first electrode on the first electrode. A connected vibrator part is formed on the insulating layer, one end is connected to the second electrode, and an edge not connected to the second electrode is an edge of the vibrator part. A vibrator portion and a control pole portion forming step for forming opposing control pole portions on the insulating layer, and a region between the first and second electrodes or a region surrounded by the first and second electrodes. The substrate is formed by etching the insulating layer so that a part of the vibrator part not fixed by the first electrode and a part of the control electrode part not fixed by the second electrode are the substrate. and an opening portion forming step of forming an opening in the insulating layer such that floated from the previous SL The moving part and control pole part forming step includes a step of forming a connecting part for connecting the vibrator part and the control pole part, and further, the connecting part for removing the connecting part after the opening part forming step. A part removing step is provided.

本発明によれば、絶縁層上に形成された第1、第2の電極と、両端もしくは一端が第1の電極に接続され、この第1の電極で固定されていない一部が絶縁層に形成された開口部内に突出するように絶縁層上に形成される振動子部と、一端が第2の電極に接続され、この第2の電極で固定されていない方の縁部が開口部内に突出した振動子部の縁部と対向するように絶縁層上に形成される制御極部とを設けることにより、電気的な共振周波数制御を実現できるので、広い周波数帯域での微小機械振動子の共振周波数制御が可能となる。また、本発明では、微小機械振動子内に共振周波数制御機構を組み込むことが可能であり、広い周波数帯域での共振周波数制御が可能なナノ・マイクロスケールの微小機械振動子が作製可能となる。   According to the present invention, the first and second electrodes formed on the insulating layer and both ends or one end thereof are connected to the first electrode, and a part not fixed by the first electrode is formed on the insulating layer. The vibrator portion formed on the insulating layer so as to protrude into the formed opening portion, and one end connected to the second electrode, and the edge portion not fixed by the second electrode is in the opening portion. By providing a control pole part formed on the insulating layer so as to face the edge of the protruding vibrator part, electrical resonance frequency control can be realized, so that the micro mechanical vibrator in a wide frequency band can be realized. Resonance frequency control is possible. In the present invention, a resonance frequency control mechanism can be incorporated in the micro mechanical vibrator, and a nano / micro scale micro mechanical vibrator capable of controlling the resonance frequency in a wide frequency band can be manufactured.

また、本発明では、基板上に形成された第1の電極と、絶縁層上に形成された第2の電極と、下面の一部が第1の電極に接続され、この第1の電極で固定されていない一部が第1の電極の周囲の絶縁層に形成された開口部内に突出するように第1の電極上に形成される振動子部と、一端が第2の電極に接続され、この第2の電極で固定されていない方の縁部が開口部内に突出した振動子部の縁部と対向するように絶縁層上に形成される制御極部とを設けることにより、電気的な共振周波数制御を実現できるので、広い周波数帯域での微小機械振動子の共振周波数制御が可能となる。また、本発明では、微小機械振動子内に共振周波数制御機構を組み込むことが可能であり、広い周波数帯域での共振周波数制御が可能なナノ・マイクロスケールの微小機械振動子が作製可能となる。   In the present invention, the first electrode formed on the substrate, the second electrode formed on the insulating layer, and a part of the lower surface are connected to the first electrode, and the first electrode A vibrator part formed on the first electrode so that a part that is not fixed protrudes into an opening formed in the insulating layer around the first electrode, and one end is connected to the second electrode. By providing a control pole portion formed on the insulating layer so that the edge portion not fixed by the second electrode faces the edge portion of the vibrator portion protruding into the opening portion, Therefore, it is possible to control the resonance frequency of the micromechanical vibrator in a wide frequency band. In the present invention, a resonance frequency control mechanism can be incorporated in the micro mechanical vibrator, and a nano / micro scale micro mechanical vibrator capable of controlling the resonance frequency in a wide frequency band can be manufactured.

本発明の第1の実施の形態に係る微小機械振動子の作製プロセスを説明する平面図および断面図である。5A and 5B are a plan view and a cross-sectional view illustrating a manufacturing process of the micro mechanical vibrator according to the first embodiment of the invention. 本発明の第1の実施の形態に係る微小機械振動子の作製プロセスを説明する平面図および断面図である。5A and 5B are a plan view and a cross-sectional view illustrating a manufacturing process of the micro mechanical vibrator according to the first embodiment of the invention. 本発明の第1の実施の形態に係る微小機械振動子を斜め上方から撮影した電子顕微鏡写真である。It is the electron micrograph which image | photographed the micro mechanical vibrator which concerns on the 1st Embodiment of this invention from diagonally upward. 本発明の第1の実施の形態に係る微小機械振動子の共振周波数制御原理を説明する模式図および微小機械振動子の設計パラメータの定義を説明する図である。It is a figure explaining the resonance frequency control principle of the micromechanical vibrator concerning the 1st embodiment of the present invention, and a figure explaining the definition of the design parameter of the micromechanical vibrator. 本発明の第1の実施の形態に係る微小機械振動子の設計パラメータの定義を説明する平面図である。It is a top view explaining the definition of the design parameter of the micro mechanical vibrator concerning the 1st embodiment of the present invention. 本発明の第1の実施の形態に係る微小機械振動子の共振周波数の測定結果を示す図である。It is a figure which shows the measurement result of the resonant frequency of the micro mechanical vibrator which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る微小機械振動子の斜視図、平面図および断面図である。FIG. 6 is a perspective view, a plan view, and a cross-sectional view of a micro mechanical vibrator according to a second embodiment of the invention. 本発明の第3の実施の形態に係る微小機械振動子の斜視図、平面図および断面図である。FIG. 6 is a perspective view, a plan view, and a cross-sectional view of a micro mechanical vibrator according to a third embodiment of the invention. 本発明の第4の実施の形態に係る微小機械振動子の斜視図、平面図および断面図である。FIG. 6 is a perspective view, a plan view, and a cross-sectional view of a micro mechanical vibrator according to a fourth embodiment of the invention. 本発明の第5の実施の形態に係る微小機械振動子の斜視図、平面図および断面図である。FIG. 9 is a perspective view, a plan view, and a cross-sectional view of a micro mechanical vibrator according to a fifth embodiment of the invention.

[第1の実施の形態]
以下、本発明を用いた実施の形態について詳細に説明する。本実施の形態では、電子ビーム露光技術、集束イオンビーム化学気相成長法(focused-ion-beam chemical vapor deposition:FIB−CVD)、及びウェットエッチング等の微細加工技術を用いて、ダイアモンドライクカーボン(diamond-like carbon:DLC)からなる共振周波数可変振動子を作製した。
[First Embodiment]
Hereinafter, embodiments using the present invention will be described in detail. In the present embodiment, diamond-like carbon (using a fine processing technique such as electron beam exposure technique, focused-ion-beam chemical vapor deposition (FIB-CVD), and wet etching) is used. A resonant frequency variable vibrator made of diamond-like carbon (DLC) was produced.

FIB−CVDは、CVDの原料となるガスをガスノズルより噴射し、原料ガス分子を基板等に吸着させ、その吸着原料分子にガリウム集束イオンビームを照射することで原料分子を解離、堆積させ、微小構造を形成するものである(特開2001−107252号公報、文献「S.Matsui,et.al.,“Three-dimensional nanostrecture fabrication by focused-ion-beam chemical vapor deposition”,J.Vac.Sci.Tech.B,Vol.18,No.6,p.3181-3184,2000」)。   In FIB-CVD, a gas that is a raw material for CVD is injected from a gas nozzle, the raw material gas molecules are adsorbed on a substrate or the like, and the adsorbed raw material molecules are irradiated with a gallium focused ion beam to dissociate and deposit the raw material molecules. A structure is formed (Japanese Patent Laid-Open No. 2001-107252, “S. Matsui, et.al.,“ Three-dimensional nanostrecture fabrication by focused-ion-beam chemical vapor deposition ”, J. Vac. Sci. Tech.B, Vol.18, No.6, p.3181-3184, 2000 ").

本実施の形態における微小機械振動子の作製プロセスを、図1(A)、図1(C)、図1(E)、図1(G)、図2(A)、図2(C)の平面図および図1(B)、図1(D)、図1(F)、図1(H)、図2(B)、図2(D)の断面図で説明する。
まず、表面に厚さ280nmのシリコン酸化膜2(絶縁層)が形成されたシリコン基板1上にレジスト3を塗布し(図1(A)、図1(B))、電子ビーム露光によりレジスト3を図1(C)、図1(D)に示すような形状に加工する。そして、真空蒸着およびリフトオフプロセスを用いて、Tiからなる2つの電極4,5をシリコン酸化膜2上に形成する(図1(E)、図1(F))。この電極4,5の厚さは、240nmである。
A manufacturing process of the micro mechanical vibrator in this embodiment mode is described with reference to FIGS. 1A, 1C, 1E, 1G, 2A, and 2C. A plan view and cross-sectional views of FIGS. 1B, 1D, 1F, 1H, 2B, and 2D will be used.
First, a resist 3 is applied on a silicon substrate 1 on which a silicon oxide film 2 (insulating layer) having a thickness of 280 nm is formed (FIGS. 1A and 1B), and the resist 3 is formed by electron beam exposure. Is processed into a shape as shown in FIG. 1 (C) and FIG. 1 (D). Then, two electrodes 4 and 5 made of Ti are formed on the silicon oxide film 2 by using vacuum deposition and a lift-off process (FIGS. 1E and 1F). The electrodes 4 and 5 have a thickness of 240 nm.

続いて、電極4,5間のシリコン酸化膜2を集束イオンビームによりエッチングして開口部6を形成し、シリコン酸化膜2の下のシリコン基板1の表面を露出させる(図1(G)、図1(H))。次に、一方の側の端部がシリコン酸化膜2および電極4上に形成され他方の側が開口部6内に突出するようにシリコン基板1上に形成される振動子部7と、一方の側が開口部6内に突出した振動子部7の先端と近接するようにシリコン基板1上に形成され他方の側の端部がシリコン酸化膜2および電極5上に形成される制御極部8と、振動子部7と制御極部8とを連結するようにシリコン基板1上に形成される連結部9とからなる構造を、FIB−CVDにより作製する(図2(A)、図2(B))。このとき、振動子部7と制御極部8と連結部9とは、電極4,5間に架けられた架橋構造となる。   Subsequently, the silicon oxide film 2 between the electrodes 4 and 5 is etched by a focused ion beam to form an opening 6 to expose the surface of the silicon substrate 1 under the silicon oxide film 2 (FIG. 1G). FIG. 1 (H)). Next, the vibrator portion 7 formed on the silicon substrate 1 so that the end on one side is formed on the silicon oxide film 2 and the electrode 4 and the other side protrudes into the opening 6, and the one side is A control pole portion 8 formed on the silicon substrate 1 so as to be close to the tip of the vibrator portion 7 protruding into the opening 6 and having the other end portion formed on the silicon oxide film 2 and the electrode 5; A structure including a connecting portion 9 formed on the silicon substrate 1 so as to connect the vibrator portion 7 and the control electrode portion 8 is manufactured by FIB-CVD (FIGS. 2A and 2B). ). At this time, the vibrator portion 7, the control pole portion 8, and the connecting portion 9 have a bridge structure spanned between the electrodes 4 and 5.

このFIB−CVDにより堆積・形成した振動子部7と制御極部8と連結部9の材料は、FIB−CVDにおける原料ガスとしてフェナントレン(phenanthrene:C1410)を用いたためDLCである(文献「K.Kanda,et al.,“NEXAFS study on carbon-based material formed by focused-ion-beam chemical-vapor-deposition”,Radiation Physics and Chemistry 75,p.1850-1854,2006」)。なお、連結部9を後の工程で除去する必要があるため、加工のし易さを考慮して、連結部9を振動子部7および制御極部8よりも薄く形成している。 The material of the vibrator portion 7, the control electrode portion 8, and the connecting portion 9 deposited and formed by FIB-CVD is DLC because phenanthrene (C 14 H 10 ) is used as a source gas in FIB-CVD (references) “K. Kanda, et al.,“ NEXAFS study on carbon-based material formed by focused-ion-beam chemical-vapor-deposition ”, Radiation Physics and Chemistry 75, p.1850-1854, 2006”). Since it is necessary to remove the connecting portion 9 in a later step, the connecting portion 9 is formed thinner than the vibrator portion 7 and the control pole portion 8 in consideration of ease of processing.

次に、水酸化テトラメチルアンモニウム(Tetramethylammonium hydroxide:TMAH)系ウェットエッチング溶液を用いて、開口部6内の露出しているシリコン基板1をウェットエッチングし、開口部6内に突出している振動子部7と制御極部8と連結部9とがシリコン基板1から浮いた状態になるようにシリコン基板1に凹部10を形成する。そして、最後に連結部9を集束イオンビームを用いてエッチングし、振動子部7と制御極部8とを切り離す(図2(C)、図2(D))。   Next, the exposed silicon substrate 1 in the opening 6 is wet-etched using a tetramethylammonium hydroxide (TMAH) wet etching solution, and the vibrator portion protruding into the opening 6 is used. The recess 10 is formed in the silicon substrate 1 so that the control electrode portion 8, the control electrode portion 8, and the connecting portion 9 are lifted from the silicon substrate 1. Finally, the connecting portion 9 is etched using a focused ion beam, and the vibrator portion 7 and the control pole portion 8 are separated (FIGS. 2C and 2D).

こうして、シリコン酸化膜2上に形成された2つの電極4,5と、一端が電極4に接続され、電極4およびシリコン酸化膜2で固定されていない一部が開口部6内に突出する振動子部7と、一端が電極5に接続され、電極5およびシリコン酸化膜2で固定されていない方の先端部が開口部6内に突出した振動子部7の先端部と対向する制御極部8とを備えた微小機械振動子が完成する。作製した微小機械振動子の電子顕微鏡写真を図3に示す。   Thus, two electrodes 4 and 5 formed on the silicon oxide film 2 and one end connected to the electrode 4 and a part of the electrode 4 and a portion not fixed by the silicon oxide film 2 projecting into the opening 6 are vibrated. The control pole part which is opposite to the tip part of the child part 7 and the vibrator part 7 whose one end is connected to the electrode 5 and which is not fixed by the electrode 5 and the silicon oxide film 2 protrudes into the opening 6. 8 is completed. An electron micrograph of the produced micro mechanical vibrator is shown in FIG.

図4(A)は本実施の形態の微小機械振動子の共振周波数制御原理を説明する模式図である。本実施の形態の共振周波数制御原理は次のとおりである。外部から加えられた力に応じて振動する振動子部7とこれに対向する制御極部8との間に電極4,5を通じて電圧Vを印加し、振動子部7と制御極部8との間に静電引力Fを発生させる。これにより、静電引力Fの鉛直方向成分Fyが振動子部7の振動の復元力に加算されるので、振動子部7の共振周波数が変化する。この原理に基づくと、振動子部7の振動振幅が十分小さい線形振動領域では、静電引力が作用する振動子部7の1次の共振周波数fは、近似的には次式(1)で表すことができる。   FIG. 4A is a schematic diagram for explaining the principle of resonance frequency control of the micromechanical vibrator of the present embodiment. The principle of resonance frequency control of the present embodiment is as follows. A voltage V is applied through the electrodes 4 and 5 between the vibrator portion 7 that vibrates according to the force applied from the outside and the control pole portion 8 facing the vibrator portion 7, and the vibrator portion 7 and the control pole portion 8 An electrostatic attractive force F is generated between them. As a result, the vertical component Fy of the electrostatic attractive force F is added to the vibration restoring force of the vibrator unit 7, so that the resonance frequency of the vibrator unit 7 changes. Based on this principle, in the linear vibration region where the vibration amplitude of the vibrator unit 7 is sufficiently small, the primary resonance frequency f of the vibrator unit 7 on which electrostatic attraction acts is approximately expressed by the following equation (1). Can be represented.

ここで、図4(B)に示すように、Vは印加電圧、Sは振動子部7の先端部11と対向する制御極部8の端面の面積、ε0は真空の誘電率、ρは振動子部7の密度、Aは振動子部7の断面積、Eは振動子部7の構成材料のヤング率、Iは振動子部7の断面二次モーメント、lは振動子部7の先端部11を除く梁部12の長さ、mは振動子部7の先端部の質量、Δは振動子部7と制御極部8間の水平距離である。なお、式(1)は、梁部12が1本の構成の場合を示している。 Here, as shown in FIG. 4B, V is the applied voltage, S is the area of the end face of the control pole part 8 facing the tip part 11 of the vibrator part 7, ε 0 is the dielectric constant of vacuum, and ρ is Density of the vibrator part 7, A is the cross-sectional area of the vibrator part 7, E is the Young's modulus of the constituent material of the vibrator part 7, I is the moment of inertia of the cross section of the vibrator part 7, and l is the tip of the vibrator part 7 The length of the beam part 12 excluding the part 11, m is the mass of the tip part of the vibrator part 7, and Δ is the horizontal distance between the vibrator part 7 and the control pole part 8. In addition, Formula (1) has shown the case where the beam part 12 is one structure.

上記した式(1)に基づくと、本実施の形態のように2本の梁部12が先端部11によって連結されている形状の振動子部7の場合、振動子部7の1次の共振周波数fは次式(2)のように表される。   Based on the above equation (1), in the case of the vibrator unit 7 having a shape in which the two beam parts 12 are connected by the tip part 11 as in the present embodiment, the primary resonance of the vibrator unit 7 is performed. The frequency f is expressed as the following equation (2).

ここで、VFは作製過程において生じた振動子部7の梁部12の反り返りを戻し、先端部11を制御極部8に対向させるために必要な印加電圧である。また、図5に示すように、w1は制御極部8および振動子部7の先端部11の幅、w2は振動子部7の梁部12の幅、w3は振動子部7の先端部11の長さ、Lは振動子部7の梁部12の長さ、tは振動子部7および制御極部8の厚さである。上記の面積Sはw1×tに相当する。なお、図3の電子顕微鏡写真に示した振動子のw1,w2,w3,L,t,Δは、それぞれ8.8μm,900nm,3μm,23μm,130nm,300nmであった。 Here, V F is an applied voltage necessary for returning the warp of the beam portion 12 of the vibrator portion 7 generated in the manufacturing process and making the tip portion 11 face the control pole portion 8. Further, as shown in FIG. 5, w 1 is the width of the control pole portion 8 and the tip portion 11 of the vibrator portion 7, w 2 is the width of the beam portion 12 of the vibrator portion 7, and w 3 is the width of the vibrator portion 7. The length of the distal end portion 11, L is the length of the beam portion 12 of the vibrator portion 7, and t is the thickness of the vibrator portion 7 and the control pole portion 8. The area S corresponds to w 1 × t. The w 1 , w 2 , w 3 , L, t, and Δ of the vibrator shown in the electron micrograph of FIG. 3 were 8.8 μm, 900 nm, 3 μm, 23 μm, 130 nm, and 300 nm, respectively.

次に、本実施の形態の微小機械振動子の共振周波数を、電子ビーム法により評価した。電子ビーム法については、文献「H.Ashiba,et al.,“Evaluation Method of the Quality Factor of Micromechanical Resonators Using Electron Beams”,Jpn.J.Appl.Phys.,48,06FG08,2009」に開示されている。本実施の形態では、微小機械振動子の振動子部7の励振を、ピエゾ素子を用いて行った。また、微小機械振動子の電極4,5への電圧印加を、ソースメータを用いて行った。   Next, the resonance frequency of the micro mechanical vibrator of this embodiment was evaluated by the electron beam method. The electron beam method is disclosed in the literature “H. Ashiba, et al.,“ Evaluation Method of the Quality Factor of Micromechanical Resonators Using Electron Beams ”, Jpn. J. Appl. Phys., 48, 06FG08, 2009”. Yes. In the present embodiment, excitation of the vibrator unit 7 of the micro mechanical vibrator is performed using a piezo element. Moreover, the voltage application to the electrodes 4 and 5 of the micro mechanical vibrator was performed using a source meter.

図6は測定結果を示す図であり、横軸は印加電圧V、縦軸は共振周波数である。なお、図6における60は測定データ、61は印加電圧−共振周波数特性の理論線である。本実施の形態の微小機械振動子のVF値は20Vであった。V=20Vの電圧印加により振動子部7の梁部12の反りが修正され、振動子部7の先端部11と制御極部8とが対向した後、微小機械振動子の共振周波数は、上記した式(2)に従い、107kHz(V=20V)から782kHz(V=50V)の周波数帯域で調整可能であった。したがって、本実施の形態の微小機械振動子の共振周波数の変化率は、およそ570%であった。本実施の形態では、50Vまでの電圧印加を行ったが、より大きな電圧印加により、より広い帯域での共振周波数制御が可能である。以上のように、上記の原理に基づく電気的な共振周波数制御法により、広い周波数帯域での微小機械振動子の共振周波数制御が可能であることを確認できた。 FIG. 6 is a diagram showing measurement results, in which the horizontal axis represents the applied voltage V and the vertical axis represents the resonance frequency. In FIG. 6, 60 is measurement data, and 61 is a theoretical line of applied voltage-resonance frequency characteristics. The V F value of the micro mechanical vibrator of the present embodiment was 20V. After the curvature of the beam part 12 of the vibrator part 7 is corrected by applying a voltage of V = 20 V and the tip part 11 of the vibrator part 7 and the control pole part 8 face each other, the resonance frequency of the micro mechanical vibrator is According to the equation (2), adjustment was possible in the frequency band from 107 kHz (V = 20 V) to 782 kHz (V = 50 V). Therefore, the change rate of the resonance frequency of the micromechanical vibrator of the present embodiment is about 570%. In the present embodiment, voltage application up to 50V is performed, but resonance frequency control in a wider band is possible by applying a larger voltage. As described above, it has been confirmed that the resonance frequency control of the micromechanical vibrator in a wide frequency band is possible by the electrical resonance frequency control method based on the above principle.

以上、詳細に説明したように、本実施の形態によれば、高精度な制御と高い応答性が期待できる電気的な共振周波数制御手法により、広い周波数帯域(周波数変化率500%以上)での微小機械振動子の共振周波数制御が可能となる。また、本実施の形態では、電気的な共振周波数制御手法を用いるため、微小機械振動子内に共振周波数制御機構を組み込むことが可能であり、広い周波数帯域での共振周波数制御が可能なナノ・マイクロスケールの微小機械振動子が作製可能となる。   As described above in detail, according to the present embodiment, an electrical resonance frequency control method that can be expected to provide high-precision control and high responsiveness can be achieved in a wide frequency band (frequency change rate of 500% or more). Resonance frequency control of the micro mechanical vibrator becomes possible. In this embodiment, since an electrical resonance frequency control method is used, it is possible to incorporate a resonance frequency control mechanism in the micromechanical vibrator, and it is possible to control the resonance frequency in a wide frequency band. A micro-scale micro mechanical vibrator can be manufactured.

微小機械振動子は、その高速応答特性、高感度特性から次世代センサや次世代演算回路等の中核デバイスとして期待され、研究開発が進められている。それらの微小機械振動子を利用した次世代デバイス作製においては、微小機械振動子の動特性を制御し、作製誤差の補正(共振周波数のチューニング)や機能的な振動モードの励起が必要となる。デバイス中に組み込み可能な、本実施の形態の共振周波数制御機構は、上記した次世代デバイス実現の重要な要素技術となる可能性がある。   Micromechanical vibrators are expected as core devices such as next-generation sensors and next-generation arithmetic circuits because of their high-speed response characteristics and high-sensitivity characteristics, and research and development are underway. In the production of next-generation devices using these micro mechanical vibrators, it is necessary to control the dynamic characteristics of the micro mechanical vibrators, correct manufacturing errors (tuning of the resonance frequency), and excite functional vibration modes. The resonance frequency control mechanism of the present embodiment that can be incorporated into a device may be an important element technology for realizing the next-generation device described above.

なお、微小機械振動子の動作特性(共振周波数、共振周波数制御帯域、共振周波数変化率)は、微小機械振動子の形状、寸法だけでなく、微小機械振動子の構造材料の機械材料物性(ヤング率および密度)によっても決定される。本実施の形態では、振動子部7および制御極部8の材料としてDLCを用いているが、DLCに限るものではなく、微小機械振動子として使用し得る硬さの導電性材料であれば他の材料でも利用可能である。利用可能な材料としては、例えばダイヤモンド、グラファイト、シリコン(Si)、二酸化シリコン(SiO2)、ガリウム砒素(GaAs)、炭化シリコン(SiC)、窒化シリコン(SiN)等が考えられる。 Note that the operating characteristics (resonance frequency, resonance frequency control band, resonance frequency change rate) of the micromechanical vibrator are not only the shape and dimensions of the micromechanical vibrator but also the mechanical material properties (Young Rate and density). In the present embodiment, DLC is used as the material for the vibrator unit 7 and the control electrode unit 8, but the material is not limited to DLC, and any other conductive material can be used as long as it can be used as a micro mechanical vibrator. Also available in other materials. Examples of materials that can be used include diamond, graphite, silicon (Si), silicon dioxide (SiO 2 ), gallium arsenide (GaAs), silicon carbide (SiC), and silicon nitride (SiN).

なお、既存の超微細加工技術(電子ビーム露光技術、フォトリソグラフィー、ナノインプリント技術、ドライエッチング、ウェットエッチング、蒸着、スパッタリング、化学気相成長法等製膜技術など)を複数組み合わせて微小機械振動子を作製することも可能であり、微小機械振動子の作製方法は本実施の形態に限定するものではない。例えば、電子ビーム露光技術、フォトリソグラフィー、ナノインプリント技術等のリソグラフィーを利用し、本実施の形態で説明した電極4,5と振動子部7と制御極部8と連結部9の形状のパターニングを行うことが可能である。また、電極4,5と振動子部7と制御極部8と連結部9の構造材料となる金属薄膜やカーボン膜は、蒸着、スパッタリング、化学気相成長法などの製膜技術を用いても行うことができる。加えて、電極構造作製および振動子構造作製は、ドライエッチング、或いは本実施の形態とは異なる試薬を用いたウェットエッチングを用いても可能である。   A combination of multiple existing ultra-fine processing technologies (electron beam exposure technology, photolithography, nanoimprint technology, dry etching, wet etching, vapor deposition, sputtering, chemical vapor deposition, etc.) can be used to create a micro mechanical vibrator. The micro mechanical vibrator can be manufactured by a method not limited to this embodiment mode. For example, by using lithography such as electron beam exposure technology, photolithography, and nanoimprint technology, patterning of the shapes of the electrodes 4, 5, the vibrator unit 7, the control electrode unit 8, and the connection unit 9 described in the present embodiment is performed. It is possible. Further, the metal thin film or carbon film that is the structural material of the electrodes 4, 5, the vibrator portion 7, the control electrode portion 8, and the connecting portion 9 may be formed by using a film forming technique such as vapor deposition, sputtering, chemical vapor deposition, or the like. It can be carried out. In addition, the electrode structure and the vibrator structure can be manufactured by dry etching or wet etching using a reagent different from the present embodiment.

なお、本実施の形態では、シリコン基板1に凹部10を設けているが、凹部10は必須の構成要件ではない。シリコン基板1上のシリコン酸化膜2などの絶縁層に振動子部7の動きを妨げないだけの十分な厚さがある場合には、絶縁層に開口部を設けるだけでよい。この場合には、振動子部7と制御極部8と連結部9とを設ける前に絶縁層に開口部を設けるのではなく、絶縁層上に電極4,5と振動子部7と制御極部8と連結部9とを形成した後に、電極4,5間の領域の絶縁層を例えばウェットエッチングして、振動子部7の電極4で固定されていない方の一部と制御極部8の電極5で固定されていない方の一部とがシリコン基板1から浮いた状態になるように絶縁層に開口部を形成し、開口部を形成した後に連結部9を除去すればよい。   In the present embodiment, the recess 10 is provided in the silicon substrate 1, but the recess 10 is not an indispensable component. If the insulating layer such as the silicon oxide film 2 on the silicon substrate 1 has a sufficient thickness that does not hinder the movement of the vibrator portion 7, it is only necessary to provide an opening in the insulating layer. In this case, an opening is not provided in the insulating layer before providing the vibrator portion 7, the control pole portion 8, and the connecting portion 9, but the electrodes 4, 5, the vibrator portion 7 and the control pole are provided on the insulating layer. After forming the portion 8 and the connecting portion 9, the insulating layer in the region between the electrodes 4, 5 is wet-etched, for example, so that a portion of the vibrator portion 7 not fixed by the electrode 4 and the control pole portion 8 An opening is formed in the insulating layer so that a part of the electrode 5 that is not fixed by the electrode 5 floats from the silicon substrate 1, and after the opening is formed, the connecting portion 9 may be removed.

また、本実施の形態では、振動子部7と制御極部8とを連結部9で連結した架橋構造を作製し、シリコン基板1に凹部10を形成した後に連結部9を削除するようにしている。その理由は、凹部10を形成するウェットエッチング工程の後でシリコン基板1を乾燥させる際に、ウェットエッチングで用いた液体の表面張力により振動子部7とシリコン基板1とが固着してしまう可能性があるからである。そこで、本実施の形態では、ウェットエッチングのときには振動子部7と制御極部8とを連結しておくようにしている。これに対して、ウェットエッチング後の乾燥工程において超臨界乾燥を用いるようにすれば、はじめから振動子部7と制御極部8とを分離した形で作製することが可能である。   Further, in the present embodiment, a bridging structure in which the vibrator unit 7 and the control electrode unit 8 are coupled by the coupling unit 9 is manufactured, and the coupling unit 9 is deleted after the recess 10 is formed in the silicon substrate 1. Yes. The reason is that when the silicon substrate 1 is dried after the wet etching step for forming the recess 10, the vibrator portion 7 and the silicon substrate 1 may be fixed due to the surface tension of the liquid used in the wet etching. Because there is. Therefore, in the present embodiment, the vibrator unit 7 and the control pole unit 8 are connected during wet etching. On the other hand, if supercritical drying is used in the drying process after wet etching, the vibrator unit 7 and the control electrode unit 8 can be manufactured separately from the beginning.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。第1の実施の形態では、本発明の微小機械振動子の例として振動子部7および制御極部8を有する形状の振動子について説明したが、本発明は、第1の実施の形態の振動子構造に限定されるものではなく、本発明の趣旨に基づいて種々の変形・応用が可能である。本実施の形態では、微小機械振動子の別の例について説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the first embodiment, the vibrator having the vibrator portion 7 and the control pole portion 8 has been described as an example of the micro mechanical vibrator of the present invention. However, the present invention is not limited to the vibration according to the first embodiment. The invention is not limited to the child structure, and various modifications and applications can be made based on the gist of the present invention. In this embodiment, another example of a micro mechanical vibrator will be described.

図7(A)は本実施の形態に係る微小機械振動子の斜視図、図7(B)は図7(A)の微小機械振動子の平面図、図7(C)は図7(A)の微小機械振動子の断面図である。
本実施の形態の微小機械振動子は、基板である導電層20と、導電層20に上に形成された二酸化シリコン等からなる絶縁層21と、絶縁層21に形成された開口部22と、絶縁層21上に形成された電極23,24,25,26と、両端が電極25,26および絶縁層21で固定されることによって導電層20から浮いた状態で支持される振動子部27と、一端が電極23,24および絶縁層21で固定されることによって導電層20から浮いた状態で支持される制御極部28,29とを有する。
7A is a perspective view of the micro mechanical vibrator according to this embodiment, FIG. 7B is a plan view of the micro mechanical vibrator of FIG. 7A, and FIG. 7C is FIG. FIG.
The micro mechanical vibrator of the present embodiment includes a conductive layer 20 as a substrate, an insulating layer 21 made of silicon dioxide or the like formed on the conductive layer 20, an opening 22 formed in the insulating layer 21, The electrodes 23, 24, 25, 26 formed on the insulating layer 21, and the vibrator unit 27 supported in a state of being lifted from the conductive layer 20 by fixing both ends with the electrodes 25, 26 and the insulating layer 21; The control pole portions 28 and 29 are supported in a state of being lifted from the conductive layer 20 by fixing one end thereof with the electrodes 23 and 24 and the insulating layer 21.

本実施の形態は、両持ち梁型の振動子部27を有し、振動子部27が外部から加えられた力に応じて図7(C)のように垂直方向に振動する例を示す。振動子部27に電極25,26を通じて電圧を印加すると共に、制御極部28,29に電極23,24を通じて電圧を印加し、振動子部27と制御極部28との間および振動子部27と制御極部29との間に静電引力を発生させる。これにより、静電引力の鉛直方向成分が振動子部27の振動の復元力に加算されるので、振動子部27の共振周波数が変化する。こうして、本実施の形態では、第1の実施の形態と同様の効果を得ることができる。   This embodiment shows an example in which the vibrator unit 27 has a doubly-supported beam type, and the vibrator unit 27 vibrates in the vertical direction as shown in FIG. 7C in accordance with a force applied from the outside. A voltage is applied to the vibrator portion 27 through the electrodes 25 and 26, and a voltage is applied to the control pole portions 28 and 29 through the electrodes 23 and 24, and between the vibrator portion 27 and the control pole portion 28 and the vibrator portion 27. An electrostatic attractive force is generated between the control pole portion 29 and the control pole portion 29. As a result, the vertical component of the electrostatic attractive force is added to the vibration restoring force of the vibrator unit 27, so that the resonance frequency of the vibrator unit 27 changes. Thus, in this embodiment, the same effect as that of the first embodiment can be obtained.

[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。図8(A)は本実施の形態に係る微小機械振動子の斜視図、図8(B)は図8(A)の微小機械振動子の平面図、図8(C)は図8(A)の微小機械振動子の断面図である。
本実施の形態の微小機械振動子は、基板である導電層30と、導電層30に上に形成された二酸化シリコン等からなる絶縁層31と、絶縁層31に形成された開口部32と、絶縁層31上に形成された電極33,34,35,36と、両端が電極35,36および絶縁層31で固定されることによって導電層30から浮いた状態で支持される振動子部37と、一端が電極33,34および絶縁層31で固定されることによって導電層30から浮いた状態で支持される制御極部38,39とを有する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. 8A is a perspective view of the micro mechanical vibrator according to this embodiment, FIG. 8B is a plan view of the micro mechanical vibrator of FIG. 8A, and FIG. 8C is FIG. FIG.
The micromechanical vibrator of the present embodiment includes a conductive layer 30 as a substrate, an insulating layer 31 made of silicon dioxide or the like formed on the conductive layer 30, an opening 32 formed in the insulating layer 31, Electrodes 33, 34, 35, and 36 formed on the insulating layer 31, and a vibrator unit 37 that is supported while being floated from the conductive layer 30 by fixing both ends with the electrodes 35 and 36 and the insulating layer 31. The control electrodes 38 and 39 are supported in a state where one end is fixed by the electrodes 33 and 34 and the insulating layer 31 and is floated from the conductive layer 30.

本実施の形態は、両持ち梁型の振動子部37を有し、振動子部37が外部から加えられた力に応じて図8(C)のように水平方向に振動する例を示す。振動子部37に電極35,36を通じて電圧を印加すると共に、制御極部38,39に電極33,34を通じて電圧を印加し、振動子部37と制御極部38との間および振動子部37と制御極部39との間に静電引力を発生させる。これにより、静電引力が振動子部37の振動の復元力に加算されるので、振動子部37の共振周波数が変化する。こうして、本実施の形態では、第1の実施の形態と同様の効果を得ることができる。   The present embodiment shows an example in which a dual-support beam type vibrator unit 37 is provided and the vibrator unit 37 vibrates in the horizontal direction as shown in FIG. 8C in accordance with a force applied from the outside. A voltage is applied to the vibrator unit 37 through the electrodes 35 and 36, and a voltage is applied to the control pole units 38 and 39 through the electrodes 33 and 34, and between the vibrator unit 37 and the control pole unit 38 and the vibrator unit 37. An electrostatic attractive force is generated between the control pole portion 39 and the control pole portion 39. As a result, the electrostatic attractive force is added to the restoring force of the vibration of the vibrator unit 37, so that the resonance frequency of the vibrator unit 37 changes. Thus, in this embodiment, the same effect as that of the first embodiment can be obtained.

[第4の実施の形態]
次に、本発明の第4の実施の形態について説明する。図9(A)は本実施の形態に係る微小機械振動子の斜視図、図9(B)は図9(A)の微小機械振動子の平面図、図9(C)は図9(A)の微小機械振動子の断面図である。
本実施の形態の微小機械振動子は、基板である導電層40と、導電層40に上に形成された二酸化シリコン等からなる絶縁層41と、絶縁層41に形成された開口部42と、絶縁層41上に形成された電極43,44と、導電層40上に形成された電極45と、下面の一部が電極45に接続され、絶縁層41および電極45で支えられることによって導電層40から浮いた状態で支持される振動子部46と、周辺部が電極43,44および絶縁層41で固定されることによって導電層40から浮いた状態で支持される制御極部47とを有する。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. 9A is a perspective view of the micro mechanical vibrator according to this embodiment, FIG. 9B is a plan view of the micro mechanical vibrator of FIG. 9A, and FIG. 9C is FIG. FIG.
The micro mechanical vibrator of the present embodiment includes a conductive layer 40 as a substrate, an insulating layer 41 made of silicon dioxide or the like formed on the conductive layer 40, an opening 42 formed in the insulating layer 41, The electrodes 43 and 44 formed on the insulating layer 41, the electrode 45 formed on the conductive layer 40, and a part of the lower surface thereof is connected to the electrode 45 and supported by the insulating layer 41 and the electrode 45, whereby the conductive layer And a control pole portion 47 supported in a floating state from the conductive layer 40 by fixing the peripheral portion with the electrodes 43 and 44 and the insulating layer 41. .

本実施の形態は、絶縁層41および電極45によって支持される円盤状の振動子部46を有し、振動子部46が外部から加えられた力に応じて図9(C)のように振動する例を示す。振動子部46に導電層40と電極45を通じて電圧を印加すると共に、制御極部47に電極43,44を通じて電圧を印加し、振動子部46と制御極部47との間に静電引力を発生させる。これにより、静電引力の鉛直方向成分が振動子部46の振動の復元力に加算されるので、振動子部46の共振周波数が変化する。こうして、本実施の形態では、第1の実施の形態と同様の効果を得ることができる。   This embodiment has a disc-shaped vibrator portion 46 supported by the insulating layer 41 and the electrode 45, and the vibrator portion 46 vibrates as shown in FIG. 9C according to the force applied from the outside. An example is shown. A voltage is applied to the vibrator portion 46 through the conductive layer 40 and the electrode 45, and a voltage is applied to the control pole portion 47 through the electrodes 43 and 44, so that an electrostatic attractive force is generated between the vibrator portion 46 and the control pole portion 47. generate. As a result, the vertical component of the electrostatic attractive force is added to the restoring force of the vibration of the vibrator unit 46, so that the resonance frequency of the vibrator unit 46 changes. Thus, in this embodiment, the same effect as that of the first embodiment can be obtained.

[第5の実施の形態]
次に、本発明の第5の実施の形態について説明する。図10(A)は本実施の形態に係る微小機械振動子の斜視図、図10(B)は図10(A)の微小機械振動子の平面図、図10(C)は図10(A)の微小機械振動子の断面図である。
本実施の形態の微小機械振動子は、基板である導電層50と、導電層50に上に形成された二酸化シリコン等からなる絶縁層51と、絶縁層51に形成された開口部52と、絶縁層51上に形成された電極53,54,55,56と、両端が電極55,56および絶縁層51で固定されることによって導電層50から浮いた状態で支持される振動子部57と、一端が電極53,54および絶縁層51で固定されることによって導電層50から浮いた状態で支持される制御極部58,59とを有する。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described. 10A is a perspective view of the micro mechanical vibrator according to this embodiment, FIG. 10B is a plan view of the micro mechanical vibrator of FIG. 10A, and FIG. 10C is FIG. FIG.
The micro mechanical vibrator of the present embodiment includes a conductive layer 50 as a substrate, an insulating layer 51 made of silicon dioxide or the like formed on the conductive layer 50, an opening 52 formed in the insulating layer 51, Electrodes 53, 54, 55, 56 formed on the insulating layer 51, and a vibrator portion 57 that is supported by the electrodes 55, 56 and the insulating layer 51 so as to float from the conductive layer 50. The control pole portions 58 and 59 are supported in a state of being lifted from the conductive layer 50 by fixing one end with the electrodes 53 and 54 and the insulating layer 51.

本実施の形態は、両持ち梁型の振動子部57を有し、振動子部57が外部から加えられた力に応じて図10(C)のように捩じれるようにして振動する例を示す。振動子部57に電極55,56を通じて電圧を印加すると共に、制御極部58,59に電極53,54を通じて電圧を印加し、振動子部57と制御極部58との間および振動子部57と制御極部59との間に静電引力を発生させる。これにより、静電引力の鉛直方向成分が振動子部57の振動の復元力に加算されるので、振動子部57の共振周波数が変化する。こうして、本実施の形態では、第1の実施の形態と同様の効果を得ることができる。   This embodiment has a dual-support beam type vibrator unit 57, and the vibrator unit 57 vibrates so as to be twisted as shown in FIG. 10C in accordance with an externally applied force. Show. A voltage is applied to the vibrator portion 57 through the electrodes 55 and 56, and a voltage is applied to the control pole portions 58 and 59 through the electrodes 53 and 54, and between the vibrator portion 57 and the control pole portion 58 and the vibrator portion 57. An electrostatic attractive force is generated between the control pole portion 59 and the control pole portion 59. As a result, the vertical component of the electrostatic attractive force is added to the restoring force of the vibration of the vibrator portion 57, so that the resonance frequency of the vibrator portion 57 changes. Thus, in this embodiment, the same effect as that of the first embodiment can be obtained.

本発明は、センサ等に使用される微小機械振動子に適用することができる。   The present invention can be applied to a micro mechanical vibrator used for a sensor or the like.

1…シリコン基板、2…シリコン酸化膜、3…レジスト、4,5,23,24,25,26,33,34,35,36,43,44,45,53,54,55,56…電極、6,22,32,42,52…開口部、7,27,37,46,57…振動子部、8,28,29,38,39,47,58,59…制御極部、9…連結部、10…凹部、11…先端部、12…梁部、20,30,40,50…導電層、21,31,41,51…絶縁層。   DESCRIPTION OF SYMBOLS 1 ... Silicon substrate, 2 ... Silicon oxide film, 3 ... Resist, 4, 5, 23, 24, 25, 26, 33, 34, 35, 36, 43, 44, 45, 53, 54, 55, 56 ... Electrode 6, 22, 32, 42, 52 ... opening, 7, 27, 37, 46, 57 ... vibrator, 8, 28, 29, 38, 39, 47, 58, 59 ... control pole, 9 ... Connection part, 10 ... concave part, 11 ... tip part, 12 ... beam part, 20, 30, 40, 50 ... conductive layer, 21, 31, 41, 51 ... insulating layer.

Claims (5)

基板上に形成された絶縁層と、
この絶縁層上に形成された第1の電極と、
前記絶縁層上に形成された第2の電極と、
両端もしくは一端が前記第1の電極に接続され、この第1の電極で固定されていない一部が前記絶縁層に形成された開口部内に突出するように形成される振動子部と、
一端が前記第2の電極に接続され、この第2の電極で固定されていない方の縁部が前記開口部内に突出した振動子部の縁部と前記基板の水平面方向で対向するように形成され、前記振動子部との間に静電引力を発生させる制御極部とを備えることを特徴とする微小機械振動子。
An insulating layer formed on the substrate;
A first electrode formed on the insulating layer;
A second electrode formed on the insulating layer;
Both ends or one end connected to the first electrode, and the vibrator part the first part not fixed with the electrode are made form so as to protrude into the insulating layer which is formed in the opening,
One end connected to the second electrode, the shape so as to face in the horizontal plane direction of the second edge of which is not fixed in the electrode of the edge of the vibrator portion projecting into said opening said substrate And a control pole portion that generates an electrostatic attractive force between the vibrator portion and the vibrator portion.
基板上に形成された絶縁層と、
前記基板上に形成された第1の電極と、
前記絶縁層上に形成された第2の電極と、
下面の一部が前記第1の電極に接続され、この第1の電極で固定されていない一部が前記第1の電極の周囲の絶縁層に形成された開口部内に突出するように前記第1の電極上に形成される振動子部と、
縁部が前記第2の電極に接続され、この第2の電極で固定されていない方の縁部が前記開口部内に突出した振動子部の縁部と前記基板の水平面方向で対向するように形成され、前記振動子部との間に静電引力を発生させる制御極部とを備えることを特徴とする微小機械振動子。
An insulating layer formed on the substrate;
A first electrode formed on the substrate;
A second electrode formed on the insulating layer;
A part of the lower surface is connected to the first electrode, and a part not fixed by the first electrode protrudes into an opening formed in an insulating layer around the first electrode. A vibrator portion formed on one electrode;
Edge is connected to the second electrode, so as to face in the horizontal plane direction of the second edge of which is not fixed in the electrode of the edge of the vibrator portion projecting into said opening said substrate forms made are micromechanical transducer, characterized in that it comprises a control electrode section to generate an electrostatic attraction between the transducer unit.
基板上に形成された絶縁層の上に第1、第2の電極を形成する電極形成工程と、
前記第1、第2の電極間の領域もしくは前記第1、第2の電極で囲まれた領域の絶縁層をエッチングして開口部を形成する開口部形成工程と、
両端もしくは一端が前記第1の電極に接続され、この第1の電極で固定されていない一部が前記絶縁層に形成された開口部内に突出する振動子部を前記開口部に露出した基板上に形成すると共に、一端が前記第2の電極に接続され、この第2の電極で固定されていない方の縁部が前記開口部内に突出した振動子部の縁部と対向する制御極部を前記開口部に露出した基板上に形成する振動子部および制御極部形成工程と、
前記開口部内の露出している基板をエッチングして、前記開口部内に突出している振動子部と制御極部とが前記基板から浮いた状態になるように前記基板に凹部を形成する凹部形成工程とを備えることを特徴とする微小機械振動子の製造方法。
An electrode forming step of forming first and second electrodes on an insulating layer formed on the substrate;
An opening forming step of forming an opening by etching an insulating layer in a region between the first and second electrodes or a region surrounded by the first and second electrodes;
On a substrate where both ends or one end is connected to the first electrode, and a vibrator part protruding into an opening formed in the insulating layer is not fixed to the first electrode. And a control pole portion that is connected to the second electrode at one end and whose edge not fixed by the second electrode faces the edge of the vibrator portion protruding into the opening. A vibrator part and a control pole part forming step formed on the substrate exposed to the opening;
A recess forming step of etching the exposed substrate in the opening to form a recess in the substrate so that the vibrator portion and the control pole protruding in the opening are in a state of floating from the substrate. A method for manufacturing a micromechanical vibrator.
請求項3記載の微小機械振動子の製造方法において、
前記振動子部および制御極部形成工程は、前記振動子部と前記制御極部とを連結する連結部を形成する工程を含み、
さらに、前記凹部形成工程の後に、前記連結部を除去する連結部除去工程を備えることを特徴とする微小機械振動子の製造方法。
In the manufacturing method of the micro mechanical vibrator according to claim 3,
The vibrator part and control electrode part forming step includes a step of forming a connecting part that connects the vibrator part and the control electrode part,
Furthermore, the manufacturing method of the micro mechanical vibrator characterized by including a connecting part removing step of removing the connecting part after the recess forming step.
基板上に形成された絶縁層の上に第1、第2の電極を形成する電極形成工程と、
両端もしくは一端が前記第1の電極に接続された振動子部を前記絶縁層上に形成すると共に、一端が前記第2の電極に接続され、この第2の電極に接続されていない方の縁部が前記振動子部の縁部と対向する制御極部を前記絶縁層上に形成する振動子部および制御極部形成工程と、
前記第1、第2の電極間の領域もしくは前記第1、第2の電極で囲まれた領域の絶縁層をエッチングして、前記振動子部の前記第1の電極で固定されていない方の一部と前記制御極部の前記第2の電極で固定されていない方の一部とが前記基板から浮いた状態になるように前記絶縁層に開口部を形成する開口部形成工程とを備え
前記振動子部および制御極部形成工程は、前記振動子部と前記制御極部とを連結する連結部を形成する工程を含み、
さらに、前記開口部形成工程の後に、前記連結部を除去する連結部除去工程を備えることを特徴とする微小機械振動子の製造方法。
An electrode forming step of forming first and second electrodes on an insulating layer formed on the substrate;
A vibrator part having both ends or one end connected to the first electrode is formed on the insulating layer, and one end is connected to the second electrode, and the edge not connected to the second electrode A vibrator part and a control pole part forming step on the insulating layer, the control pole part facing the edge part of the vibrator part,
The insulating layer in the region between the first and second electrodes or the region surrounded by the first and second electrodes is etched, and the one not fixed by the first electrode of the vibrator unit An opening forming step of forming an opening in the insulating layer so that a part of the control electrode and a part of the control electrode not fixed by the second electrode are in a state of floating from the substrate. ,
The vibrator part and control electrode part forming step includes a step of forming a connecting part that connects the vibrator part and the control electrode part,
Furthermore, the manufacturing method of the micromechanical vibrator characterized by including a connecting portion removing step of removing the connecting portion after the opening forming step .
JP2011111521A 2011-05-18 2011-05-18 Micromechanical vibrator and manufacturing method thereof Active JP5586067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011111521A JP5586067B2 (en) 2011-05-18 2011-05-18 Micromechanical vibrator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011111521A JP5586067B2 (en) 2011-05-18 2011-05-18 Micromechanical vibrator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012244349A JP2012244349A (en) 2012-12-10
JP5586067B2 true JP5586067B2 (en) 2014-09-10

Family

ID=47465602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011111521A Active JP5586067B2 (en) 2011-05-18 2011-05-18 Micromechanical vibrator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5586067B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6028927B2 (en) 2013-03-27 2016-11-24 セイコーエプソン株式会社 Vibrator manufacturing method, vibrator, and oscillator
JP6029179B2 (en) * 2013-08-22 2016-11-24 日本電信電話株式会社 Optical wavelength measuring device and optical wavelength measuring method
WO2019167865A1 (en) * 2018-03-01 2019-09-06 株式会社カネカ Mems vibrator and mems oscillator
CN114367319B (en) * 2021-12-30 2023-10-10 江苏大学 Particle control device and method based on low-frequency vibration probe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526821Y2 (en) * 1984-11-05 1993-07-07
JP3351325B2 (en) * 1997-11-14 2002-11-25 株式会社村田製作所 Resonator
JP2005229564A (en) * 2003-10-17 2005-08-25 Seiko Epson Corp Semiconductor device
JP4538503B2 (en) * 2008-01-18 2010-09-08 Okiセミコンダクタ株式会社 Resonator
JP2009278369A (en) * 2008-05-14 2009-11-26 Panasonic Corp Electromechanical resonator

Also Published As

Publication number Publication date
JP2012244349A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
Chen et al. Graphene nanoelectromechanical systems
Guillon et al. Effect of non-ideal clamping shape on the resonance frequencies of silicon nanocantilevers
US20110121937A1 (en) Method for making a transducer, transducer made therefrom, and applications thereof
JP2009171394A (en) Resonator
JP5586067B2 (en) Micromechanical vibrator and manufacturing method thereof
US7696843B2 (en) MEMS filter device having a nanosize coupling element and manufacturing method thereof
US20090315644A1 (en) High-q disk nano resonator device and method of fabricating the same
JP4575075B2 (en) Electromechanical filter, electric circuit and electric device using the same
JP2012129605A (en) Mems vibrator, oscillator, and manufacturing method of mems vibrator
JP4497202B2 (en) Micro-flap type nano-micro mechanical element and manufacturing method thereof
JP5225840B2 (en) Vibrator, resonator using the same, and electromechanical filter using the same
JP2013074594A (en) Micro-mechanical vibrator and micro-mechanical vibrator control method
JP2010232983A (en) Thin film vibrator and method for manufacturing the same
JP5064155B2 (en) Oscillator
JP5030163B2 (en) Micromechanical resonator and manufacturing method thereof
JP4555930B2 (en) Tuning fork type atomic force microscope probe, adjustment method and manufacturing method thereof
JP4085168B2 (en) Microcantilever and method for producing the same
JP4785537B2 (en) Probe, scanning probe microscope, and probe manufacturing method
Kawai et al. Piezoelectric actuator integrated cantilever with tunable spring constant for atom probe
US7861315B2 (en) Method for microfabricating a probe with integrated handle, cantilever, tip and circuit
Rivera RF MEMS resonators for mass sensing applications
JP2006042011A (en) Electromechanical resonator and manufacturing method thereof
TW201203852A (en) MEMS transistor resonator and oscillator comprising such a resonator
JP5688641B2 (en) Manufacturing method of micro mechanical vibrator and micro mechanical vibrator
Huang Ultrahigh and microwave frequency nanomechanical systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent or registration of utility model

Ref document number: 5586067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250