JP5542374B2 - Inner focus type macro lens with anti-vibration function - Google Patents

Inner focus type macro lens with anti-vibration function Download PDF

Info

Publication number
JP5542374B2
JP5542374B2 JP2009155932A JP2009155932A JP5542374B2 JP 5542374 B2 JP5542374 B2 JP 5542374B2 JP 2009155932 A JP2009155932 A JP 2009155932A JP 2009155932 A JP2009155932 A JP 2009155932A JP 5542374 B2 JP5542374 B2 JP 5542374B2
Authority
JP
Japan
Prior art keywords
lens
lens unit
focusing
group
infinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009155932A
Other languages
Japanese (ja)
Other versions
JP2011013357A5 (en
JP2011013357A (en
Inventor
了 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2009155932A priority Critical patent/JP5542374B2/en
Publication of JP2011013357A publication Critical patent/JP2011013357A/en
Publication of JP2011013357A5 publication Critical patent/JP2011013357A5/ja
Application granted granted Critical
Publication of JP5542374B2 publication Critical patent/JP5542374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明は、インナーフォーカス式マクロレンズであって、無限遠物体から等倍付近の近距離物体までの撮影ができることを特徴とし、さらに、手ぶれ等による結像位置のずれを補正するための防振機能を有することを特徴とした、特にデジタルカメラ、銀塩カメラ及びビデオカメラ等に適した防振機能を有するインナーフォーカス式マクロレンズに関する。 The present invention is an inner focus type macro lens, characterized in that it can shoot from an object at infinity to an object at a near distance close to the same magnification, and is further anti-vibration for correcting a shift in imaging position due to camera shake or the like. The present invention relates to an inner focus type macro lens having an anti-vibration function particularly suitable for digital cameras, silver halide cameras, video cameras, and the like.

従来、写真用カメラやビデオカメラ等の光学機器において、近距離物体の撮影を主たる目的とした撮影レンズとしてマクロレンズ又はマイクロレンズ(以下「マクロレンズ」という。)と分類されるものがある。 2. Description of the Related Art Conventionally, in an optical device such as a photographic camera or a video camera, there are some which are classified as a macro lens or a micro lens (hereinafter referred to as “macro lens”) as a photographing lens mainly for photographing a short distance object.

この内、35mmフィルム用の一眼レフカメラに適した物体側入射画角12〜25度程度の所謂望遠域のマクロレンズにおいて、その最も物体側のレンズ群は、フォーカシング操作の際、光軸方向に移動せず固定であり、かつ防振機能を有するものが提案されている。 Among these, in the so-called telephoto macro lens having an object-side incident angle of view of about 12 to 25 degrees suitable for a single-lens reflex camera for 35 mm film, the most object-side lens group is arranged in the optical axis direction during the focusing operation. There has been proposed one that is fixed without moving and has an anti-vibration function.

例えば、特許文献1及び特許文献2には、光軸方向に固定された最も像面側のレンズ群を分割し、分割されたうちの負のレンズ群を光軸に対して略垂直方向へ移動させることで像ぶれの補正を行うマクロレンズが記載されている。 For example, in Patent Document 1 and Patent Document 2, the most image side lens group fixed in the optical axis direction is divided, and the negative lens group is moved in a direction substantially perpendicular to the optical axis. A macro lens that corrects image blur is described.

また、例えば、特許文献3には、光軸方向に固定された最も物体側のレンズ群を少なくとも物体より像側へ順に第1Aレンズ群、第1Bレンズ群に分割し、分割されたうちの第1Bレンズ群を光軸に対して略垂直方向へ移動させることで像ぶれの補正を行うマクロレンズが記載されている。 Further, for example, in Patent Document 3, the most object side lens group fixed in the optical axis direction is divided into a first A lens group and a first B lens group in order from at least the object to the image side. A macro lens that corrects image blur by moving the 1B lens group in a direction substantially perpendicular to the optical axis is described.

特開2003−329919JP2003-329919A

特開2006−106112JP 2006-106112 A

特開2005−062211JP2005-062211

像ぶれを補正する防振レンズ群を光軸に対して垂直方向へ移動させる移動量は、一般的に十分小さいことが望ましい。すなわち、像ぶれの迅速な補正や、防振レンズ群可動域の制限を考慮した場合、防振レンズ群の最大移動量はできるだけ小さいことが好ましい。 Generally, it is desirable that the amount of movement for moving the image stabilizing lens group for correcting image blur in the direction perpendicular to the optical axis is sufficiently small. That is, it is preferable that the maximum amount of movement of the image stabilizing lens unit be as small as possible in consideration of quick correction of image blur and limitation of the movable range of the image stabilizing lens unit.

そこで、防振レンズ群の移動量を小さくするためには、所謂防振係数を十分大きく設定することが望ましい。防振係数とは、防振レンズ群を光軸に対して垂直方向へ移動したときの移動量ΔHと、そのときの像面上における結像位置の移動量Δxとの比、すなわちΔx/ΔHを示す。 Therefore, in order to reduce the movement amount of the image stabilizing lens group, it is desirable to set a so-called image stabilization coefficient sufficiently large. The image stabilization coefficient is a ratio between the amount of movement ΔH when the image stabilization lens group is moved in the direction perpendicular to the optical axis and the amount of movement Δx of the image formation position on the image plane, that is, Δx / ΔH. Indicates.

無限遠物体への合焦時に、より長い焦点距離を有する光学系においては、同じ量の手ぶれが発生した場合であっても、短い焦点距離を有する光学系と比較して、より大きな像面上の結像位置のずれが発生するため、防振係数をより大きく設定する必要がある。 When focusing on an object at infinity, an optical system with a longer focal length has a larger image plane compared to an optical system with a shorter focal length, even if the same amount of camera shake occurs. Therefore, the image stabilization position needs to be set larger.

上記の特許文献1及び特許文献2に開示されている光学系では、防振係数が1.0程度であり、より長い焦点距離を有するマクロレンズへの適用は難しい。加えて、上記の特許文献1及び特許文献2に開示されている光学系では、防振時に大きな非点収差が発生するため、像ぶれを補正した時の光学特性が低下している。 In the optical systems disclosed in Patent Literature 1 and Patent Literature 2 described above, the image stabilization coefficient is about 1.0, and application to a macro lens having a longer focal length is difficult. In addition, in the optical systems disclosed in Patent Document 1 and Patent Document 2 described above, since large astigmatism occurs during image stabilization, the optical characteristics when image blur is corrected are deteriorated.

また、上記の特許文献3に開示されている光学系では、防振時に発生する収差の課題を解決しているが、防振係数の値が十分な大きさとはいえず、また、防振時に移動させる防振レンズ群が最も物体側のレンズ群の中に配置されているため、防振レンズ群の重量が増加する結果となり、メカ機構的に好ましくない。加えて、上記の特許文献3に開示されている光学系では、特に無限遠物体合焦時において、大きな軸上色収差と像面の湾曲、及び非点収差が発生するため、光学特性が低下している。 Further, in the optical system disclosed in Patent Document 3 above, the problem of aberration that occurs during image stabilization is solved, but the value of the image stabilization coefficient is not sufficiently large, and during image stabilization. Since the anti-vibration lens group to be moved is arranged in the lens group closest to the object side, the weight of the anti-vibration lens group increases, which is not preferable in terms of mechanical mechanism. In addition, in the optical system disclosed in Patent Document 3 described above, a large on-axis chromatic aberration, curvature of the image surface, and astigmatism are generated particularly when focusing on an object at infinity, so that the optical characteristics deteriorate. ing.

本発明は、合焦域全域にわたり諸収差を良好に補正した上で、防振時に、防振レンズ群の小さな移動量で十分大きな像ぶれを補正することを可能とし、また、良好な結像性能を維持することを可能とする、防振機能を有するインナーフォーカス式マクロレンズの提供を目的とする。 The present invention makes it possible to correct a large amount of image blur with a small amount of movement of the anti-vibration lens group at the time of anti-vibration after correcting various aberrations over the entire in-focus region. An object of the present invention is to provide an inner focus type macro lens having an anti-vibration function capable of maintaining the performance.

物体側より順に、正の屈折力を有する第1レンズ群L1、負の屈折力を有する第2レンズ群L2、正の屈折力を有する第3レンズ群L3、負の屈折力を有する第4レンズ群L4とからなり、無限遠物体から近距離物体への合焦の際に、少なくとも前記第2レンズ群L2を像面側へ移動させると同時に前記第3レンズ群L3を物体側へ移動させ、かつ、前記第1レンズ群L1と前記第2レンズ群L2との光軸上間隔が拡大し、同時に前記第2レンズ群L2と前記第3レンズ群L3との光軸上間隔が縮小し、また同時に前記第3レンズ群L3と前記第4レンズ群L4との光軸上間隔が拡大し、無限遠から等倍までのいずれかの倍率で近距離撮影が可能であって、前記第4レンズ群L4は、物体側から順に、負の屈折力を有する前群L4aと、正の屈折力を有する後群L4bで構成され、前記第4レンズ群前群L4aは少なくとも正の屈折力を有するレンズと負の屈折力を有するレンズを1枚ずつ有し、光学系が振動した際に前記前群L4aを光軸に対して略垂直方向に移動させて画像のぶれの補正を行い、
以下の条件式を満足することを特徴とする光学系。
0.15<|f4a/f|<0.4 (1)
0.3<f4b/f<0.8 (2)
0.2<|ΔS3/ΔS2|<1.0 (3)
ただし、
f4aは前記第4群前群L4aの焦点距離
f4bは前記第4群後群L4bの焦点距離
fは無限遠物体に合焦した時の全光学系の焦点距離
ΔS2は無限遠物体から近距離物体への合焦時における前記第2レンズ群L2の移動量
ΔS3は無限遠物体から近距離物体への合焦時における前記第3レンズ群L3の移動量
In order from the object side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, a third lens unit L3 having a positive refractive power, and a fourth lens having a negative refractive power A group L4, and at the time of focusing from an object at infinity to an object at a short distance, at least the second lens group L2 is moved to the image plane side and at the same time the third lens group L3 is moved to the object side, In addition, the distance on the optical axis between the first lens group L1 and the second lens group L2 is increased, and the distance on the optical axis between the second lens group L2 and the third lens group L3 is simultaneously reduced. At the same time, the distance on the optical axis between the third lens unit L3 and the fourth lens unit L4 is increased, and short-distance shooting is possible at any magnification from infinity to equal magnification, and the fourth lens unit L4. Are, in order from the object side, the front group L4a having a negative refractive power, and a positive The fourth lens unit front unit L4a includes at least one lens having a positive refractive power and one lens having a negative refractive power, and is configured to vibrate when the optical system vibrates. Moving the front group L4a in a direction substantially perpendicular to the optical axis to correct image blur;
An optical system satisfying the following conditional expression:
0.15 <| f4a / f | <0.4 (1)
0.3 <f4b / f <0.8 (2)
0.2 <| ΔS3 / ΔS2 | <1.0 (3)
However,
f4a is the focal length f4b of the fourth group front group L4a is the focal length f of the fourth group rear group L4b is the focal length ΔS2 of the entire optical system when focusing on an object at infinity. The amount of movement ΔS3 of the second lens unit L2 when focusing on the object is the amount of movement of the third lens unit L3 when focusing from an object at infinity to an object at a short distance.

また、本出願の第2の発明は、無限遠物体から近距離物体への合焦の際に、前記第1レンズ群L1及び第4レンズ群L4は光軸方向に固定であることを特徴とする第1の発明の防振機能を有するインナーフォーカス式マクロレンズを提供する。 The second invention of the present application is characterized in that the first lens unit L1 and the fourth lens unit L4 are fixed in the optical axis direction when focusing from an object at infinity to an object at a short distance. An inner focus type macro lens having the image stabilization function of the first invention is provided.

また、本出願の第3の発明は、以下の条件式を満足することを特徴とする第1の発明又は第2の発明のいずれかの防振機能を有するインナーフォーカス式マクロレンズを提供する。
(4) 0<f/R4ar−f/R4bf<2.0
ただし、
R4arは前記第4aレンズ群L4aの最も像面側のレンズ面の曲率半径
R4bfは前記第4bレンズ群L4bの最も物体側のレンズ面の曲率半径
fは無限遠物体に合焦した際の光学系全系の焦点距離
According to a third aspect of the present invention, there is provided an inner focus type macro lens having an image stabilization function according to the first aspect or the second aspect of the invention, wherein the following conditional expression is satisfied.
(4) 0 <f / R4ar-f / R4bf <2.0
However,
R4ar is the radius of curvature R4bf of the lens surface closest to the image plane of the 4a lens unit L4a, and the radius of curvature f of the lens surface closest to the object side of the 4b lens unit L4b is the optical system when focusing on an object at infinity. Focal length of the entire system

さらに、本発明は次の条件式を満足することが好ましい。
(4a) 0<f/R4ar−f/R4bf<1.0
ただし、
R4arは前記第4aレンズ群L4aの最も像面側のレンズ面の曲率半径
R4bfは前記第4bレンズ群L4bの最も物体側のレンズ面の曲率半径
fは無限遠物体に合焦した際の光学系全系の焦点距離
Further, the present invention preferably satisfies the following conditional expression.
(4a) 0 <f / R4ar-f / R4bf <1.0
However,
R4ar is the radius of curvature R4bf of the lens surface closest to the image plane of the 4a lens unit L4a, and the radius of curvature f of the lens surface closest to the object side of the 4b lens unit L4b is the optical system when focusing on an object at infinity. Focal length of the entire system

さらに、本発明は次の条件式を満足することが好ましい。
(5) 0.4<f1/f<0.6
(6) 0.3<|f2/f|<0.4
(7) 0.2<f3/f<0.5
(8) 0.3<|f4/f|<0.7
ただし、
f1は前記第1レンズ群L1の焦点距離
f2は前記第2レンズ群L2の焦点距離
f3は前記第3レンズ群L3の焦点距離
f4は前記第4レンズ群L4の焦点距離
fは無限遠物体に合焦した際の光学系全系の焦点距離
Further, the present invention preferably satisfies the following conditional expression.
(5) 0.4 <f1 / f <0.6
(6) 0.3 <| f2 / f | <0.4
(7) 0.2 <f3 / f <0.5
(8) 0.3 <| f4 / f | <0.7
However,
f1 is the focal length f2 of the first lens unit L1, the focal length f3 of the second lens unit L2, the focal length f4 of the third lens unit L3, and the focal length f of the fourth lens unit L4 is an infinite object. Focal length of the entire optical system when focused

さらに、本発明は次の条件式を満足することが好ましい。
(9) 1.5<(Δx/ΔH)<2.5
ただし、
ΔHは前記第4aレンズ群L4aの光軸に対する垂直方向への移動量
Δxは前記第4aレンズ群L4aの光軸に対する垂直方向への移動量ΔHに対応する像面上におけれる結像位置の移動量
Further, the present invention preferably satisfies the following conditional expression.
(9) 1.5 <(Δx / ΔH) <2.5
However,
ΔH is a moving amount Δx in the direction perpendicular to the optical axis of the 4a lens group L4a, and Δx is an imaging position on the image plane corresponding to the moving amount ΔH in the direction perpendicular to the optical axis of the fourth a lens group L4a. Amount of movement

さらに、本発明において、開口絞りの開口径は、無限遠物体から近距離物体への合焦の際に変化することが好ましい。これは、近距離物体への合焦時は、無限遠物体への合焦時に比べてマージナル光線高が低くなることに合わせるためである。 Furthermore, in the present invention, it is preferable that the aperture diameter of the aperture stop changes during focusing from an object at infinity to a near object. This is because the marginal ray height is lowered when focusing on an object at a short distance compared to when focusing on an object at infinity.

また、開口絞りは、構造上、前記第2レンズ群L2と前記第3レンズ群L3との間、若しくは前記第3レンズ群L3と前記第4レンズ群L4との間に配置され、無限遠物体から近距離物体への合焦の際に、像面に対して固定であることが好ましい。開口絞りを合焦時に固定とすることで、開放絞りの口径を変化させる機構を合焦時に移動させる必要はなく、速やかな合焦を行うことができる。 The aperture stop is structurally disposed between the second lens unit L2 and the third lens unit L3 or between the third lens unit L3 and the fourth lens unit L4, and is an object at infinity. It is preferable to be fixed with respect to the image plane at the time of focusing on a short-distance object. By fixing the aperture stop at the time of focusing, it is not necessary to move the mechanism for changing the aperture of the open aperture at the time of focusing, and quick focusing can be performed.

本発明によれば、無限遠物体から等倍付近の近距離物体にわたる合焦域で諸収差を良好に補正した上で、防振時に、防振レンズ群の小さい移動量によって十分大きな像ぶれの補正を可能とし、また、良好な結像性能を維持できる、防振機能を有するインナーフォーカス式マクロレンズを提供することができる。 According to the present invention, various aberrations are corrected well in an in-focus range from an object at infinity to a close object near the same magnification, and at the time of image stabilization, a sufficiently large image blur is caused by a small movement amount of the image stabilization lens unit. It is possible to provide an inner focus type macro lens having an anti-vibration function capable of correcting and maintaining good imaging performance.

本発明の実施例1のレンズ構成図FIG. 1 is a lens configuration diagram of Example 1 of the present invention. 本発明の実施例1の無限遠物体合焦時での縦収差図Longitudinal aberration diagram at the time of focusing on an object at infinity according to Example 1 of the present invention 本発明の実施例1の近距離物体(1.0倍)合焦時での縦収差図Longitudinal aberration diagram at the time of focusing on a short distance object (1.0 ×) in Example 1 of the present invention 本発明の実施例1の無限遠物体合焦時での横収差図及び防振時における無限遠物体合焦時での横収差図FIG. 6 is a lateral aberration diagram when focusing on an object at infinity according to Example 1 of the present invention, and a lateral aberration diagram when focusing on an object at infinity during image stabilization. 本発明の実施例1の近距離物体(1.0倍)合焦時での横収差図及び防振時における近距離物体(1.0倍)合焦時での横収差図FIG. 6 is a lateral aberration diagram when focusing on a short-distance object (1.0 times) and a lateral aberration diagram when focusing on a short-distance object (1.0 times) during image stabilization. 本発明の実施例2のレンズ構成図FIG. 6 is a lens configuration diagram of Example 2 of the present invention. 本発明の実施例2の無限遠物体合焦時での縦収差図Longitudinal aberration diagram when focusing on an object at infinity according to Example 2 of the present invention 本発明の実施例2の近距離物体(1.0倍)合焦時での縦収差図Longitudinal aberration diagram at the time of focusing on a short distance object (1.0 ×) in Example 2 of the present invention 本発明の実施例2の無限遠物体合焦時での横収差図及び防振時における無限遠物体合焦時での横収差図Lateral aberration diagram when focusing on an object at infinity according to Example 2 of the present invention and lateral aberration diagram when focusing on an object at infinity during image stabilization 本発明の実施例2の近距離物体(1.0倍)合焦時での横収差図及び防振時における近距離物体(1.0倍)合焦時での横収差図Lateral aberration diagram at the time of focusing on a short distance object (1.0 times) and lateral aberration diagram at the time of focusing on a short distance object (1.0 times) of the image stabilization according to the second embodiment of the present invention 本発明の実施例3のレンズ構成図Lens configuration diagram of Embodiment 3 of the present invention 本発明の実施例3の無限遠物体合焦時での縦収差図Longitudinal aberration diagram of Example 3 of the present invention when focusing on an object at infinity 本発明の実施例3の近距離物体(1.0倍)合焦時での縦収差図Longitudinal aberration diagram at the time of focusing on a short distance object (1.0 ×) in Example 3 of the present invention 本発明の実施例3の無限遠物体合焦時での横収差図及び防振時における無限遠物体合焦時での横収差図Lateral aberration diagram when focusing on an object at infinity according to Example 3 of the present invention and lateral aberration diagram when focusing on an object at infinity during image stabilization 本発明の実施例3の近距離物体(1.0倍)合焦時での横収差図及び防振時における近距離物体(1.0倍)合焦時での横収差図Lateral aberration diagram at the time of focusing on a short distance object (1.0 times) and lateral aberration diagram at the time of focusing on a short distance object (1.0 times) in the image stabilization according to Embodiment 3 of the present invention 本発明の実施例4のレンズ構成図Lens configuration diagram of Embodiment 4 of the present invention 本発明の実施例4の無限遠物体合焦時での縦収差図Longitudinal aberration diagram of Example 4 of the present invention when focusing on an object at infinity 本発明の実施例4の近距離物体(1.0倍)合焦時での縦収差図Longitudinal aberration diagram at the time of focusing on a short distance object (1.0 ×) in Example 4 of the present invention 本発明の実施例4の無限遠物体合焦時での横収差図及び防振時における無限遠物体合焦時での横収差図Lateral aberration diagram when focusing on an object at infinity according to Example 4 of the present invention and lateral aberration diagram when focusing on an object at infinity during image stabilization 本発明の実施例4の近距離物体(1.0倍)合焦時での横収差図及び防振時における近距離物体(1.0倍)合焦時での横収差図Lateral aberration diagram at the time of focusing on a short distance object (1.0 times) and lateral aberration diagram at the time of focusing on a short distance object (1.0 times) in the image stabilization of Example 4 of the present invention 本発明の実施例5のレンズ構成図Lens configuration diagram of Embodiment 5 of the present invention 本発明の実施例5の無限遠物体合焦時での縦収差図Longitudinal aberration diagram at the time of focusing on an object at infinity according to Example 5 of the present invention 本発明の実施例5の近距離物体(1.0倍)合焦時での縦収差図Longitudinal aberration diagram at the time of focusing on a short distance object (1.0 ×) in Example 5 of the present invention 本発明の実施例5の無限遠物体合焦時での横収差図及び防振時における無限遠物体合焦時での横収差図Lateral aberration diagram when focusing on an object at infinity according to Example 5 of the present invention and lateral aberration diagram when focusing on an object at infinity during image stabilization 本発明の実施例5の近距離物体(1.0倍)合焦時での横収差図及び防振時における近距離物体(1.0倍)合焦時での横収差図Lateral aberration diagram at the time of focusing on a short distance object (1.0 times) and lateral aberration diagram at the time of focusing on a short distance object (1.0 times) in the image stabilization according to Embodiment 5 of the present invention 本発明の実施例6のレンズ構成図Lens configuration diagram of Embodiment 6 of the present invention 本発明の実施例6の無限遠物体合焦時での縦収差図Longitudinal aberration diagram of Example 6 of the present invention when focusing on an object at infinity 本発明の実施例6の近距離物体(1.0倍)合焦時での縦収差図Longitudinal aberration diagram at the time of focusing on a short distance object (1.0 ×) in Example 6 of the present invention 本発明の実施例6の無限遠物体合焦時での横収差図及び防振時における無限遠物体合焦時での横収差図Lateral aberration diagram when focusing on an object at infinity according to Example 6 of the present invention and lateral aberration diagram when focusing on an object at infinity during image stabilization 本発明の実施例6の近距離物体(1.0倍)合焦時での横収差図及び防振時における近距離物体(1.0倍)合焦時での横収差図Lateral aberration diagram at the time of focusing on a short distance object (1.0 times) and lateral aberration diagram at the time of focusing on a short distance object (1.0 times) in the image stabilization according to Embodiment 6 of the present invention

以下、本発明の実施例について図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る実施例1のレンズ構成図であり、(a)は無限遠物体に対する合焦状態、(b)は近距離物体(1.0倍)に対する合焦状態を示している。 FIGS. 1A and 1B are lens configuration diagrams of Example 1 according to the present invention, in which FIG. 1A shows a focused state with respect to an object at infinity, and FIG. Yes.

図2は、本発明に係る実施例1の無限遠物体合焦時での縦収差図であり、図3は、本発明に係る実施例1の近距離物体(1.0倍)合焦時での縦収差図である。 2 is a longitudinal aberration diagram when focusing on an object at infinity according to Example 1 of the present invention, and FIG. 3 is when focusing on a short distance object (1.0 ×) according to Example 1 of the present invention. FIG.

図4は、本発明に係る実施例1の無限遠物体合焦時での横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.6mm移動させ、結像位置を画角0.37度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 4 is a transverse aberration diagram when focusing on an object at infinity according to Example 1 of the present invention. FIG. 4A is a transverse aberration curve from a real image height of 0.0 mm to 21.63 mm at the time of non-vibration prevention. b) shows a real image height of 0.0 mm and 15 mm when the 4a lens unit L4a is moved by 0.6 mm in the direction perpendicular to the optical axis during image stabilization and the image forming position is moved by an angle corresponding to an angle of view of 0.37 degrees. The lateral aberration curves of .141 mm and -15.141 mm are shown.

図5は、本発明に係る実施例1の近距離物体(1.0倍)合焦時の横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.6mm移動させ、結像位置を画角0.37度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 5 is a lateral aberration diagram when focusing on a short-distance object (1.0 ×) according to Example 1 of the present invention. FIG. The lateral aberration curve, (b) shows the real image height when the 4a lens unit L4a is moved by 0.6 mm in the direction perpendicular to the optical axis and the imaging position is moved by an angle of view equivalent to 0.37 degrees during image stabilization. The lateral aberration curves of 0.0 mm, 15.141 mm, and -15.141 mm are shown.

図6は、本発明に係る実施例2のレンズ構成図であり、(a)は無限遠物体に対する合焦状態、(b)は近距離物体(1.0倍)に対する合焦状態を示している。 FIGS. 6A and 6B are lens configuration diagrams of Example 2 according to the present invention, in which FIG. 6A shows a focused state with respect to an object at infinity, and FIG. Yes.

図7は、本発明に係る実施例2の無限遠物体合焦時での縦収差図であり、図8は、本発明に係る実施例2の近距離物体(1.0倍)合焦時での縦収差図である。 FIG. 7 is a longitudinal aberration diagram when focusing on an object at infinity according to Example 2 of the present invention, and FIG. 8 is when focusing at a short distance object (1.0 times) according to Example 2 of the present invention. FIG.

図9は、本発明に係る実施例2の無限遠物体合焦時での横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.6mm移動させ、結像位置を画角0.37度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 9 is a transverse aberration diagram when focusing on an object at infinity according to Example 2 of the present invention. FIG. 9A is a transverse aberration curve from a real image height of 0.0 mm to 21.63 mm when non-vibration-proof, b) shows a real image height of 0.0 mm and 15 mm when the 4a lens unit L4a is moved by 0.6 mm in the direction perpendicular to the optical axis during image stabilization and the image forming position is moved by an angle corresponding to an angle of view of 0.37 degrees. The lateral aberration curves of .141 mm and -15.141 mm are shown.

図10は、本発明に係る実施例2の近距離物体(1.0倍)合焦時の横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.6mm移動させ、結像位置を画角0.37度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 10 is a transverse aberration diagram when focusing on a short-distance object (1.0 ×) according to Example 2 of the present invention. FIG. The lateral aberration curve, (b) shows the real image height when the 4a lens unit L4a is moved by 0.6 mm in the direction perpendicular to the optical axis and the imaging position is moved by an angle of view equivalent to 0.37 degrees during image stabilization. The lateral aberration curves of 0.0 mm, 15.141 mm, and -15.141 mm are shown.

図11は、本発明に係る実施例3のレンズ構成図であり、(a)は無限遠物体に対する合焦状態、(b)は近距離物体(1.0倍)に対する合焦状態を示している。 FIG. 11 is a lens configuration diagram of Example 3 according to the present invention, where (a) shows a focused state with respect to an object at infinity, and (b) shows a focused state with respect to a short-range object (1.0 times). Yes.

図12は、本発明に係る実施例3の無限遠物体合焦時での縦収差図であり、図13は、本発明に係る実施例3の近距離物体(1.0倍)合焦時での縦収差図である。 FIG. 12 is a longitudinal aberration diagram when focusing on an object at infinity according to Example 3 of the present invention, and FIG. 13 is when focusing on a short-distance object (1.0 ×) according to Example 3 according to the present invention. FIG.

図14は、本発明に係る実施例3の無限遠物体合焦時での横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.6mm移動させ、結像位置を画角0.37度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 14 is a lateral aberration diagram when focusing on an object at infinity according to Example 3 of the present invention. FIG. 14A is a lateral aberration curve from a real image height of 0.0 mm to 21.63 mm when non-vibration-proof. b) shows a real image height of 0.0 mm and 15 mm when the 4a lens unit L4a is moved by 0.6 mm in the direction perpendicular to the optical axis during image stabilization and the image forming position is moved by an angle corresponding to an angle of view of 0.37 degrees. The lateral aberration curves of .141 mm and -15.141 mm are shown.

図15は、本発明に係る実施例3の近距離物体(1.0倍)合焦時の横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.6mm移動させ、結像位置を画角0.37度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 15 is a lateral aberration diagram when focusing on a short-distance object (1.0 ×) in Example 3 according to the present invention, and FIG. The lateral aberration curve, (b) shows the real image height when the 4a lens unit L4a is moved by 0.6 mm in the direction perpendicular to the optical axis and the imaging position is moved by an angle of view equivalent to 0.37 degrees during image stabilization. The lateral aberration curves of 0.0 mm, 15.141 mm, and -15.141 mm are shown.

図16は、本発明に係る実施例4のレンズ構成図であり、(a)は無限遠物体に対する合焦状態、(b)は近距離物体(1.0倍)に対する合焦状態を示している。 FIG. 16 is a lens configuration diagram of Example 4 according to the present invention, where (a) shows a focused state with respect to an object at infinity, and (b) shows a focused state with respect to a close object (1.0 times). Yes.

図17は、本発明に係る実施例4の無限遠物体合焦時での縦収差図であり、図18は、本発明に係る実施例4の近距離物体(1.0倍)合焦時での縦収差図である。 FIG. 17 is a longitudinal aberration diagram when focusing on an object at infinity according to Example 4 of the present invention, and FIG. 18 is when focusing on a short distance object (1.0 ×) according to Example 4 of the present invention. FIG.

図19は、本発明に係る実施例4の無限遠物体合焦時での横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.4mm移動させ、結像位置を画角0.37度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 19 is a lateral aberration diagram when focusing on an object at infinity according to Example 4 of the present invention. FIG. 19A is a lateral aberration curve from a real image height of 0.0 mm to 21.63 mm when non-vibration-proof. b) shows a real image height of 0.0 mm and 15 mm when the 4a lens unit L4a is moved by 0.4 mm in the direction perpendicular to the optical axis and the imaging position is moved by an angle corresponding to an angle of view of 0.37 degrees during image stabilization. The lateral aberration curves of .141 mm and -15.141 mm are shown.

図20は、本発明に係る実施例4の近距離物体(1.0倍)合焦時の横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.4mm移動させ、結像位置を画角0.37度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 20 is a lateral aberration diagram when focusing on a short-distance object (1.0 ×) in Example 4 according to the present invention. FIG. The lateral aberration curve, (b) shows the real image height when the 4a lens unit L4a is moved by 0.4 mm in the direction perpendicular to the optical axis and the image forming position is moved by an angle corresponding to 0.37 degrees in view of vibration. The lateral aberration curves of 0.0 mm, 15.141 mm, and -15.141 mm are shown.

図21は、本発明に係る実施例5のレンズ構成図であり、(a)は無限遠物体に対する合焦状態、(b)は近距離物体(1.0倍)に対する合焦状態を示している。 FIGS. 21A and 21B are lens configuration diagrams of Example 5 according to the present invention, in which FIG. Yes.

図22は、本発明に係る実施例5の無限遠物体合焦時での縦収差図であり、図23は、本発明に係る実施例5の近距離物体(1.0倍)合焦時での縦収差図である。 FIG. 22 is a longitudinal aberration diagram when focusing on an object at infinity according to Example 5 of the present invention, and FIG. 23 is when focusing on a short distance object (1.0 times) according to Example 5 of the present invention. FIG.

図24は、本発明に係る実施例5の無限遠物体合焦時での横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.5mm移動させ、結像位置を画角0.36度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 24 is a lateral aberration diagram when focusing on an object at infinity according to Example 5 of the present invention. FIG. 24A is a lateral aberration curve from a real image height of 0.0 mm to 21.63 mm when non-vibration is corrected. b) shows a real image height of 0.0 mm and 15 mm when the 4a lens unit L4a is moved by 0.5 mm in the direction perpendicular to the optical axis and the image forming position is moved by an angle corresponding to an angle of view of 0.36 degrees. The lateral aberration curves of .141 mm and -15.141 mm are shown.

図25は、本発明に係る実施例5の近距離物体(1.0倍)合焦時の横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.5mm移動させ、結像位置を画角0.36度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 25 is a lateral aberration diagram when focusing on a short-distance object (1.0 ×) according to Example 5 of the present invention. FIG. The lateral aberration curve, (b) shows the real image height when the 4a lens unit L4a is moved by 0.5 mm in the direction perpendicular to the optical axis and the imaging position is moved by an angle of view equivalent to 0.36 degrees during image stabilization. The lateral aberration curves of 0.0 mm, 15.141 mm, and -15.141 mm are shown.

図26は、本発明に係る実施例6のレンズ構成図であり、(a)は無限遠物体に対する合焦状態、(b)は近距離物体(1.0倍)に対する合焦状態を示している。 FIG. 26 is a lens configuration diagram of Example 6 according to the present invention, where (a) shows a focused state with respect to an object at infinity, and (b) shows a focused state with respect to a short-range object (1.0 times). Yes.

図27は、本発明に係る実施例6の無限遠物体合焦時での縦収差図であり、図28は、本発明に係る実施例6の近距離物体(1.0倍)合焦時での縦収差図である。 27 is a longitudinal aberration diagram when focusing on an object at infinity according to Example 6 of the present invention. FIG. 28 is when focusing on a short distance object (1.0 ×) according to Example 6 of the present invention. FIG.

図29は、本発明に係る実施例6の無限遠物体合焦時での横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.6mm移動させ、結像位置を画角0.32度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 29 is a lateral aberration diagram when focusing on an object at infinity according to Example 6 of the present invention. FIG. 29A is a lateral aberration curve from a real image height of 0.0 mm to 21.63 mm at the time of non-vibration prevention. b) shows a real image height of 0.0 mm and 15 mm when the 4a lens unit L4a is moved by 0.6 mm in the direction perpendicular to the optical axis and the image forming position is moved by an angle of view equivalent to 0.32 degrees during image stabilization. The lateral aberration curves of .141 mm and -15.141 mm are shown.

図30は、本発明に係る実施例6の近距離物体(1.0倍)合焦時の横収差図であり、(a)は非防振時における実像高0.0mmから21.63mmの横収差曲線、(b)は防振時において第4aレンズ群L4aを光軸に対して垂直方向へ0.6mm移動させ、結像位置を画角0.32度相当移動させた場合の実像高0.0mmと15.141mmと−15.141mmの横収差曲線を示している。 FIG. 30 is a lateral aberration diagram when focusing on a short-distance object (1.0 ×) in Example 6 according to the present invention. FIG. The horizontal aberration curve, (b) shows the actual image height when the 4a lens unit L4a is moved by 0.6 mm in the direction perpendicular to the optical axis and the imaging position is moved by an angle of view equivalent to 0.32 degrees during image stabilization. The lateral aberration curves of 0.0 mm, 15.141 mm, and -15.141 mm are shown.

次に、各条件式の技術的意味について説明する。 Next, the technical meaning of each conditional expression will be described.

条件式(1)は、防振レンズ群とした第4aレンズ群L4aの焦点距離を規定するものであって、防振レンズ群の十分な防振係数の確保と防振時の収差補正とを両立させるためのものである。 Conditional expression (1) defines the focal length of the 4a lens unit L4a as the image stabilizing lens unit, and ensures sufficient image stabilizing coefficient of the image stabilizing lens unit and corrects the aberration during image stabilization. It is for making it compatible.

条件式(1)の下限値を超えることで、第4aレンズ群L4aの焦点距離が短くなると、第4aレンズ群L4aが光軸に対して垂直方向への移動することにより発生する収差、特に非点収差の補正が困難になる。また、条件式(1)の上限値を超えることで、第4aレンズ群L4aの焦点距離が長くなると、収差補正に対しては有利になるが、最も像面側のレンズ群の径を小さく抑えつつ防振レンズ群の十分な防振係数を得ることが困難になる。 If the lower limit of conditional expression (1) is exceeded and the focal length of the 4a lens unit L4a is shortened, aberrations caused by the movement of the 4a lens unit L4a in the direction perpendicular to the optical axis, particularly non- Correction of point aberration becomes difficult. If the focal length of the 4a lens unit L4a is increased by exceeding the upper limit value of the conditional expression (1), it is advantageous for aberration correction, but the diameter of the lens unit closest to the image plane is kept small. However, it is difficult to obtain a sufficient anti-vibration coefficient for the anti-vibration lens group.

条件式(2)は、第4bレンズ群L4bの焦点距離を規定するものであって、防振レンズ群の十分な防振係数の確保と防振時の収差補正を両立させるためのものである。 Conditional expression (2) defines the focal length of the 4b lens unit L4b, and is for ensuring both a sufficient anti-vibration coefficient of the anti-vibration lens unit and correction of aberrations during image stabilization. .

条件式(2)の下限値を超え、第4bレンズ群L4bの焦点距離が短くなると、バックフォーカスを確保しつつ、合焦の際に移動するレンズ群に十分な屈折力を与えることが困難になる。また、条件式(2)の上限値を超え、第4bレンズ群L4bの焦点距離が長くなると、第4aレンズ群L4aと第4bレンズ群L4bの間隔を確保しつつ防振レンズ群の十分な防振係数を得ることが困難になる。 If the lower limit of conditional expression (2) is exceeded and the focal length of the 4b lens unit L4b is shortened, it is difficult to give sufficient refractive power to the lens unit that moves during focusing while ensuring the back focus. Become. If the upper limit of conditional expression (2) is exceeded and the focal length of the 4b lens group L4b is increased, sufficient anti-vibration lens group protection is ensured while ensuring the distance between the 4a lens group L4a and the 4b lens group L4b. It becomes difficult to obtain a vibration coefficient.

条件式(3)は、合焦時における第2レンズ群L2の移動量と第3レンズ群L3の移動量との比に関するものである。 Conditional expression (3) relates to the ratio between the amount of movement of the second lens unit L2 and the amount of movement of the third lens unit L3 during focusing.

条件式(3)の下限値を超え、第2レンズ群L2の移動量に対する第3レンズ群L3の移動量の比が小さくなると、第2レンズ群L2に対して第3レンズ群L3の単位移動量あたりの収差の発生量が過剰になり、合焦全域での良好な収差の補正、特に軸上色収差とコマ収差の補正が困難になり、また第3レンズ群L3と第4aレンズ群L4aの間隔の確保も困難になる。また、条件式(3)の上限値を超え、第2レンズ群L2の移動量に対する第3レンズ群L3の移動量の比が大きくなると、レンズ全体に対する第3レンズ群L3の屈折力が低下し、防振レンズ群の十分な防振係数を得ることが困難になる。 When the lower limit value of conditional expression (3) is exceeded and the ratio of the moving amount of the third lens unit L3 to the moving amount of the second lens unit L2 becomes small, the unit movement of the third lens unit L3 with respect to the second lens unit L2 The amount of aberration generated per unit amount becomes excessive, making it difficult to correct good aberrations in the entire in-focus region, particularly to correct axial chromatic aberration and coma aberration, and the third lens unit L3 and the fourth lens unit L4a. It is difficult to secure the interval. If the upper limit of conditional expression (3) is exceeded and the ratio of the movement amount of the third lens group L3 to the movement amount of the second lens group L2 increases, the refractive power of the third lens group L3 with respect to the entire lens decreases. , it is difficult to obtain a sufficient vibration reduction coefficient of the vibration reduction lens group.

条件式(4)は、第4aレンズ群L4aの最も像面側にあるレンズ面の曲率半径と第4bレンズ群L4bの最も物体側にあるレンズ面の曲率半径との差を規定するものである。 Conditional expression (4) defines the difference between the radius of curvature of the lens surface closest to the image plane of the 4a lens unit L4a and the radius of curvature of the lens surface closest to the object side of the 4b lens unit L4b. .

条件式(4)の下限値を超え、R4arに対するR4bfの比が小さくなると、最も像面側のレンズ径を抑え、かつ、第3レンズ群L3と第4aレンズ群L4aとの間隔を確保しつつ防振レンズ群の十分な防振係数を得ることが困難となる。また、上限値を超え、R4arに対するR4bfの比が大きくなると、第4aレンズ群L4aの最も像面側のレンズ面で発生した大きなコマ収差、非点収差を第4bレンズ群L4bのもっとも物体側のレンズ面で打ち消す作用が崩れてしまう。 When the lower limit of conditional expression (4) is exceeded and the ratio of R4bf to R4ar becomes small, the lens diameter closest to the image plane is suppressed, and the distance between the third lens unit L3 and the fourth lens unit L4a is secured. It becomes difficult to obtain a sufficient anti-vibration coefficient for the anti-vibration lens group. Further, when the ratio of R4bf to R4ar increases when the upper limit is exceeded, large coma and astigmatism generated on the lens surface closest to the image plane of the 4a lens unit L4a are reduced to the most object side of the 4b lens unit L4b. The action of canceling with the lens surface will be lost.

また、第4レンズ群L4の任意の面のいずれについても非球面を使用しない場合には、コマ収差や非点収差の補正が容易ではなくなるため、条件式(4)の上限値の範囲はさらに条件式(4a)の範囲に規制されることが好ましい。 In addition, when an aspheric surface is not used for any arbitrary surface of the fourth lens unit L4, correction of coma and astigmatism is not easy, so the upper limit range of conditional expression (4) is further increased. It is preferable to be regulated within the range of conditional expression (4a).

条件式(5)は、第1レンズ群L1の焦点距離を規定するものであって、レンズの小型化と良好な収差補正とを両立させるためのものである。 Conditional expression (5) defines the focal length of the first lens unit L1, and is intended to achieve both a reduction in lens size and good aberration correction.

条件式(5)の下限値を超え、第1レンズ群L1の焦点距離が短くなると、軸上色収差やコマ収差を無限遠物体から等倍付近の近距離物体にわたるフォーカス範囲全域において良好に補正することが困難になる。また、条件式(5)の上限値を超え、第1レンズ群L1の焦点距離が長くなると、収差補正に対しては有利になるが、レンズ系の全長や開放絞りの最大径が大きくなってしまう。 When the lower limit value of conditional expression (5) is exceeded and the focal length of the first lens unit L1 is shortened, axial chromatic aberration and coma aberration are corrected well over the entire focus range from an infinitely distant object to a close object near the same magnification. It becomes difficult. If the upper limit of conditional expression (5) is exceeded and the focal length of the first lens unit L1 is increased, this is advantageous for aberration correction, but the total length of the lens system and the maximum diameter of the aperture stop are increased. End up.

条件式(6)は、第2レンズ群L2の焦点距離を規定するものであって、レンズ系の小型化と良好な収差補正とを両立させるためのものである。 Conditional expression (6) defines the focal length of the second lens unit L2, and is intended to achieve both reduction in the size of the lens system and good aberration correction.

条件式(6)の下限値を超え、第2レンズ群L2の焦点距離が短くなると、合焦させる物体距離によって諸収差が激しく変動し、コマ収差を無限遠物体から等倍付近の近距離物体にわたる合焦範囲全域において良好に補正することが困難になる。また、条件式(6)の上限値を超え、第2レンズ群L2の焦点距離が長くなると、一定の撮影倍率を確保するためのフォーカスレンズ群の移動量が大きくなり、レンズ系の全長が大きくなってしまう。 When the lower limit of conditional expression (6) is exceeded and the focal length of the second lens unit L2 is shortened, various aberrations fluctuate greatly depending on the object distance to be focused, and coma aberration is reduced from an object at infinity to a near-distance object near the same magnification. It becomes difficult to correct well over the entire focusing range. When the upper limit of conditional expression (6) is exceeded and the focal length of the second lens unit L2 is increased, the amount of movement of the focus lens unit to ensure a constant shooting magnification increases, and the total length of the lens system increases. turn into.

条件式(7)は、第3レンズ群L3の焦点距離を規定するものであって、レンズ系の小型化と良好な収差補正とを両立させるためのものである。 Conditional expression (7) defines the focal length of the third lens unit L3, and is intended to achieve both a reduction in the size of the lens system and good aberration correction.

条件式(7)の下限値を超え、第3レンズ群L3の焦点距離が短くなると、コマ収差をはじめとする諸収差が大きくなることに加えて、第3レンズ群L3と第4レンズ群L4との間隔を確保することが困難となる。また、条件式(7)の上限値を超え、第3レンズ群L3の焦点距離が長くなると、一定の撮影倍率を確保するためのフォーカスレンズ群の移動量が大きくなり、レンズ系の全長が大きくなってしまう。 When the lower limit of conditional expression (7) is exceeded and the focal length of the third lens unit L3 is shortened, various aberrations including coma become large, and in addition, the third lens unit L3 and the fourth lens unit L4. It is difficult to ensure the interval. If the upper limit of conditional expression (7) is exceeded and the focal length of the third lens unit L3 is increased, the amount of movement of the focus lens unit to ensure a constant shooting magnification increases, and the total length of the lens system increases. turn into.

条件式(8)は、第4レンズ群L4の焦点距離を規定するものであって、防振レンズ群の十分な防振係数の確保と防振時の収差補正とを両立させるためのものである。 Conditional expression (8) defines the focal length of the fourth lens unit L4, and is for ensuring both a sufficient anti-vibration coefficient of the anti-vibration lens unit and correction of aberrations during image stabilization. is there.

条件式(8)の下限値を超え、第4レンズ群L4の焦点距離が短くなると、第3レンズ群L3の屈折力を抑えつつ開放絞りの最大径を小さくすることが困難となる。また、条件式(8)の上限値を超え、第4レンズ群L4の焦点距離が長くなると、収差補正に対しては有利になるが、最も像面側のレンズの径を抑えつつ防振レンズ群の十分な防振係数を得ることが困難になる。 When the lower limit value of conditional expression (8) is exceeded and the focal length of the fourth lens unit L4 is shortened, it becomes difficult to reduce the maximum diameter of the aperture stop while suppressing the refractive power of the third lens unit L3. If the upper limit of conditional expression (8) is exceeded and the focal length of the fourth lens unit L4 is increased, it is advantageous for aberration correction, but the image stabilizing lens is suppressed while suppressing the diameter of the lens closest to the image plane. It becomes difficult to obtain a sufficient anti-vibration coefficient for the group.

条件式(9)は、防振レンズ群の防振係数を規定するものである。 Conditional expression (9) defines the image stabilization coefficient of the image stabilization lens group.

条件式(9)の下限値を超え、防振レンズ群の防振係数が小さくなると、第4aレンズ群L4aの光軸に対して垂直方向への移動で発生する収差の補正は容易になるが、像ぶれを補正するのに必要な第4aレンズ群L4aの移動量が大きくなり、防振レンズ群の駆動機構が大型化するので好ましくない。また、条件式(9)の上限値を超え、防振レンズ群の防振係数が大きくなると、第4aレンズ群L4aの光軸に対する垂直方向への移動で発生する収差の補正が困難になる。 If the lower limit of conditional expression (9) is exceeded and the image stabilization coefficient of the image stabilization lens unit becomes small, correction of aberrations caused by movement in the direction perpendicular to the optical axis of the 4a lens unit L4a becomes easy. This is not preferable because the amount of movement of the 4a lens unit L4a necessary for correcting image blur increases and the drive mechanism of the image stabilizing lens unit increases. If the upper limit of conditional expression (9) is exceeded and the image stabilization coefficient of the image stabilization lens unit becomes large, it becomes difficult to correct aberrations that occur due to the movement of the 4a lens unit L4a in the direction perpendicular to the optical axis.

なお、各実施形態において、さらに条件式(3)の数値範囲を次のように設定することが好ましい。
(3a) 0.25<|ΔS3/ΔS2|<0.7
In each embodiment, it is preferable to further set the numerical range of conditional expression (3) as follows.
(3a) 0.25 <| ΔS3 / ΔS2 | <0.7

以下、本発明の数値実施例1乃至数値実施例6について説明する。 Hereinafter, Numerical Example 1 to Numerical Example 6 of the present invention will be described.

各数値実施例において、[全体諸元]中のfは焦点距離、FnoはFナンバー、2ωは画角(単位:度)を表す。また、[レンズ諸元]中の第1列の番号Nは物体側から数えたレンズ面の面番号、第2列Rはレンズ面の曲率半径、第3列Dはレンズ面間隔、第4列ndはd線(波長λ=587.6nm)に対する屈折率、第5列νdはd線(波長λ=587.6nm)に対するアッベ数を表す。また、R=0.0000は平面を表し、Bfはバックフォーカス、「絞り」は絞り面、「フレアカット絞り」はフレアカット絞り面を示し、「*」印は非球面を示し、空気の屈折率nd=1.0000はその記載を省略する。[可変間隔]では、各撮影距離に対する可変間隔を示す。 In each numerical example, f in [general specifications] represents a focal length, Fno represents an F number, and 2ω represents an angle of view (unit: degree). In the [lens specifications], the number N in the first row is the surface number of the lens surface counted from the object side, the second row R is the radius of curvature of the lens surface, the third row D is the lens surface spacing, and the fourth row. nd represents the refractive index with respect to the d-line (wavelength λ = 587.6 nm), and the fifth column νd represents the Abbe number with respect to the d-line (wavelength λ = 587.6 nm). R = 0.0000 represents a plane, Bf represents back focus, “aperture” represents a diaphragm surface, “flare cut diaphragm” represents a flare cut diaphragm surface, “*” represents an aspheric surface, and air refraction. The description of the rate nd = 1.0000 is omitted. [Variable interval] indicates a variable interval for each shooting distance .

また、図中のd線、g線、C線はそれぞれの波長に対する収差であり、ΔSはサジタル像面、ΔMはメリジオナル像面を示す。 Further, d-line, g-line, and C-line in the figure are aberrations with respect to the respective wavelengths, ΔS represents a sagittal image plane, and ΔM represents a meridional image plane.

[非球面係数]では、面番号Nのレンズ面の非球面形状を次式で表した場合の、非球面係数を表す。

Figure 0005542374
[Aspheric coefficient] represents an aspheric coefficient when the aspheric shape of the lens surface with the surface number N is expressed by the following equation.
Figure 0005542374

ただし、zはレンズ面の頂点を基準にしたときの光軸からの高さyの位置における光軸方向への偏移量を示し、Kはコーニック係数を示し、A4、A6、A8、A10は非球面係数を示し、rは基準球面の曲率半径を示す。また、「E−n」は「×10−n」を示し、例えば「−4.7168E−06」は「−4.7168×10−6」を示す。 Here, z indicates the amount of deviation in the optical axis direction at the position of the height y from the optical axis with respect to the vertex of the lens surface, K indicates the conic coefficient, and A4, A6, A8, and A10 are An aspheric coefficient is indicated, and r indicates a radius of curvature of the reference sphere. Further, “E-n” indicates “× 10 −n ”, for example “−4.7168E-06” indicates “−4.7168 × 10 −6 ”.

以下、全ての数値実施例において、記載されている焦点距離、曲率半径、レンズ面間隔、及びその他の長さの単位については、特記のない場合「mm」を使用するが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるため、単位は「mm」に限られるものではない。 Hereinafter, in all the numerical examples, “mm” is used unless otherwise specified for the focal length, the radius of curvature, the lens surface interval, and other length units that are described, but the optical system is proportional. The unit is not limited to “mm” because the same optical performance can be obtained even when the magnification is enlarged or proportionally reduced.

(数値実施例1)

Figure 0005542374
Figure 0005542374
Figure 0005542374
Figure 0005542374
(Numerical example 1)
Figure 0005542374
Figure 0005542374
Figure 0005542374
Figure 0005542374

(数値実施例2)

Figure 0005542374
Figure 0005542374
Figure 0005542374
Figure 0005542374
(Numerical example 2)
Figure 0005542374
Figure 0005542374
Figure 0005542374
Figure 0005542374

(数値実施例3)

Figure 0005542374
Figure 0005542374
Figure 0005542374
Figure 0005542374
(Numerical Example 3)
Figure 0005542374
Figure 0005542374
Figure 0005542374
Figure 0005542374

(数値実施例4)

Figure 0005542374
Figure 0005542374
Figure 0005542374
Figure 0005542374
(Numerical example 4)
Figure 0005542374
Figure 0005542374
Figure 0005542374
Figure 0005542374

(数値実施例5)

Figure 0005542374
Figure 0005542374
Figure 0005542374
(Numerical example 5)
Figure 0005542374
Figure 0005542374
Figure 0005542374

(数値実施例6)

Figure 0005542374
Figure 0005542374
Figure 0005542374
(Numerical example 6)
Figure 0005542374
Figure 0005542374
Figure 0005542374

Figure 0005542374
Figure 0005542374

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
L4a 第4レンズ群を構成する前群の第4aレンズ群
L4b 第4レンズ群を構成する後群の第4bレンズ群
S 開口絞り
I 像面
d d線
C C線
g g線
Fno Fナンバー
ΔS サジタル像面
ΔM メリジオナル像面
Y 像高
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group L4a 4a lens group L4b of the front group which constitutes the 4th lens group 4b lens group of the back group which constitutes the 4th lens group S aperture stop I image plane d d line C C line g g line Fno F number ΔS sagittal image plane ΔM meridional image plane Y image height

Claims (3)

物体側より順に、正の屈折力を有する第1レンズ群L1、負の屈折力を有する第2レンズ群L2、正の屈折力を有する第3レンズ群L3、負の屈折力を有する第4レンズ群L4とからなり、
無限遠物体から近距離物体への合焦の際に、少なくとも前記第2レンズ群L2を像面側へ移動させると同時に前記第3レンズ群L3を物体側へ移動させ、かつ、前記第1レンズ群L1と前記第2レンズ群L2との光軸上間隔が拡大し、同時に前記第2レンズ群L2と前記第3レンズ群L3との光軸上間隔が縮小し、また同時に前記第3レンズ群L3と前記第4レンズ群L4との光軸上間隔が拡大し、
無限遠から等倍までのいずれかの倍率で近距離撮影が可能であって、
前記第4レンズ群L4は、物体側から順に、負の屈折力を有する前群L4aと、正の屈折力を有する後群L4bで構成され、前記第4レンズ群前群L4aは少なくとも正の屈折力を有するレンズと負の屈折力を有するレンズを1枚ずつ有し、光学系が振動した際に前記前群L4aを光軸に対して略垂直方向に移動させて画像のぶれの補正を行い、
以下の条件式を満足することを特徴とする光学系。
0.15<|f4a/f|<0.4(1)
0.3<f4b/f<0.8(2)
0.2<|ΔS3/ΔS2|<1.0(3)
ただし、
f4aは前記第4群前群L4aの焦点距離
f4bは前記第4群後群L4bの焦点距離
fは無限遠物体に合焦した時の全光学系の焦点距離
ΔS2は無限遠物体から近距離物体への合焦時における前記第2レンズ群L2の移動量
ΔS3は無限遠物体から近距離物体への合焦時における前記第3レンズ群L3の移動量
In order from the object side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, a third lens unit L3 having a positive refractive power, and a fourth lens having a negative refractive power Consisting of group L4,
At the time of focusing from an object at infinity to an object at a short distance, at least the second lens unit L2 is moved to the image side, and at the same time, the third lens unit L3 is moved to the object side, and the first lens The distance on the optical axis between the group L1 and the second lens group L2 is increased, and at the same time, the distance on the optical axis between the second lens group L2 and the third lens group L3 is reduced, and at the same time, the third lens group. The distance on the optical axis between L3 and the fourth lens unit L4 is increased,
Close-up photography is possible at any magnification from infinity to 1x ,
The fourth lens group L4 includes, in order from the object side, a front group L4a having a negative refractive power and a rear group L4b having a positive refractive power, and the fourth lens group front group L4a is at least positively refracted. Each lens has a power lens and a lens having a negative refractive power. When the optical system vibrates, the front group L4a is moved in a direction substantially perpendicular to the optical axis to correct image blurring. ,
An optical system satisfying the following conditional expression:
0.15 <| f4a / f | <0.4 (1)
0.3 <f4b / f <0.8 (2)
0.2 <| ΔS3 / ΔS2 | <1.0 (3)
However,
f4a is the focal length f4b of the fourth group front group L4a is the focal length f of the fourth group rear group L4b is the focal length ΔS2 of the entire optical system when focusing on an object at infinity. The amount of movement ΔS3 of the second lens unit L2 when focusing on the object is the amount of movement of the third lens unit L3 when focusing from an object at infinity to an object at a short distance.
無限遠物体から近距離物体への合焦の際に、前記第1レンズ群L1及び第4レンズ群L4は光軸方向に固定であることを特徴とする請求項1に記載の防振機能を有するインナーフォーカス式マクロレンズ。 2. The image stabilization function according to claim 1, wherein the first lens unit L <b> 1 and the fourth lens unit L <b> 4 are fixed in the optical axis direction when focusing from an object at infinity to an object at a short distance. Inner focus type macro lens. 以下の条件式を満足することを特徴とする請求項1又は請求項2のいずれかに記載の防振機能を有するインナーフォーカス式マクロレンズ。
(4) 0<f/R4ar−f/R4bf<2.0
ただし、
R4arは前記第4aレンズ群L4aの最も像面側のレンズ面の曲率半径
R4bfは前記第4bレンズ群L4bの最も物体側のレンズ面の曲率半径
fは無限遠物体に合焦した際の光学系全系の焦点距離
The inner focus type macro lens having an image stabilization function according to claim 1, wherein the following conditional expression is satisfied.
(4) 0 <f / R4ar-f / R4bf <2.0
However,
R4ar is the radius of curvature R4bf of the lens surface closest to the image plane of the 4a lens unit L4a, and the radius of curvature f of the lens surface closest to the object side of the 4b lens unit L4b is the optical system when focusing on an object at infinity. Focal length of the entire system
JP2009155932A 2009-06-30 2009-06-30 Inner focus type macro lens with anti-vibration function Active JP5542374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009155932A JP5542374B2 (en) 2009-06-30 2009-06-30 Inner focus type macro lens with anti-vibration function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009155932A JP5542374B2 (en) 2009-06-30 2009-06-30 Inner focus type macro lens with anti-vibration function

Publications (3)

Publication Number Publication Date
JP2011013357A JP2011013357A (en) 2011-01-20
JP2011013357A5 JP2011013357A5 (en) 2012-08-16
JP5542374B2 true JP5542374B2 (en) 2014-07-09

Family

ID=43592331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009155932A Active JP5542374B2 (en) 2009-06-30 2009-06-30 Inner focus type macro lens with anti-vibration function

Country Status (1)

Country Link
JP (1) JP5542374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508579A (en) * 2017-02-28 2018-09-07 富士胶片株式会社 Imaging len and photographic device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8238044B2 (en) * 2009-11-07 2012-08-07 Nikon Corporation Imaging lens, imaging apparatus, and method for manufacturing imaging lens
JP5790106B2 (en) * 2011-04-12 2015-10-07 株式会社ニコン OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
US9063253B2 (en) 2011-12-12 2015-06-23 Tamron Co., Ltd. Imaging lens
JP5786265B2 (en) * 2011-12-12 2015-09-30 株式会社タムロン Shooting lens
JP6152972B2 (en) * 2012-07-20 2017-06-28 パナソニックIpマネジメント株式会社 Inner focus lens system, interchangeable lens device and camera system
JP6344044B2 (en) * 2014-05-13 2018-06-20 株式会社ニコン Optical system, optical device
JP6942098B2 (en) * 2018-07-26 2021-09-29 富士フイルム株式会社 Imaging lens and imaging device
JP7218132B2 (en) * 2018-09-25 2023-02-06 キヤノン株式会社 Optical system and imaging device having the same
JP7166980B2 (en) 2019-04-12 2022-11-08 キヤノン株式会社 Optical system and imaging device having the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3003081B2 (en) * 1990-08-31 2000-01-24 株式会社シグマ Inner focus macro lens
JP3538341B2 (en) * 1999-07-02 2004-06-14 ペンタックス株式会社 Telephoto macro lens system
JP2001272601A (en) * 2000-03-27 2001-10-05 Canon Inc Optical system and optical equipment using the same
JP4115742B2 (en) * 2002-05-10 2008-07-09 株式会社タムロン Telephoto macro lens optical system
JP4945890B2 (en) * 2004-09-30 2012-06-06 株式会社ニコン interchangeable lens
JP5004725B2 (en) * 2007-09-05 2012-08-22 キヤノン株式会社 Imaging lens and imaging apparatus having the same
JP5126668B2 (en) * 2008-01-22 2013-01-23 株式会社ニコン Photographic lens, optical device including the same, and image blur correction method
JP5229614B2 (en) * 2008-06-23 2013-07-03 株式会社ニコン Photographic lens, optical device including the same, and image blur correction method
JP5142823B2 (en) * 2008-05-28 2013-02-13 キヤノン株式会社 Imaging lens and imaging apparatus having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508579A (en) * 2017-02-28 2018-09-07 富士胶片株式会社 Imaging len and photographic device
CN108508579B (en) * 2017-02-28 2021-08-31 富士胶片株式会社 Imaging lens and imaging device

Also Published As

Publication number Publication date
JP2011013357A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5542374B2 (en) Inner focus type macro lens with anti-vibration function
JP5378880B2 (en) Inner focus type macro lens
JP5426653B2 (en) Zoom lens
JP5726491B2 (en) Large-aperture telephoto zoom lens with anti-vibration function
JP5558281B2 (en) Inner focus type macro lens with anti-vibration function
JP6540052B2 (en) Imaging optical system
CN105929525B (en) Optical system and image pickup apparatus
JP5358229B2 (en) Inner zoom type and inner focus type zoom lens with anti-vibration function
JP5426353B2 (en) Zoom lens with anti-vibration function
JP6749632B2 (en) Large aperture lens
JP2014235176A (en) Inner focus type lens
JP5542375B2 (en) Inner focus type macro lens with anti-vibration function
JP2011170086A (en) Large aperture zoom lens with anti-vibration function
JP6199259B2 (en) Zoom lens and imaging device
JP6322969B2 (en) Large aperture lens with anti-vibration function
JP5562552B2 (en) Inner focus type anti-vibration lens
JP5229614B2 (en) Photographic lens, optical device including the same, and image blur correction method
JP5848099B2 (en) Inner focus type large aperture telephoto macro lens with anti-vibration function
JP6665615B2 (en) Large aperture telephoto lens
JP2009042527A (en) Zoom lens and imaging apparatus with the same
JP2014235177A (en) Inner focus type lens
JP7433851B2 (en) Optical system and imaging device
JP6033904B2 (en) Large-aperture telephoto zoom lens with anti-vibration function
JP2020154060A (en) Image capturing lens system
JP7502105B2 (en) Optical system and imaging device having the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140507

R150 Certificate of patent or registration of utility model

Ref document number: 5542374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250