JP5574257B2 - Reusable substrate for producing carbon nanotubes, substrate for producing carbon nanotubes and method for producing the same - Google Patents
Reusable substrate for producing carbon nanotubes, substrate for producing carbon nanotubes and method for producing the same Download PDFInfo
- Publication number
- JP5574257B2 JP5574257B2 JP2009218746A JP2009218746A JP5574257B2 JP 5574257 B2 JP5574257 B2 JP 5574257B2 JP 2009218746 A JP2009218746 A JP 2009218746A JP 2009218746 A JP2009218746 A JP 2009218746A JP 5574257 B2 JP5574257 B2 JP 5574257B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- base material
- layer
- substrate
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 169
- 239000002041 carbon nanotube Substances 0.000 title claims description 138
- 239000000758 substrate Substances 0.000 title claims description 117
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims description 116
- 238000004519 manufacturing process Methods 0.000 title claims description 78
- 239000003054 catalyst Substances 0.000 claims description 235
- 239000000463 material Substances 0.000 claims description 182
- 238000000034 method Methods 0.000 claims description 56
- 229910052799 carbon Inorganic materials 0.000 claims description 50
- 239000010419 fine particle Substances 0.000 claims description 45
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 230000002265 prevention Effects 0.000 claims description 18
- 150000002739 metals Chemical class 0.000 claims description 7
- 230000000149 penetrating effect Effects 0.000 claims description 6
- 239000012466 permeate Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 131
- 230000008569 process Effects 0.000 description 28
- 239000010408 film Substances 0.000 description 19
- 230000003405 preventing effect Effects 0.000 description 17
- 239000007789 gas Substances 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000012190 activator Substances 0.000 description 8
- 238000005255 carburizing Methods 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 229910010293 ceramic material Inorganic materials 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 150000001722 carbon compounds Chemical class 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000001237 Raman spectrum Methods 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 238000005162 X-ray Laue diffraction Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- -1 aluminum-iron-molybdenum Chemical compound 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- CYUOWZRAOZFACA-UHFFFAOYSA-N aluminum iron Chemical class [Al].[Fe] CYUOWZRAOZFACA-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 206010016165 failure to thrive Diseases 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Description
本発明は、カーボンナノチューブ生成用再利用基材及びカーボンナノチューブ生成用基材並びにその製造方法に係り、基材の繰り返し利用によりカーボンナノチューブ配向集合体の生産性向上に寄与することのできる、カーボンナノチューブ生成用基材等に関する。 The present invention relates to a carbon nanotube generating reusable base material, a carbon nanotube generating base material, and a method for producing the same, and a carbon nanotube that can contribute to improving the productivity of aligned carbon nanotube aggregates by repeatedly using the base material. It relates to a substrate for generation.
カーボンナノチューブ(以下、「CNT」ともいう)は、炭素原子が平面的に六角形状に配置されて構成された炭素シートが円筒状に閉じた構造を有する炭素構造体である。このCNTには、多層のもの及び単層のものがあるが、いずれもその力学的強度、光学特性、電気特性、熱特性、分子吸着機能等の面から、電子デバイス材料、光学素子材料、導電性材料等の機能性材料としての展開が期待されている。CNTの中でも単層CNTは、電気的特性(極めて高い電流密度)、熱的特性(ダイヤモンドに匹敵する熱伝導度)、光学特性(光通信帯波長域での発光)、水素貯蔵能、及び金属触媒担持能などの各種特性に優れている上、半導体と金属との両特性を備えているため、ナノ電子デバイス、ナノ光学素子、及びエネルギー貯蔵体などの材料として注目されている。 A carbon nanotube (hereinafter also referred to as “CNT”) is a carbon structure having a structure in which a carbon sheet formed by arranging carbon atoms in a hexagonal shape in a plane is closed in a cylindrical shape. There are multi-layered and single-layered CNTs, all of which are in terms of mechanical strength, optical properties, electrical properties, thermal properties, molecular adsorption functions, etc., from electronic device materials, optical element materials, conductive materials. Development as functional materials such as functional materials is expected. Among CNTs, single-walled CNTs have electrical characteristics (very high current density), thermal characteristics (thermal conductivity comparable to diamond), optical characteristics (light emission in the optical communication band wavelength region), hydrogen storage capacity, and metals. In addition to being excellent in various properties such as catalyst supporting ability, and having both properties of a semiconductor and a metal, it has attracted attention as a material for nanoelectronic devices, nanooptical elements, energy storage bodies, and the like.
これらの用途にCNTを有効利用する場合、複数本のCNTが規則的な方向に配向して集まった束状、膜状、あるいは塊状の集合体を成し、そのCNT集合体が、電気・電子的、及び光学的などの機能性を発揮することが望ましい。CNTは、アスペクト比が極めて高い一次元的な構造を持つ材料であり、その機能も高い方向性を示す。そのため、CNT集合体(構造体)を構成する一本一本のCNTが規則的な方向に配向していると、個々のCNTの機能の方向性を揃えることができ、結果として、高機能なCNT集合体を得ることができる。 When CNTs are effectively used for these applications, a bundle, film, or agglomerate aggregate in which a plurality of CNTs are aligned in a regular direction is formed. It is desirable to exhibit both functional and optical functionality. CNT is a material having a one-dimensional structure with an extremely high aspect ratio, and its function is highly directional. Therefore, if each CNT constituting the CNT aggregate (structure) is oriented in a regular direction, the direction of the function of each CNT can be aligned, and as a result, a highly functional A CNT aggregate can be obtained.
すなわち、各CNTが規則的な方向に配向しているCNT配向集合体は、一本一本のCNTの向きが不規則な、つまり無配向なCNT集合体と比較して、配向方向についての伝達特性に高い指向性を示す。この高い指向性により、CNT集合体は、より良好な電気特性(例えばより高い導電性)、より良好な機械的特性(例えばより高い強度)、より良好な熱特性(例えばより高い熱伝導性)を示す。さらには、このようなCNT集合体の配向方向とそれ以外の方向とで異なる特性、つまり異方性は、例えば、熱などを所望の方向に選択的に拡散、排出したい場合などに有効であり、熱伝導材などの用途に好適である。また、CNT集合体は、その高さ、長さ等のサイズがより一層大きいことが望ましい。このようなCNT配向集合体が創製されれば、CNTの応用分野が飛躍的に拡大するものと予測される。 In other words, an aligned CNT aggregate in which each CNT is aligned in a regular direction is transmitted in the direction of alignment as compared to a non-oriented CNT aggregate in which the direction of each CNT is irregular. High directivity in characteristics. Due to this high directivity, CNT aggregates have better electrical properties (eg higher conductivity), better mechanical properties (eg higher strength), better thermal properties (eg higher thermal conductivity) Indicates. Furthermore, such a property that is different between the orientation direction of the CNT aggregate and the other direction, that is, anisotropy, is effective, for example, when it is desired to selectively diffuse and discharge heat in a desired direction. It is suitable for applications such as heat conductive materials. Further, it is desirable that the CNT aggregate has a larger size such as height and length. If such an aligned CNT aggregate is created, the application field of CNT is expected to expand dramatically.
一方、CNTの製造方法の一つに、化学気相成長法(以下、CVD法とも称する)が知られている(特許文献1などを参照されたい)。この方法は、約500℃〜1000℃の高温雰囲気下で炭素化合物を触媒の金属微粒子と接触させることを特徴としており、触媒の種類や配置、あるいは炭素化合物の種類や反応条件といった態様を様々に変化させた中でのCNTの製造が可能であり、CNTの大量生産に適したものとして注目されている。またこのCVD法は、単層カーボンナノチューブ(SWCNT)と多層カーボンナノチューブ(MWCNT)とのいずれも製造可能である上、触媒を担持した基板を用いることで、基板面に垂直に配向した多数のCNTを製造することができる、という利点を備えている。 On the other hand, a chemical vapor deposition method (hereinafter also referred to as a CVD method) is known as one of CNT manufacturing methods (see Patent Document 1 and the like). This method is characterized in that the carbon compound is brought into contact with the metal fine particles of the catalyst in a high temperature atmosphere of about 500 ° C. to 1000 ° C., and various modes such as the type and arrangement of the catalyst, the type of carbon compound and the reaction conditions are various. It is possible to produce CNTs in a changed state, and has attracted attention as being suitable for mass production of CNTs. In addition, this CVD method can produce both single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT), and by using a substrate carrying a catalyst, a large number of CNTs oriented perpendicular to the substrate surface. It has the advantage that it can be manufactured.
基材上にCNT配向集合体を形成させるためには、基材上の触媒微粒子の密度及び直径が高度に制御されており、また、CNTを成長させる面全域で触媒微粒子が均一に付着している必要がある。一方で、CNT配向集合体生産の低コスト化のためには基材を再利用する必要がある。同じ基材を繰り返し使用して、同品質のCNT配向集合体を安定して生産するためには、基材上の触媒微粒子が、基材を再利用しても、常に最適で一定の状態でなければならない。 In order to form an aligned CNT aggregate on a base material, the density and diameter of the catalyst fine particles on the base material are highly controlled, and the catalyst fine particles are uniformly attached over the entire surface on which the CNTs are grown. Need to be. On the other hand, it is necessary to reuse the base material in order to reduce the cost of producing the aligned CNT aggregate. In order to stably produce aligned CNT aggregates of the same quality by repeatedly using the same substrate, the catalyst fine particles on the substrate are always in an optimal and constant state even when the substrate is reused. There must be.
特許文献2及び特許文献3には、一度CNT生産に使用した基材及び触媒をそのまま次のCNT生産に使用する方法で、基材を繰り返し使用することができる旨の記載がある。 Patent Document 2 and Patent Document 3 have a description that the base material and the catalyst once used for CNT production can be used repeatedly in the next CNT production method.
しかし、この方法の場合、CNTの成長速度が著しく減少して、CNT配向集合体が得られない問題がある。原因としては、以下の2つの理由が考えられる。 However, this method has a problem that the growth rate of CNTs is remarkably reduced and an aligned CNT aggregate cannot be obtained. There are two possible reasons for this.
第1の理由として、CVD法でCNTを生産した後の触媒は微粒子状になって基材上に残存しているが、CVD中に約800℃の高温環境下に置かれるため、CNTの成長の最中にも触媒の状態は変化していると考えられる。たとえば、触媒の一部が下地層の中に入り込んでいる状態になっている可能性がある。そのため、触媒の状態がCVDを繰り返す毎に変化してしまう虞がある。 The first reason is that the catalyst after producing CNTs by the CVD method remains in the form of fine particles and remains on the substrate, but is placed in a high temperature environment of about 800 ° C. during the CVD, so the growth of CNTs. It is considered that the state of the catalyst is changing during the process. For example, there is a possibility that a part of the catalyst is in the base layer. Therefore, there is a possibility that the state of the catalyst changes every time the CVD is repeated.
第2の理由として、以下の可能性が考えられる。一度CNT生産に使用した基材及び触媒をそのままCNT製造装置に投入して、次のCVDを行なう場合、CVDの工程を触媒及び基材の状態によってその都度変えることは生産効率上好ましくないので、1度目と同じプロセスでCNT生産を実施する。よって、触媒の還元工程の後に、CNTの成長工程を行なうプロセスの場合、触媒の還元工程を必ず実施することになる。触媒の還元工程には最適な条件があり、基材を再利用して同じ触媒に2度目の還元工程を行なった場合、触媒が最適な状態とならない可能性がある。たとえば触媒微粒子の凝集がすすんで、触媒微粒子の粒子経が大きくなり、CNTの直径等の品質が変化してしまう虞がある。 The second possibility is considered as follows. Once the base material and catalyst used for CNT production are directly put into the CNT manufacturing apparatus and the next CVD is performed, it is not preferable in terms of production efficiency to change the CVD process depending on the state of the catalyst and the base material. CNT production is carried out by the same process as the first time. Therefore, in the case of a process in which a CNT growth step is performed after the catalyst reduction step, the catalyst reduction step is necessarily performed. There are optimum conditions for the catalyst reduction process, and when the substrate is reused and the same catalyst is subjected to the second reduction process, the catalyst may not be in an optimal state. For example, agglomeration of the catalyst fine particles is promoted, and the particle size of the catalyst fine particles is increased, and the quality such as the diameter of the CNT may be changed.
これらの理由から、一度CNT生産に使用した基材及び触媒をそのまま次のCNT生産に使用した場合、触媒をCNTの成長に最適な状態に維持することが困難であり、基材を再利用して同品質のCNTを得ることは難しい。 For these reasons, when the substrate and catalyst once used for CNT production are used as they are for the next CNT production, it is difficult to maintain the catalyst in an optimal state for CNT growth, and the substrate is reused. It is difficult to obtain the same quality of CNT.
特許文献3には、基材表面に残存した触媒を酸で洗浄して除去した後に、新しい触媒を基材上に形成する方法の記載がある。基材表面の触媒を除去するためには、厚さ数nmの非常に薄い触媒を、基材のCNT成長面から均一に除去しなければならない。そのため触媒の剥がし残しや基材へのダメージが発生しやすく、CNTの成長が悪化する原因となる。例えば、基材として金属基材を使用して、触媒除去のために酸洗浄をおこなった場合、基材上で触媒が除去できていない箇所が発生したり、金属基材が酸に腐食されたりして、CNTの成長に影響をあたえる問題がある。そこで、より簡易でしかも安定な基材の再利用方法が求められている。 Patent Document 3 describes a method of forming a new catalyst on a substrate after washing and removing the catalyst remaining on the substrate surface with an acid. In order to remove the catalyst on the substrate surface, a very thin catalyst having a thickness of several nanometers must be uniformly removed from the CNT growth surface of the substrate. For this reason, the catalyst is not peeled off and damage to the base material is likely to occur, which causes deterioration of CNT growth. For example, when a metal substrate is used as the substrate and acid cleaning is performed to remove the catalyst, a location where the catalyst cannot be removed occurs on the substrate, or the metal substrate is corroded by acid. Thus, there is a problem that affects the growth of CNTs. Therefore, there is a demand for a simpler and more stable method for reusing a substrate.
本発明は上記の事情に鑑みて為されたもので、基材を繰り返し再利用しても高品質なカーボンナノチューブの生成を安定に高効率に実現することのできる、低コストのカーボンナノチューブ生成用基材及びその製造方法、並びに、当該カーボンナノチューブ生成用基材を得るためのカーボンナノチューブ生成用再利用基材等を提供することを目的とする。 The present invention has been made in view of the above circumstances, and can produce low-cost carbon nanotubes that can stably and efficiently produce high-quality carbon nanotubes even when the substrate is repeatedly reused . substrate and a manufacturing method thereof, as well, and to provide a carbon nanotube generation reusable substrates such as for obtaining the carbon nanotube generation substrate.
本発明者らは、鋭意検討の結果、同じ基材を繰り返し再利用して、安定して一定品質のカーボンナノチューブ配向集合体を低コストで製造可能であること見出した。具体的には、まず、基材上の触媒層上に配向して形成されたカーボンナノチューブを該触媒層から剥離する。次に、触媒層中の触媒の微粒子の初期化工程を実施することで、基材を再利用するための基礎となる基材を製造することができる。さらに、触媒の微粒子の初期化を行なった層(触媒初期化層)を除去せずに、その上に下地層を設けて、触媒初期化層を覆う状態とする。さらにその上に触媒を設けることで、カーボンナノチューブ生成用基材を製造することができる。このカーボンナノチューブ生成用基材を用いてCVDを行ない、再び基材上にCNT配向集合体を成長させることが可能となる。この工程を繰り返すことで同じ基材でカーボンナノチューブ配向集合体を繰り返し生産することが可能であることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have found that the same base material can be reused repeatedly to stably produce an aligned aggregate of carbon nanotubes with a constant quality at a low cost. Specifically, first, carbon nanotubes formed by orientation on the catalyst layer on the substrate are peeled from the catalyst layer. Next, the base material used as the basis for reusing a base material can be manufactured by implementing the initialization process of the catalyst fine particle in a catalyst layer. Further, without removing the layer in which the catalyst fine particles have been initialized (catalyst initialization layer), a base layer is provided on the layer to cover the catalyst initialization layer. Furthermore, the base material for carbon nanotube production | generation can be manufactured by providing a catalyst on it. It is possible to perform CVD using the carbon nanotube production base material and grow an aligned CNT aggregate on the base material again. By repeating this process, it has been found that it is possible to repeatedly produce aligned carbon nanotube aggregates on the same substrate, and the present invention has been completed.
すなわち、本発明の例示的側面としてのカーボンナノチューブ生成用再利用基材は、基材と、前記基材の表面上に設けられており、触媒の下地となる下地層と、前記下地層の表面であって、前記基材とは反対側の表面に設けられており、炭素成分を含まない触媒微粒子を少なくとも1つ備える触媒初期化層と、を備えることを特徴とする。 That is, the carbon nanotube production reuse base material as an exemplary aspect of the present invention is provided on the surface of the base material, the base material, the base layer serving as the base of the catalyst, and the surface of the base layer And it is provided in the surface on the opposite side to the said base material, The catalyst initialization layer provided with at least 1 catalyst fine particle which does not contain a carbon component is provided, It is characterized by the above-mentioned.
基材は、金属からなることが好ましい。前記基材と前記下地層との間に、炭素成分が前記基材に浸透するのを防止する浸炭防止層をさらに備えていることが好ましい。前記基材の表面であって、下地層の位置する側とは反対側の表面に炭素成分が前記基材に浸透するのを防止する浸炭防止層を備えていることがより好ましい。 The substrate is preferably made of metal. It is preferable that a carburization preventing layer for preventing a carbon component from penetrating into the base material is further provided between the base material and the base layer. It is more preferable that a carburization preventing layer for preventing a carbon component from penetrating into the base material is provided on the surface of the base material opposite to the side on which the base layer is located.
本発明の他の例示的側面としてのカーボンナノチューブ生成用再利用基材の製造方法は、基材上の触媒層上に形成されたカーボンナノチューブを該触媒層から剥離する剥離工程と、前記触媒層に残存する触媒微粒子から炭素成分を除去することによって、触媒微粒子を初期化する初期化工程と、を含むことを特徴とする。 According to another exemplary aspect of the present invention, there is provided a method for producing a reused base material for producing carbon nanotubes, a peeling step of peeling carbon nanotubes formed on a catalyst layer on a base material from the catalyst layer, and the catalyst layer. And an initialization step of initializing the catalyst fine particles by removing the carbon component from the catalyst fine particles remaining in the catalyst.
本発明の例示的側面としてのカーボンナノチューブ生成用基材は、基材と、前記基材の表面上に設けられており、触媒の下地となる第1の下地層と、前記下地層の表面であって、前記基材とは反対側の表面に設けられており、炭素成分を含まない触媒微粒子を少なくとも1つ備える触媒初期化層と、前記触媒初期化層上であって、前記第1の下地層とは反対側に設けられた、触媒の下地となる第2の下地層と、前記第2の下地層上に設けられた触媒と、を備えることを特徴とする。 The carbon nanotube generating base material as an exemplary aspect of the present invention is provided on the surface of the base material, the base material, the first base layer serving as a base for the catalyst, and the surface of the base layer. A catalyst initialization layer provided on a surface opposite to the base material, the catalyst initialization layer including at least one catalyst fine particle not including a carbon component, and the catalyst initialization layer, wherein the first It is characterized by comprising a second underlayer provided on the side opposite to the underlayer and serving as a base for the catalyst, and a catalyst provided on the second underlayer.
基材は、金属からなることが好ましい。前記基材と前記下地層との間に、炭素成分が前記基材に浸透するのを防止する浸炭防止層をさらに備えていることが好ましい。前記基材の表面であって、下地層の位置する側とは反対側の表面に炭素成分が前記基材に浸透するのを防止する浸炭防止層を備えていることがより好ましい。 The substrate is preferably made of metal. It is preferable that a carburization preventing layer for preventing a carbon component from penetrating into the base material is further provided between the base material and the base layer. It is more preferable that a carburization preventing layer for preventing a carbon component from penetrating into the base material is provided on the surface of the base material opposite to the side on which the base layer is located.
本発明の他の例示的側面としてのカーボンナノチューブ生成用基材の製造方法は、基材上の触媒層上に形成されたカーボンナノチューブを該触媒層から剥離する剥離工程と、前記触媒層に残存する触媒微粒子から炭素成分を除去することによって、触媒微粒子を初期化する初期化工程と、初期化された前記触媒層上であって、前記基材とは反対側に触媒の下地となる下地層を設ける下地層形成工程と、前記下地層上であって、前記触媒層とは反対側に触媒を設ける触媒形成工程と、を含むことを特徴とする。 According to another exemplary aspect of the present invention, there is provided a method of manufacturing a base material for producing a carbon nanotube, comprising: a separation step of separating carbon nanotubes formed on a catalyst layer on the substrate from the catalyst layer; An initializing step for initializing the catalyst fine particles by removing the carbon component from the catalyst fine particles, and an undercoat layer on the catalyst layer that has been initialized and serving as a catalyst undercoat on the side opposite to the base material And a catalyst forming step of providing a catalyst on the side opposite to the catalyst layer on the base layer.
本発明によれば、カーボンナノチューブの生産に、同じ基材を繰り返し再利用することができ、再利用回数にかかわらず基材上に均一で同品質のカーボンナノチューブ配向集合体を得ることができる。したがって、カーボンナノチューブの生産量低下や品質の低下を防止することができ、低コストに高い生産効率でカーボンナノチューブを生産することができる。 According to the present invention, the same base material can be reused repeatedly in the production of carbon nanotubes, and a uniform and the same quality carbon nanotube aligned aggregate can be obtained on the base material regardless of the number of times of reuse. Therefore, it is possible to prevent a decrease in the production amount and quality of the carbon nanotubes, and it is possible to produce carbon nanotubes with high production efficiency at low cost.
(CNT配向集合体)
高炭素濃度環境下・触媒賦活物質含有雰囲気で、本発明に係るカーボンナノチューブ生成用基材上の触媒から原料ガスを用いて、高効率でCNTを成長させることができ、触媒から成長した多数のCNTは特定の方向に配向し、CNT配向集合体を形成することができる。
(CNT aligned aggregate)
In a high carbon concentration environment / atmosphere containing a catalyst activator, CNTs can be grown with high efficiency using the raw material gas from the catalyst on the carbon nanotube production substrate according to the present invention. CNTs can be oriented in a specific direction to form an aligned CNT aggregate.
本発明に係るカーボンナノチューブ生成用再利用基材及び本発明に係るカーボンナノチューブ生成用基材を用いると得ることができる単層CNT配向集合体は、比表面積が高く、一本一本のCNTが規則的な方向に配向していて、かつ嵩密度が低いという従来のCNT集合体にはない優れた特性を有するという有利な効果がある。単層CNT配向集合体の、例えば、比表面積は600m2/g〜2600m2/gと非常に大きい。このように大きな比表面積は、触媒の担持体やエネルギー・物質貯蔵材として有効であり、スーパーキャパシタやアクチュエータなどの用途に好適である。また、CNT配向集合体を構成する一本一本のCNTが規則的な方向に配向している。そのため、個々のCNTの機能の方向性を揃えることができ、結果として、高機能なCNT集合体を得ることができる。 The single-walled aligned CNT aggregate obtained by using the carbon nanotube-generating reuse base material according to the present invention and the carbon nanotube-generating base material according to the present invention has a high specific surface area, and each CNT is There is an advantageous effect of having an excellent characteristic that the conventional CNT aggregate does not have, such as being oriented in a regular direction and having a low bulk density. Monolayer aligned CNT aggregate, for example, the specific surface area as large as 600m 2 / g~2600m 2 / g. Such a large specific surface area is effective as a catalyst carrier and energy / material storage material, and is suitable for applications such as supercapacitors and actuators. In addition, each CNT constituting the aligned CNT aggregate is oriented in a regular direction. Therefore, the directionality of the function of each CNT can be aligned, and as a result, a highly functional CNT aggregate can be obtained.
(配向性)
配向の評価方法については後に詳述するが、例えば、θ−2θ法、ラウエ法で得られたX線回折強度、SEM画像又は原子間力顕微鏡(「AMF」ともいう)画像を高速フーリエ変換して得られた画像から得た強度プロフィールを用いて計算したヘルマンの配向係数が、本発明によって得られる単層CNT配向集合体においては、例えば、−0.5〜1であり、好ましくは0より大きく1以下であり、より好ましくは0.25以上、1以下である。このような配向の範囲にある単層CNT配向集合体は、良好な電気特性、良好な機械的特性、良好な熱特性を示し、比表面積も大きく、一体性に富み、取扱いが容易で形状加工性も良好である。しかも熱力学的、電気的、機械的な異方性も十分に示し、様々な用途に好適である。
(Orientation)
The orientation evaluation method will be described in detail later. For example, the X-ray diffraction intensity, SEM image or atomic force microscope (also referred to as “AMF”) image obtained by the θ-2θ method or the Laue method is subjected to fast Fourier transform. In the aligned single-walled CNT aggregate obtained by the present invention, the orientation coefficient of Hermann calculated using the intensity profile obtained from the image obtained in the present invention is, for example, -0.5 to 1, preferably from 0 It is 1 or less, more preferably 0.25 or more and 1 or less. Single-walled aligned CNT aggregates in such a range of orientation exhibit good electrical properties, good mechanical properties, good thermal properties, a large specific surface area, high unity, easy handling, and shape processing The property is also good. Moreover, it exhibits sufficient thermodynamic, electrical, and mechanical anisotropy and is suitable for various applications.
これに対してヘルマンの配向係数が0より小さい単層CNT配向集合体は配向性を示さない。またヘルマンの配向係数が0.25より小さいものは、CNTの傾斜が45°となり、配向の効果は減少する。なお、ヘルマン配向係数が1の単層CNT配向集合体は、完全に配向したものとなる。 On the other hand, single-walled aligned CNT aggregates whose Hermann orientation coefficient is less than 0 do not exhibit orientation. When the Herman orientation coefficient is less than 0.25, the CNT inclination is 45 °, and the orientation effect is reduced. A single-walled aligned CNT aggregate having a Herman orientation coefficient of 1 is completely aligned.
単層CNT配向集合体が配向性、及び高比表面積を示すためには、単層CNT配向集合体の高さ(長さ)は10μm以上、10cm以下の範囲にあることが好ましい。この高さ範囲にある単層CNT配向集合体は、良好な配向性及び大きい比表面積を備えている。高さを10μm以上とすることで、配向性が向上する。また高さが10cm以下であれば、生成を短時間で行なえるため炭素系不純物の付着を抑制し、比表面積を向上させることができる。さらには、この高さ範囲のある単層CNT配向集合体は高い一体性を備え、取扱いが容易であり、形状加工性も良好である。 In order for the aligned single-walled CNT aggregate to exhibit orientation and a high specific surface area, the height (length) of the aligned single-walled CNT aggregate is preferably in the range of 10 μm to 10 cm. A single-walled aligned CNT aggregate in this height range has good orientation and a large specific surface area. The orientation is improved by setting the height to 10 μm or more. Further, if the height is 10 cm or less, the production can be performed in a short time, so that adhesion of carbon impurities can be suppressed and the specific surface area can be improved. Furthermore, the single-walled aligned CNT aggregate having this height range has high integrity, is easy to handle, and has good shape workability.
CNT配向集合体の配向は、例えば、以下の1から3の少なくともいずれか1つの方法によって評価することができる。すなわち、
1.CNTの長手方向に平行な第1方向と、第1方向に直交する第2方向とからX線を入射してX線回折強度を測定(θ−2θ法)した場合に、第2方向からの反射強度が、第1方向からの反射強度より大きくなるθ角と反射方位とが存在し、かつ第1方向からの反射強度が、第2方向からの反射強度より大きくなるθ角と反射方位とが存在すること。
The orientation of the aligned CNT aggregate can be evaluated by, for example, at least one of the following methods 1 to 3. That is,
1. When X-ray diffraction intensity is measured by incident X-rays from a first direction parallel to the longitudinal direction of the CNT and a second direction orthogonal to the first direction (θ-2θ method), There exists a θ angle and a reflection direction in which the reflection intensity is greater than the reflection intensity from the first direction, and a θ angle and a reflection direction in which the reflection intensity from the first direction is greater than the reflection intensity from the second direction. Exist.
2.CNTの長手方向に直交する方向からX線を入射して得られた2次元回折パターン像でX線回折強度を測定(ラウエ法)した場合に、異方性の存在を示す回折ピークパターンが出現すること。 2. A diffraction peak pattern showing the presence of anisotropy appears when X-ray diffraction intensity is measured (Laue method) using a two-dimensional diffraction pattern image obtained by X-ray incidence from a direction perpendicular to the longitudinal direction of CNT. To do.
3.ヘルマンの配向係数が、θ−2θ法又はラウエ法で得られたX線回折強度を用いると0より大きく1より小さいこと。より好ましくは0.25以上、1以下であること。 3. The Herman orientation coefficient is greater than 0 and less than 1 using the X-ray diffraction intensity obtained by the θ-2θ method or the Laue method. More preferably, it is 0.25 or more and 1 or less.
また、前述のX線回折法において、単層CNT間のパッキングに起因する(CP)回折ピーク、(002)ピークの回折強度及び単層CNTを構成する炭素六員環構造に起因する(100)、(110)ピークの平行と垂直との入射方向の回折ピーク強度の度合いが互いに異なるという特徴も有している。 In the above-mentioned X-ray diffraction method, (CP) diffraction peak due to packing between single-walled CNTs, (002) peak diffraction intensity, and carbon six-membered ring structure constituting single-walled CNTs (100) , (110) The intensity of diffraction peaks in the incident directions of the parallel and perpendicular peaks is also different from each other.
〔カーボンナノチューブ生成用再利用基材及びカーボンナノチューブ生成用基材の構成〕
本実施の形態に係るカーボンナノチューブ生成用再利用基材は、基材と、基材の表面上に設けられており、触媒の下地となる下地層と、下地層の表面であって、前記基材とは反対側の表面に設けられており、炭素成分を含まない触媒微粒子を少なくとも1つ備える触媒初期化層と、を備えている。なお、本明細書において「カーボンナノチューブ生成用再利用基材」とは、一旦CNTの製造に使用したカーボンナノチューブ生成用基材であって、再度CNTに製造に使用可能なカーボンナノチューブ生成用基材を製造するための基礎となる基材であり、例えば、当該カーボンナノチューブ生成用再利用基材にさらに下地層を設け、その上に触媒を設けることによって、本発明にかかるカーボンナノチューブ生成用基材を得ることができる。
[Configuration of reused carbon nanotube production base and carbon nanotube production base]
The carbon nanotube-generating reuse base material according to the present embodiment is provided on the base material, the surface of the base material, the base layer serving as the base of the catalyst, the surface of the base layer, and the base A catalyst initialization layer provided on a surface opposite to the material and provided with at least one catalyst fine particle not containing a carbon component. In the present specification, the “carbon nanotube generating reusable base material” refers to a carbon nanotube generating base material that has been once used for manufacturing CNT, and can be used again for manufacturing CNT. For example, the base material for producing carbon nanotubes according to the present invention is provided by further providing a base layer on the reuse base material for producing carbon nanotubes and providing a catalyst thereon. Can be obtained.
また、本実施の形態に係るカーボンナノチューブ生成用基材は、基材と、前記基材の表面上に設けられており、触媒の下地となる第1の下地層と、前記下地層の表面であって、前記基材とは反対側の表面に設けられており、炭素成分を含まない触媒微粒子を含む触媒初期化層と、前記触媒初期化層上であって、前記第1の下地層とは反対側に設けられた、触媒の下地となる第2の下地層と、前記第2の下地層上に設けられた触媒と、を備えている。 In addition, the carbon nanotube generating base material according to the present embodiment is provided on the surface of the base material, the base material, the first base layer serving as a base for the catalyst, and the surface of the base layer. A catalyst initialization layer that is provided on a surface opposite to the substrate and includes catalyst fine particles not containing a carbon component; and on the catalyst initialization layer, the first underlayer; Comprises a second underlayer provided on the opposite side and serving as a catalyst underlayer, and a catalyst provided on the second underlayer.
(基材)
上記カーボンナノチューブ生成用再利用基材及びカーボンナノチューブ生成用基材が備える基材はその表面にカーボンナノチューブの触媒を担持することのできる部材であればよく、400℃以上の高温でも形状を維持できることが好ましい。例えば、CNTの製造に実績のあるものを、適宜、用いることができる。材質としては、鉄、ニッケル、クロム、モリブデン、タングステン、チタン、アルミニウム、マンガン、コバルト、銅、銀、金、白金、ニオブ、タンタル、鉛、亜鉛、ガリウム、インジウム、ガリウム、ゲルマニウム、砒素、インジウム、燐、及びアンチモンなどの金属、並びにこれらの金属を含む合金及び酸化物、又はシリコン、石英、ガラス、マイカ、グラファイト、及びダイヤモンドなどの非金属、並びにセラミックなどを例示できる。金属はシリコン及びセラミックと比較して、低コストであるから好ましく、特に、Fe−Cr(鉄−クロム)合金、Fe−Ni(鉄−ニッケル)合金、Fe−Cr−Ni(鉄−クロム−ニッケル)合金等は好適である。
(Base material)
The carbon nanotube generation reusable base material and the base material provided for the carbon nanotube generation base material may be any member that can carry a carbon nanotube catalyst on its surface, and can maintain its shape even at a high temperature of 400 ° C. or higher. Is preferred. For example, those with a proven track record in CNT production can be used as appropriate. Materials include iron, nickel, chromium, molybdenum, tungsten, titanium, aluminum, manganese, cobalt, copper, silver, gold, platinum, niobium, tantalum, lead, zinc, gallium, indium, gallium, germanium, arsenic, indium, Examples include metals such as phosphorus and antimony, and alloys and oxides containing these metals, or non-metals such as silicon, quartz, glass, mica, graphite, and diamond, and ceramics. Metals are preferable because they are low in cost compared to silicon and ceramics, and in particular, Fe-Cr (iron-chromium) alloys, Fe-Ni (iron-nickel) alloys, Fe-Cr-Ni (iron-chromium-nickel). ) Alloys are preferred.
基材の態様としては、平板状以外に、例えば、薄膜状、ブロック状、あるいは粉末状などでもよく、特に体積の割に表面積を大きくとれる態様が大量に製造する場合において有利である。なお、基材の主表面とは、面積が大きくカーボンナノチューブの成長に有利な表面であり、実際にカーボンナノチューブを成長させる面のことを意味する。 The substrate may be in the form of a thin film, a block, or a powder, for example, in addition to the flat plate, and is particularly advantageous when a large amount of the surface area can be obtained for the volume. The main surface of the substrate is a surface having a large area and advantageous for the growth of carbon nanotubes, and means a surface on which carbon nanotubes are actually grown.
平板状の基材を使用する場合、基材の厚さに特に制限はなく、例えば数μm程度の薄膜から数cm程度までのものを用いることができる。好ましくは、0.05mm以上3mm以下である。基材の厚さが3mm以下であれば、CVD工程で基材を十分に加熱することができカーボンナノチューブの成長不良を抑制することができ、また基材のコストを低減できる。基材の厚さが0.05mm以上であれば、浸炭による基材の変形を抑え、また基材自体のたわみが起こりにくいため基材の搬送や再利用に有利である。なお、本明細書にいう浸炭とは基材に炭素成分が浸透することをいう。 When using a flat base material, there is no restriction | limiting in particular in the thickness of a base material, For example, the thing from about several micrometers thin film to about several cm can be used. Preferably, it is 0.05 mm or more and 3 mm or less. If the thickness of the base material is 3 mm or less, the base material can be sufficiently heated in the CVD process, and the growth failure of the carbon nanotubes can be suppressed, and the cost of the base material can be reduced. If the thickness of the base material is 0.05 mm or more, the deformation of the base material due to carburization is suppressed, and the base material itself is less likely to bend, which is advantageous for transport and reuse of the base material. In addition, the carburization said in this specification means that a carbon component osmose | permeates a base material.
平板状基材の形状、大きさに特に制限はないが、形状としては、長方形もしくは正方形のものを用いることができる。基板の一辺の大きさに特に制限はないが、カーボンナノチューブの量産性の観点から、大きいほど望ましい。 Although there is no restriction | limiting in particular in the shape and magnitude | size of a flat base material, As a shape, a rectangular or square thing can be used. There is no particular limitation on the size of one side of the substrate, but it is preferably as large as possible from the viewpoint of mass productivity of carbon nanotubes.
(カーボンナノチューブ生成用再利用基材)
本実施の形態におけるカーボンナノチューブ生成用再利用基材は、後述する下地膜及び触媒の積層工程を実施してカーボンナノチューブ生成用基材とした後、CVDをおこなうことにより基材を再利用してカーボンナノチューブ生成が可能である。
(Recycle base material for carbon nanotube production)
The carbon nanotube generation reuse base material in the present embodiment is a carbon nanotube generation base material by performing a layering process of a base film and a catalyst, which will be described later, and then reusing the base material by performing CVD. Carbon nanotube production is possible.
カーボンナノチューブ生成用再利用基材は、基材と、基材の表面上に設けられており、触媒の下地となる下地層と、下地層の表面であって、前記基材とは反対側の表面に設けられており、炭素成分を含まない触媒微粒子を含む触媒初期化層と、を備えている。 The reusable base material for producing carbon nanotubes is provided on the base material, the surface of the base material, the base layer serving as the base of the catalyst, and the surface of the base layer, on the opposite side of the base material And a catalyst initialization layer including catalyst fine particles which are provided on the surface and do not include a carbon component.
基材上の触媒層上に形成されたカーボンナノチューブを該触媒層から剥離する剥離工程と(つまり、このとき触媒層は一旦CNTの製造に供された後なので触媒微粒子を含む層となっている)、前記触媒層に残存する触媒微粒子から炭素成分を除去することによって、触媒微粒子を初期化する初期化工程とを行なうことで、カーボンナノチューブ生成用再利用基材を製造することができる。 A separation step of separating the carbon nanotubes formed on the catalyst layer on the substrate from the catalyst layer (that is, the catalyst layer is a layer containing catalyst fine particles since it has been once used for the production of CNT) ), By removing the carbon component from the catalyst fine particles remaining in the catalyst layer, and by performing an initialization step for initializing the catalyst fine particles, it is possible to produce a reuse base material for producing carbon nanotubes.
カーボンナノチューブ生成用再利用基材に対して、初期化された前記触媒初期化層上であって、前記基材とは反対側に触媒の下地となる下地層を設ける下地層形成工程と、
前記下地層上であって、前記触媒初期化層とは反対側に触媒を設ける触媒形成工程と、を行なえば、後述するカーボンナノチューブ生成用基材を製造することができる。これにより、一旦カーボンナノチューブの製造に供した基材であっても、再度カーボンナノチューブの製造に用いることができる。
A base layer forming step of providing a base layer that is a base of the catalyst on the side of the catalyst initialization layer that has been initialized with respect to the reuse base material for carbon nanotube generation;
By performing a catalyst forming step of providing a catalyst on the underlayer and on the opposite side of the catalyst initialization layer, a carbon nanotube generating substrate described later can be manufactured. Thereby, even if it is the base material once used for manufacture of a carbon nanotube, it can be used for manufacture of a carbon nanotube again.
(カーボンナノチューブ生成用基材)
本発明におけるカーボンナノチューブ生成用基材は、CNT成長をおこなった基材を再利用して製造する。基材を再利用できるので、同品質のカーボンナノチューブを繰り返し安定して低コストに生産することが可能となる。
(Substrate for carbon nanotube production)
The base material for producing carbon nanotubes in the present invention is manufactured by reusing a base material on which CNT has been grown. Since the substrate can be reused, carbon nanotubes of the same quality can be produced repeatedly and stably at a low cost.
カーボンナノチューブ生成用基材は、基材と、前記基材の表面上に設けられており、触媒の下地となる第1の下地層と、前記下地層の表面であって、前記基材とは反対側の表面に設けられており、炭素成分を含まない触媒微粒子を含む触媒初期化層と、前記触媒初期化層上であって、前記第1の下地層とは反対側に設けられた、触媒の下地となる第2の下地層と、前記第2の下地層上に設けられた触媒と、を備える。 The base material for generating carbon nanotubes is provided on the surface of the base material, the base material, the first base layer serving as a base for the catalyst, and the surface of the base layer, wherein the base material is Provided on the opposite surface, a catalyst initialization layer containing catalyst fine particles not containing a carbon component, and on the catalyst initialization layer, provided on the opposite side of the first underlayer, A second base layer serving as a base of the catalyst; and a catalyst provided on the second base layer.
基材上の触媒層上に形成されたカーボンナノチューブを該触媒層から剥離する剥離工程と、前記触媒層に残存する触媒微粒子から炭素成分を除去することによって、触媒微粒子を初期化する初期化工程と(つまり、このとき触媒層は一旦CNTの製造に供された後なので触媒微粒子を含む層となっている)、初期化された前記触媒層上であって、前記基材とは反対側に触媒の下地となる下地層を設ける下地層形成工程と、前記下地層上であって、前記触媒層とは反対側に触媒を設ける触媒形成工程とを行なうことで、カーボンナノチューブ生成用基材を製造することができる。 An exfoliation step for exfoliating carbon nanotubes formed on the catalyst layer on the substrate from the catalyst layer, and an initialization step for initializing the catalyst fine particles by removing carbon components from the catalyst fine particles remaining in the catalyst layer (That is, the catalyst layer at this time is a layer containing catalyst fine particles since it has been once used for the production of CNT), on the initialized catalyst layer, on the side opposite to the base material By performing a base layer forming step of providing a base layer to be a base of a catalyst and a catalyst forming step of providing a catalyst on the side opposite to the catalyst layer on the base layer, a carbon nanotube generating substrate is obtained. Can be manufactured.
カーボンナノチューブ生成用基材の製造にあたり、触媒微粒子を初期化した触媒初期化層を覆うように、下地膜を積層し、さらにその下地膜上に新たに触媒を積層するが、この工程により基材最表面に新たな触媒が形成される。よって、カーボンナノチューブ生成用基材を用いて次のCVDを実施するときに、最適な触媒を調製することができる。さらに触媒と触媒初期化層との間に設けた下地膜により、一度CVDで使用した触媒と、基材再利用時の次のCVDで使用する触媒とを分離することが可能となる。そのため、下地膜及び触媒の積層工程では、下地膜、触媒の順に層状に形成することが好ましい。 When manufacturing a substrate for generating carbon nanotubes, a base film is laminated so as to cover a catalyst initialization layer in which catalyst fine particles are initialized, and a catalyst is newly laminated on the base film. A new catalyst is formed on the outermost surface. Therefore, an optimal catalyst can be prepared when the next CVD is performed using the carbon nanotube generating base material. Furthermore, the base film provided between the catalyst and the catalyst initialization layer makes it possible to separate the catalyst once used in the CVD and the catalyst used in the next CVD when the substrate is reused. Therefore, in the step of laminating the base film and the catalyst, it is preferable to form the base film and the catalyst in the order of layers.
当業者であれば、CVDに一度使用した触媒は、基材再利用において下地膜で覆ってその上に新たな触媒を形成するので、触媒の初期化工程を実施する必要がないと考えるであろう。しかし、本発明者らは、触媒の初期化工程をおこなわずに下地膜及び触媒を積層して、基材を再利用した場合、CNT配向集合体が生成しない場合があることを見出した。このことから、触媒の初期化工程は基材の再利用にあたり、CNT配向集合体の成長の安定性を向上させる役割、もしくはCNT配向集合体の成長を促進する役割があることを見出し、本発明に至ったのである。 A person skilled in the art thinks that a catalyst once used for CVD is covered with a base film in the reuse of a substrate to form a new catalyst thereon, so that it is not necessary to carry out a catalyst initialization step. Let's go. However, the present inventors have found that when the base film and the catalyst are laminated without performing the catalyst initialization step and the base material is reused, the aligned CNT aggregate may not be generated. From this, it has been found that the catalyst initialization step has a role of improving the growth stability of the aligned CNT aggregate or a role of promoting the growth of the aligned CNT aggregate in the reuse of the base material. It came to.
(浸炭防止層)
この基材の表面又は裏面の少なくともいずれか一方には、浸炭防止層を形成してもよい。もちろん、表面及び裏面の両面に浸炭防止層が形成されていることが望ましい。この浸炭防止層は、カーボンナノチューブの生成工程において、基材が浸炭されて変形してしまうのを防止するための保護層である。
(Carburization prevention layer)
A carburization preventing layer may be formed on at least one of the front surface and the back surface of the substrate. Of course, it is desirable that a carburizing prevention layer is formed on both the front and back surfaces. This carburizing prevention layer is a protective layer for preventing the base material from being carburized and deformed in the carbon nanotube production process.
基材の材質として金属を使用した場合、基材の変形(反り等)の問題が発生する虞がある。この金属製基材の変形の原因について検討したところ、カーボンナノチューブの成長中に高温の炭素雰囲気下に基材が曝されることで、基材が浸炭され、それが主な原因で基材の変形が起きることを本発明者らは見出した。特に、全流量に対する原料ガスの割合が2〜20%程度である高炭素濃度環境下では、CNT配向集合体の成長速度は向上するが、金属製基材の変形が増大する問題が発生することを本発明者らは見出した。また、工業的にカーボンナノチューブを大量生産するには、基材面積を大きくする必要があるが、基材面積が大きくなるほど基材の変形が増大してしまう恐れがある。CNT生産の低コスト化のためにはCNT生産用基材を再利用する必要があるが、再利用を繰り返すごとに基材の変形が増大してしまう恐れがある。 When a metal is used as the material of the base material, there is a possibility that a problem of deformation (warping or the like) of the base material may occur. When the cause of the deformation of the metal base material was examined, the base material was carburized by exposing the base material to a high-temperature carbon atmosphere during the growth of the carbon nanotubes. The inventors have found that deformation occurs. In particular, in a high carbon concentration environment where the ratio of the raw material gas to the total flow rate is about 2 to 20%, the growth rate of the aligned CNT aggregate is improved, but there is a problem that the deformation of the metal base material is increased. The present inventors have found out. In addition, in order to industrially mass-produce carbon nanotubes, it is necessary to increase the substrate area, but the deformation of the substrate may increase as the substrate area increases. In order to reduce the cost of CNT production, it is necessary to reuse the base material for CNT production, but there is a possibility that the deformation of the base material increases every time the reuse is repeated.
CVDの最中に基材が変形すると、基材表面付近のガスの流れが変化して、カーボンナノチューブの成長が基板上で不均一となってしまったり、基材からのカーボンナノチューブの剥離工程で不具合が生じたりする可能性がある。基材の再利用を繰り返すことにより基材の変形が増大すると、カーボンナノチューブの成長自体が阻害されたり、触媒初期化工程及び触媒形成工程においても不具合が生じたりする可能性がある。よって、基材の繰り返し使用にあたっては、基材の変形を防止しなければならない。 If the base material deforms during CVD, the gas flow near the base material surface changes, and the growth of the carbon nanotubes becomes uneven on the substrate, or the carbon nanotubes are peeled off from the base material. There is a possibility of malfunction. If the deformation of the base material is increased by repeating the reuse of the base material, the growth of the carbon nanotubes itself may be hindered, and a malfunction may occur in the catalyst initialization process and the catalyst formation process. Therefore, deformation of the base material must be prevented when the base material is used repeatedly.
そこで、本発明者らは浸炭防止層を設けることでこのような問題点を防ぐことに想到したのである。 Therefore, the present inventors have come up with the idea of preventing such problems by providing a carburization prevention layer.
浸炭防止層は、金属又はセラミック材料によって構成されることが好ましく、特に浸炭防止効果の高いセラミック材料であることが好ましい。金属としては、銅、アルミニウムなどを例示できる。セラミック材料としては、例えば、酸化アルミニウム、酸化ケイ素、酸化ジルコニウム、酸化マグネシウム、酸化チタン、シリカアルミナ、酸化クロム、酸化ホウ素、酸化カルシウム、酸化亜鉛などの酸化物、窒化アルミニウム、窒化ケイ素などの窒化物を例示でき、なかでも浸炭防止効果が高いことから、酸化アルミニウム、酸化ケイ素が好ましい。 The carburizing prevention layer is preferably made of a metal or a ceramic material, and particularly preferably a ceramic material having a high carburizing prevention effect. Examples of the metal include copper and aluminum. Examples of the ceramic material include aluminum oxide, silicon oxide, zirconium oxide, magnesium oxide, titanium oxide, silica alumina, chromium oxide, boron oxide, calcium oxide, zinc oxide and other oxides, and nitrides such as aluminum nitride and silicon nitride. Among them, aluminum oxide and silicon oxide are preferable because they have a high effect of preventing carburization.
浸炭防止層上には、後述するCNT成長のための触媒及び下地層を形成するが、浸炭防止層の材質と触媒又は下地層の材質とが共通する場合、浸炭防止層が触媒又は下地層としての機能を兼ねていてもよい。 On the carburizing prevention layer, a catalyst and a base layer for CNT growth described later are formed. When the material of the carburizing prevention layer and the material of the catalyst or the base layer are common, the carburization prevention layer is used as the catalyst or the base layer. It may also serve as a function.
浸炭防止層の厚さは、0.01μm以上1.0μm以下が望ましい。層厚さが0.01μm以上であると浸炭防止効果を充分に得ることができる。層厚さが1.0μm以下であると、基材の熱伝導性が変化を抑制して、CVD工程で基材を十分に加熱してカーボンナノチューブを良好に成長させることができる。層形成(コーティング)の方法としては、例えば、蒸着、スパッタリング等の物理的方法、CVD、塗布法等の方法を適用することができる。 The thickness of the carburizing prevention layer is desirably 0.01 μm or more and 1.0 μm or less. When the layer thickness is 0.01 μm or more, a carburization preventing effect can be sufficiently obtained. When the layer thickness is 1.0 μm or less, the thermal conductivity of the base material can be prevented from changing, and the base material can be sufficiently heated in the CVD process to grow the carbon nanotubes satisfactorily. As a layer formation (coating) method, for example, a physical method such as vapor deposition or sputtering, a method such as CVD, or a coating method can be applied.
(下地層、触媒)
基材上には、CNT成長のための触媒を形成する。触媒としては、例えば、これまでのCNTの製造に実績のあるものを、適宜、用いることができ、具体的には、鉄、ニッケル、コバルト、モリブデン、及びこれらの塩化物、及び合金などを例示することができる。またこれらが、さらにアルミナ、チタニア、窒化チタン、酸化シリコンなどのセラミック材料からなる下地層と層状になっていることが好ましい。例えば、アルミナ−鉄薄膜、アルミナ−コバルト薄膜、及びアルミナ−鉄−モリブデン薄膜などを例示することができる。下地層とは、触媒の下地となる層である。なお、用語「触媒の下地となる下地層」の「触媒」と「触媒初期化層」の「触媒」は同じ触媒であり、前者の触媒を用いてCNT製造を行なうと、当該触媒が「触媒初期化層」を構成する「触媒微粒子」となる。下地層としては触媒の下地となるものであればさまざまな材料を用いることができる。例えば、アルミニウム、チタン等の金属を使用してもよいが、セラミック材料の方が、基材を再利用したときにCNT成長が良好であるため好ましい。例えば、アルミニウム−鉄薄膜、アルミニウム−鉄−モリブデン薄膜などの形態でもCNT成長は可能であるが、本発明による基材の再利用を行なう場合、下地膜として使用する材料は、セラミック材料の方が、金属に比べてCVD中に劣化することがなく、2度目以降のCVDでもCNT成長が良好である。下地層の厚みは、CNTの成長が安定して、歩留まりが向上することから、10nm以上であることが好ましく、生産効率の点から、30nm以下であることが好ましい。
(Underlayer, catalyst)
A catalyst for CNT growth is formed on the substrate. As the catalyst, for example, those that have been used in the production of conventional CNTs can be used as appropriate. Specific examples include iron, nickel, cobalt, molybdenum, and chlorides and alloys thereof. can do. Further, they are preferably layered with an underlayer made of a ceramic material such as alumina, titania, titanium nitride, or silicon oxide. For example, an alumina-iron thin film, an alumina-cobalt thin film, an alumina-iron-molybdenum thin film, etc. can be illustrated. The underlayer is a layer that serves as a base for the catalyst. Note that the term “catalyst” in the term “underlying layer that serves as the base for the catalyst” and “catalyst” in the “catalyst initialization layer” are the same catalyst. It becomes “catalyst fine particles” constituting the “initialization layer”. As the underlayer, various materials can be used as long as they become the underlayer of the catalyst. For example, a metal such as aluminum or titanium may be used, but a ceramic material is preferable because CNT growth is good when the substrate is reused. For example, CNT growth is possible even in the form of an aluminum-iron thin film, an aluminum-iron-molybdenum thin film, etc., but when the substrate is reused according to the present invention, the material used as the base film is the ceramic material. As compared with metal, there is no deterioration during CVD, and CNT growth is good even in the second and subsequent CVD. The thickness of the underlayer is preferably 10 nm or more from the viewpoint of stable CNT growth and improved yield, and preferably 30 nm or less from the viewpoint of production efficiency.
触媒の存在量としては、例えば、これまでのCNTの製造に実績のある量を使用することができ、例えば鉄を用いる場合、その厚さは、0.1nm以上100nm以下が好ましく、0.5nm以上5nm以下がさらに好ましく、0.8nm以上2nm以下が特に好ましい。 As the amount of catalyst present, for example, a proven amount can be used for the production of CNTs so far. For example, when iron is used, the thickness is preferably 0.1 nm or more and 100 nm or less, and 0.5 nm. The thickness is more preferably 5 nm or less and particularly preferably 0.8 nm or more and 2 nm or less.
基材表面への下地層及び触媒層の形成、つまり、本発明にいう下地層形成工程及び触媒形成工程は、ウェットプロセス又はドライプロセスのいずれを適用してもよい。例えば、スパッタリング蒸着法、金属微粒子を適宜な溶媒に分散させた液体の塗布・焼成法などを適用することができる。また周知のフォトリソグラフィー、ナノインプリンティング等を適用したパターニングを併用して触媒層を任意の形状とすることもできる。本発明の製造方法においては、基板上に成膜する触媒のパターニング及びCNTの成長時間を調整することにより、薄膜状、円柱状、角柱状、及びその他の複雑な形状をしたものなど、単層CNT配向集合体の形状を任意に制御することができる。 Either the wet process or the dry process may be applied to the formation of the base layer and the catalyst layer on the surface of the substrate, that is, the base layer formation step and the catalyst formation step referred to in the present invention. For example, a sputtering vapor deposition method or a liquid coating / firing method in which metal fine particles are dispersed in an appropriate solvent can be applied. In addition, the catalyst layer can be formed into an arbitrary shape by combining patterning using well-known photolithography, nanoimprinting, or the like. In the production method of the present invention, a single layer, such as a thin film, a column, a prism, and other complicated shapes by adjusting the patterning of a catalyst to be formed on a substrate and the growth time of CNTs The shape of the aligned CNT aggregate can be arbitrarily controlled.
特に薄膜状の単層CNT配向集合体は、その長さ及び幅寸法に比較して厚さ(高さ)寸法が極端に小さいが、長さ及び幅寸法は、触媒のパターニングによって任意に制御可能であり、厚さ寸法は、単層CNT配向集合体を構成する各単層CNTの成長時間によって任意に制御可能である。 In particular, the aligned single-walled CNT aggregate is extremely small in thickness (height) compared to its length and width, but the length and width can be controlled arbitrarily by patterning the catalyst. The thickness dimension can be arbitrarily controlled by the growth time of each single-walled CNT constituting the single-walled aligned CNT aggregate.
なお、基材の表面及び裏面の両面に触媒が形成されていれば、カーボンナノチューブ配向集合体を基材の両面において成長させることができるので、生産効率の点からより望ましい。もちろん、生産コストや生産工程上の都合等に応じて、触媒を片面とすることは可能である。 If the catalyst is formed on both the front and back surfaces of the substrate, the aligned carbon nanotube aggregate can be grown on both surfaces of the substrate, which is more desirable from the viewpoint of production efficiency. Of course, it is possible to make the catalyst one side according to the production cost, convenience in the production process, and the like.
基材及び基材表面の浸炭防止層、触媒においては、それぞれ、その表面の算術平均粗さRaが3μm以下であることが望ましい。これにより、基材表面への炭素汚れの付着が防止又は低減され、さらに浸炭されにくくなり、高品質のカーボンナノチューブを高効率で生産することが可能となる。算術平均粗さRaは、「JIS B 0601−2001」に記載の通り、粗さ曲線からその平均線の方向に基準長さLだけ抜き取って、この抜取り部分の平均線方向にX軸、直交する縦倍率の方向にY軸をとったときの表面プロファイルをy=f(x)で表したときに、次式(1)によって求められる。 In the base material, the carburization preventing layer on the base material surface, and the catalyst, the arithmetic average roughness Ra of the surface is preferably 3 μm or less. This prevents or reduces the adhesion of carbon stains to the substrate surface, makes it difficult to carburize, and enables high-quality carbon nanotubes to be produced with high efficiency. As described in “JIS B 0601-2001”, the arithmetic average roughness Ra is extracted from the roughness curve by the reference length L in the direction of the average line, and the X-axis is orthogonal to the average line direction of the extracted portion. When the surface profile when the Y axis is taken in the direction of the vertical magnification is expressed by y = f (x), it is obtained by the following equation (1).
(CNT配向集合体の剥離工程)
CNT配向集合体を基材から剥離する方法としては、物理的、化学的あるいは機械的な剥離方法を例示でき、例えば電場、磁場、遠心力、表面張力を用いて剥離する方法、機械的に直接基材から剥ぎ取る方法、圧力、熱を用いて基材から剥離する方法などが適用可能である。簡単な剥離法としては、単層CNT配向集合体をピンセットで直接つまんで基材から剥がす方法があるが、カッターブレードなどの薄い刃物を使用して基材から剥ぎ取ることがより好適である。また、真空ポンプを用いて単層CNT配向集合体を吸引し、基材から剥ぎ取ることも可能である。
(Step of peeling CNT aligned aggregate)
Examples of the method for peeling the aligned CNT aggregate from the substrate include physical, chemical or mechanical peeling methods, for example, a method of peeling using an electric field, a magnetic field, centrifugal force, or surface tension, or mechanically directly. The method of peeling from a base material, the method of peeling from a base material using a pressure and a heat | fever, etc. are applicable. As a simple peeling method, there is a method in which the single-walled aligned CNT aggregate is directly pinched with tweezers and peeled off from the substrate, but it is more preferable to peel off from the substrate using a thin blade such as a cutter blade. It is also possible to suck the single-walled aligned CNT aggregate using a vacuum pump and peel it off from the substrate.
(触媒初期化層、触媒の初期化工程)
基材上に成長したCNT配向集合体を剥離したとき、基材上には触媒が剥離されずに微粒子状になって残存している。その触媒の表面には、例えばCVDを用いてCNTを成長させた場合、CVDにて付着したと考えられる炭素不純物が付着している。炭素不純物とは、CNT配向集合体の剥離工程で取りきれずに残ったCNT、グラファイト状又はアモルファス状のナノ粒子、薄片状物質等の炭素化合物であると考えられる。
(Catalyst initialization layer, catalyst initialization process)
When the aligned CNT aggregate grown on the base material is peeled off, the catalyst remains on the base material in the form of fine particles without being peeled off. On the surface of the catalyst, for example, when CNT is grown by using CVD, carbon impurities that are considered to have been attached by CVD are attached. The carbon impurities are considered to be carbon compounds such as CNT, graphite-like or amorphous nanoparticles, flake-like substances, etc. that remain without being removed in the peeling process of the aligned CNT aggregate.
一旦カーボンナノチューブを形成した後の触媒微粒子を含む層からカーボンナノチューブを剥離し、当該層に残存した触媒微粒子から炭素不純物を除去する工程を触媒の「初期化工程」といい、触媒微粒子の初期化工程を施した層を本明細書では「触媒初期化層」という。触媒の初期化工程の具体的な方法としては適宜選択すればよく、不織布で拭き取る方法、水、アルコール等の液体を用いて洗浄する方法、酸素プラズマリアクターやUVオゾンクリーナー等の炭素不純物を燃やして灰化する方法等の公知の方法を用いることができる。 Once the carbon nanotubes are formed, the process of peeling the carbon nanotubes from the layer containing the catalyst fine particles and removing the carbon impurities from the catalyst fine particles remaining in the layer is called the catalyst initialization process. The layer subjected to the process is referred to as “catalyst initialization layer” in the present specification. A specific method for the catalyst initialization process may be selected as appropriate, such as a method of wiping with a nonwoven fabric, a method of cleaning with a liquid such as water or alcohol, and burning carbon impurities such as an oxygen plasma reactor or a UV ozone cleaner. A known method such as an ashing method can be used.
触媒初期化層は、炭素成分を含まない触媒微粒子を備えることが好ましい。触媒初期化層が炭素成分を含む場合、基材の再利用時にCNTの成長が悪化する可能性がある。この炭素成分は、触媒に付着している炭素不純物に由来していると考えられる。炭素成分を含まないことは、例えば基材表面のラマンスペクトル測定により評価することが可能である。炭素成分は、1593cm−1付近のグラファイトの振動モードもしくは、1350cm−1付近の結晶性の低いアモルファス炭素化合物の振動モードで検出することが可能であり、これらのピークが観測されないことが好ましい。 The catalyst initialization layer preferably includes fine catalyst particles that do not contain a carbon component. When the catalyst initialization layer contains a carbon component, there is a possibility that the growth of CNTs deteriorates when the substrate is reused. This carbon component is thought to be derived from carbon impurities adhering to the catalyst. The absence of a carbon component can be evaluated, for example, by measuring the Raman spectrum of the substrate surface. The carbon component can be detected in the vibration mode of graphite around 1593 cm −1 or the vibration mode of an amorphous carbon compound having low crystallinity near 1350 cm −1, and it is preferable that these peaks are not observed.
触媒初期化層が最表面にある基材をそのままCVD装置に設置して、2度目のCVDをおこなった場合、CNTの成長が悪化する場合がある。考えられる原因として、触媒初期化層中の触媒微粒子の密度や直径が1度目のCVDと同じ最適な状態に維持されていない可能性が挙げられる。 When the base material having the catalyst initialization layer on the outermost surface is installed in a CVD apparatus as it is and the second CVD is performed, the growth of CNT may deteriorate. As a possible cause, there is a possibility that the density and diameter of the catalyst fine particles in the catalyst initialization layer are not maintained in the same optimal state as the first CVD.
以下に実施例を挙げて、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[実施例1]
実施例1では、カーボンナノチューブ生成用再利用基材の製造を行なった。
[Example 1]
In Example 1, a reuse base material for producing carbon nanotubes was produced.
図1にカーボンナノチューブ生成用再利用基材の一例を示す。まず、触媒を担持するための基材1−1を有する。基材1−1は金属材料からなることが好ましい。基材1−1の主表面上には下地層1−3が設けられている。下地層1−3上には炭素成分フリーの触媒微粒子を少なくとも1つ備える触媒初期化層1−4が設けられている。 FIG. 1 shows an example of a reuse base material for producing carbon nanotubes. First, it has the base material 1-1 for carrying | supporting a catalyst. The substrate 1-1 is preferably made of a metal material. A base layer 1-3 is provided on the main surface of the substrate 1-1. On the underlayer 1-3, a catalyst initialization layer 1-4 provided with at least one carbon component-free catalyst fine particle is provided.
基材1−1の主表面と下地層1−3との間に浸炭防止層1−2をさらに設けることが好ましい。また、基材1−1の主表面の裏面に浸炭防止層1−2をさらに設けることが好ましい。 It is preferable to further provide a carburizing prevention layer 1-2 between the main surface of the substrate 1-1 and the base layer 1-3. Moreover, it is preferable to further provide a carburization preventing layer 1-2 on the back surface of the main surface of the substrate 1-1.
基材としては、大きさ40mm角、厚さ0.3mmのFe−Ni−Cr合金YEF426(日立金属株式会社製、Ni42%、Cr6%)を使用した。レーザ顕微鏡を用いて表面粗さを測定したところ、算術平均粗さRa≒2.1μmであった。この基材の表裏両面にスパッタリング装置を用いて厚さ100nmの酸化ケイ素膜(浸炭防止層)を製膜した。次いで表面のみにスパッタリング装置を用いて厚さ10nmのアルミナ膜(下地層)と厚さ1.0nmの鉄膜(触媒)を製膜した。この基材を使用して、CVDをおこないCNT配向集合体を成長させた基材を準備した。 As the base material, a 40 mm square and 0.3 mm thick Fe—Ni—Cr alloy YEF426 (manufactured by Hitachi Metals, Ni 42%, Cr 6%) was used. When the surface roughness was measured using a laser microscope, the arithmetic average roughness Ra≈2.1 μm. A silicon oxide film (carburization prevention layer) having a thickness of 100 nm was formed on both the front and back surfaces of the substrate using a sputtering apparatus. Next, an alumina film (underlayer) having a thickness of 10 nm and an iron film (catalyst) having a thickness of 1.0 nm were formed on the surface only by using a sputtering apparatus. Using this base material, a base material on which a CVD was performed and an aligned CNT aggregate was grown was prepared.
次に、基材上に成長したCNT配向集合体の剥離、触媒の初期化工程をおこない、カーボンナノチューブ生成用再利用基材を製造した。 Next, separation of the aligned CNT aggregates grown on the substrate and initialization of the catalyst were performed to produce a reused substrate for producing carbon nanotubes.
まず、成長したCNT配向集合体を基材から剥離した。具体的には、鋭利部を備えたプラスチック製のヘラを使用し、この鋭利部を、CNT配向集合体と基材との境界に当て、CNT配向集合体を基材からそぎ取るように基板面に沿って鋭利部を動かすことにより、CNT集合配向体を基材から剥ぎ取った。 First, the grown aligned CNT aggregate was peeled from the substrate. Specifically, a plastic spatula provided with a sharp part is used, the sharp part is applied to the boundary between the aligned CNT aggregate and the base material, and the substrate surface is scraped off from the base material. The CNT aggregate orientation body was peeled off from the substrate by moving the sharp part along the axis.
次に、触媒の初期化工程を行なった。プラズマリアクター(「PR−500」;ヤマト科学製)にCNT集合配向体を剥離した後の基材をセットした。酸素プラズマ処理(条件:圧力10Pa、酸素流量30cm3/min、出力100W、60秒間)を行ない、基材上の触媒表面に堆積形成された炭素不純物を除去した。この工程により、基材最表面に触媒初期化層が形成された。この操作によって、基材は図3に示された状態となり、カーボンナノチューブ生成用再利用基材を製造することができた。 Next, a catalyst initialization step was performed. The substrate after peeling the aligned CNT aggregate was set in a plasma reactor (“PR-500”; manufactured by Yamato Kagaku). Oxygen plasma treatment (conditions: pressure 10 Pa, oxygen flow rate 30 cm 3 / min, output 100 W, 60 seconds) was performed to remove carbon impurities deposited on the catalyst surface on the substrate. By this step, a catalyst initialization layer was formed on the outermost surface of the substrate. By this operation, the base material was in the state shown in FIG. 3, and a reusable base material for producing carbon nanotubes could be manufactured.
CNT配向集合体の剥離後と、初期化工程後の基材表面のラマンスペクトルを測定した(図4)。CNT配向集合体の剥離後は、炭素成分と考えられるピークが1600cm−1付近及び1350cm−1付近に存在するのに対して、触媒の初期化工程後は、そのピークが消失していた。これにより、炭素成分フリーの触媒微粒子を少なくとも1つ備える触媒初期化層が得られたことが確認できた。 The Raman spectrum of the substrate surface after separation of the aligned CNT aggregate and after the initialization process was measured (FIG. 4). After exfoliation of the aligned CNT aggregate, peaks considered to be carbon components are present near 1600 cm −1 and 1350 cm −1, whereas the peaks disappeared after the catalyst initialization step. This confirmed that a catalyst initialization layer comprising at least one carbon component-free catalyst fine particle was obtained.
[実施例2]
実施例2では、カーボンナノチューブ生成用再利用基材からカーボンナノチューブ生成用基材を製造した。
[Example 2]
In Example 2, a carbon nanotube production substrate was manufactured from a carbon nanotube production reuse substrate.
図2に本発明におけるカーボンナノチューブ生成用基材の一例を示す。まず、触媒を担持するための基材1−1を有する。基材1−1は金属材料からなることが好ましい。基材1−1の主表面上には第1の下地層1−3−1が設けられている。第1の下地層1−3−1上には炭素成分フリーの触媒微粒子を少なくとも1つ備える触媒初期化層1−4が設けられている。触媒初期化層1−4上には第2の下地層1−3−2が設けられている。第2の下地層1−3−2上には触媒1−5が設けられている。 FIG. 2 shows an example of the base material for producing carbon nanotubes in the present invention. First, it has the base material 1-1 for carrying | supporting a catalyst. The substrate 1-1 is preferably made of a metal material. A first base layer 1-3-1 is provided on the main surface of the substrate 1-1. A catalyst initialization layer 1-4 including at least one carbon component-free catalyst fine particle is provided on the first base layer 1-3-1. A second underlayer 1-3-2 is provided on the catalyst initialization layer 1-4. A catalyst 1-5 is provided on the second underlayer 1-3-2.
基材1−1の主表面と第1の下地層1−3−1との間には浸炭防止層1−2をさらに設けることが好ましい。基材1−1の主表面の裏面に浸炭防止層1−2をさらに設けることが好ましい。 It is preferable to further provide a carburization preventing layer 1-2 between the main surface of the substrate 1-1 and the first underlayer 1-3-1. It is preferable to further provide a carburization preventing layer 1-2 on the back surface of the main surface of the substrate 1-1.
実施例1で作製したカーボンナノチューブ生成用再利用基材において、触媒初期化層上に、スパッタリング装置を用いて厚さ10nmのアルミナ膜(下地層)を作製した。次いで、その上にスパッタリング装置を用いて厚さ1.0nmの鉄膜(触媒)を作製した。この操作によって、基材は図2に示した状態となり、カーボンナノチューブ生成用基材を製造することができた。 In the reused carbon nanotube production substrate produced in Example 1, an alumina film (underlayer) having a thickness of 10 nm was produced on the catalyst initialization layer using a sputtering apparatus. Next, an iron film (catalyst) having a thickness of 1.0 nm was formed thereon using a sputtering apparatus. By this operation, the base material was in the state shown in FIG. 2, and the base material for producing carbon nanotubes could be manufactured.
[実施例3]
実施例3では、実施例1で行なったカーボンナノチューブ生成用再利用基材の製造、実施例2で行ったカーボンナノチューブ生成用基材の製造、及びCVDを同一の基材で30回繰り返した。30回目に製造した、カーボンナノチューブ生成用基材の層構成を図5に示す。また、この工程をフローチャート化した図を図6に示す。
[Example 3]
In Example 3, the production of the reused carbon nanotube production substrate performed in Example 1, the production of the carbon nanotube production substrate performed in Example 2, and the CVD were repeated 30 times on the same substrate. FIG. 5 shows the layer structure of the carbon nanotube production base material produced for the 30th time. FIG. 6 is a flowchart showing this process.
実施例2で製造したカーボンナノチューブ生成用基材及び実施例3で30サイクル繰り返して製造したカーボンナノチューブ生成用基材について、CVD炉に設置して、CNTの成長を行ない、得られたCNTの評価を実施した。 About the carbon nanotube production | generation base material manufactured in Example 2, and the carbon nanotube production | generation base material manufactured by repeating 30 cycles in Example 3, it installs in a CVD furnace, CNT is grown, and evaluation of obtained CNT Carried out.
得られた単層CNT配向集合体の特性は、いずれも同品質のものであった。製造条件の詳細に依存するが、典型値として、生産量1.8mg/cm2、G/D比8.0、密度:0.03g/cm3、BET−比表面積:1200m2/g、平均外径:2.5nm、半値幅2nm、炭素純度99.9%、ヘルマンの配向係数0.7であった。 The properties of the obtained single-walled aligned CNT aggregate were of the same quality. Depending on the details of the production conditions, typical values are as follows: production rate 1.8 mg / cm 2 , G / D ratio 8.0, density: 0.03 g / cm 3 , BET-specific surface area: 1200 m 2 / g, average The outer diameter was 2.5 nm, the half width was 2 nm, the carbon purity was 99.9%, and the Hermann orientation coefficient was 0.7.
この結果から、基材を再利用して同品質のカーボンナノチューブを成長させることが確認できた。よって、実施例1で製造した再利用のための基材は、本発明のカーボンナノチューブ生成用再利用基材ということができる。 From this result, it was confirmed that the same quality carbon nanotubes were grown by reusing the base material. Therefore, it can be said that the base material for reuse manufactured in Example 1 is the reuse base material for producing carbon nanotubes of the present invention.
(CVD前後の基材変形量)
CVD後、すなわち、カーボンナノチューブ生成後の基材の変形量を測定した。図7に示すように、生成後の基材を下に凸の状態で基準面上に載置して、基材端点の基準面からの高さを変形量としてノギスを用いて測定を行なった。
(Substrate deformation before and after CVD)
The amount of deformation of the base material after CVD, that is, after carbon nanotube production was measured. As shown in FIG. 7, the generated base material was placed on the reference surface in a downwardly convex state, and the height from the reference surface of the base material end point was measured using a caliper as the amount of deformation. .
実施例2で製造したカーボンナノチューブ生成用基材及び実施例3で製造したカーボンナノチューブ生成用基材について、CVD前後の基材変形量の測定したところ、0mmで基材の変形は見られなかった。基材を30回のCVDにかけた後でも、浸炭防止層により基材への浸炭が防止されて、基材は変形しなかったと考えられる。 Regarding the carbon nanotube production substrate produced in Example 2 and the carbon nanotube production substrate produced in Example 3, the deformation of the substrate before and after the CVD was measured, and no deformation of the substrate was observed at 0 mm. . Even after the substrate was subjected to 30 times of CVD, it is considered that the carburization prevention layer prevented carburization of the substrate and the substrate did not deform.
実施例1及び実施例2に対して、以下の3通りの基材で再利用を実施した場合の結果を図8に示す。基材の再利用について、同品質のカーボンナノチューブが安定して生産できた場合を丸印、カーボンナノチューブの成長が悪化して、基材を再利用できなかった場合をバツ印で示した。(1)触媒の初期化工程を実施せずに、下地膜、触媒を積層した基材、(2)触媒初期化層上に下地膜、触媒を積層しなかった基材、(3)触媒の初期化工程をおこなわず、下地膜、触媒を設ける工程もおこなわない基材を実施した。(1)、(2)、(3)の基材では、安定して同品質のカーボンナノチューブが得られず、基材の再利用ができなかった。 FIG. 8 shows the results when reuse is performed with respect to Example 1 and Example 2 using the following three base materials. Regarding the reuse of the base material, the case where the carbon nanotube of the same quality could be stably produced was indicated by a circle, and the case where the growth of the carbon nanotube deteriorated and the base material could not be reused was indicated by the cross mark. (1) The base film and the base material on which the catalyst is laminated without carrying out the catalyst initialization step, (2) the base film on which the base film and the catalyst are not laminated on the catalyst initialization layer, (3) the catalyst The base material which did not perform the process of providing a base film and a catalyst without performing the initialization process was implemented. With the substrates of (1), (2), and (3), carbon nanotubes of the same quality could not be stably obtained, and the substrate could not be reused.
(生産装置)
本発明のカーボンナノチューブ生成用基材によるカーボンナノチューブの合成に用いる生産装置は、触媒と担持した基材を受容する合成炉(反応チャンバ)及び加熱手段を備えることが必須であるが、その他は各部の構造・構成については特に限定されることはなく、例えば、熱CVD炉、熱加熱炉、電気炉、乾燥炉、恒温槽、雰囲気炉、ガス置換炉、マッフル炉、オーブン、真空加熱炉、プラズマ反応炉、マイクロプラズマ反応炉、RFプラズマ反応炉、電磁波加熱反応炉、マイクロ波照射反応炉、赤外線照射加熱炉、紫外線加熱反応炉、MBE反応炉、MOCVD反応炉、レーザ加熱装置などの、公知の生産装置をいずれも使用できる。
(Production equipment)
The production apparatus used for synthesizing carbon nanotubes with the carbon nanotube production substrate of the present invention must include a synthesis furnace (reaction chamber) for receiving the catalyst and the supported substrate, and heating means. There is no particular limitation on the structure and configuration of, for example, thermal CVD furnace, thermal heating furnace, electric furnace, drying furnace, thermostat, atmosphere furnace, gas replacement furnace, muffle furnace, oven, vacuum heating furnace, plasma Known reactors such as reactors, microplasma reactors, RF plasma reactors, electromagnetic heating reactors, microwave irradiation reactors, infrared irradiation heating furnaces, ultraviolet heating reactors, MBE reactors, MOCVD reactors, laser heating devices, etc. Any production equipment can be used.
本実施例におけるカーボンナノチューブ合成は、図9に示したCVD装置を使用した。このCVD装置は、カーボンナノチューブ生成用基材2−1を受容する石英ガラスからなる管状の反応チャンバ2−2(直径30mm、加熱長360mm)と、反応チャンバ2−2を外囲するように設けられた加熱コイル2−3と、原料ガス2−4並びに雰囲気ガス2−5を供給すべく反応チャンバ2−2の一端に接続された供給管2−6と、反応チャンバ2−2の他端に接続された排気管2−7と、触媒賦活剤2−8を供給すべく供給管2−6の中間部に接続された触媒賦活剤供給管2−9とを備えている。また極めて微量の触媒賦活剤を高精度に制御して供給するために、原料ガス2−4並び雰囲気ガス2−5の供給管2−6には、原料ガス2−4並びに雰囲気ガス2−5から触媒賦活剤を除去するための純化装置2−10が付設されている。さらに図示していないが、流量制御弁や圧力制御弁などを含む制御装置が適所に付設されている。 The carbon nanotube synthesis in this example used the CVD apparatus shown in FIG. This CVD apparatus is provided so as to surround the reaction chamber 2-2 having a tubular reaction chamber 2-2 (diameter 30 mm, heating length 360 mm) made of quartz glass for receiving the carbon nanotube production substrate 2-1. The heating coil 2-3, the feed pipe 2-6 connected to one end of the reaction chamber 2-2 to supply the source gas 2-4 and the atmospheric gas 2-5, and the other end of the reaction chamber 2-2 And an exhaust pipe 2-7 connected to the exhaust pipe 2 and a catalyst activator supply pipe 2-9 connected to an intermediate portion of the supply pipe 2-6 to supply the catalyst activator 2-8. In addition, in order to control and supply an extremely small amount of catalyst activator with high accuracy, the feed gas 2-4 and the atmosphere gas 2-5 are provided in the feed pipe 2-6 of the feed gas 2-4 and the atmosphere gas 2-5. A purifier 2-10 for removing the catalyst activator from the reactor is attached. Further, although not shown, a control device including a flow control valve, a pressure control valve, and the like is attached at an appropriate place.
カーボンナノチューブ生成用基材を、炉内温度:750℃、炉内圧力:1.02E+5に保持されたCVD装置(図9)の反応炉内に設置し、この炉内に、He:100sccm、H2:900sccmを6分間導入した。これにより、触媒は還元されて単層CNTの成長に適合した状態の微粒子化が促進され、下地層上にナノメートルサイズの触媒微粒子が多数形成された(フォーメーション工程)。なお、このときの触媒微粒子の密度は、1×1012〜1×1014個/cm2に調整した。 The carbon nanotube production substrate was placed in a reaction furnace of a CVD apparatus (FIG. 9) maintained at a furnace temperature: 750 ° C. and a furnace pressure: 1.02E + 5. In this furnace, He: 100 sccm, H 2 : 900 sccm was introduced for 6 minutes. As a result, the catalyst was reduced and the formation of fine particles in a state suitable for the growth of single-walled CNTs was promoted, and a large number of nanometer-sized catalyst fine particles were formed on the underlayer (formation process). At this time, the density of the catalyst fine particles was adjusted to 1 × 10 12 to 1 × 10 14 particles / cm 2 .
次に、炉内温度:750℃、炉内圧力:1.02E+5に保持された状態の反応炉内に、He:850sccm、C2H4:100sccm、H2O含有He(相対湿度23%):50sccmを5分間供給した。これにより、単層CNTが各触媒微粒子から成長した(成長工程)。 Next, in a reactor maintained at a furnace temperature: 750 ° C. and a furnace pressure: 1.02E + 5, He: 850 sccm, C 2 H 4 : 100 sccm, H 2 O-containing He (relative humidity 23%) : 50 sccm was supplied for 5 minutes. Thereby, single-walled CNT grew from each catalyst fine particle (growth process).
成長工程終了後、反応炉内にHe:1000sccmのみを供給し、残余の原料ガスや触媒賦活剤を排除した(フラッシュ工程)。これにより、カーボンナノチューブ配向集合体2−11が得られた。 After the growth process was completed, only He: 1000 sccm was supplied into the reaction furnace, and the remaining raw material gas and catalyst activator were removed (flash process). Thereby, the aligned carbon nanotube aggregate 2-11 was obtained.
本発明は、一つの基材を用いて繰り返し高い製造効率でCNT配向集合体を製造できるので、電子デバイス材料、光学素子材料、導電性材料などの分野に好適に利用できる。 The present invention can be used suitably in the fields of electronic device materials, optical element materials, conductive materials, and the like because an aligned CNT aggregate can be repeatedly produced with high production efficiency using a single substrate.
1−1 基材
1−2 浸炭防止層
1−3 下地層
1−3−1 第1の下地層
1−3−2 第2の下地層
1−4 触媒初期化層
1−5 触媒
1−6 触媒表面の炭素不純物
2−1 カーボンナノチューブ生成用基材
2−2 反応チャンバ
2−3 加熱コイル
2−4 原料ガス
2−5 雰囲気ガス
2−6 供給管
2−7 排気管
2−8 触媒賦活剤
2−9 触媒賦活剤供給管
2−10 純化装置
1-1 Substrate 1-2 Carburization Prevention Layer 1-3 Underlayer 1-3-1 First Underlayer 1-3-2 Second Underlayer 1-4 Catalyst Initialization Layer 1-5 Catalyst 1-6 Carbon impurities on catalyst surface 2-1 Substrate for carbon nanotube production 2-2 Reaction chamber 2-3 Heating coil 2-4 Source gas 2-5 Atmospheric gas 2-6 Supply pipe 2-7 Exhaust pipe 2-8 Catalyst activator 2-9 Catalyst activator supply pipe 2-10 Purifier
Claims (10)
前記基材の表面上に設けられており、触媒の下地となる下地層と、
前記下地層の表面であって、前記基材とは反対側の表面に設けられており、炭素成分を含まない触媒微粒子を少なくとも1つ備える触媒初期化層と、
を備え、前記基材の表面の算術平均粗さRaが3μm以下であるカーボンナノチューブ生成用再利用基材。 A substrate;
An underlayer provided on the surface of the base material and serving as an underlayer for the catalyst;
A catalyst initialization layer provided on the surface of the underlayer, on the surface opposite to the substrate, and comprising at least one catalyst fine particle not containing a carbon component;
The provided, arithmetic mean roughness Ra is recycled substrate Carbon Nanotubes Ru der below 3μm on the surface of the substrate.
前記触媒層に残存する触媒微粒子から炭素成分を除去することによって、触媒微粒子を初期化する初期化工程と、
を含み、前記基材の表面の算術平均粗さRaが3μm以下であるカーボンナノチューブ生成用再利用基材の製造方法。 A peeling step of peeling carbon nanotubes formed on the catalyst layer on the substrate from the catalyst layer;
An initialization step of initializing the catalyst fine particles by removing carbon components from the catalyst fine particles remaining in the catalyst layer;
Unrealized method of arithmetic average roughness Ra is recycled substrate for generating carbon nanotubes is 3μm or less of the surface of the base material.
前記基材の表面上に設けられており、触媒の下地となる第1の下地層と、
前記下地層の表面であって、前記基材とは反対側の表面に設けられており、炭素成分を含まない触媒微粒子を少なくとも1つ備える触媒層と、
前記触媒層上であって、前記第1の下地層とは反対側に設けられた、触媒の下地となる第2の下地層と、
前記第2の下地層上に設けられた触媒と、
を備え、前記基材の表面の算術平均粗さRaが3μm以下であるカーボンナノチューブ生成用基材。 A substrate;
A first underlayer provided on the surface of the base material and serving as a base of the catalyst;
A catalyst layer provided on the surface opposite to the base material on the surface of the base layer, the catalyst layer including at least one catalyst fine particle not containing a carbon component;
A second underlayer serving as a catalyst underlayer provided on the catalyst layer on the side opposite to the first underlayer;
A catalyst provided on the second underlayer;
The provided, arithmetic mean roughness Ra of 3μm or less der Ru carbon nanotubes produced base material for a surface of the substrate.
前記触媒層に残存する触媒微粒子から炭素成分を除去することによって、触媒微粒子を初期化する初期化工程と、
初期化された前記触媒層上であって、前記基材とは反対側に触媒の下地となる下地層を
設ける下地層形成工程と、
前記下地層上であって、前記触媒層とは反対側に触媒を設ける触媒形成工程と、
を含み、前記基材の表面の算術平均粗さRaが3μm以下であるカーボンナノチューブ生成用基材の製造方法。 A peeling step of peeling carbon nanotubes formed on the catalyst layer on the substrate from the catalyst layer;
An initialization step of initializing the catalyst fine particles by removing carbon components from the catalyst fine particles remaining in the catalyst layer;
On the catalyst layer that has been initialized, a base layer forming step of providing a base layer serving as a base for the catalyst on the side opposite to the base material;
A catalyst forming step of providing a catalyst on the base layer opposite to the catalyst layer;
Unrealized method of arithmetic average roughness Ra of the carbon nanotube generation substrate is 3μm or less of the surface of the base material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009218746A JP5574257B2 (en) | 2009-09-24 | 2009-09-24 | Reusable substrate for producing carbon nanotubes, substrate for producing carbon nanotubes and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009218746A JP5574257B2 (en) | 2009-09-24 | 2009-09-24 | Reusable substrate for producing carbon nanotubes, substrate for producing carbon nanotubes and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011068501A JP2011068501A (en) | 2011-04-07 |
JP5574257B2 true JP5574257B2 (en) | 2014-08-20 |
Family
ID=44014171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009218746A Active JP5574257B2 (en) | 2009-09-24 | 2009-09-24 | Reusable substrate for producing carbon nanotubes, substrate for producing carbon nanotubes and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5574257B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2757069B1 (en) | 2011-09-14 | 2017-08-30 | Fujikura Ltd. | Structure for forming carbon nanofiber, carbon nanofiber structure and method for producing same, and carbon nanofiber electrode |
JP2013060342A (en) * | 2011-09-14 | 2013-04-04 | Fujikura Ltd | Carbon nanofiber forming structure, carbon nanofiber structure, and method for manufacturing the same |
US9656246B2 (en) * | 2012-07-11 | 2017-05-23 | Carbice Corporation | Vertically aligned arrays of carbon nanotubes formed on multilayer substrates |
JP6221290B2 (en) * | 2013-03-25 | 2017-11-01 | 日本ゼオン株式会社 | Method for producing reusable substrate for carbon nanotube production |
KR20160101969A (en) * | 2013-12-20 | 2016-08-26 | 가부시키가이샤 알박 | Lithium-sulfur secondary battery |
JP6311391B2 (en) * | 2014-03-27 | 2018-04-18 | 日本ゼオン株式会社 | Method for producing recycled substrate and method for producing catalyst substrate for carbon nanotube production |
JP6287463B2 (en) * | 2014-03-27 | 2018-03-07 | 日本ゼオン株式会社 | Method for producing recycled substrate and method for producing catalyst substrate for carbon nanotube production |
JP6527340B2 (en) * | 2014-06-12 | 2019-06-05 | 国立研究開発法人産業技術総合研究所 | Optical member and method of manufacturing the same |
JP2021070597A (en) * | 2019-10-29 | 2021-05-06 | 日本ゼオン株式会社 | Method of producing carbon nanotube |
JPWO2021172077A1 (en) * | 2020-02-28 | 2021-09-02 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004269270A (en) * | 2003-03-05 | 2004-09-30 | Jfe Engineering Kk | Carbon material for producing carbon nanotube |
JP2007091485A (en) * | 2005-09-26 | 2007-04-12 | Sonac Kk | Method for production of carbon fiber, substrate cartridge, and thermal cvd device |
WO2009110591A1 (en) * | 2008-03-07 | 2009-09-11 | 日立化成工業株式会社 | Carbon nano-tube manufacturing method and carbon nano-tube manufacturing apparatus |
-
2009
- 2009-09-24 JP JP2009218746A patent/JP5574257B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011068501A (en) | 2011-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5574257B2 (en) | Reusable substrate for producing carbon nanotubes, substrate for producing carbon nanotubes and method for producing the same | |
JP4811712B2 (en) | Carbon nanotube bulk structure and manufacturing method thereof | |
JP4621896B2 (en) | Single-walled carbon nanotube and method for producing the same | |
KR101622306B1 (en) | Graphene sheet, substrate comprising graphene sheet and process for preparing these materials | |
Cambaz et al. | Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC | |
KR100923304B1 (en) | Graphene sheet and process for preparing the same | |
JP5569769B2 (en) | Graphene film manufacturing method | |
US8668952B2 (en) | Carbon wire and nanostructure formed of carbon film and method of producing the same | |
WO2009110591A1 (en) | Carbon nano-tube manufacturing method and carbon nano-tube manufacturing apparatus | |
WO2010092786A1 (en) | Base for producing oriented carbon nanotube aggregate, and method for producing oriented carbon nanotube aggregate | |
WO2006052009A1 (en) | Carbon nanotube aggregate and process for producing the same | |
WO2004106234A1 (en) | Process for producing monolayer carbon nanotube with uniform diameter | |
JP3913583B2 (en) | Method for producing carbon nanotube | |
JP2019099989A (en) | Production method of carbon nano structure, and carbon nano structure | |
KR101313753B1 (en) | Method for growth of carbon nanoflakes and carbon nanoflakes structure | |
JP2007182374A (en) | Method for manufacturing single-walled carbon nanotube | |
JP2014185072A (en) | Method of producing recycled base material for carbon nano-tube production | |
JP5453618B2 (en) | Carbon nanotube bulk structure | |
JP2012140268A (en) | Determination method of substrate for producing carbon nanotube, and production method of carbon nanotube | |
JP6772661B2 (en) | Manufacturing method of carbon nanotubes | |
JP6221290B2 (en) | Method for producing reusable substrate for carbon nanotube production | |
JP6740802B2 (en) | Method for producing carbon nanotube | |
JP2005001936A (en) | Method of manufacturing carbon nanotube | |
JP2014122154A (en) | Composite material including carbon nanotube bulk structure | |
JP2015003848A (en) | Peeling device, method for peeling carbon nanotube, and method for manufacturing carbon nanotube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140603 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140620 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5574257 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |