JP5585942B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP5585942B2
JP5585942B2 JP2011119728A JP2011119728A JP5585942B2 JP 5585942 B2 JP5585942 B2 JP 5585942B2 JP 2011119728 A JP2011119728 A JP 2011119728A JP 2011119728 A JP2011119728 A JP 2011119728A JP 5585942 B2 JP5585942 B2 JP 5585942B2
Authority
JP
Japan
Prior art keywords
egr
combustion
egr gas
combustion stop
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011119728A
Other languages
Japanese (ja)
Other versions
JP2012246849A (en
Inventor
宏哉 野上
浩行 竹添
浩司 葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011119728A priority Critical patent/JP5585942B2/en
Priority to US13/481,231 priority patent/US9470166B2/en
Priority to CN201210166860.3A priority patent/CN102797596B/en
Publication of JP2012246849A publication Critical patent/JP2012246849A/en
Application granted granted Critical
Publication of JP5585942B2 publication Critical patent/JP5585942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関の排出ガスの一部をEGRガスとして吸気通路へ還流させるEGR装置を備えた内燃機関の制御装置に関する発明である。   The present invention relates to a control device for an internal combustion engine provided with an EGR device that recirculates a part of exhaust gas of the internal combustion engine as EGR gas to an intake passage.

車両に搭載される内燃機関においては、燃費節減や排気エミッション低減等を目的として、排出ガスの一部をEGRガスとして吸気通路へ還流させるEGR装置を搭載するようにしたものがある。また、車両走行中の減速時等に燃料カット条件が成立したときに燃料噴射を停止して内燃機関の燃焼を停止させる燃料カット制御や、車両の停車直前の減速時や停車時等にアイドルストップ条件が成立したときに燃料噴射や点火を停止して内燃機関の燃焼を停止させるアイドルストップ制御を行うようにしたものもある。   Some internal combustion engines mounted on vehicles are equipped with an EGR device that recirculates a part of exhaust gas as EGR gas to an intake passage for the purpose of reducing fuel consumption or exhaust emission. Also, fuel cut control that stops fuel injection by stopping fuel injection when fuel cut conditions are satisfied during deceleration of the vehicle traveling, etc., and idle stop when the vehicle is decelerated or stopped just before the vehicle stops In some cases, idle stop control is performed to stop the fuel injection and ignition to stop the combustion of the internal combustion engine when the condition is satisfied.

しかし、EGR装置を搭載した内燃機関は、燃料カット制御やアイドルストップ制御のように内燃機関の燃焼を停止させる燃焼停止制御を実行した場合に、EGR弁が閉弁されても吸気通路内にEGRガスが残留するため、燃焼停止制御の実行後(燃焼停止後)の再始動時に多量のEGRガスが筒内に流入する可能性があり、再始動時に筒内に流入するEGRガス量がEGR限界(正常燃焼可能なEGRガス量の上限値)を越えると、燃焼状態が不安定になって再始動性が悪化する可能性がある。   However, when an internal combustion engine equipped with an EGR device performs combustion stop control for stopping combustion of the internal combustion engine, such as fuel cut control or idle stop control, even if the EGR valve is closed, the EGR Since gas remains, a large amount of EGR gas may flow into the cylinder at the time of restart after execution of combustion stop control (after combustion stop), and the amount of EGR gas flowing into the cylinder at the time of restart is limited to the EGR limit. If (the upper limit of the amount of EGR gas that can be normally combusted) is exceeded, the combustion state may become unstable and the restartability may deteriorate.

そこで、特許文献1(特開2009−191643号公報)に記載されているように、車両が走行する道路状況に基づいて燃料カット条件が成立するタイミングを予測し、燃料カット条件が成立すると予測したタイミングよりも所定時間前の時点で、内燃機関の吸気系内に存在するEGRガス量を減少させる処理(例えばEGR弁の開度を閉じ側に制御する処理)を行うようにしたものがある。   Therefore, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2009-191643), the timing at which the fuel cut condition is satisfied is predicted based on the road condition on which the vehicle travels, and the fuel cut condition is predicted to be satisfied. There is a technique in which processing for reducing the amount of EGR gas existing in the intake system of the internal combustion engine (for example, processing for controlling the opening degree of the EGR valve to the closed side) is performed at a time before a predetermined time.

特開2009−191643号公報JP 2009-191643 A

しかし、上記特許文献1の技術では、吸気系内に存在するEGRガス量を減少させる処理を行うようにしているが、実際に筒内に流入するEGRガス量を判定する機能がないため、燃焼停止制御の実行後の再始動時に筒内に流入するEGRガス量が十分に減少していない可能性もあり、このような場合、燃焼状態が不安定になって再始動性が悪化する可能性がある。   However, in the technique of the above-mentioned Patent Document 1, a process for reducing the amount of EGR gas existing in the intake system is performed, but since there is no function for determining the amount of EGR gas actually flowing into the cylinder, combustion is performed. There is a possibility that the amount of EGR gas flowing into the cylinder at the time of restart after execution of stop control is not sufficiently reduced. In such a case, the combustion state becomes unstable and the restartability may be deteriorated. There is.

そこで、本発明が解決しようとする課題は、燃焼停止制御の実行後の再始動時に燃焼状態が不安定になることを防止して再始動性を向上させることができる内燃機関の制御装置を提供することにある。   Accordingly, the problem to be solved by the present invention is to provide a control device for an internal combustion engine that can prevent the combustion state from becoming unstable during restart after execution of combustion stop control and improve restartability. There is to do.

上記課題を解決するために、請求項1に係る発明は、内燃機関の排出ガスの一部をEGRガスとしてスロットルバルブの上流側の吸気通路へ還流させるEGR配管及び前記EGR配管内を流れるEGRガス流量を調節するEGR弁を有する低圧ループ方式のEGR装置と、所定の燃焼停止要求が発生した場合に内燃機関の燃焼を停止させる燃焼停止制御を実行する燃焼停止制御手段とを備えた内燃機関の制御装置において、内燃機関の筒内に流入するEGRガス量又はこれに関連性のある情報(以下これらを「筒内流入EGRガス量情報」と総称する)を演算する筒内流入EGRガス量判定手段と、筒内流入EGRガス量判定手段で演算した筒内流入EGRガス量情報に基づいて燃焼停止制御の実行を遅延する燃焼停止遅延制御を実行する燃焼停止遅延制御手段とを備え、前記筒内流入EGRガス量判定手段は、前記EGR配管内を流れるEGRガスが前記EGR弁を通過する挙動を模擬したEGR弁モデルを用いて、前記EGR弁を通過するEGRガス流量(以下「EGR弁通過ガス流量」という)を演算すると共に、前記EGR弁を通過したEGRガスが前記スロットルバルブを通過して筒内に流入するまでの挙動を模擬したEGRガス遅れモデルを用いて、前記EGR弁モデルで演算した前記EGR弁通過ガス流量に基づいて前記筒内流入EGRガス量情報を演算することを特徴とするものである。 In order to solve the above-mentioned problems, an invention according to claim 1 is directed to an EGR pipe that recirculates a part of exhaust gas of an internal combustion engine as an EGR gas to an intake passage upstream of a throttle valve, and an EGR gas that flows in the EGR pipe An internal combustion engine comprising a low pressure loop type EGR device having an EGR valve for adjusting a flow rate, and combustion stop control means for executing combustion stop control for stopping combustion of the internal combustion engine when a predetermined combustion stop request is generated In the control device, in-cylinder inflow EGR gas amount determination for calculating the amount of EGR gas flowing into the cylinder of the internal combustion engine or information related thereto (hereinafter collectively referred to as “in-cylinder inflow EGR gas amount information”). retardant executing means and the combustion stop delay control to delay the execution of the combustion stop control based on the cylinder-inflow EGR gas amount information calculated by the cylinder inflow EGR gas amount determination means And a stop delay control means, the cylinder inflow EGR gas amount determination means, by using the EGR valve model EGR gas flowing through the EGR inside pipe simulating a behavior that passes through the EGR valve, passes through the EGR valve The EGR gas flow rate (hereinafter referred to as “EGR valve passage gas flow rate”) is calculated, and the EGR gas delay that simulates the behavior of the EGR gas that has passed through the EGR valve and flows into the cylinder through the throttle valve Using the model, the in-cylinder inflow EGR gas amount information is calculated based on the EGR valve passing gas flow rate calculated by the EGR valve model.

この構成では、EGR弁モデルとEGRガス遅れモデルを用いて、筒内流入EGRガス量情報を演算することで、筒内流入EGRガス量(筒内に流入するEGRガス量)を判定することが可能となり、その演算した筒内流入EGRガス量情報に基づいて燃焼停止制御の実行を遅延する燃焼停止遅延制御を実行することで、燃焼停止要求が発生しても、吸気通路内に残留するEGRガスが掃気されて筒内流入EGRガス量が十分に減少するまでは燃焼停止制御の実行を遅延して、筒内流入EGRガス量が十分に減少してから燃焼停止制御を実行して内燃機関の燃焼を停止させるようにできる。これにより、燃焼停止制御の実行後(燃焼停止後)の再始動時に筒内流入EGRガス量がEGR限界(正常燃焼可能なEGRガス量の上限値)を越えることを回避して、燃焼状態が不安定になることを防止することができ、再始動性を向上させることができる。 In this configuration, the in- cylinder inflow EGR gas amount information (the amount of EGR gas flowing into the cylinder) can be determined by calculating the in-cylinder inflow EGR gas amount information using the EGR valve model and the EGR gas delay model. By executing the combustion stop delay control that delays the execution of the combustion stop control based on the calculated in-cylinder inflow EGR gas amount information, the EGR remaining in the intake passage even when a combustion stop request is generated The combustion stop control is delayed until the in-cylinder inflow EGR gas amount is sufficiently reduced after the gas is scavenged, and after the in-cylinder inflow EGR gas amount is sufficiently reduced, the combustion stop control is executed to execute the internal combustion engine. Can be stopped. This prevents the amount of in-cylinder inflow EGR gas from exceeding the EGR limit (the upper limit of the amount of EGR gas that can be normally burned) at the time of restart after execution of combustion stop control (after combustion stop). Instability can be prevented and restartability can be improved.

この場合、請求項2のように、筒内流入EGRガス量情報に基づいて燃焼停止制御の実行後の再始動時に正常燃焼可能であるか否かを判定し、該再始動時に正常燃焼可能ではない(燃焼状態が不安定になる可能性がある)と判定した場合に燃焼停止遅延制御を実行するようにすると良い。このようにすれば、燃焼停止制御の実行後の再始動時に燃焼状態が不安定になることを確実に防止することができる。   In this case, as in claim 2, it is determined based on the in-cylinder inflow EGR gas amount information whether normal combustion is possible at restart after execution of combustion stop control, and normal combustion is not possible at the restart. It is preferable to execute the combustion stop delay control when it is determined that there is no possibility (the combustion state may become unstable). If it does in this way, it can prevent reliably that a combustion state becomes unstable at the time of restart after execution of combustion stop control.

更に、請求項3のように、燃焼停止遅延制御の実行中に筒内流入EGRガス量情報に基づいて燃焼停止制御の実行後の再始動時に正常燃焼可能であると判定したときに燃焼停止遅延制御を解除するようにすると良い。このようにすれば、燃焼停止遅延制御が必要以上に長くなる(つまり燃焼停止制御の実行を必要以上に遅延する)ことを防止することができる。   Furthermore, as in claim 3, when it is determined that normal combustion is possible at the time of restart after execution of the combustion stop control based on the in-cylinder inflow EGR gas amount information during execution of the combustion stop delay control, the combustion stop delay It is better to release the control. In this way, it is possible to prevent the combustion stop delay control from becoming longer than necessary (that is, delaying the execution of the combustion stop control more than necessary).

また、請求項4のように、運転者により内燃機関の停止操作が行われた場合及び/又はエアバッグを作動させるためのエアバック信号が出力された場合に燃焼停止遅延制御を禁止するようにしても良い。このようにすれば、運転者により内燃機関の停止操作(例えばイグニッションスイッチのオフ)が行われた場合や、車両が衝突してエアバック信号が出力された場合には、筒内流入EGRガス量情報に拘らず、速やかに燃焼停止制御を実行して、内燃機関の燃焼を速やかに停止させることができる。   Further, as in claim 4, the combustion stop delay control is prohibited when the driver performs a stop operation of the internal combustion engine and / or when an airbag signal for operating the airbag is output. May be. In this way, when the driver performs a stop operation of the internal combustion engine (for example, turns off the ignition switch), or when an airbag signal is output due to a vehicle collision, the inflow EGR gas amount in the cylinder Regardless of the information, the combustion stop control can be executed promptly to quickly stop the combustion of the internal combustion engine.

図1は本発明の一実施例における過給機付きエンジン制御システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an engine control system with a supercharger in one embodiment of the present invention. 図2は燃焼停止遅延制御ルーチンの処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing the flow of processing of the combustion stop delay control routine. 図3は筒内流入EGRガス流量の演算方法を説明するブロック図である。FIG. 3 is a block diagram illustrating a method of calculating the in-cylinder inflow EGR gas flow rate. 図4はEGR弁モデルを説明する図である。FIG. 4 is a diagram for explaining the EGR valve model. 図5はEGRガス遅れモデルを説明するブロック図である。FIG. 5 is a block diagram illustrating the EGR gas delay model. 図6は吸気管移流遅れモデルを説明する図である。FIG. 6 is a diagram for explaining an intake pipe advection delay model. 図7は燃焼停止遅延制御の実行例を示すタイムチャートである。FIG. 7 is a time chart showing an execution example of the combustion stop delay control. 図8は従来の燃焼停止制御の実行例を示すタイムチャートである。FIG. 8 is a time chart showing an execution example of conventional combustion stop control.

以下、本発明を実施するための形態を過給機付きの内燃機関に適用して具体化した一実施例を説明する。
まず、図1に基づいて過給機付きのエンジン制御システムの構成を概略的に説明する。
内燃機関であるエンジン11の吸気管12(吸気通路)の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気(新気)の流量を検出するエアフローメータ14が設けられている。一方、エンジン11の排気管15(排気通路)には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒16が設置されている。
Hereinafter, an embodiment in which the embodiment for carrying out the present invention is applied to an internal combustion engine with a supercharger will be described.
First, based on FIG. 1, the structure of the engine control system with a supercharger is demonstrated roughly.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 (intake passage) of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the flow rate of intake air (fresh air) is provided downstream of the air cleaner 13. Is provided. On the other hand, the exhaust pipe 15 (exhaust passage) of the engine 11 is provided with a catalyst 16 such as a three-way catalyst for purifying CO, HC, NOx and the like in the exhaust gas.

このエンジン11には、吸入空気を過給する排気タービン駆動式の過給機17が搭載されている。この過給機17は、排気管15のうちの触媒16の上流側に排気タービン18が配置され、吸気管12のうちのエアフローメータ14の下流側にコンプレッサ19が配置されている。この過給機17は、排気タービン18とコンプレッサ19とが一体的に回転するように連結され、排出ガスの運動エネルギで排気タービン18を回転駆動することでコンプレッサ19を回転駆動して吸入空気を過給するようになっている。   The engine 11 is equipped with an exhaust turbine driven supercharger 17 that supercharges intake air. In the supercharger 17, an exhaust turbine 18 is disposed on the upstream side of the catalyst 16 in the exhaust pipe 15, and a compressor 19 is disposed on the downstream side of the air flow meter 14 in the intake pipe 12. The supercharger 17 is connected so that the exhaust turbine 18 and the compressor 19 rotate integrally, and the exhaust turbine 18 is rotationally driven by the kinetic energy of the exhaust gas, so that the compressor 19 is rotationally driven to suck the intake air. It is supposed to supercharge.

吸気管12のうちのコンプレッサ19の下流側には、モータ20によって開度調節されるスロットルバルブ21と、このスロットルバルブ21の開度(スロットル開度)を検出するスロットル開度センサ22とが設けられている。   A throttle valve 21 whose opening is adjusted by a motor 20 and a throttle opening sensor 22 that detects the opening (throttle opening) of the throttle valve 21 are provided on the downstream side of the compressor 19 in the intake pipe 12. It has been.

更に、スロットルバルブ21の下流側には、吸入空気を冷却するインタークーラがサージタンク23(吸気通路)と一体的に設けられている。尚、サージタンク23やスロットルバルブ21の上流側にインタークーラを配置するようにしても良い。サージタンク23には、エンジン11の各気筒に空気を導入する吸気マニホールド24(吸気通路)が設けられ、各気筒毎に筒内噴射又は吸気ポート噴射を行う燃料噴射弁(図示せず)が取り付けられている。エンジン11のシリンダヘッドには、各気筒毎に点火プラグ(図示せず)が取り付けられ、各点火プラグの火花放電によって各気筒内の混合気に着火される。   Further, an intercooler for cooling the intake air is provided integrally with the surge tank 23 (intake passage) on the downstream side of the throttle valve 21. An intercooler may be arranged upstream of the surge tank 23 and the throttle valve 21. The surge tank 23 is provided with an intake manifold 24 (intake passage) for introducing air into each cylinder of the engine 11, and a fuel injection valve (not shown) for performing in-cylinder injection or intake port injection is attached to each cylinder. It has been. An ignition plug (not shown) is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in each cylinder is ignited by spark discharge of each ignition plug.

エンジン11の各気筒の排気口には排気マニホールド25が接続され、各気筒の排気マニホールド25の下流側の集合部が排気タービン18の上流側の排気管15に接続されている。また、排気タービン18の上流側と下流側とをバイパスさせる排気バイパス通路26が設けられ、この排気バイパス通路26に、排気バイパス通路26を開閉するウェイストゲートバルブ27が設けられている。   An exhaust manifold 25 is connected to the exhaust port of each cylinder of the engine 11, and a downstream collecting portion of the exhaust manifold 25 of each cylinder is connected to an exhaust pipe 15 upstream of the exhaust turbine 18. An exhaust bypass passage 26 that bypasses the upstream side and the downstream side of the exhaust turbine 18 is provided, and a waste gate valve 27 that opens and closes the exhaust bypass passage 26 is provided in the exhaust bypass passage 26.

このエンジン11には、排気管15から排出ガスの一部をEGRガスとして吸気管12へ還流させるLPL方式(低圧ループ方式)のEGR装置28が搭載されている。このEGR装置28は、排気管15のうちの触媒16の下流側と吸気管12のうちのコンプレッサ19の上流側(スロットルバルブ21の上流側の吸気通路)との間にEGR配管29(EGR通路)が接続され、このEGR配管29に、EGRガスを冷却するEGRクーラ30と、EGRガス流量を調節するEGR弁31が設けられている。このEGR弁31は、モータ等のアクチュエータ(図示せず)によって開度が調整され、EGR弁31を開弁することで排気管15のうちの触媒16の下流側から吸気管12のうちのコンプレッサ19の上流側(スロットルバルブ21の上流側の吸気通路)へEGRガスを還流させるようになっている。   The engine 11 is equipped with an LPL type (low pressure loop type) EGR device 28 that recirculates a part of the exhaust gas from the exhaust pipe 15 to the intake pipe 12 as EGR gas. The EGR device 28 includes an EGR pipe 29 (EGR passage) between the downstream side of the catalyst 16 in the exhaust pipe 15 and the upstream side of the compressor 19 in the intake pipe 12 (intake passage on the upstream side of the throttle valve 21). The EGR pipe 29 is provided with an EGR cooler 30 for cooling the EGR gas and an EGR valve 31 for adjusting the EGR gas flow rate. The opening degree of the EGR valve 31 is adjusted by an actuator (not shown) such as a motor, and the EGR valve 31 is opened to open a compressor in the intake pipe 12 from the downstream side of the catalyst 16 in the exhaust pipe 15. The EGR gas is recirculated to the upstream side 19 (the intake passage on the upstream side of the throttle valve 21).

また、エンジン11には、吸気バルブ(図示せず)のバルブタイミング(開閉タイミング)を変化させる吸気側可変バルブタイミング機構32と、排気バルブ(図示せず)のバルブタイミングを変化させる排気側可変バルブタイミング機構33が設けられている。その他、エンジン11には、冷却水温を検出する冷却水温センサ34や、クランク軸(図示せず)が所定クランク角回転する毎にパルス信号を出力するクランク角センサ35等が設けられ、クランク角センサ35の出力信号に基づいてクランク角やエンジン回転速度が検出される。   The engine 11 also includes an intake side variable valve timing mechanism 32 that changes the valve timing (opening / closing timing) of an intake valve (not shown), and an exhaust side variable valve that changes the valve timing of an exhaust valve (not shown). A timing mechanism 33 is provided. In addition, the engine 11 is provided with a coolant temperature sensor 34 that detects the coolant temperature, a crank angle sensor 35 that outputs a pulse signal each time a crankshaft (not shown) rotates a predetermined crank angle, and the like. Based on the output signal 35, the crank angle and the engine speed are detected.

これら各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)36に入力される。このECU36は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。   Outputs of these various sensors are input to an electronic control unit (hereinafter referred to as “ECU”) 36. The ECU 36 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount and the ignition timing according to the engine operating state. The throttle opening (intake air amount) and the like are controlled.

その際、ECU36は、エンジン運転状態(例えばエンジン負荷とエンジン回転速度等)に応じて目標EGR率を算出し、この目標EGR率を実現するようにEGR弁31の開度を制御する。   At that time, the ECU 36 calculates a target EGR rate according to the engine operating state (for example, engine load and engine speed), and controls the opening degree of the EGR valve 31 so as to realize the target EGR rate.

また、ECU36は、車両走行中の減速時等に燃料カット条件が成立して燃焼停止要求が発生したときに燃料噴射を停止してエンジン11の燃焼を停止させる燃料カット制御を実行し、車両の停車直前の減速時や停車時等にアイドルストップ条件が成立して燃焼停止要求が発生したときに燃料噴射及び/又は点火を停止してエンジン11の燃焼を停止させるアイドルストップ制御を実行する。これらの機能が特許請求の範囲でいう燃焼停止制御手段としての役割を果たす。   Further, the ECU 36 executes fuel cut control for stopping the fuel injection and stopping the combustion of the engine 11 when a fuel cut condition is satisfied and a combustion stop request is generated at the time of deceleration while the vehicle is running, Idle stop control is executed to stop the fuel injection and / or ignition to stop the combustion of the engine 11 when an idle stop condition is satisfied and a combustion stop request is generated at the time of deceleration immediately before stopping or at the time of stopping. These functions serve as combustion stop control means in the claims.

しかし、EGR装置28を搭載したエンジン11は、燃料カット制御やアイドルストップ制御のようにエンジン11の燃焼を停止させる燃焼停止制御を実行した場合に、EGR弁31が閉弁されても吸気管12内にEGRガスが残留するため、燃焼停止制御の実行後(燃焼停止後)の再始動時に多量のEGRガスが筒内に流入する可能性があり、再始動時に筒内に流入するEGRガス量がEGR限界(正常燃焼可能なEGRガス量の上限値)を越えると、燃焼状態が不安定になって再始動性が悪化する可能性がある。   However, when the engine 11 equipped with the EGR device 28 executes the combustion stop control for stopping the combustion of the engine 11 such as the fuel cut control or the idle stop control, the intake pipe 12 does not stop even if the EGR valve 31 is closed. Since EGR gas remains in the cylinder, a large amount of EGR gas may flow into the cylinder during restart after the combustion stop control is performed (after combustion stop), and the amount of EGR gas that flows into the cylinder during restart Exceeds the EGR limit (the upper limit of the amount of EGR gas that can be normally burned), the combustion state may become unstable, and the restartability may deteriorate.

この対策として、本実施例では、ECU36により後述する図2の燃焼停止遅延制御ルーチンを実行することで、後述する推定方法(図3乃至図6参照)により筒内流入EGRガス量(筒内に流入するEGRガス量)を推定し、その筒内流入EGRガス量を正常燃焼判定閾値と比較して、燃焼停止制御の実行後(燃焼停止後)の再始動時に正常燃焼可能であるか否かを判定する。その結果、燃焼停止制御の実行後の再始動時に正常燃焼可能ではない(燃焼状態が不安定になる可能性がある)と判定した場合には、燃焼停止制御の実行を遅延する燃焼停止遅延制御を実行する。その後、燃焼停止遅延制御の実行中に筒内流入EGRガス量に基づいて燃焼停止制御の実行後の再始動時に正常燃焼可能であると判定したときに、燃焼停止遅延制御を解除して燃焼停止制御を実行する。   As a countermeasure against this, in this embodiment, the ECU 36 executes a combustion stop delay control routine shown in FIG. 2 to be described later, so that an estimation method (see FIGS. 3 to 6), which will be described later. Whether or not normal combustion is possible at restart after execution of combustion stop control (after combustion stop) by comparing the in-cylinder inflow EGR gas amount with a normal combustion determination threshold value Determine. As a result, if it is determined that normal combustion is not possible at the time of restart after execution of combustion stop control (combustion state may become unstable), combustion stop delay control that delays execution of combustion stop control Execute. After that, when it is determined that normal combustion is possible at the time of restart after executing the combustion stop control based on the in-cylinder inflow EGR gas amount during the execution of the combustion stop delay control, the combustion stop delay control is canceled and the combustion is stopped. Execute control.

以下、本実施例でECU36が実行する図2の燃焼停止遅延制御ルーチンの処理内容を説明する。
図2に示す燃焼停止遅延制御ルーチンは、ECU36の電源オン期間中に所定周期で繰り返し実行され、特許請求の範囲でいう燃焼停止遅延制御手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、図示しない筒内流入EGRガス量推定ルーチンを実行することで、後述する推定方法(図3乃至図6参照)により筒内流入EGRガス量を推定する。このステップ101の処理が特許請求の範囲でいう筒内流入EGRガス量判定手段としての役割を果たす。
The processing contents of the combustion stop delay control routine of FIG. 2 executed by the ECU 36 in this embodiment will be described below.
The combustion stop delay control routine shown in FIG. 2 is repeatedly executed at a predetermined period during the power-on period of the ECU 36, and serves as a combustion stop delay control means in the claims. When this routine is started, first, in step 101, an in-cylinder inflow EGR gas amount estimation routine (not shown) is executed, whereby the in-cylinder inflow EGR gas amount is determined by an estimation method (see FIGS. 3 to 6) described later. presume. The processing in step 101 serves as a cylinder inflow EGR gas amount determination means in the claims.

この後、ステップ102に進み、エンジン運転状態(例えばエンジン負荷とエンジン回転速度)と冷却水温に応じた正常燃焼判定閾値をマップ又は数式等により算出する。この正常燃焼判定閾値は、燃焼停止制御の実行後(燃焼停止後)の再始動時に正常燃焼可能な筒内流入EGRガス量の上限値又はそれよりも所定量だけ小さい値に設定される。   Thereafter, the process proceeds to step 102, and a normal combustion determination threshold value corresponding to the engine operating state (for example, engine load and engine speed) and the coolant temperature is calculated by a map or a mathematical expression. The normal combustion determination threshold value is set to an upper limit value of the in-cylinder inflow EGR gas amount that can be normally burned at the time of restart after execution of combustion stop control (after combustion stop) or a value that is smaller by a predetermined amount.

正常燃焼判定閾値のマップ又は数式等は、例えば、エンジン負荷(例えば吸入空気量や吸気管圧力)が小さくなるほど正常燃焼判定閾値が小さくなると共に、エンジン回転速度が低くなるほど正常燃焼判定閾値が小さくなり、更に、冷却水温が低くなるほど正常燃焼判定閾値が小さくなるように設定されている。この正常燃焼判定閾値のマップ又は数式等は、予め試験データや設計データ等に基づいて作成され、ECU36のROMに記憶されている。   For example, the normal combustion determination threshold value map or mathematical formula is such that the normal combustion determination threshold value decreases as the engine load (for example, intake air amount or intake pipe pressure) decreases, and the normal combustion determination threshold value decreases as the engine speed decreases. Furthermore, the normal combustion determination threshold is set to be smaller as the cooling water temperature is lower. The normal combustion determination threshold value map or mathematical expression is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 36.

この後、ステップ103に進み、筒内流入EGRガス量を正常燃焼判定閾値と比較して、燃焼停止制御の実行後の再始動時に正常燃焼可能であるか否かを判定する。
このステップ103で、筒内流入EGRガス量が正常燃焼判定閾値よりも大きいと判定された場合には、燃焼停止制御の実行後の再始動時に正常燃焼可能ではない(燃焼状態が不安定になる可能性がある)と判断するが、ステップ104に進み、運転者によりエンジン停止操作(例えばイグニッションスイッチのオフ)が行われたか否か又はエアバッグを作動させるためのエアバック信号が出力されたか否かを判定する。
Thereafter, the routine proceeds to step 103, where the in-cylinder inflow EGR gas amount is compared with a normal combustion determination threshold value to determine whether normal combustion is possible at the time of restart after execution of the combustion stop control.
If it is determined in step 103 that the in-cylinder inflow EGR gas amount is larger than the normal combustion determination threshold value, normal combustion is not possible at the time of restart after execution of the combustion stop control (the combustion state becomes unstable). The process proceeds to step 104, and whether or not the driver has performed an engine stop operation (for example, turning off the ignition switch) or whether an airbag signal for operating the airbag has been output. Determine whether.

このステップ104で、運転者によりエンジン停止操作が行われたと判定された場合又はエアバック信号が出力されたと判定された場合には、ステップ106に進み、燃焼停止制御を許可して、燃焼停止遅延制御を禁止する。これにより、運転者によりエンジン停止操作が行われて燃焼停止要求が発生した場合や、車両が衝突してエアバック信号が出力されて燃焼停止要求が発生した場合には、速やかに燃焼停止制御を実行して、エンジン11の燃焼を速やかに停止させる。   If it is determined in this step 104 that the engine stop operation has been performed by the driver, or if it is determined that the airbag signal has been output, the routine proceeds to step 106 where combustion stop control is permitted and combustion stop delay is performed. Prohibit control. As a result, when the driver performs an engine stop operation and a combustion stop request is generated, or when a vehicle crashes and an airbag signal is output and a combustion stop request is generated, the combustion stop control is promptly performed. This is executed to quickly stop the combustion of the engine 11.

一方、上記ステップ104で、運転者によりエンジン停止操作が行われていないと判定され、且つ、エアバック信号が出力されていないと判定された場合には、ステップ105に進み、燃焼停止制御を禁止する。これにより、燃料カット条件やアイドルストップ条件が成立して燃焼停止要求が発生していても、燃焼停止制御の実行を遅延する燃焼停止遅延制御を実行して、エンジン11の燃焼(燃料噴射及び点火)を継続する。   On the other hand, if it is determined in step 104 that the engine stop operation has not been performed by the driver and it is determined that the airbag signal has not been output, the process proceeds to step 105 and combustion stop control is prohibited. To do. Thus, even if the fuel cut condition or the idle stop condition is satisfied and the combustion stop request is generated, the combustion stop delay control for delaying the execution of the combustion stop control is executed, and the combustion of the engine 11 (fuel injection and ignition) is performed. ).

その後、燃焼停止遅延制御の実行中に、上記ステップ103で、筒内流入EGRガス量が正常燃焼判定閾値以下である判定された場合には、燃焼停止制御の実行後の再始動時に正常燃焼可能であると判断して、ステップ106に進み、燃焼停止制御を許可する。これにより、燃焼遅延制御を解除して、燃料噴射や点火を停止してエンジン11の燃焼を停止させる燃焼停止制御を実行する。   Thereafter, during the execution of the combustion stop delay control, if it is determined in step 103 that the in-cylinder inflow EGR gas amount is equal to or less than the normal combustion determination threshold, normal combustion is possible at the restart after the execution of the combustion stop control. Is determined to proceed to step 106, and combustion stop control is permitted. As a result, the combustion delay control is canceled, and the combustion stop control for stopping the fuel injection and ignition to stop the combustion of the engine 11 is executed.

次に、図3乃至6を用いて筒内流入EGRガス量の推定方法を説明する。
本実施例のように、吸気管12のうちのコンプレッサ19の上流側(スロットルバルブ21の上流側の吸気通路)にEGRガスを還流させるLPL方式のEGR装置28を採用したシステムの場合には、ECU36により筒内流入EGRガス流量を次のようにして演算(推定)する。
Next, a method for estimating the in-cylinder inflow EGR gas amount will be described with reference to FIGS.
In the case of a system that employs an LPL type EGR device 28 that recirculates EGR gas to the upstream side of the compressor 19 (the intake passage on the upstream side of the throttle valve 21) of the intake pipe 12 as in this embodiment, The ECU 36 calculates (estimates) the in-cylinder inflow EGR gas flow rate as follows.

図3に示すように、筒内流入総ガス流量演算部37では、まず、吸気管12内を流れる気体がスロットルバルブ21を通過する挙動を模擬したスロットルモデル39を用いて、スロットル通過総ガス流量(スロットルバルブ21を通過する総ガス流量)を演算する。尚、スロットルモデル39として、例えば特許文献1(特開2008−101626号公報)に記載されたスロットルモデルを使用しても良い。   As shown in FIG. 3, the in-cylinder inflow total gas flow rate calculation unit 37 first uses a throttle model 39 that simulates the behavior of the gas flowing through the intake pipe 12 passing through the throttle valve 21, and uses the throttle-through total gas flow rate. (Total gas flow rate passing through the throttle valve 21) is calculated. As the throttle model 39, for example, a throttle model described in Patent Document 1 (Japanese Patent Laid-Open No. 2008-101626) may be used.

この後、スロットルバルブ21を通過した気体がスロットルバルブ21の下流側の吸気通路(サージタンク23や吸気マニホールド24等)内に充填される挙動を模擬したインマニモデル40を用いて、スロットル通過総ガス流量と筒内流入総ガス流量の前回値とに基づいてインマニ圧力(スロットルバルブ21の下流側の吸気通路内の圧力)を演算する。尚、インマニモデル40として、例えば特許文献1(特開2008−101626号公報)に記載された吸気管モデルを使用しても良い。   Thereafter, using the intake manifold model 40 simulating the behavior that the gas that has passed through the throttle valve 21 is filled into the intake passage (surge tank 23, intake manifold 24, etc.) on the downstream side of the throttle valve 21, the total gas passing through the throttle is used. The intake manifold pressure (pressure in the intake passage on the downstream side of the throttle valve 21) is calculated based on the flow rate and the previous value of the in-cylinder inflow total gas flow rate. As the intake manifold model 40, for example, an intake pipe model described in Patent Document 1 (Japanese Patent Laid-Open No. 2008-101626) may be used.

この後、スロットルバルブ21の下流側の吸気通路に充填された気体が筒内に吸入される挙動を模擬した吸気弁モデル41を用いて、インマニ圧力に基づいて筒内流入総ガス流量(=筒内流入新気流量+筒内流入EGRガス流量)を演算する。尚、吸気弁モデル41として、例えば特許文献1(特開2008−101626号公報)に記載された吸気弁モデルを使用しても良い。   Thereafter, the in-cylinder inflow total gas flow rate (= cylinder) based on the intake manifold pressure using the intake valve model 41 simulating the behavior that the gas filled in the intake passage on the downstream side of the throttle valve 21 is sucked into the cylinder. The inflow fresh air flow rate + the inflow in-cylinder EGR gas flow rate) is calculated. As the intake valve model 41, for example, an intake valve model described in Patent Document 1 (Japanese Patent Laid-Open No. 2008-101626) may be used.

一方、筒内流入EGRガス流量演算部38では、まず、EGR配管29内を流れるEGRガスがEGR弁31を通過する挙動を模擬したEGR弁モデル42を用いて、EGR弁通過ガス流量(EGR弁31を通過するEGRガス流量)を演算する。   On the other hand, the in-cylinder inflow EGR gas flow rate calculation unit 38 first uses an EGR valve model 42 simulating the behavior of EGR gas flowing in the EGR pipe 29 passing through the EGR valve 31, and uses an EGR valve passing gas flow rate (EGR valve). EGR gas flow rate passing through 31 is calculated.

図4に示すように、EGR弁モデル42は、EGR弁31の開度とスロットル通過総ガス流量とEGR弁通過ガス流量との関係を規定するマップにより構築され、このEGR弁通過ガス流量のマップを用いて、EGR弁31の開度とスロットル通過総ガス流量とに応じたEGR弁通過ガス流量を演算する。EGR弁通過ガス流量のマップは、予め試験データや設計データ等に基づいて作成され、ECU36のROMに記憶されている。   As shown in FIG. 4, the EGR valve model 42 is constructed by a map that defines the relationship between the opening degree of the EGR valve 31, the throttle passage total gas flow rate, and the EGR valve passage gas flow rate, and this EGR valve passage gas flow rate map. Is used to calculate the EGR valve passage gas flow rate according to the opening degree of the EGR valve 31 and the throttle passage total gas flow rate. The map of the EGR valve passage gas flow rate is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 36.

或は、EGR弁モデル42を、EGR弁31の開度とEGR弁31の上流側の圧力Pin及び下流側の圧力Pout とEGR弁通過ガス流量Megr との関係を規定する物理式により構築するようにしても良い。
具体的には、次の絞りの式(オリフィスの式)でEGR弁モデル42を近似する。
Alternatively, the EGR valve model 42 is constructed by a physical formula that defines the relationship between the opening degree of the EGR valve 31, the pressure Pin on the upstream side of the EGR valve 31 and the pressure Pout on the downstream side, and the EGR valve passage gas flow rate Megr. Anyway.
Specifically, the EGR valve model 42 is approximated by the following throttle equation (orifice equation).

Figure 0005585942
Figure 0005585942

ここで、Cは流量係数で、AはEGR弁31の開度に応じて変化するEGR配管29の開口断面積である。また、Rは気体定数で、Tegr はEGR弁31の上流側のEGRガスの温度であり、Φ(Pout /Pin)は(Pout /Pin)を変数とする関数である。   Here, C is a flow coefficient, and A is an opening cross-sectional area of the EGR pipe 29 that changes in accordance with the opening degree of the EGR valve 31. R is a gas constant, Tegr is the temperature of the EGR gas upstream of the EGR valve 31, and Φ (Pout / Pin) is a function with (Pout / Pin) as a variable.

この場合、上記の絞りの式(オリフィスの式)を用いて、EGR弁31の開度とEGR弁31の上流側の圧力Pin及び下流側の圧力Pout とEGRガスの温度とに基づいてEGR弁通過ガス流量Megr を演算する。   In this case, the EGR valve 31 is based on the opening degree of the EGR valve 31, the pressure Pin on the upstream side of the EGR valve 31, the pressure Pout on the downstream side, and the temperature of the EGR gas, using the above-described throttle equation (orifice equation). The passing gas flow rate Megr is calculated.

この後、EGR弁31を通過したEGRガスがスロットルバルブ21を通過して筒内に流入するまでの挙動を模擬したEGRガス遅れモデル43(図3参照)を用いて、EGR弁通過ガス流量の演算値に基づいて筒内流入EGRガス流量を演算する。   Thereafter, the EGR valve passage gas flow rate is measured using an EGR gas delay model 43 (see FIG. 3) that simulates the behavior of the EGR gas that has passed through the EGR valve 31 until it passes through the throttle valve 21 and flows into the cylinder. A cylinder inflow EGR gas flow rate is calculated based on the calculated value.

図5に示すように、EGRガス遅れモデル43は、EGR弁31を通過したEGRガスがスロットルバルブ21の上流側の吸気通路(吸気管12のうちのコンプレッサ19の上流側)に流入する挙動を模擬した新気合流遅れモデル44と、スロットルバルブ21の上流側の吸気通路に流入したEGRガスがスロットルバルブ21を通過するまでの挙動を模擬した吸気管移流遅れモデル45と、スロットルバルブ21を通過したEGRガスがスロットルバルブ21の下流側の吸気通路(サージタンク23や吸気マニホールド24等)に充填される挙動を模擬したインマニ充填遅れモデル46と、スロットルバルブ21の下流側の吸気通路に充填されたEGRガスが吸気ポートを通過して筒内に流入するまでの挙動を模擬した吸気ポート移流遅れモデル47とから構成されている。   As shown in FIG. 5, the EGR gas delay model 43 has a behavior in which the EGR gas that has passed through the EGR valve 31 flows into the intake passage on the upstream side of the throttle valve 21 (the upstream side of the compressor 19 in the intake pipe 12). Passing through the throttle valve 21, the simulated new air lag model 44, the intake pipe advection delay model 45 simulating the behavior of the EGR gas flowing into the intake passage upstream of the throttle valve 21 through the throttle valve 21, The intake manifold filling delay model 46 simulating the behavior of the EGR gas filled in the intake passage (surge tank 23, intake manifold 24, etc.) downstream of the throttle valve 21 and the intake passage downstream of the throttle valve 21 filled. Intake port advection delay simulating the behavior of EGR gas passing through the intake port and flowing into the cylinder And a Dell 47 Metropolitan.

これにより、EGRガスがスロットルバルブ21の上流側の吸気通路に流入する際の遅れと、スロットルバルブ21の上流側の吸気通路に流入したEGRガスがスロットルバルブ21を通過するまでの移流遅れと、スロットルバルブ21を通過したEGRガスがスロットルバルブ21の下流側の吸気通路に充填される際の充填遅れと、スロットルバルブ21の下流側の吸気通路に充填されたEGRガスが吸気ポートを通過して筒内に流入するまでの移流遅れを、筒内流入EGRガス流量の演算に反映させることができ、筒内流入EGRガス流量の推定精度を高めることができる。   Thereby, the delay when the EGR gas flows into the intake passage on the upstream side of the throttle valve 21 and the advancing delay until the EGR gas that flows into the intake passage on the upstream side of the throttle valve 21 passes through the throttle valve 21; The filling delay when the EGR gas that has passed through the throttle valve 21 is filled in the intake passage on the downstream side of the throttle valve 21, and the EGR gas that has been filled in the intake passage on the downstream side of the throttle valve 21 passes through the intake port. The advection delay until it flows into the cylinder can be reflected in the calculation of the in-cylinder inflow EGR gas flow rate, and the estimation accuracy of the in-cylinder inflow EGR gas flow rate can be improved.

筒内流入EGRガス流量を演算する場合には、まず、新気合流遅れモデル44を用いて、EGR弁通過ガス流量Megr(a)に基づいてスロットルバルブ21の上流側の吸気通路に流入するEGRガス流量Megr(b)を演算する。   When calculating the in-cylinder inflow EGR gas flow rate, first, the EGR flow delay model 44 is used, and EGR flows into the intake passage on the upstream side of the throttle valve 21 based on the EGR valve passage gas flow rate Megr (a). The gas flow rate Megr (b) is calculated.

新気合流遅れモデルは、下記(1)式で近似されている。
Megr(b)={K1 /(τ1 +1)}×Megr(a) ……(1)
上記(1)式の係数K1 と時定数τ1 は、それぞれEGR配管29(EGR弁31から吸気管12との合流部までの部分)の配管径と長さ、吸気管12の配管径等によって決まる値であり、予め試験データや設計データ等に基づいて算出される。
The new convection delay model is approximated by the following equation (1).
Megr (b) = {K1 / (τ1 + 1)} × Megr (a) (1)
The coefficient K1 and the time constant τ1 in the above equation (1) are determined by the pipe diameter and length of the EGR pipe 29 (portion from the EGR valve 31 to the junction with the intake pipe 12), the pipe diameter of the intake pipe 12, etc. Value, which is calculated in advance based on test data, design data, and the like.

この後、吸気管移流遅れモデル45を用いて、スロットルバルブ21の上流側の吸気通路に流入するEGRガス流量Megr(b)とスロットル通過総ガス流量Mthとに基づいてスロットルバルブ21を通過するEGRガス流量Megr(c)を演算する。   Thereafter, using the intake pipe advection delay model 45, the EGR passing through the throttle valve 21 based on the EGR gas flow rate Megr (b) flowing into the intake passage upstream of the throttle valve 21 and the throttle passage total gas flow rate Mth. The gas flow rate Megr (c) is calculated.

図6に示すように、吸気管移流遅れモデル45は、スロットルバルブ21の上流側の吸気通路に流入したEGRガスがスロットルバルブ21を通過するまでの連続時間系の挙動を任意時間で離散化した行列(例えばサンプル時間16ms毎に離散化した32個の行列)により構築され、データを先入れ先出しのリスト構造で保持するキューを備えている。一般に、吸気管12内のEGRガスの移送速度は、ECU36の演算処理速度と比較して十分に遅いため、任意時間で離散化した行列により吸気管移流遅れモデル45を構築することができる。この吸気管移流遅れモデル45で用いる各種の係数は、それぞれ吸気管12(EGR配管29との合流部からスロットルバルブ21までの部分)の配管径と長さ等によって決まる値であり、予め試験データや設計データ等に基づいて算出される。   As shown in FIG. 6, the intake pipe advection delay model 45 discretizes the behavior of the continuous time system until the EGR gas flowing into the intake passage on the upstream side of the throttle valve 21 passes through the throttle valve 21 at an arbitrary time. The queue is constructed by a matrix (for example, 32 matrices discretized every 16 ms of sample time) and holds data in a first-in first-out list structure. In general, the transfer speed of the EGR gas in the intake pipe 12 is sufficiently slower than the calculation processing speed of the ECU 36, and therefore the intake pipe advection delay model 45 can be constructed by a matrix discretized at an arbitrary time. The various coefficients used in the intake pipe advection delay model 45 are values determined by the pipe diameter and length of the intake pipe 12 (the portion from the junction with the EGR pipe 29 to the throttle valve 21), respectively, Or based on design data or the like.

この後、図5に示すように、インマニ充填遅れモデル46を用いて、スロットルバルブ21を通過するEGRガス流量Megr(c)に基づいてスロットルバルブ21の下流側の吸気通路(サージタンク23や吸気マニホールド24等)に充填されるEGRガス流量Megr(d)を演算する。   Thereafter, as shown in FIG. 5, an intake passage on the downstream side of the throttle valve 21 based on the EGR gas flow rate Megr (c) passing through the throttle valve 21 using the intake manifold filling delay model 46 (the surge tank 23 and the intake air EGR gas flow rate Megr (d) filled in the manifold 24 or the like is calculated.

インマニ充填遅れモデル46は、下記(2)式で近似されている。
Megr(d)={K2 /(τ2 +1)}×Megr(c) ……(2)
The intake manifold filling delay model 46 is approximated by the following equation (2).
Megr (d) = {K 2 / (τ 2 +1)} × Megr (c) (2)

上記(2)式の係数K2 とインマニ充填遅れ時定数τ2 は、それぞれスロットルバルブ21の下流側の吸気通路(吸気管12のうちのスロットルバルブ21の下流側の部分、サージタンク23、吸気マニホールド24等)の配管径と長さと容積等によって決まる値であり、予め試験データや設計データ等に基づいて算出される。尚、インマニモデル40でインマニ充填遅れ時定数を用いる場合には、インマニモデル40で用いたインマニ充填遅れ時定数をインマニ充填遅れモデル46で使用するようにしても良い。   The coefficient K2 and the intake manifold filling delay time constant τ2 in the above equation (2) are the intake passages on the downstream side of the throttle valve 21 (the portion of the intake pipe 12 downstream of the throttle valve 21, the surge tank 23, the intake manifold 24). Etc.) is determined based on test data, design data, and the like in advance. When the intake manifold filling delay time constant is used in the intake manifold model 40, the intake manifold filling delay time constant used in the intake manifold model 40 may be used in the intake manifold filling delay model 46.

この後、吸気ポート移流遅れモデル47を用いて、スロットルバルブ21の下流側の吸気通路に充填されるEGRガス流量Megr(d)と筒内流入総ガス流量の前回値とに基づいて筒内流入EGRガス流量Megr(e)を演算する。   Thereafter, using the intake port advection delay model 47, the cylinder inflow is based on the EGR gas flow rate Megr (d) filled in the intake passage downstream of the throttle valve 21 and the previous value of the in-cylinder inflow total gas flow rate. The EGR gas flow rate Megr (e) is calculated.

吸気ポート移流遅れモデル47は、スロットルバルブ21の下流側の吸気通路に充填されたEGRガスが吸気ポートを通過して筒内に流入するまでの連続時間系の挙動を任意時間で離散化した行列により構築され、データを先入れ先出しのリスト構造で保持するキューを備えている。この吸気ポート移流遅れモデル47で用いる各種の係数は、それぞれ吸気ポートの配管径と長さ等によって決まる値であり、予め試験データや設計データ等に基づいて算出される。   The intake port advection delay model 47 is a matrix in which the behavior of a continuous time system from when the EGR gas filled in the intake passage on the downstream side of the throttle valve 21 passes through the intake port and flows into the cylinder is discretized at an arbitrary time. And a queue that holds data in a first-in first-out list structure. Various coefficients used in the intake port advection delay model 47 are values determined by the pipe diameter and length of the intake port, respectively, and are calculated based on test data, design data, and the like in advance.

図8に示すように、従来の燃焼停止制御では、例えばアクセル開度の全閉時にアイドルストップ条件が成立して燃焼停止要求が発生した時点t1 で、燃焼停止フラグをON(オン)して、燃料噴射や点火を停止してエンジン11の燃焼を停止させる燃焼停止制御を実行する。この場合、EGR弁31が閉弁されても吸気管12内にEGRガスが残留するため、燃焼停止制御の実行後(燃焼停止後)に再始動条件が成立して再始動する時点t2 で、多量のEGRガスが筒内に流入する可能性があり、再始動時に筒内に流入するEGRガス量がEGR限界(正常燃焼可能なEGRガス量の上限値)を越えると、燃焼状態が不安定になって失火が発生して再始動性が悪化する可能性がある。   As shown in FIG. 8, in the conventional combustion stop control, for example, at the time t1 when the idle stop condition is satisfied and the combustion stop request is generated when the accelerator opening is fully closed, the combustion stop flag is turned on. Combustion stop control for stopping fuel injection and ignition to stop the combustion of the engine 11 is executed. In this case, since the EGR gas remains in the intake pipe 12 even when the EGR valve 31 is closed, at the time t2 when the restart condition is satisfied and restarted after execution of the combustion stop control (after the combustion stop). A large amount of EGR gas may flow into the cylinder, and if the amount of EGR gas flowing into the cylinder during restart exceeds the EGR limit (the upper limit of the amount of EGR gas that can be normally burned), the combustion state is unstable. The misfire may occur and the restartability may deteriorate.

これに対して、図7に示すように、本実施例では、例えばアクセル開度の全閉時にアイドルストップ条件が成立して燃焼停止要求が発生した時点t1 で、筒内流入EGRガス量が正常燃焼判定閾値よりも大きい場合には、燃焼停止制御の実行後(燃焼停止後)の再始動時に正常燃焼可能ではない(燃焼状態が不安定になる可能性がある)と判断して、燃焼停止フラグをOFF(オフ)に維持して燃焼停止制御を禁止する。これにより、燃焼停止要求が発生していても、燃焼停止制御の実行を遅延する燃焼停止遅延制御を実行して、エンジン11の燃焼(燃料噴射及び点火)を継続する。   On the other hand, as shown in FIG. 7, in this embodiment, for example, the in-cylinder inflow EGR gas amount is normal at time t1 when the idle stop condition is satisfied and the combustion stop request is generated when the accelerator opening is fully closed. If it is greater than the combustion determination threshold, it is determined that normal combustion is not possible (combustion state may become unstable) at the time of restart after execution of combustion stop control (after combustion stop), and combustion is stopped. The combustion stop control is prohibited by keeping the flag OFF. Thereby, even if the combustion stop request | requirement has generate | occur | produced, the combustion stop delay control which delays execution of combustion stop control is performed, and combustion (fuel injection and ignition) of the engine 11 is continued.

その後、燃焼停止遅延制御の実行中に、筒内流入EGRガス量が正常燃焼判定閾値以下になった時点t2 で、燃焼停止制御の実行後の再始動時に正常燃焼可能であると判断して、燃焼停止フラグをON(オン)して燃焼停止制御を許可する。これにより、燃焼遅延制御を解除して、燃料噴射や点火を停止してエンジン11の燃焼を停止させる燃焼停止制御を実行する。   Thereafter, at the time t2 when the in-cylinder inflow EGR gas amount becomes equal to or less than the normal combustion determination threshold value during the execution of the combustion stop delay control, it is determined that normal combustion is possible at the restart after the execution of the combustion stop control. The combustion stop flag is turned on to allow combustion stop control. As a result, the combustion delay control is canceled, and the combustion stop control for stopping the fuel injection and ignition to stop the combustion of the engine 11 is executed.

以上説明した本実施例では、筒内流入EGRガス量(筒内に流入するEGRガス量)を推定するようにしたので、筒内流入EGRガス量を判定することが可能となり、その推定した筒内流入EGRガス量に基づいて燃焼停止制御の実行を遅延する燃焼停止遅延制御を実行するようにしたので、燃焼停止要求が発生しても、吸気管12内に残留するEGRガスが掃気されて筒内流入EGRガス量が十分に減少するまでは燃焼停止制御の実行を遅延して、筒内流入EGRガス量が十分に減少してから燃焼停止制御を実行してエンジン11の燃焼を停止させるようにできる。これにより、燃焼停止制御の実行後(燃焼停止後)の再始動時に筒内流入EGRガス量がEGR限界(正常燃焼可能なEGRガス量の上限値)を越えることを回避して、燃焼状態が不安定になることを防止することができ、再始動性を向上させることができる。   In the present embodiment described above, since the in-cylinder inflow EGR gas amount (the EGR gas amount flowing into the cylinder) is estimated, the in-cylinder inflow EGR gas amount can be determined, and the estimated cylinder Since the combustion stop delay control for delaying the execution of the combustion stop control is executed based on the inflow EGR gas amount, the EGR gas remaining in the intake pipe 12 is scavenged even when the combustion stop request is generated. The execution of the combustion stop control is delayed until the in-cylinder inflow EGR gas amount is sufficiently reduced, and the combustion stop control is executed after the in-cylinder inflow EGR gas amount is sufficiently reduced to stop the combustion of the engine 11. You can This prevents the amount of in-cylinder inflow EGR gas from exceeding the EGR limit (the upper limit of the amount of EGR gas that can be normally burned) at the time of restart after execution of combustion stop control (after combustion stop). Instability can be prevented and restartability can be improved.

また、本実施例では、筒内流入EGRガス量を正常燃焼判定閾値と比較して、燃焼停止制御の実行後の再始動時に正常燃焼可能であるか否かを判定し、再始動時に正常燃焼可能ではない(燃焼状態が不安定になる可能性がある)と判定した場合に、燃焼停止遅延制御を実行するようにしたので、燃焼停止制御の実行後の再始動時に燃焼状態が不安定になることを確実に防止することができる。   Further, in this embodiment, the in-cylinder inflow EGR gas amount is compared with a normal combustion determination threshold value to determine whether normal combustion is possible at restart after execution of combustion stop control, and normal combustion at restart The combustion stop delay control is executed when it is determined that this is not possible (combustion state may be unstable), so the combustion state becomes unstable when restarting after the combustion stop control is executed. Can be reliably prevented.

更に、本実施例では、燃焼停止遅延制御の実行中に筒内流入EGRガス量が正常燃焼判定閾値以下になって、燃焼停止制御の実行後の再始動時に正常燃焼可能であると判定したときに、燃焼停止遅延制御を解除して、燃焼停止制御を実行するようにしたので、燃焼停止遅延制御が必要以上に長くなる(つまり燃焼停止制御の実行を必要以上に遅延する)ことを防止することができる。   Further, in this embodiment, when it is determined that the in-cylinder inflow EGR gas amount becomes equal to or less than the normal combustion determination threshold value during the combustion stop delay control, and normal combustion is possible at the restart after the combustion stop control is executed. Furthermore, since the combustion stop delay control is canceled and the combustion stop control is executed, it is possible to prevent the combustion stop delay control from becoming longer than necessary (that is, delaying the execution of the combustion stop control more than necessary). be able to.

また、本実施例では、運転者によりエンジン停止操作(例えばイグニッションスイッチのオフ)が行われた場合やエアバッグを作動させるためのエアバック信号が出力された場合に、燃焼停止遅延制御を禁止するようにしたので、運転者によりエンジン停止操作が行われた場合や、車両が衝突してエアバック信号が出力された場合には、筒内流入EGRガス量に拘らず、速やかに燃焼停止制御を実行して、エンジン11の燃焼を速やかに停止させることができる。   Further, in this embodiment, the combustion stop delay control is prohibited when an engine stop operation (for example, turning off the ignition switch) is performed by the driver or when an airbag signal for operating the airbag is output. As a result, when the driver performs an engine stop operation or when a vehicle collides and an airbag signal is output, the combustion stop control is promptly performed regardless of the in-cylinder inflow EGR gas amount. By executing this, the combustion of the engine 11 can be stopped quickly.

また、上記実施例では、燃料カット条件やアイドルストップ条件が成立して燃焼停止要求が発生した場合に燃焼停止制御を実行するシステムに本発明を適用したが、これに限定されず、例えば、エンジンとモータの両方を動力源とするハイブリッド車において、モータの動力のみで走行するモータ走行条件等が成立して燃焼停止要求が発生した場合に燃焼停止制御を実行するシステムに本発明を適用するようにしても良い。   In the above embodiment, the present invention is applied to a system that executes combustion stop control when a fuel cut condition or an idle stop condition is satisfied and a combustion stop request is generated. However, the present invention is not limited to this. The present invention is applied to a system that executes combustion stop control in a hybrid vehicle that uses both a motor and a motor as a power source, when a motor travel condition that travels only with the power of the motor is established and a combustion stop request is generated. Anyway.

更に、本発明は、排気タービン駆動式の過給機(いわゆるターボチャージャ)を搭載したエンジンに限定されず、機械駆動式の過給機(いわゆるスーパーチャージャ)や電動式の過給機を搭載したエンジンに適用しても良い。   Further, the present invention is not limited to an engine equipped with an exhaust turbine-driven supercharger (so-called turbocharger), but is equipped with a machine-driven supercharger (so-called supercharger) or an electric supercharger. It may be applied to the engine.

その他、本発明は、過給機付きエンジンに限定されず、過給機を搭載していない自然吸気エンジン(NAエンジン)に適用しても良い。   In addition, the present invention is not limited to an engine with a supercharger, and may be applied to a naturally aspirated engine (NA engine) not equipped with a supercharger.

11…エンジン(内燃機関)、12…吸気管(吸気通路)、15…排気管、17…過給機、21…スロットルバルブ、23…サージタンク、24…吸気マニホールド、28…EGR装置、29…EGR配管(EGR通路)、31…EGR弁、36…ECU(燃焼停止制御手段,筒内流入EGRガス量判定手段,燃焼停止遅延制御手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe (intake passage), 15 ... Exhaust pipe, 17 ... Supercharger, 21 ... Throttle valve, 23 ... Surge tank, 24 ... Intake manifold, 28 ... EGR device, 29 ... EGR piping (EGR passage), 31... EGR valve, 36... ECU (combustion stop control means, cylinder inflow EGR gas amount determination means, combustion stop delay control means)

Claims (4)

内燃機関の排出ガスの一部をEGRガスとしてスロットルバルブの上流側の吸気通路へ還流させるEGR配管及び前記EGR配管内を流れるEGRガス流量を調節するEGR弁を有する低圧ループ方式のEGR装置と、所定の燃焼停止要求が発生した場合に内燃機関の燃焼を停止させる燃焼停止制御を実行する燃焼停止制御手段とを備えた内燃機関の制御装置において、
内燃機関の筒内に流入するEGRガス量又はこれに関連性のある情報(以下これらを「筒内流入EGRガス量情報」と総称する)を演算する筒内流入EGRガス量判定手段と、 前記筒内流入EGRガス量判定手段で演算した筒内流入EGRガス量情報に基づいて前記燃焼停止制御の実行を遅延する燃焼停止遅延制御を実行する燃焼停止遅延制御手段と
を備え
前記筒内流入EGRガス量判定手段は、前記EGR配管内を流れるEGRガスが前記EGR弁を通過する挙動を模擬したEGR弁モデルを用いて、前記EGR弁を通過するEGRガス流量(以下「EGR弁通過ガス流量」という)を演算すると共に、前記EGR弁を通過したEGRガスが前記スロットルバルブを通過して筒内に流入するまでの挙動を模擬したEGRガス遅れモデルを用いて、前記EGR弁モデルで演算した前記EGR弁通過ガス流量に基づいて前記筒内流入EGRガス量情報を演算することを特徴とする内燃機関の制御装置。
A low-pressure loop EGR device having an EGR pipe that recirculates a part of the exhaust gas of the internal combustion engine as EGR gas to an intake passage upstream of the throttle valve and an EGR valve that adjusts the flow rate of the EGR gas flowing in the EGR pipe ; In a control device for an internal combustion engine comprising combustion stop control means for executing combustion stop control for stopping combustion of the internal combustion engine when a predetermined combustion stop request is generated,
In-cylinder inflow EGR gas amount determination means for calculating the amount of EGR gas flowing into the cylinder of the internal combustion engine or information related thereto (hereinafter collectively referred to as “in-cylinder inflow EGR gas amount information”); Combustion stop delay control means for executing combustion stop delay control for delaying execution of the combustion stop control based on in-cylinder inflow EGR gas amount information calculated by the in-cylinder inflow EGR gas amount determination means ,
The in-cylinder inflow EGR gas amount determining means uses an EGR valve model that simulates the behavior of EGR gas flowing through the EGR pipe and passing through the EGR valve, and uses the EGR gas flow rate (hereinafter referred to as “EGR”) that passes through the EGR valve. The EGR valve is calculated using an EGR gas delay model that simulates the behavior of the EGR gas that has passed through the EGR valve and flows into the cylinder through the throttle valve. An in-cylinder inflow EGR gas amount information is calculated based on the EGR valve passage gas flow rate calculated by a model .
前記燃焼停止遅延制御手段は、前記筒内流入EGRガス量情報に基づいて前記燃焼停止制御の実行後の再始動時に正常燃焼可能であるか否かを判定し、該再始動時に正常燃焼可能ではないと判定した場合に前記燃焼停止遅延制御を実行することを特徴とする請求項1に記載の内燃機関の制御装置。   The combustion stop delay control means determines whether normal combustion is possible at restart after execution of the combustion stop control based on the in-cylinder inflow EGR gas amount information, and normal combustion is not possible at the restart. 2. The control apparatus for an internal combustion engine according to claim 1, wherein the combustion stop delay control is executed when it is determined that there is not. 前記燃焼停止遅延制御手段は、前記燃焼停止遅延制御の実行中に前記筒内流入EGRガス量情報に基づいて前記燃焼停止制御の実行後の再始動時に正常燃焼可能であると判定したときに前記燃焼停止遅延制御を解除することを特徴とする請求項2に記載の内燃機関の制御装置。   When the combustion stop delay control means determines that normal combustion is possible at restart after execution of the combustion stop control based on the in-cylinder inflow EGR gas amount information during execution of the combustion stop delay control, The control device for an internal combustion engine according to claim 2, wherein the combustion stop delay control is canceled. 前記燃焼停止遅延制御手段は、運転者により内燃機関の停止操作が行われた場合及び/又はエアバッグを作動させるためのエアバック信号が出力された場合に前記燃焼停止遅延制御を禁止する手段を有することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の制御装置。   The combustion stop delay control means is a means for prohibiting the combustion stop delay control when a stop operation of the internal combustion engine is performed by a driver and / or when an airbag signal for operating the airbag is output. The control device for an internal combustion engine according to any one of claims 1 to 3, further comprising:
JP2011119728A 2011-05-27 2011-05-27 Control device for internal combustion engine Expired - Fee Related JP5585942B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011119728A JP5585942B2 (en) 2011-05-27 2011-05-27 Control device for internal combustion engine
US13/481,231 US9470166B2 (en) 2011-05-27 2012-05-25 Control apparatus for internal combustion engine
CN201210166860.3A CN102797596B (en) 2011-05-27 2012-05-25 Control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011119728A JP5585942B2 (en) 2011-05-27 2011-05-27 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012246849A JP2012246849A (en) 2012-12-13
JP5585942B2 true JP5585942B2 (en) 2014-09-10

Family

ID=47196853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011119728A Expired - Fee Related JP5585942B2 (en) 2011-05-27 2011-05-27 Control device for internal combustion engine

Country Status (3)

Country Link
US (1) US9470166B2 (en)
JP (1) JP5585942B2 (en)
CN (1) CN102797596B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017000193B4 (en) * 2016-03-25 2021-06-10 Hitachi Automotive Systems, Ltd. Vehicle control device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006000B1 (en) * 2013-05-22 2015-12-04 Peugeot Citroen Automobiles Sa METHOD FOR STOPPING A THERMAL MOTOR OF A MOTOR VEHICLE
JP6049563B2 (en) * 2013-07-26 2016-12-21 愛三工業株式会社 Engine control device
JP2015048835A (en) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 Fuel supply control device
JP6213424B2 (en) 2014-08-29 2017-10-18 トヨタ自動車株式会社 Internal combustion engine
US9925974B2 (en) * 2016-04-26 2018-03-27 Ford Global Technologies, Llc System and methods for improving fuel economy
CN107702154A (en) * 2017-04-13 2018-02-16 博洛尼家居用品(北京)股份有限公司 A kind of sunk type kitchen range
JP6943643B2 (en) * 2017-06-28 2021-10-06 日立Astemo株式会社 Internal combustion engine control device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1254276B (en) 1992-03-13 1995-09-14 Enichem Polimeri THERMOPLASTIC COMPOSITION BASED ON POLYPHENYLENETERE AND POLYAMIDE
JP2575464Y2 (en) * 1992-09-03 1998-06-25 富士通テン株式会社 Engine fuel injection control device
JP3259536B2 (en) 1994-08-22 2002-02-25 トヨタ自動車株式会社 Fuel injection amount control device for internal combustion engine
WO2004022959A1 (en) * 2002-09-09 2004-03-18 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
JP4265382B2 (en) * 2003-11-13 2009-05-20 トヨタ自動車株式会社 Premixed compression ignition internal combustion engine
JP4385962B2 (en) * 2004-09-14 2009-12-16 トヨタ自動車株式会社 Control device for internal combustion engine
EP1770268A3 (en) * 2005-09-30 2007-05-02 HONDA MOTOR CO., Ltd. Exhaust gas recirculation fault detection system
JP2007113494A (en) * 2005-10-20 2007-05-10 Toyota Motor Corp Control device for internal combustion engine
JP4215069B2 (en) * 2006-04-26 2009-01-28 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
WO2008033418A1 (en) * 2006-09-13 2008-03-20 Borgwarner Inc. Integration of an exhaust air cooler into a turbocharger
JP2008151064A (en) * 2006-12-19 2008-07-03 Toyota Motor Corp Control device for internal combustion engine
JP4274266B2 (en) * 2007-05-08 2009-06-03 トヨタ自動車株式会社 Vehicle and control method thereof
JP4743169B2 (en) * 2007-06-13 2011-08-10 トヨタ自動車株式会社 Internal combustion engine control apparatus and method
JP4497191B2 (en) * 2007-11-06 2010-07-07 トヨタ自動車株式会社 Control device for internal combustion engine
JP4519164B2 (en) 2007-12-03 2010-08-04 トヨタ自動車株式会社 Internal combustion engine pressure / temperature calculation device
US7848872B2 (en) * 2007-12-20 2010-12-07 Gm Global Technology Operations, Inc. Method and apparatus for monitoring recirculated exhaust gas in an internal combustion engine
JP4985446B2 (en) 2008-02-12 2012-07-25 トヨタ自動車株式会社 EGR control device for internal combustion engine
JP4442693B2 (en) * 2008-02-13 2010-03-31 トヨタ自動車株式会社 Control device for internal combustion engine
JP5077078B2 (en) * 2008-06-02 2012-11-21 日産自動車株式会社 Idle stop vehicle control device
JP4591581B2 (en) * 2008-09-09 2010-12-01 トヨタ自動車株式会社 Burned gas passage amount calculation method and burned gas passage amount calculation device for exhaust gas recirculation system
JP2010203281A (en) 2009-03-02 2010-09-16 Bosch Corp Egr control device
JP5907339B2 (en) * 2011-05-27 2016-04-26 株式会社デンソー In-cylinder inflow EGR gas flow rate estimation device for internal combustion engine
JP5899104B2 (en) * 2012-11-14 2016-04-06 株式会社日本自動車部品総合研究所 Vehicle control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017000193B4 (en) * 2016-03-25 2021-06-10 Hitachi Automotive Systems, Ltd. Vehicle control device

Also Published As

Publication number Publication date
CN102797596B (en) 2015-04-01
US20120303250A1 (en) 2012-11-29
CN102797596A (en) 2012-11-28
US9470166B2 (en) 2016-10-18
JP2012246849A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5673356B2 (en) Control device for internal combustion engine
JP5854328B2 (en) Control device for internal combustion engine
JP6221321B2 (en) Control device for internal combustion engine
JP5585942B2 (en) Control device for internal combustion engine
JP5907339B2 (en) In-cylinder inflow EGR gas flow rate estimation device for internal combustion engine
US9890718B2 (en) Control apparatus for internal combustion engine
US10280853B2 (en) Supercharged internal combustion engine
JP5673896B2 (en) Control device for internal combustion engine
JP2013113180A (en) Controller for internal combustion engine
JP2015209814A (en) Control device for internal combustion engine
JP5056953B2 (en) Control device for internal combustion engine
JP5447033B2 (en) Control device for internal combustion engine
WO2013153654A1 (en) Device for controlling flow rate of internal combustion engine
JP5999150B2 (en) Control method for internal combustion engine
JP2006194143A (en) Control device for engine
JP6428385B2 (en) Control device for internal combustion engine
JP6536299B2 (en) Internal combustion engine control method and internal combustion engine control device
JP5930288B2 (en) Internal combustion engine
JP6107876B2 (en) Control device for turbocharged engine
JP2015218689A (en) Control device for engine with turbosupercharger
JP2010096002A (en) Control device
JP2013189907A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140630

R151 Written notification of patent or utility model registration

Ref document number: 5585942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140713

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees