JP5538479B2 - LED light source and light emitter using the same - Google Patents

LED light source and light emitter using the same Download PDF

Info

Publication number
JP5538479B2
JP5538479B2 JP2012137945A JP2012137945A JP5538479B2 JP 5538479 B2 JP5538479 B2 JP 5538479B2 JP 2012137945 A JP2012137945 A JP 2012137945A JP 2012137945 A JP2012137945 A JP 2012137945A JP 5538479 B2 JP5538479 B2 JP 5538479B2
Authority
JP
Japan
Prior art keywords
led
light source
light
lens
led light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012137945A
Other languages
Japanese (ja)
Other versions
JP2012227536A (en
Inventor
卓生 村井
徹 爰河
誠司 境
明博 森
卓也 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012137945A priority Critical patent/JP5538479B2/en
Publication of JP2012227536A publication Critical patent/JP2012227536A/en
Application granted granted Critical
Publication of JP5538479B2 publication Critical patent/JP5538479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Description

本発明は発光ダイオード(LED; Light Emitting Diode)を用いた多種アプリケーションに適用可能な発光光源と、それを用いた液晶バックライト、照明器具、サイン/広告灯などの発光体に係わるものである。   The present invention relates to a light emitting source applicable to various applications using a light emitting diode (LED) and a light emitting body such as a liquid crystal backlight, a lighting fixture, and a sign / advertisement lamp using the light source.

光学レンズを備え持つLEDパッケージなどのLED光源構造についてはこれまでも数多く発明がなされている。その中で、LED光源の設置面に沿った方向、すなわち光源の側面方向へ強い光(側方放射配光)を発するレンズ及び光源構造についても幾つか提案がなされている。例えば、LED用レンズとレンズキャップ、及びそのレンズを用いた発光装置を対象として、レンズの中心軸に対して傾斜した角度の第一の屈折角、そして底面から第1の屈折面へスムーズな曲面として延びる第2の屈折面を有するレンズ形状により、側面放射を得るようにしたものがある(例えば、特許文献1)。   Many LED light source structures such as an LED package having an optical lens have been invented so far. Among them, some proposals have been made on a lens and a light source structure that emit strong light (side radiation distribution) in a direction along the installation surface of the LED light source, that is, a side surface direction of the light source. For example, for an LED lens, a lens cap, and a light emitting device using the lens, a first refraction angle that is inclined with respect to the central axis of the lens, and a smooth curved surface from the bottom surface to the first refraction surface There is one in which side radiation is obtained by a lens shape having a second refracting surface extending as described above (for example, Patent Document 1).

特開2004−133391号公報JP 2004-133391 A

LEDチップを点光源とみなしてデザインされた上記文献1の発光装置について、大出力光源用(大放射束あるいは大光束)に適した構成とする場合、複数のLEDチップ(例えば近年普及が進んでいる1個あたり1mm×1mmの表面積を持つ1W級のラージLEDチップ)をパッケージ中心部に集中配置する構成が考えられる。しかしながら、上記文献1の特徴的なレンズ形状を用いて配光効果を出すためには、その光源を囲むだけの十分な大きさのレンズ径が必要になり、その光源占用表面積の広さにおよそ比例するように、レンズ厚みを厚くすることが不可欠である。   When the light-emitting device of Document 1 designed with the LED chip as a point light source is suitable for a high-output light source (a large radiant flux or a large luminous flux), a plurality of LED chips (for example, in recent years have been widely used). A 1W class large LED chip having a surface area of 1 mm × 1 mm per unit) may be concentrated in the center of the package. However, in order to produce a light distribution effect using the characteristic lens shape of Document 1, a lens diameter that is large enough to surround the light source is required, and the area occupied by the light source is about as large as possible. It is essential to increase the lens thickness so that it is proportional.

薄型化を意図して上記文献1のレンズ形状で、レンズの上下方向を圧縮したようなレンズを用いた場合には、薄型化とともにレンズ表面での全反射を含む反射効果が弱くなり、特徴とする側方放射の配光制御機能(側面放射配光)が大きく失われ、発光装置正面方向(中心軸に沿う方向)の光束比が増大していくこととなる。また、パッケージ中央の集中光源出力が大きくなるほど放熱性と同時に耐熱性確保の必要性が生じてくるため、この部分の厚みを極端に薄くすることが難しい。   In the case of using a lens in which the vertical direction of the lens is compressed with the lens shape of the above-mentioned document 1 for the purpose of thinning, the reflection effect including total reflection on the lens surface is weakened along with the thinning. Therefore, the side light distribution control function (side radiation distribution) is greatly lost, and the luminous flux ratio in the front direction of the light emitting device (the direction along the central axis) increases. In addition, as the concentrated light source output at the center of the package increases, it becomes necessary to secure heat resistance as well as heat dissipation, so it is difficult to extremely reduce the thickness of this portion.

また、ラージLEDチップを複数用いる場合、発光効率低下や短寿命化要因となるLEDチップ温度上昇を抑制するために、それぞれのLEDチップの配置間隔を広げた配置を考える。その場合にはLEDチップ占有面積が拡大するため、側面放射特性を維持しようとすると、レンズサイズ(直径、厚み)もそれに比例させるように大きくせねばならず、やはり一つの大光束装置として薄型化を図るのは困難である。さらに、LEDチップ自体がある程度拡散配光特性を有しているため、レンズ体積が増加することでレンズ形状内部の拡散光が増加し、結果としてレンズ表面での屈折/反射制御効果が低減することになってしまう。また、レンズ成形面を考えても側面に凹凸形状を設ける加工は容易なものではなく、量産時の製造コストが高くなることも避けられない。
以上のことから、上記文献1の構成では、LEDチップ総表面積が大きくなる条件において、側方放射配光を維持したまま薄型/コンパクト化に対応させることは非常に困難といえる。
Further, in the case of using a plurality of large LED chips, an arrangement in which the arrangement intervals of the respective LED chips are widened is considered in order to suppress an increase in LED chip temperature that causes a decrease in light emission efficiency and a shortening of the lifetime. In that case, the area occupied by the LED chip will increase, so if you want to maintain the side emission characteristics, the lens size (diameter, thickness) must also be increased proportionally. It is difficult to plan. Furthermore, since the LED chip itself has a certain amount of diffused light distribution characteristics, the diffused light inside the lens shape increases as the lens volume increases, resulting in a reduction in the refraction / reflection control effect on the lens surface. Become. Further, considering the lens molding surface, it is not easy to provide a concavo-convex shape on the side surface, and the production cost during mass production is unavoidable.
From the above, it can be said that with the configuration of the above-mentioned document 1, it is very difficult to cope with thinning / compactness while maintaining the side radiation distribution under the condition that the total surface area of the LED chip is increased.

本発明は、上記のような問題を解決し、大光束(大きな電気入力)かつ薄型で側面放射強度が高く、かつ安価なLED光源を得ること、及びそれを用いた発光効率のよい薄型大光束発光体を得ることにある。   The present invention solves the above problems, obtains a large luminous flux (large electric input), a thin, high side emission intensity, and an inexpensive LED light source, and a thin large luminous flux with good luminous efficiency using the same. It is to obtain a luminous body.

本発明に係るLED光源は、放熱性基板に少なくとも1つのLEDチップが実装され、前記LEDチップが透光性材料で封止されているLEDパッケージ部と、前記LEDパッケージ部上に配置され、前記各LEDチップの直上部で前記LEDチップ側に凹んだ凹部が形成されたレンズと、を備え、前記レンズは、前記凹部の形状が前記LEDチップの中心軸上に頂角を有する逆円錐または逆多角錐形状であるとともに、前記凹部の開始端から前記レンズの外周端に向かって該レンズの厚さが徐々に薄くなる湾曲形状を有し、前記レンズの外周端部が前記LEDパッケージ部の外周端から突出し、突出した部分の背面から光を放射させるように形成されていることを特徴とする。 The LED light source according to the present invention includes an LED package unit in which at least one LED chip is mounted on a heat dissipation substrate, the LED chip is sealed with a light-transmitting material, and the LED package unit is disposed on the LED package unit, and immediately above in the LED chip recess recessed is formed on the side lens of the LED chip, wherein the lens is inverted cone shape of the recess has an apex angle on the mandrel in said LED chip or with an inverted pyramid shape, from the starting end of the concave portion on the outer peripheral edge of the lens have a curved shape in which the thickness is gradually thinned in the lens, peripheral edge of the lens of the LED package portion It protrudes from an outer peripheral end, and is formed so that light may be radiated | emitted from the back surface of the protruded part .

本発明によれば、レンズ上部に形成した凹部によりLEDチップから出た光をレンズの側方に広げ、それを効率よくレンズ周辺まで光伝搬し、レンズ周辺での側方発光成分を増やすことができる。さらにLEDチップを複数用いる場合には、それらを放熱性基板の実装領域に散在させ、互いに間隔を開けて実装配置することで、放熱性が向上しLEDチップの能力劣化も防止される。したがって、大光束または大放射束を目的として複数のラージLEDチップを用いる大投入電力のLED光源においても、LEDチップ温度上昇を抑制し、側面放射強度が高い薄型のLED光源を得ることができる。   According to the present invention, the light emitted from the LED chip is spread to the side of the lens by the recess formed in the upper part of the lens, and the light is efficiently propagated to the periphery of the lens, thereby increasing the side emission component around the lens. it can. Further, when a plurality of LED chips are used, they are scattered in the mounting area of the heat dissipating substrate, and are mounted and arranged at a distance from each other, thereby improving the heat dissipating property and preventing the deterioration of the LED chip performance. Therefore, even in a large input power LED light source using a plurality of large LED chips for the purpose of a large luminous flux or a large radiant flux, a thin LED light source with high side emission intensity can be obtained while suppressing the LED chip temperature rise.

(a)実施の形態1に係るLED光源の上面図である。(b)図1(a)の側断面図である。(A) It is a top view of the LED light source which concerns on Embodiment 1. FIG. (B) It is side sectional drawing of Fig.1 (a). 図1のLED光源のレンズの凹部の作用を説明する説明図である。It is explanatory drawing explaining the effect | action of the recessed part of the lens of the LED light source of FIG. 実施の形態1に係るLED光源の変形例を示す側断面図である。FIG. 6 is a side sectional view showing a modification of the LED light source according to Embodiment 1. 実施の形態1に係るLED光源の別の変形例を示す側断面図である。FIG. 6 is a side sectional view showing another modification of the LED light source according to Embodiment 1. (a)実施の形態1に係る別のLED光源の上面図である。(b)図5(a)の側断面図である。(A) It is a top view of another LED light source which concerns on Embodiment 1. FIG. (B) It is side sectional drawing of Fig.5 (a). (a)実施の形態1のLED光源のシミュレーションモデルである。(b)図6(a)の配光特性図である。(A) It is a simulation model of the LED light source of Embodiment 1. FIG. (B) It is a light distribution characteristic view of Drawing 6 (a). (a)実施の形態1の他のLED光源のシミュレーションモデルである。(b)図7(a)の配光特性図である。(A) It is the simulation model of the other LED light source of Embodiment 1. FIG. (B) It is a light distribution characteristic figure of Drawing 7 (a). (a)実施の形態1に係るLED光源の変形例を示す上面図である。(b)実施の形態1に係るLED光源の別の変形例を示す上面図である。(c)実施の形態1に係るLED光源の別の変形例を示す上面図である。(d)実施の形態1に係るLED光源の別の変形例を示す上面図である。(e)実施の形態1に係るLED光源の別の変形例を示す上面図である。(A) It is a top view which shows the modification of the LED light source which concerns on Embodiment 1. FIG. (B) It is a top view which shows another modification of the LED light source which concerns on Embodiment 1. FIG. (C) It is a top view which shows another modification of the LED light source which concerns on Embodiment 1. FIG. (D) It is a top view which shows another modification of the LED light source which concerns on Embodiment 1. FIG. (E) It is a top view which shows another modification of the LED light source which concerns on Embodiment 1. FIG. (a)実施の形態2に係るLED光源の上面図である。(b)図9(a)の側断面の例示図である。(c)図9(a)の側断面の例示図である。(A) It is a top view of the LED light source which concerns on Embodiment 2. FIG. (B) It is an illustration figure of the side cross section of Fig.9 (a). (C) It is an illustration figure of the side cross section of Fig.9 (a). (a)実施の形態3に係るLED光源の上面図である。(b)図10(a)の側断面の例示図である。(c)図10(a)の側断面の例示図である。(A) It is a top view of the LED light source which concerns on Embodiment 3. FIG. (B) It is an illustration figure of the side cross section of Fig.10 (a). (C) It is an illustration figure of the side cross section of Fig.10 (a). (a)実施の形態3に係る別のLED光源の上面図である。(b)図11(a)の側断面の例示図である。(c)図11(a)の側断面の例示図である。(d)図11(a)の側断面の例示図である。(e)図11(d)のレンズを示す図である。(A) It is an upper side figure of another LED light source which concerns on Embodiment 3. FIG. (B) It is an illustration figure of the side cross section of Fig.11 (a). (C) It is an illustration figure of the side cross section of Fig.11 (a). (D) It is an illustration figure of the side cross section of Fig.11 (a). (E) It is a figure which shows the lens of FIG.11 (d). (a)LED光源を用いた実施の形態4に係る面状発光体の上面図である。(b)図12(a)の側面図である。(A) It is a top view of the planar light-emitting body based on Embodiment 4 using an LED light source. (B) It is a side view of Fig.12 (a). LED光源を用いた実施の形態4に係る面状発光体の断面構造図である。It is a cross-section figure of the planar light-emitting body which concerns on Embodiment 4 using an LED light source. LED光源を用いた実施の形態4に係るLED光源の上面図である。It is a top view of the LED light source which concerns on Embodiment 4 using an LED light source. (a)LED光源を用いた実施の形態4に係るLED光源の断面構造図である。(b)LED光源を用いた実施の形態4に係るLED光源の別の断面構造図である。(A) It is a cross-section figure of the LED light source which concerns on Embodiment 4 using an LED light source. (B) It is another cross-section figure of the LED light source which concerns on Embodiment 4 using an LED light source. (a)本発明のLED光源の他の実施例を示す上面図である。(b)図16(a)のA―A線部の断面図である。(A) It is a top view which shows the other Example of the LED light source of this invention. (B) It is sectional drawing of the AA line part of Fig.16 (a). (a)図16(ダム材あり)に対応するLED光源のシミュレーションモデルである。(b)図17(a)の配光特性図である。(A) It is a simulation model of the LED light source corresponding to FIG. 16 (with a dam material). (B) It is a light distribution characteristic view of Drawing 17 (a). (a)図16(ダム材なし)に対応するLED光源のシミュレーションモデルである。(b)図18(a)の配光特性図である。(A) It is the simulation model of the LED light source corresponding to FIG. 16 (no dam material). (B) It is a light distribution characteristic figure of Drawing 18 (a). (a)本発明のLED光源の他の実施例を示す上面図である。(b)図19(a)のA―A線部の断面図である。(A) It is a top view which shows the other Example of the LED light source of this invention. (B) It is sectional drawing of the AA line part of Fig.19 (a). (a)本発明のLED光源の他の実施例を示す上面図である。(b)図20(a)のA―A線部の断面例示図である。(c)図20(a)のA―A線部の断面例示図である。(d)図20(a)のA―A線部の断面例示図である。(A) It is a top view which shows the other Example of the LED light source of this invention. (B) It is a cross-sectional illustration figure of the AA line part of Fig.20 (a). (C) It is a cross-sectional illustration figure of the AA line part of Fig.20 (a). (D) It is a cross-sectional illustration figure of the AA line part of Fig.20 (a). (a)実施の形態4のLED光源のシミュレーションモデルである。(b)図21(a)の配光特性図である。(A) It is a simulation model of the LED light source of Embodiment 4. FIG. (B) It is a light distribution characteristic view of Drawing 21 (a). (a)実施の形態4のLED光源のシミュレーションモデルである。(b)図22(a)の配光特性図である。(A) It is a simulation model of the LED light source of Embodiment 4. FIG. (B) It is a light distribution characteristic view of Drawing 22 (a). (a)実施の形態4のLED光源のシミュレーションモデルである。(b)図23(a)の配光特性図である。(A) It is a simulation model of the LED light source of Embodiment 4. FIG. (B) It is a light distribution characteristic view of Drawing 23 (a). (e)本発明のLED光源の他の実施例を示す上面図である。(f)図24(e)のA―A線部の断面図である。(E) It is a top view which shows the other Example of the LED light source of this invention. (F) It is sectional drawing of the AA line part of FIG.24 (e). (a)実施の形態4のLED光源のシミュレーションモデルである。(b)図25(a)の配光特性図である。(A) It is a simulation model of the LED light source of Embodiment 4. FIG. (B) It is a light distribution characteristic view of Drawing 25 (a). 実施の形態4に係る発光体の別の変形例を示す側断面図である。FIG. 10 is a side sectional view showing another modification of the light emitter according to the fourth embodiment. 実施の形態4に係る発光体の別の変形例を示す側断面図である。FIG. 10 is a side sectional view showing another modification of the light emitter according to the fourth embodiment. 実施の形態4に係る発光体の別の変形例を示す側断面図である。FIG. 10 is a side sectional view showing another modification of the light emitter according to the fourth embodiment. 実施の形態4に係る発光体の別の変形例を示す側断面図である。FIG. 10 is a side sectional view showing another modification of the light emitter according to the fourth embodiment.

実施の形態1.
以下、本発明の実施の形態を図とともに説明する。図1(a)は本発明の実施の形態1に係るLED光源の上面図、図1(b)は図1(a)のA−A断面図である。このLED光源は、LED実装基板である放熱性基板1、ダム材2、LEDチップ3、蛍光材料4、及び透光性の封止樹脂(透光性樹脂)5を有したLEDパッケージ部6と、LEDパッケージ部6の上部に設けられたレンズ7とを備えている。放熱性基板1には少なくとも1個のLEDチップ3が実装され、その上面にLEDチップ3の発光波長により励起発光する波長変換機能を備えた蛍光材料4が設けられている。LEDチップ3の周辺にはダム材2を配置し、ダム材2の内側(ダム材で囲まれた部分)を透光性の封止樹脂5で充填してLEDチップ3を覆い、LEDチップ3の保護と光取出し量向上などを図っている。なお、蛍光材料4は、後述するように、必要に応じて設けられるものである。
Embodiment 1 FIG.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1A is a top view of the LED light source according to Embodiment 1 of the present invention, and FIG. 1B is a cross-sectional view taken along line AA of FIG. The LED light source includes an LED package unit 6 having a heat dissipating substrate 1, which is an LED mounting substrate, a dam material 2, an LED chip 3, a fluorescent material 4, and a translucent sealing resin (translucent resin) 5. And a lens 7 provided on the upper portion of the LED package section 6. At least one LED chip 3 is mounted on the heat dissipating substrate 1, and a fluorescent material 4 having a wavelength conversion function of exciting and emitting light by the emission wavelength of the LED chip 3 is provided on the upper surface thereof. A dam material 2 is disposed around the LED chip 3, and the inside of the dam material 2 (a portion surrounded by the dam material) is filled with a light-transmitting sealing resin 5 to cover the LED chip 3. Protection and improvement of light extraction amount. The fluorescent material 4 is provided as necessary as will be described later.

放熱性基板1は、薄型化及び高放熱性の特徴を持たせるため、熱伝導性の高い例えば銅やアルミなどの金属材料、あるいはセラミック材料などを用いるとともに、必要に応じLEDチップ3との絶縁を保つ絶縁層や表面反射層を持つように形成する。本実施の形態では、放熱性基板1を薄い銅材を主材としている。なお、図1では複雑化を避けるため、放熱性基板1上におけるLEDチップ3の固着材料である接着層、外部とLEDチップ3との電気回路を形成する配線パタン、さらにそのための金属ワイヤあるいは金属バンプといった部材は省略している。   The heat dissipating substrate 1 is made of a metal material such as copper or aluminum having high thermal conductivity, or a ceramic material in order to make it thin and have high heat dissipating characteristics, and is insulated from the LED chip 3 as necessary. It is formed so as to have an insulating layer and a surface reflecting layer that maintain the resistance. In the present embodiment, the heat radiating substrate 1 is mainly made of a thin copper material. In FIG. 1, in order to avoid complication, an adhesive layer that is a fixing material of the LED chip 3 on the heat dissipation substrate 1, a wiring pattern that forms an electric circuit between the outside and the LED chip 3, and a metal wire or metal for that purpose Members such as bumps are omitted.

ダム材2は、製造時において封止樹脂5の流動を防ぐもので、樹脂や金属材料などで構成する。また、ダム材2を放熱性基板1と同様の材料で構成してもよい。また、ダム材2にリフレクタとして反射あるいは配光制御機能を与える場合には、その表面を鏡面あるいは拡散性の高反射材料で形成する。ダム材2の内側面及びダム材2で囲まれる放熱性基板1の表面(以下、キャビティ)は高反射率の鏡面とし、ダム材2の他の表面は高反射性拡散部としている。   The dam material 2 prevents the sealing resin 5 from flowing during manufacture, and is made of a resin, a metal material, or the like. Further, the dam material 2 may be made of the same material as the heat dissipating substrate 1. Further, when the dam material 2 is provided with a reflection or light distribution control function as a reflector, its surface is formed of a mirror surface or a diffusive highly reflective material. The inner surface of the dam material 2 and the surface of the heat-dissipating substrate 1 surrounded by the dam material 2 (hereinafter referred to as “cavity”) are mirror surfaces with high reflectivity, and the other surface of the dam material 2 is a highly reflective diffusion part.

LEDチップ3は、例えば青紫〜青色に発光するLEDチップとし、蛍光材料4をその発光波長を吸収する黄色味を含む光色を発する材料で構成する。そして、蛍光材料4の量の調整により、白色発光光源とすることが可能であり、本実施の形態はそのような構成による大光束白色光源を得る構成例としている。なお、蛍光材料4を用いない場合でも、LEDチップ3の発光色を発する大放射束LED光源として、本発明の効果を得ることができる。   The LED chip 3 is, for example, an LED chip that emits light from bluish purple to blue, and the fluorescent material 4 is made of a material that emits a light color including yellow that absorbs the emission wavelength. And it is possible to set it as a white light-emitting light source by adjusting the quantity of the fluorescent material 4, and this Embodiment is set as the structural example which obtains the large luminous flux white light source by such a structure. Even when the fluorescent material 4 is not used, the effect of the present invention can be obtained as a large radiant flux LED light source that emits the emission color of the LED chip 3.

図1のLED光源は、大光束のLED光源を得るためにラージLEDチップ3(1個あたり表面約1mm×1mm、1W程度のもの)を4個用いている。そして、これらのLEDチップ3を中央に密集配置させずに、放熱性基板1の実装領域(キャビティ)に散在させ、互いに間隔を開けて実装配置している。すなわち図1では、4個のLEDチップ3を放熱性基板1のキャビティ上に円環状に略等間隔で配置している。これは、LEDチップ3を放熱性基板1の中央に集中配置した場合、LEDチップ相互間での熱影響を受けて温度上昇しやすく、また放熱性基板1直下での発熱量の面積密度が非常に大きくなってしまう。さらに、LEDチップ3はその基本特性として温度上昇により発光効率が低下する性質があり、また封止樹脂5やペースト材をはじめLEDチップ3の周辺構成部材も温度上昇するとともに劣化速度が速まる傾向にある。そのため、LED光源の大きさに制約がある場合でも、大投入電力(大光束化)が必要となる場合には、上述したようにできるだけLEDチップ3の間隔を広くとる構成とすることが温度上昇の抑制に有利となる。   The LED light source of FIG. 1 uses four large LED chips 3 (each having a surface of about 1 mm × 1 mm, about 1 W) to obtain an LED light source with a large luminous flux. Then, these LED chips 3 are not densely arranged in the center, but are scattered in the mounting region (cavity) of the heat-radiating substrate 1, and are mounted and arranged with a space therebetween. That is, in FIG. 1, four LED chips 3 are arranged on the cavity of the heat dissipation substrate 1 in a ring shape at substantially equal intervals. This is because when the LED chip 3 is centrally arranged at the center of the heat-dissipating substrate 1, the temperature is likely to rise due to the heat effect between the LED chips, and the area density of the heat generation directly under the heat-dissipating substrate 1 is very high. Will become bigger. Furthermore, the LED chip 3 has the property that the light emission efficiency decreases as the temperature rises as a basic characteristic, and the peripheral components of the LED chip 3 including the sealing resin 5 and the paste material also rise in temperature and the deterioration rate tends to increase. is there. Therefore, even when there is a restriction on the size of the LED light source, if a large input power (a large luminous flux) is required, it is possible to increase the temperature of the LED chip 3 as much as possible as described above. It becomes advantageous for suppression of.

これに対して、前述した特許文献1のレンズを対象にLEDチップ3を4個集中配置させた場合、特にラージLEDチップの場合、3×3mm程度の集中配置面積が必要になる。したがって、レンズ7の厚みやパッケージベース部6を含めた装置としての厚みは相応に厚い構成となり、本発明で実現しようとする例えば総厚み2mm以下の薄型化を実現することすることは難しい。   On the other hand, when four LED chips 3 are concentrated and arranged for the lens of Patent Document 1 described above, a large LED chip requires a concentrated arrangement area of about 3 × 3 mm. Accordingly, the thickness of the lens 7 and the thickness of the device including the package base 6 are correspondingly thick, and it is difficult to realize a reduction in thickness of, for example, a total thickness of 2 mm or less that is to be realized in the present invention.

レンズ7は、LEDパッケージ部6上に配置し、各LEDチップ3の直上部に向かって徐々に厚みが増す湾曲形状とし、当該直上部にはLEDチップ3側に向かって凹んだ凹部8を有するように構成した。凹部8は、LEDチップ3に向かって凹部内側の空間断面積が徐々に小さくなる形状が好ましく、本実施の形態1ではその形状を逆円錐形状としている。なお、凹部8の形状は、LEDチップ3からの光の側方放射特性が向上するものであれば、円柱、多角柱、逆多角錐などの形状であってもよい。レンズ7に、このような凹部8を設けることで、LEDパッケージ部6の中心軸方向に向かう光を、LEDパッケージ部6の側面方向に効果的に変更させることができる。すなわち、図2に示したように、LEDチップ3からの光線でLEDチップ3の中央上方に進んだものは、凹部8の逆円錐表面8a(凹部8の斜面)でスネルの法則に従って全反射成分を含む反射成分が側方に進むことになる。さらに、レンズ7の湾曲表面での全反射などにより、レンズ周辺部へと光が進み、一部はそのままレンズ7周辺から発光し、また一部はダム材2の表面反射状態により光の進路を変え、レンズ7の表面側へと抜け出る。レンズ7の緩やかな湾曲形状は、それを平面とした場合と比較すると、全反射角を大きく変えることなく導光路を広く確保でき、レンズ7の周辺部までの導光効果を高めることが可能となっている。   The lens 7 is disposed on the LED package part 6 and has a curved shape in which the thickness gradually increases toward the upper part of each LED chip 3. The lens 7 has a concave part 8 recessed toward the LED chip 3 side. It was configured as follows. The recess 8 preferably has a shape in which the space cross-sectional area inside the recess gradually decreases toward the LED chip 3, and in Embodiment 1, the shape is an inverted conical shape. The shape of the recess 8 may be a shape such as a cylinder, a polygonal column, or an inverted polygonal pyramid as long as the side radiation characteristic of light from the LED chip 3 is improved. By providing such a recess 8 in the lens 7, the light traveling in the central axis direction of the LED package part 6 can be effectively changed in the side surface direction of the LED package part 6. That is, as shown in FIG. 2, the light beam from the LED chip 3 that travels upward in the center of the LED chip 3 is the total reflection component according to Snell's law on the inverted conical surface 8 a of the recess 8 (the slope of the recess 8). Therefore, the reflection component including will travel sideways. Furthermore, the light travels to the periphery of the lens due to total reflection on the curved surface of the lens 7, part of the light is emitted from the periphery of the lens 7 as it is, and part of the light travels due to the surface reflection state of the dam material 2. Change to the surface side of the lens 7. The gentle curved shape of the lens 7 can secure a wide light guide path without greatly changing the total reflection angle, and can enhance the light guide effect to the periphery of the lens 7 as compared with the case where the lens 7 is a flat surface. It has become.

また、図1のレンズ7では、4個のLEDチップ3にそれぞれ対応する4つの湾曲面を表面に有し、各湾曲面が交差する線をもった表面形状としているが、それによって得られるレンズ7の中央の窪みは、LEDパッケージ6の内部反射を含めキャビティ表面中央部からLED光源の中央方向に放射しようとする光の強度を抑えこむ作用も果たしている。   Further, the lens 7 of FIG. 1 has four curved surfaces corresponding to the four LED chips 3 on the surface, and has a surface shape with lines intersecting each curved surface. The central depression 7 also serves to suppress the intensity of light that is intended to radiate from the cavity surface center to the center of the LED light source, including internal reflection of the LED package 6.

上記のような構成によって、レンズ7の凹部8で光を効果的に側方に広げ、それを効率よくレンズ周辺まで光伝搬し、レンズ周辺での側方発光成分を増やすことができる。したがって、以上のような放熱性に配慮したLEDチップ配置とそれに対応させたレンズ形状により、LEDチップ3の放熱性がよく、しかも側方発光成分の高い大光出力を有するLED光源を得ることができる。   With the configuration as described above, the light can be effectively spread laterally by the concave portion 8 of the lens 7, and the light can be efficiently propagated to the periphery of the lens, thereby increasing the side emission components around the lens. Therefore, by the LED chip arrangement considering the heat dissipation as described above and the lens shape corresponding to the LED chip arrangement, it is possible to obtain an LED light source having good heat dissipation of the LED chip 3 and having a large light output with a high side emission component. it can.

レンズ7は、例えばポリカーボネート、エポキシ、シリコーンなど目的に合わせた樹脂材料で形成することができる。なお近年耐候性改善が進んでいるシリコーン樹脂を用いる場合は、軟質〜硬質材料でn=1.41〜n=1.53程度のもので形成することができる。図1の構成では、例えば封止樹脂5を軟質透光性シリコーンとし、表面レンズ7を光取出し性が良好で外部衝撃に強い、軟質より屈折率が高い硬質シリコーンで形成する。またその際、光取出し効率の面から、封止樹脂5とレンズ7の中間層に空気層が入らないように封止樹脂5とレンズ7を密着させるか、あるいは他の軟質シリコーン材料を介在させるような構成としてもよい。またオーバーモールドのような方法で封止樹脂5とレンズ7を同一の材料で形成してもよい。   The lens 7 can be formed of a resin material suitable for the purpose, such as polycarbonate, epoxy, or silicone. In addition, when using a silicone resin whose weather resistance has been improved in recent years, it can be formed from soft to hard materials with n = 1.41 to n = 1.53. In the configuration of FIG. 1, for example, the sealing resin 5 is made of soft translucent silicone, and the surface lens 7 is made of hard silicone having a good light extraction property and strong against external impact and having a higher refractive index than soft. At that time, from the viewpoint of light extraction efficiency, the sealing resin 5 and the lens 7 are brought into close contact with each other so that an air layer does not enter the intermediate layer between the sealing resin 5 and the lens 7 or another soft silicone material is interposed. It is good also as such a structure. Further, the sealing resin 5 and the lens 7 may be formed of the same material by a method such as overmolding.

図2は図1のLED光源のレンズの凹部8の作用を説明する説明図である。図2に示したように、逆円錐凹部の頂角の1/2をθとした場合、θをレンズ屈折率nと周辺媒質n0で定まる全反射角、あるいはそれに近い角度となるようにする。例えば、n0=1(空気)のとき、n=1.41でθ=45°、n=1.53でθ=41°とし、このような構成により、LEDチップ3(蛍光材料4がある場合にはそれも含む)から放射された光で凹部8の逆円錐形状表面へ到達した光のうちで、スネルの法則にしたがってLED光源の側面方向へ光の向きを変えるものが相当量出てくる。なお、その効果を高めるには、逆円錐形状を構成する凹部8がある程度の大きさを持つことが必要になる。そこで凹部8の開始端(切り欠き端)直径が、LEDチップ3の対角寸法以上となるように構成することで、少なくともLEDチップ3からLED光源の垂直方向に進む光に対しては上記逆円錐形状の傾斜面に入射させることが可能となる。   FIG. 2 is an explanatory view for explaining the operation of the concave portion 8 of the lens of the LED light source of FIG. As shown in FIG. 2, when θ is 1/2 of the apex angle of the inverted conical recess, θ is set to be a total reflection angle determined by the lens refractive index n and the peripheral medium n0 or an angle close thereto. For example, when n0 = 1 (air), n = 1.41, θ = 45 °, n = 1.53, and θ = 41 °. With such a configuration, the LED chip 3 (when the fluorescent material 4 is present) A considerable amount of light radiated from the surface of the conical surface of the concave portion 8 changes its direction to the side surface of the LED light source according to Snell's law. . In order to enhance the effect, it is necessary that the concave portion 8 constituting the inverted conical shape has a certain size. Therefore, by configuring the recess 8 so that the start end (notch end) diameter is equal to or larger than the diagonal dimension of the LED chip 3, the above-mentioned reverse is applied to at least light traveling from the LED chip 3 in the vertical direction of the LED light source. It becomes possible to enter the cone-shaped inclined surface.

このように構成することで、LEDチップ3から放射した光の凹部8の逆円錐面での全反射成分量を多くすることができ、その結果レンズ7の側面方向に効果的に光を広げることが可能となる。以上の構成の効果は前述した凹部8の形状を逆多角錐とした場合でも得られ、その頂角やレンズ7の表面の逆円錐切り口形状の寸法も逆円錐の場合とほぼ同様に構成すればよい。また、この実施の形態では、レンズ7の湾曲形状表面の逆円錐切り欠き端が角度を持つように構成しているが、この角度の部分を凹部内面から湾曲面へ連続変化するなだらかな曲面になるように構成してもよく、また凹部8の逆円錐の頂点は丸みをおびていても良い。   With this configuration, it is possible to increase the amount of total reflection components on the inverted conical surface of the concave portion 8 of the light emitted from the LED chip 3, and as a result, effectively spread the light in the side surface direction of the lens 7. Is possible. The effect of the above configuration can be obtained even when the shape of the concave portion 8 is an inverted polygonal pyramid. If the apex angle and the size of the inverted conical cut shape of the surface of the lens 7 are configured substantially the same as the case of the inverted cone. Good. Further, in this embodiment, the inverted conical notch end of the curved surface of the lens 7 is configured to have an angle. However, the portion of this angle has a gently curved surface that continuously changes from the concave inner surface to the curved surface. In addition, the apex of the inverted cone of the recess 8 may be rounded.

図3は本発明の実施の形態1に係るLED光源の変形例を示す側断面図である。図3に示すように、凹部8の表面を反射部材10で形成することで、凹部8から直接放射する光を無くし、凹部8側面方向へ光を制御できる。反射部材10は薄膜や塗料のようなものでもよく、発光効率を高く維持するため高反射性の鏡面、または拡散面として構成するのが好ましい。   FIG. 3 is a side sectional view showing a modification of the LED light source according to Embodiment 1 of the present invention. As shown in FIG. 3, by forming the surface of the recess 8 with the reflecting member 10, the light directly radiated from the recess 8 can be eliminated, and the light can be controlled in the direction of the side surface of the recess 8. The reflecting member 10 may be a thin film or paint, and is preferably configured as a highly reflective mirror surface or diffusing surface in order to maintain high luminous efficiency.

また、図3は、ダム材2よりレンズ7の横幅を広くする、すなわち、レンズ7の外周部がLEDパッケージ部6の外周端から突出する大きさに形成したものである。このように構成することで、意図的にレンズ7のダム材2の端部より突出した部分の背面(ダム材2側)から光を放射させることで、その光を本発明の光源を用いた外部アプリケーション設置空間で有効利用することができる。
さらに、図4のように、ダム材を設けずに封止する加工方法で樹脂封止し、その封止領域よりもレンズ底面積を大きく設定することで、LEDチップ3から側方放射される光を、封止樹脂5を介し直接利用することが可能となる。なお、その封止樹脂5から抜け出る光の一部はレンズを通り上方に向かうものもあるが、その一部はレンズ7表面で反射され、側方あるいは背面方向に向かう光として利用することが可能である。
図3、図4では凹部8に反射部材10を具備する構成で示したが、それを持たない構成においても、光源側方から下部への発光量を高める効果をもつことは変わりない。
Further, FIG. 3 shows that the width of the lens 7 is made wider than that of the dam material 2, that is, the lens 7 is formed so that the outer peripheral portion of the lens 7 protrudes from the outer peripheral end of the LED package portion 6. By comprising in this way, light is radiated from the back surface (dam material 2 side) of the part which protruded from the edge part of the dam material 2 of the lens 7 intentionally, The light was used for the light of this invention It can be used effectively in the external application installation space.
Furthermore, as shown in FIG. 4, resin sealing is performed by a processing method of sealing without providing a dam material, and the lens bottom area is set larger than the sealing region, so that the LED chip 3 emits laterally. Light can be directly used through the sealing resin 5. Some of the light exiting from the sealing resin 5 passes upward through the lens, but a part of the light is reflected by the surface of the lens 7 and can be used as light directed toward the side or back. It is.
3 and 4 show the configuration in which the concave member 8 includes the reflecting member 10, but the configuration without the reflection member 10 still has the effect of increasing the amount of light emitted from the side of the light source to the lower portion.

また、図1に示すように、各LEDチップ3に対応するレンズ7の外周縁の接続部がパッケージ部6の中心方向に窪んでいた場合には、パッケージ部6の側方への配光に大きな強弱を生じる場合がある。そこで例えば、図5のように、レンズ7のパッケージ部6の中心からレンズ7の周縁部までの最大長以上の半径を有する円板状の透光部材をレンズ周縁配光対策部9としてレンズ7の背面に備え持つような構造として設けた。本構成によりパッケージ部6の側方への配光強弱を緩和させることが可能になり、適用するアプリケーション側で配光強度の均一性が要求される場合には有用となる。   In addition, as shown in FIG. 1, when the connection portion of the outer peripheral edge of the lens 7 corresponding to each LED chip 3 is recessed in the center direction of the package portion 6, the light distribution to the side of the package portion 6 is achieved. May cause great strength. Therefore, for example, as shown in FIG. 5, a lens-shaped translucent member having a radius not less than the maximum length from the center of the package portion 6 of the lens 7 to the peripheral portion of the lens 7 is used as the lens peripheral light distribution countermeasure portion 9. It was provided as a structure to have on the back of the. With this configuration, it is possible to reduce the intensity of light distribution toward the side of the package unit 6, which is useful when the application side to be applied requires uniformity of the light distribution intensity.

以下に、実施の形態1に対応するLED光源を市販の光解析シミュレータでモデリングし、その配光試算を行った結果を示す。図6、図7は本発明が目的とする薄型化を意図し、LED光源総高さ2mmとする条件で作成したモデルの(a)斜視外観図と(b)配光試算結果である。なお、共通条件としてラージLEDチップを4個用い、それらをキャビティ上に集中配置せず、ダム材周縁部に十分間隔をおき配置した。ここで、ダム材及び放熱性基板のキャビティ表面は高反射率面とし、ダム材の内側面及び放熱性基板のキャビティ表面は鏡面反射、その他表面は拡散反射、レンズ屈折率を1.51、封止樹脂屈折率を1.41、LED実装基板である放熱性基板の厚みは0.2mmとした。   Below, the LED light source corresponding to Embodiment 1 is modeled with a commercially available light analysis simulator, and the light distribution trial calculation result is shown. FIGS. 6 and 7 are (a) perspective external views and (b) light distribution trial calculation results of a model created under the condition that the total height of the LED light source is 2 mm, which is intended to reduce the thickness of the present invention. In addition, four large LED chips were used as common conditions, and they were not concentrated on the cavity, but were arranged at a sufficient interval around the dam material periphery. Here, the cavity surface of the dam material and the heat dissipating substrate is a high reflectivity surface, the inner surface of the dam material and the cavity surface of the heat dissipating substrate are specular reflection, the other surface is diffuse reflection, and the lens refractive index is 1.51. The stop resin refractive index was 1.41, and the thickness of the heat dissipating substrate as the LED mounting substrate was 0.2 mm.

図6(a)は図1の構成をモデル化したものである。このモデルでは、ダム材2は外径11mm、内径7mm、高さ0.6mm、レンズ7は最大高さ0.8mm、最大径11.5mm、凹部8の斜面角度42°としている。このモデルでは、図6(b)の結果に示すように、配光特性はほぼLED光源を中心とし、中心強度を抑えつつ高い側方発光成分を有していることがわかる。
一方、図7(a)は図3及び図5で説明した構成を合わせ持つモデルである。このモデルでは、ダム材2は外径9mm、内径7mm、高さ0.6mm、レンズ7は最大高さ1.08mm、最大径16.6mm、凹部8の斜面角度42°としている。このモデルでは、図7(b)の結果に示すように、LED光源の中央発光強度はかなり抑えられ、かつ、側面への発光強度が強くなっていることがわかる。本モデルは前述したように、LED光源の下方方向の光の生成を意図したものであるが、図7(a)に示す配光角ηが、およそ60〜90°、及びおよそ−60〜−90°で、大きな発光強度が得られる特徴的光源であることがわかる。よって、ここで示した試算結果からも、本発明の実施の形態に係る放熱性を考慮した薄型大光束LED光源構成は、側方(側下方も含む)の発光強度を高める効果を有する光源構成であるといえる。
FIG. 6A is a model of the configuration of FIG. In this model, the dam material 2 has an outer diameter of 11 mm, an inner diameter of 7 mm, a height of 0.6 mm, the lens 7 has a maximum height of 0.8 mm, a maximum diameter of 11.5 mm, and a slope angle of the recess 8 of 42 °. In this model, as shown in the result of FIG. 6B, it can be seen that the light distribution characteristic is substantially centered on the LED light source and has a high lateral light emission component while suppressing the central intensity.
On the other hand, FIG. 7A is a model having the configuration described in FIGS. In this model, the dam material 2 has an outer diameter of 9 mm, an inner diameter of 7 mm, a height of 0.6 mm, the lens 7 has a maximum height of 1.08 mm, a maximum diameter of 16.6 mm, and a slope angle of the recess 8 of 42 °. In this model, as shown in the result of FIG. 7B, it can be seen that the central light emission intensity of the LED light source is considerably suppressed and the light emission intensity toward the side surface is increased. As described above, this model is intended to generate light in the downward direction of the LED light source, but the light distribution angle η shown in FIG. 7A is approximately 60 to 90 ° and approximately −60 to −−. It can be seen that it is a characteristic light source capable of obtaining a large emission intensity at 90 °. Therefore, also from the trial calculation result shown here, the thin large luminous flux LED light source configuration in consideration of the heat dissipation according to the embodiment of the present invention has the effect of increasing the side (including the lower side) light emission intensity. You can say that.

本発明の目的は、前述したとおり、放熱性のよい大光束光源を得ることにあり、LEDチップ3の個数を図1よりも多くするようにしてもよい。図8(a)、図8(b)は図1に示した4個のLEDチップよりさらに大光束化する5個のLEDチップ3を用いた場合の構成例である。なお、図8(a)は各LEDチップの温度上昇を抑制するために、LEDチップ5個を放熱性基板1のキャビティ上のダム材2側に周縁配置した例である。LEDチップが6個以上でも同様の配置は可能であり、さらに個数が多くなるような場合にはLEDパッケージ部6外形を必ずしも円形ではなく、楕円状、正方状、長方状などにして、それにあわせて、レンズ7を前述した特徴を備えたものとしてもよい。また、図8(b)は同じくLEDチップが5個の場合であり、1個を中心配置とし、その他4個を周縁配置したものである。図8(b)の場合には、やや光源中心方向への光束が大きくなる。   As described above, an object of the present invention is to obtain a large luminous flux light source with good heat dissipation, and the number of LED chips 3 may be made larger than that in FIG. FIGS. 8A and 8B are configuration examples in the case of using five LED chips 3 that have a larger luminous flux than the four LED chips shown in FIG. FIG. 8A shows an example in which five LED chips are arranged on the dam material 2 side on the cavity of the heat-radiating substrate 1 in order to suppress the temperature rise of each LED chip. The same arrangement is possible with 6 or more LED chips, and when the number of LED chips is increased, the outer shape of the LED package part 6 is not necessarily circular, but it is oval, square, rectangular, etc. In addition, the lens 7 may have the characteristics described above. FIG. 8B also shows a case where there are five LED chips, one being the central arrangement and the other four being arranged at the periphery. In the case of FIG. 8B, the light flux toward the light source center slightly increases.

一方、本発明は、図1ほど光束を必要としない場合にも適用可能である。例えば、図8(c)はLEDチップを3個周縁配置、図8(d)は空間的配光が左右、上下で非対称となるがLEDチップを2個周縁配置、さらに図8(e)はLEDチップを1個中心配置とした例である。なお、前述ではラージLEDチップの使用を前提に説明したが、レギュラーLEDチップ(表面積0.3×0.3mm、0.07W程度)やミドルLEDチップ(ラージチップとレギュラーチップ)を単数または複数個用いる場合でも適用可能である。   On the other hand, the present invention is also applicable to the case where a light beam is not required as in FIG. For example, FIG. 8 (c) shows three LED chips arranged at the periphery, FIG. 8 (d) shows a spatial light distribution that is asymmetrical in the left and right, top and bottom, but two LED chips are arranged at the periphery, and FIG. 8 (e) This is an example in which one LED chip is arranged in the center. Although the above description is based on the assumption that a large LED chip is used, one or more regular LED chips (surface area 0.3 × 0.3 mm, about 0.07 W) and middle LED chips (large chip and regular chip) are used. It is applicable even when used.

実施の形態2.
図9は本発明の実施の形態2に係るLED光源を示すもので、図9(a)は上面図、図9(b)及び図9(c)はその断面図である。ここでは、各LEDチップ3の周りを第一のダム材31で極力小面積となるように囲み、第一のダム材31で囲まれた部分を、蛍光材料4を混入した蛍光材料含有樹脂30で封止した例である。この態様はLEDチップ3の表面にだけ蛍光材料4を設けた図1の態様に比べて、比較的製造が容易で安価となる。第一のダム材31は、各LEDチップ3を囲む穴を設けた円筒状の材料として構成してもよい。さらに第一のダム材31上に別の第二のダム材32を形成し、その内部を透光性樹脂5で樹脂封止する構成としてもよい。このような構成とすることで、図1に示すような広いキャビティ空間に対し、その全空間を、蛍光材料4を含む封止材料で封止すると、キャビティ全体の広い領域が拡散発光領域となってしまいレンズ効果が薄らいでしまうことを抑制できる。
Embodiment 2. FIG.
9 shows an LED light source according to Embodiment 2 of the present invention. FIG. 9A is a top view, and FIG. 9B and FIG. 9C are cross-sectional views thereof. Here, each LED chip 3 is surrounded by the first dam material 31 so that the area is as small as possible, and the portion surrounded by the first dam material 31 is a fluorescent material-containing resin 30 mixed with the fluorescent material 4. It is an example sealed with. This embodiment is relatively easy to manufacture and less expensive than the embodiment of FIG. 1 in which the fluorescent material 4 is provided only on the surface of the LED chip 3. The first dam material 31 may be configured as a cylindrical material provided with a hole surrounding each LED chip 3. Further, another second dam material 32 may be formed on the first dam material 31 and the inside thereof may be sealed with the translucent resin 5. With such a configuration, when the entire cavity space as shown in FIG. 1 is sealed with a sealing material including the fluorescent material 4, a wide area of the entire cavity becomes a diffusion light emitting region. It is possible to suppress the lens effect from fading.

そこで、図9(b)に示すように、LEDチップ3の周辺領域にだけ蛍光材料含有樹脂30を配置し、LEDチップ3周辺の初期発光源が広い面積での拡散光とならないように、拡散光の範囲をLEDチップ3表面付近に制限する構成としてもよい。なお、レンズ7の形状は図1の構成と同様に、LEDチップ3の直上部に向かって厚みが増し、その直上部付近ではLEDチップ3側に凹んだ凹部8が形成されている。この際、凹部8表面を図3に示したような高反射材10で形成することで、さらに側方方向への発光強度の高いLED光源を得ることができる。   Therefore, as shown in FIG. 9B, the fluorescent material-containing resin 30 is disposed only in the peripheral region of the LED chip 3, and the initial light emission source around the LED chip 3 is diffused so as not to be diffused light over a wide area. It is good also as a structure which restrict | limits the range of light to LED chip 3 surface vicinity. As in the configuration of FIG. 1, the shape of the lens 7 increases toward the upper part of the LED chip 3, and a concave part 8 that is recessed toward the LED chip 3 is formed in the vicinity of the upper part. At this time, by forming the surface of the concave portion 8 with the highly reflective material 10 as shown in FIG. 3, it is possible to obtain an LED light source having higher emission intensity in the lateral direction.

図9(c)は、第一のダム材31で囲まれた蛍光材料含有樹脂30の上部領域を空洞36とした中間導光材料層35を形成し、その空洞36の上面に相当する位置にレンズの凹部頂点が位置する構成である。空洞36の内表面を高反射率材料とすることで、中間導光材料層35の材料によらず蛍光変換光がその空洞36に沿って放射される。本構成においてもレンズ7の凹部8へ効率よく光を放射させることができ、それを凹部8の斜面8aで光の方向を変えることで側面発光強度を高めることができる。
なお、図9(c)の中間導光材料層35を用いる構成は、図1の蛍光材料4をLEDチップ3表面に備えた構成にも適用可能であり、LED発光光が高反射率側面に沿って放射されるとともに、拡散発光面積をおよそLEDチップ3の面積程度に抑えることでレンズ凹部付近への効率よく光が進行するため、側方への光制御を高める効果を有する。
In FIG. 9C, an intermediate light guide material layer 35 is formed in which the upper region of the fluorescent material-containing resin 30 surrounded by the first dam material 31 is a cavity 36, and is located at a position corresponding to the upper surface of the cavity 36. In this configuration, the vertex of the concave portion of the lens is located. By making the inner surface of the cavity 36 a highly reflective material, fluorescence converted light is radiated along the cavity 36 regardless of the material of the intermediate light guide material layer 35. Also in this configuration, light can be efficiently emitted to the concave portion 8 of the lens 7, and the side emission intensity can be increased by changing the direction of the light on the inclined surface 8 a of the concave portion 8.
The configuration using the intermediate light guide material layer 35 in FIG. 9C can also be applied to a configuration in which the fluorescent material 4 in FIG. 1 is provided on the surface of the LED chip 3, and the LED light emission is on the high reflectance side surface. The light is efficiently emitted to the vicinity of the lens recess by suppressing the diffused light emission area to about the area of the LED chip 3 and thus has an effect of improving the light control to the side.

実施の形態3.
図10は本発明の実施の形態3に係るLED光源を示すもので、図10(a)は上面図、図10(b)は図10(a)の側断面図、図10(c)は図10(b)の変形例を示す側断面図である。ここでは、蛍光材料4として蛍光体を樹脂バインドした蛍光シート33を用いている。図10(b)は図9(b)同様、LEDチップ3ごとに設けた第一のダム材31の内側を透光性のある封止樹脂5で封止し、その封止樹脂5に位置するような蛍光シート33を配置した例である。本構成では、さらにその上部に第二のダム材32を配置し、その内部を透光性のある封止樹脂5で封止した構成している。
また、図10(c)は、第一のダム材31上に複数のLEDチップ3をカバーする蛍光シート34を配置し、その上部を図9(c)と同様に、各LEDチップ3に対応する部分を空洞36とした中間導光材料層35を形成したものである。このような構成としても初期拡散光源の発光面積を小さくすることができ、これまで説明したレンズ構成との協働によりLED光源側方への光制御効果を高めることが可能となる。なお、ここでも凹部8の表面8aに高反射材10を形成することで、さらに側方方向への発光強度の高いLED光源を得ることができる。
Embodiment 3 FIG.
FIG. 10 shows an LED light source according to Embodiment 3 of the present invention. FIG. 10 (a) is a top view, FIG. 10 (b) is a side sectional view of FIG. 10 (a), and FIG. It is a sectional side view which shows the modification of FIG.10 (b). Here, a fluorescent sheet 33 in which a fluorescent material is resin-bound is used as the fluorescent material 4. 9B, as in FIG. 9B, the inside of the first dam material 31 provided for each LED chip 3 is sealed with a light-transmitting sealing resin 5, and is positioned on the sealing resin 5. This is an example in which such a fluorescent sheet 33 is arranged. In this configuration, the second dam material 32 is further disposed on the upper portion, and the inside thereof is sealed with a light-transmitting sealing resin 5.
In FIG. 10C, the fluorescent sheet 34 covering the plurality of LED chips 3 is arranged on the first dam material 31, and the upper part corresponds to each LED chip 3 as in FIG. 9C. The intermediate light guide material layer 35 having the hollow portion 36 as a portion to be formed is formed. Even with such a configuration, the light emission area of the initial diffusion light source can be reduced, and the light control effect to the side of the LED light source can be enhanced by cooperation with the lens configuration described so far. In this case as well, by forming the highly reflective material 10 on the surface 8a of the recess 8, it is possible to obtain an LED light source having higher emission intensity in the lateral direction.

さらに、図11のように、例えば蛍光体を樹脂混合した蛍光材料40をレンズ7に予め付加するような構成としても構わない。この場合、レンズ7背面のLEDチップ3の配置位置に、LEDチップ3と略同等面積の蛍光層(蛍光材料40)を有するように構成する。このような構成でも、蛍光拡散光領域を広げることなく、波長変換された光の凹部8の逆円錐表面の側方への光制御を行いやすい構成となる。図11(b)では、図10の構成と同様チップ3周囲を高反射性材料で囲むような中間導光材料層35を設け、ある程度LED光源の照射方向を制限し、その上部に蛍光層(蛍光材料40)が配置する構成としている。またこの例では封止部(透光性のある封止樹脂5)は光取出しを高めるため、ややドーム状の形状で構成している。図11(c)はレンズ7背面に蛍光層(蛍光材料40)を配置、図11(d)はレンズ7背面に窪みを設けその領域に蛍光層(蛍光材料40)を配置、図11(e)はレンズ7背面のLEDチップ3位置に相当する部分に凸部37を設け、その表面に蛍光層(蛍光材料40)を配置した構成である。なお、(e)は(d)におけるレンズ側面のみ表現した図である。   Furthermore, as shown in FIG. 11, for example, a fluorescent material 40 in which a phosphor is mixed with a resin may be added to the lens 7 in advance. In this case, it is configured to have a fluorescent layer (fluorescent material 40) having an area substantially equal to that of the LED chip 3 at the arrangement position of the LED chip 3 on the back surface of the lens 7. Even in such a configuration, it is easy to control the light of the wavelength-converted light to the side of the inverted conical surface of the concave portion 8 without expanding the fluorescent diffused light region. In FIG. 11B, an intermediate light guide material layer 35 that surrounds the periphery of the chip 3 with a highly reflective material as in the configuration of FIG. 10 is provided, the irradiation direction of the LED light source is limited to some extent, and a fluorescent layer ( The fluorescent material 40) is arranged. In this example, the sealing portion (translucent sealing resin 5) has a slightly dome shape in order to enhance light extraction. FIG. 11C shows a fluorescent layer (fluorescent material 40) disposed on the back surface of the lens 7, and FIG. 11D shows a depression formed on the rear surface of the lens 7 and a fluorescent layer (fluorescent material 40) disposed on the region. ) Has a configuration in which a convex portion 37 is provided in a portion corresponding to the position of the LED chip 3 on the back surface of the lens 7 and a fluorescent layer (fluorescent material 40) is arranged on the surface thereof. Note that (e) shows only the lens side surface in (d).

この際、この蛍光材料領域が例えばパッケージ全領域に渡るような大きい領域を仮定すると、レンズ7背面の広い領域から拡散光が入射することになり、レンズ7による光制御効果が大きく失われ、LED光源の配光は本発明で意図しない側方発光成分が少ない完全拡散発光に近づいてしまう。そこで上記のような構成とすることで、およそLEDチップ3の発光領域と同等面積程度に制限した蛍光変換領域を効率よく照射できるとともに、波長変換された拡散光の発光領域をLEDチップ3の面積程度に小さく抑えることができ、側方への光制御効果が高い光源を得ることができる。   At this time, if this fluorescent material region is assumed to be a large region, for example, covering the entire region of the package, diffused light enters from a wide region on the back surface of the lens 7, and the light control effect by the lens 7 is greatly lost. The light distribution of the light source is close to completely diffuse light emission with less side light emission component which is not intended in the present invention. Therefore, by adopting the configuration as described above, it is possible to efficiently irradiate the fluorescence conversion region limited to about the same area as the light emitting region of the LED chip 3 and to irradiate the light emitting region of the wavelength-converted diffused light with the area of the LED chip 3. A light source that can be suppressed to a small extent and that has a high lateral light control effect can be obtained.

実施の形態4.
次に、本発明に係るLED光源(以下、本LED光源という)を利用した発光体について説明する。本LED光源を組み込む発光体は、例えば導光板方式や、導光板を利用しない直接照明方式や間接照明方式などにより様々な形態が取れるが、ここでは例えば液晶ディスプレイのバックライトなどの面状発光体(導光板)への適用とその発光体の発光効率を高める構成について説明する。
図12は、本LED光源を用いた実施の形態4を示すものであり、本発明のLED光源を組込み可能とした面状導光板の例で、図12(a)はその導光板表面の上面図、図12(b)は12(a)の側面図である。図12において、15は透光性樹脂等からなる導光板、16は本LED光源を配置するLED光源収容部(凹部や開口部等からなる)、17は導光板15の周囲に設けられ側面等に反射材料を有する導光板ケースである。照明面積が比較的小さい場合は、本LED光源を実線のように中央配置し、大面積照明が必要な場合には、例えば点線で示したように複数箇所に配置する構成とする。本LED光源を使用すれば、大面積照明が必要な場合でも、小光束LED光源を用いる場合に比較して、その使用個数を大幅に少なくできる。
Embodiment 4 FIG.
Next, a light emitter using the LED light source according to the present invention (hereinafter referred to as the present LED light source) will be described. The light emitter incorporating the LED light source can take various forms such as a light guide plate method, a direct illumination method that does not use a light guide plate, and an indirect illumination method. Here, a planar light emitter such as a backlight of a liquid crystal display is used here. An application to the (light guide plate) and a configuration for increasing the light emission efficiency of the light emitter will be described.
FIG. 12 shows Embodiment 4 using this LED light source, and is an example of a planar light guide plate in which the LED light source of the present invention can be incorporated. FIG. 12 (a) shows the upper surface of the surface of the light guide plate. Fig. 12 (b) is a side view of 12 (a). In FIG. 12, 15 is a light guide plate made of a translucent resin, 16 is an LED light source accommodating portion (consisting of a recess, an opening, etc.) in which the LED light source is disposed, and 17 is a side surface provided around the light guide plate 15. A light guide plate case having a reflective material. When the illumination area is relatively small, the LED light source is centrally arranged as shown by a solid line, and when large area illumination is required, for example, the LED light source is arranged at a plurality of locations as indicated by dotted lines. If this LED light source is used, even when large area illumination is required, the number of use can be significantly reduced as compared with the case of using a small luminous flux LED light source.

図13は、図12の導光板15の凹部16を含む側面領域Zに、本LED光源を用いた実施の形態4に係る面状発光体の断面構造図である。導光板15に設けたLED光源収容部16に本LED光源を配置する。本LED光源の背面には放熱性材料18を設けている。また、放熱性材料18の周囲には、パッケージ背面方向に放射した光を反射して導光板15に入射させる高反射材料19を設けている。このようにしたことで、本LED光源の発する熱(LEDチップ発熱)を、LED光源の背面を介して、放熱させやすい構成とすることができる。この際、放熱性材料18の裏側に放熱部材、熱拡散部材、熱搬送部材等を設けて、放熱性をより向上させる構成としてもよい。また、高反射材料19の敷設によって、本LED光源の特に側方から下向き配光成分を反射させて導光板15の内部へ入光させることが可能になる。したがって、図13のような構造にすることで、光源下向き配光を強めるような積極設計を行ったLED光源(図3の構成例)に対して、高い入射効率で導光板15に光を入射させることができる。   FIG. 13 is a cross-sectional structure diagram of a planar light emitter according to Embodiment 4 in which the LED light source is used in the side surface region Z including the recess 16 of the light guide plate 15 of FIG. The LED light source is disposed in the LED light source housing 16 provided on the light guide plate 15. A heat dissipating material 18 is provided on the back surface of the LED light source. Further, around the heat dissipating material 18, a highly reflective material 19 that reflects the light radiated in the package back surface direction and enters the light guide plate 15 is provided. By doing in this way, it can be set as the structure which is easy to radiate the heat | fever (LED chip heat_generation | fever) which this LED light source emits via the back surface of an LED light source. At this time, a heat dissipation member, a heat diffusion member, a heat transfer member, or the like may be provided on the back side of the heat dissipation material 18 to further improve the heat dissipation. Further, the laying of the highly reflective material 19 makes it possible to reflect the light distribution component downward from the side of the LED light source, and to enter the light guide plate 15. Therefore, with the structure as shown in FIG. 13, the light is incident on the light guide plate 15 with high incidence efficiency with respect to the LED light source (configuration example of FIG. 3) that has been actively designed to enhance the light distribution downward of the light source. Can be made.

また、導光板15の背面(高反射材料19に接する面)には、背面光制御パタン敷設部20を設けて光伝拡散搬機能を与えている。さらに本発光体では、LED光源収容部16の側面に光源収容部側面光制御部21を、LED光源収容部16のレンズ7との対向面に光源収容部レンズ対向面光制御部22を設けている。これにより、本LED光源の特に上方に放射される光に対して、導光板15表面の輝度均斉化を行っている。これらの制御部21,22には、光制御構造または材料を設けて構成する。例えば、これらの制御部21,22の領域に、薄膜塗料ドット印刷や空間光濃度変調フィルムを配置するなどして導光板表面輝度均斉度を高めるような構成とする。   In addition, a back light control pattern laying portion 20 is provided on the back surface of the light guide plate 15 (the surface in contact with the highly reflective material 19) to provide a light transmission and diffusion carrying function. Further, in the present light emitter, the light source housing side surface light control unit 21 is provided on the side surface of the LED light source housing unit 16, and the light source housing unit lens facing surface light control unit 22 is provided on the surface of the LED light source housing unit 16 facing the lens 7. Yes. Thereby, the brightness | luminance equalization of the light-guide plate 15 surface is performed with respect to the light radiated | emitted especially above this LED light source. These control units 21 and 22 are configured by providing light control structures or materials. For example, the light guide plate surface brightness uniformity is increased by arranging thin film paint dot printing or a spatial light density modulation film in the areas of these control units 21 and 22.

また、図14のように本LED光源23周囲の光源収容部側面光制御部21として、例えば高さ数十μm程度の導光板背面から縞状に延びる凹凸形状(微細プリズム形状)24を付加するなどして表面積を大きくとり、その表面での光の屈折効果も利用しながら入射効率を高めるような構成としてもよい。   Further, as shown in FIG. 14, as the light source housing side light control unit 21 around the LED light source 23, for example, an uneven shape (fine prism shape) 24 extending in a stripe shape from the back surface of the light guide plate having a height of about several tens of μm is added. For example, the surface area may be increased to increase the incident efficiency while utilizing the light refraction effect on the surface.

さらに、図15(a)のように、図13の光源収容部側面光制御部21に相当する部分の導光板15の形状を、本LED光源の表面形状に沿うような緩やかな湾曲面を持つように構成してもよい。その場合は本LED光源と導光板15との間の空気層(光源収容部16)を少なくすることができ、入射効率を高めることができる。あるいはその部分を図15(b)のように、段差状とした階段形状部26として構成することもできる。このようにすることで、配光(たとえば図6(b)や7(b)で示した配光)の側方上向き光成分を屈折、全反射を利用して抑えることができる。
さらに、導光板15の表面上、本LED光源の配光強度の高い方向に位置する領域、あるいはその近傍に、反射性パタンの薄膜印刷や光濃度変調フィルム装着、あるいは微細凹凸形状の直接付加などの光濃度調整部27を設けて、輝度均斉化を行うようにしてもよい。また、上記空気層の隙間に透光性樹脂を充填するような構成とすれば、本LED光源のレンズ7と導光板15との間の層の屈折率差を小さくすることができるため、導光板15への入射効率がさらに高まり発光効率が向上する。
Further, as shown in FIG. 15 (a), the shape of the light guide plate 15 corresponding to the light source housing side light controller 21 in FIG. 13 has a gently curved surface that follows the surface shape of the LED light source. You may comprise as follows. In that case, the air layer (light source accommodating part 16) between this LED light source and the light-guide plate 15 can be decreased, and incident efficiency can be improved. Or the part can also be comprised as the step-shaped part 26 which made the step shape like FIG.15 (b). By doing in this way, the side upward light component of light distribution (For example, light distribution shown by FIG.6 (b) and 7 (b)) can be suppressed using refraction and total reflection.
Further, on the surface of the light guide plate 15, in the region located in the direction where the light distribution intensity of the LED light source is high, or in the vicinity thereof, thin film printing of a reflective pattern, light density modulation film attachment, or direct addition of a fine uneven shape, etc. The light density adjusting unit 27 may be provided to perform luminance equalization. In addition, if the light-transmitting resin is filled in the gap between the air layers, the difference in the refractive index of the layer between the lens 7 of the LED light source and the light guide plate 15 can be reduced. Incidence efficiency to the light plate 15 is further increased and light emission efficiency is improved.

また、上述した実施の形態1〜4では、図1や図3のようにレンズ7の厚み形状がその周端部に向け薄くなる構成、またパッケージ直径に対してレンズ7の外形がやや大きめとなるレンズ7形状の例で効果を説明してきたが、図16に示すようにレンズ7の外径をパッケージ直径と同等とし、レンズ7の側面をほぼ垂直に立ち上がるような平坦面(円柱形状の側面を含む面)として形成するようにしてもよい(図16(b)の断面図参照)。この構成の場合、小径化とともに広い面積を有するレンズ7の側面からの光放射比率が増加するため側方発光の効果方向を有する。   In the first to fourth embodiments described above, the lens 7 has a configuration in which the thickness of the lens 7 becomes thinner toward the peripheral end as shown in FIGS. 1 and 3, and the outer shape of the lens 7 is slightly larger than the package diameter. Although the effect has been described with the example of the lens 7 shape as shown in FIG. 16, a flat surface (a cylindrical side surface) such that the outer diameter of the lens 7 is equal to the package diameter and the side surface of the lens 7 rises substantially vertically as shown in FIG. May be formed (see a cross-sectional view of FIG. 16B). In the case of this configuration, the light emission ratio from the side surface of the lens 7 having a large area is increased as the diameter is reduced, and thus the side light emission effect direction is provided.

図17及び図18に、レンズ7の側面を平坦面とした場合のシミュレーションモデル(a)と配光特性試算結果(b)を示す。図17は、図7の構成においてレンズ7の直径と等しくしたものであり、ダム材を外径9mm、内径7mm、高さ0.6mm、レンズを最大高さ0.72mm、最大径9mm、凹部の斜面角度42°とした場合の結果である。図17(a)のモデル角度方向と図17(b)の結果の軸は図6と同様であり、図17(b)図からの側方発光効果を有することがわかる。また図18は図17おいてダム材が無い場合の構成であり、この場合には側方(大きい角度)での光取出し量が増えていることがわかる。   17 and 18 show a simulation model (a) and a light distribution characteristic trial calculation result (b) when the side surface of the lens 7 is a flat surface. FIG. 17 is the same as the diameter of the lens 7 in the configuration of FIG. 7, with the dam material having an outer diameter of 9 mm, an inner diameter of 7 mm, a height of 0.6 mm, the lens having a maximum height of 0.72 mm, a maximum diameter of 9 mm, and a recess. This is the result when the slope angle is 42 °. The model angle direction of FIG. 17A and the axis of the result of FIG. 17B are the same as those of FIG. 6, and it can be seen that the side light emission effect from FIG. FIG. 18 shows a configuration in the case where there is no dam material in FIG. 17, and in this case, it can be seen that the light extraction amount at the side (large angle) is increased.

また、他のレンズ表面形状として、例えば図20に示すように、LEDチップ3を4個実装した構成で、図20(b)、(c)のLEDチップ3直上に逆円錐等の凹部8を有する円柱形の構成、図20(d)のレンズ7の中心が薄い凹形状8とした構成などでも側方照射効果を得ることができる。ここでも逆円錐状の凹部8はその頂角の1/2をおよそ全反射角とし、さらに表面と逆円錐の交点が作る円形領域がLEDチップ3を囲むような大きさになるように構成している。何れも各LEDチップ単位に設けた窪み(凹部8に対向する第一のダム材31内)にLEDチップ3を実装し、蛍光体混入した封止材料38で封止した構成例としている。さらに図示したように必要に応じて第二のダム材32を形成し、その内部を透明度の高い封止樹脂で封止する。
これらの構成について、シミュレーションモデルと、キャビティ表面を鏡面反射とした場合の試算結果を図21及び図22に示す。図21は図16(b)のように表面が高反射性のダム材2で各LEDチップ3を囲むように形成(LEDチップ3周囲の4箇所のみ開口した円盤状ダム材)し、さらにその上部に第二のダム材32を形成した0.8mm厚さのパッケージ部に、高さ1.1mm、直径9mm、凹部の斜面角度を42°としたレンズを配置した構成である。また、図22は図20(d)に対応しており、レンズ7の表面を曲率の大きい凹部形状としたものである。図21、図22何れの場合にも正面光度を抑え込み側面発光量を増加させる効果を有する。
In addition, as another lens surface shape, for example, as shown in FIG. 20, a configuration in which four LED chips 3 are mounted, and a concave portion 8 such as an inverted cone is formed immediately above the LED chip 3 in FIGS. 20 (b) and 20 (c). The side irradiation effect can be obtained even with a cylindrical configuration having the concave shape 8 in which the center of the lens 7 in FIG. 20D is thin. Here again, the inverted conical recess 8 is configured so that a half of its apex angle is a total reflection angle, and a circular area formed by the intersection of the surface and the inverted cone surrounds the LED chip 3. ing. In any case, the LED chip 3 is mounted in a depression provided in each LED chip unit (in the first dam material 31 facing the recess 8) and sealed with a sealing material 38 mixed with a phosphor. Further, as shown in the drawing, the second dam material 32 is formed as necessary, and the inside thereof is sealed with a highly transparent sealing resin.
FIG. 21 and FIG. 22 show simulation models and trial calculation results when the cavity surface is specularly reflected for these configurations. FIG. 21 is formed so that the surface of each LED chip 3 is surrounded by a highly reflective dam material 2 as shown in FIG. 16B (a disk-shaped dam material opened only at four locations around the LED chip 3). This is a configuration in which a lens having a height of 1.1 mm, a diameter of 9 mm, and a concave slope angle of 42 ° is disposed on a 0.8 mm-thick package part having a second dam material 32 formed thereon. FIG. 22 corresponds to FIG. 20D, and the surface of the lens 7 has a concave shape with a large curvature. In either case of FIG. 21 or FIG. 22, the front luminous intensity is suppressed and the side emission amount is increased.

また図23はさらに小径化を図った構成であり、パッケージ部直径6mm、高さ0.4mm、表面平坦レンズの高さ1.1mm、直径径6mm、凹部の斜面角度42°とした場合の結果である。以上の結果からコンパクト化を行っても側方放射効果が保たれることがわかる。
また、かなり大型サイズのLEDチップ(例えば1.5mm×1.5mmサイズ)を1個用いる場合の構成例を図24(e)、(f)に示した。このような構成でもパッケージ基材を放熱性材料とし、これまでの説明と同様の条件で逆円錐凹部8を有するレンズを設けることで、側方強度の高い大光束のLED光源を得ることができる。図25に、そのシミュレーションモデル(厚さ0.8mmのパッケージ部に、高さ1.2mm、直径3.0mm、凹部の斜面角度を42°としたレンズを配置した例)とその配光試算結果を示すが、この場合も側方放射効果を有することがわかる。
Further, FIG. 23 shows a configuration in which the diameter is further reduced, and results when the package part diameter is 6 mm, the height is 0.4 mm, the surface flat lens height is 1.1 mm, the diameter diameter is 6 mm, and the concave slope angle is 42 °. It is. From the above results, it can be seen that the side radiation effect is maintained even when the size is reduced.
In addition, FIGS. 24E and 24F show a configuration example in the case of using one LED chip having a considerably large size (for example, 1.5 mm × 1.5 mm size). Even in such a configuration, an LED light source having a high lateral intensity and a high luminous flux can be obtained by using a heat radiating material as a package base and providing a lens having an inverted conical recess 8 under the same conditions as described above. . FIG. 25 shows the simulation model (example in which a lens having a height of 1.2 mm, a diameter of 3.0 mm, and a concave slope angle of 42 ° is arranged on a 0.8 mm-thick package part) and the light distribution trial calculation result. It can be seen that this case also has a side radiation effect.

また、図16や図20のようにレンズ7の側面を広く設けた円柱形光源に対しては、図26のように導光板15の開口部を単純に円筒でくり貫いたような面としてその側面にほぼ接するような構成で用いることが可能である。この場合、レンズ7と導光板15の間にできる隙間を非常に少なくすることができ、光進行路における屈折率差を少なくすることができるので界面での反射ロスの少ない、導光板入光効率が高く発光効率の高い発光体を得ることができる。   Further, for a cylindrical light source having a wide side surface of the lens 7 as shown in FIGS. 16 and 20, the opening of the light guide plate 15 is simply formed as a hollow surface as shown in FIG. It can be used in a configuration in which it substantially contacts the side surface. In this case, the gap formed between the lens 7 and the light guide plate 15 can be extremely reduced, and the difference in refractive index in the light traveling path can be reduced, so that the reflection light incident efficiency of the light guide plate is small. Therefore, it is possible to obtain a light emitting body having a high light emission efficiency.

また、図27のようにレンズ7の側面(光照射部)のみが導光板15と接するような構成としてもよい。パッケージ部6のダム材2部分より側方発光しない構成で、図26のようにパッケージ側面が導光板開口側面に接していると、その部分から光が入射する機会がなく、さらにパッケージ部高さだけ導光板15の表面に近づくために、導光板15の開口部から直接放射される光の割合が大きくなる。図27の構造ではレンズ7の側面表面積に対して導光板15の開口側面領域を広くとれるので、レンズより放射される光は導光板15に入射する機会が増加する。したがって、本構成により導光板入射効率が高い発光体を得ることが可能になる。この際、パッケージ部分背面の放熱性材料18はパッケージ部分を収納、かつ高反射性材料19を押さえ込むような凹部を有する形状として構成してもよい。以上のような構成でパッケージ放熱効果を保ちながら発光効率向上を実現することが可能となる。   In addition, as shown in FIG. 27, only the side surface (light irradiation unit) of the lens 7 may be in contact with the light guide plate 15. When the package side face is in contact with the light guide plate opening side face as shown in FIG. 26 in a configuration that does not emit light sideways from the dam material 2 part of the package part 6, there is no opportunity for light to enter from that part, and the package part height In order to approach the surface of the light guide plate 15 only, the proportion of light emitted directly from the opening of the light guide plate 15 increases. In the structure of FIG. 27, the opening side surface region of the light guide plate 15 can be made wider than the side surface area of the lens 7, so that the opportunity for light emitted from the lens to enter the light guide plate 15 increases. Therefore, this configuration makes it possible to obtain a light emitter with high light guide plate incidence efficiency. At this time, the heat dissipating material 18 on the back surface of the package portion may be configured to have a recess that accommodates the package portion and that holds down the highly reflective material 19. With the above configuration, it is possible to improve the light emission efficiency while maintaining the package heat dissipation effect.

図28、図29には、それぞれ図20(c)、図24(f)のLEDパッケージ6を導光板15の凹部に配置する構成例を示した。LEDパッケージ3のパッケージ基板表面を高反射性材料で形成し、およそレンズサイズの導光板15の窪みにほぼレンズ7の側面部と導光板15の窪み側面部が接するように構成した例である。レンズ7部分は薄型小径であるため、薄型導光板15に対しても導光板15のLED光源設置部の開口寸法を小さくでき、LED光源の直上方向の発光強度を抑えつつ、LED光源中央方向の光成分については、必要に応じて光源配置凹部上面光制御部22により光拡散効果あるいは部分的に光減衰効果を持たせ、導光板表面の発光均斉度を高めるように構成する。
また、図27、図28または図29の例では、LED光源のレンズ小径化を図るとともに、熱伝導性パッケージ部分をレンズ直径に対して明らかに大きい構成としている。このような構成により大出力LEDチップの発する大きな熱に対して伝熱面積を広くとることができ、図27、図28、図29のようにその背面をやはり大面積の金属性の導光板ケースに密着させ放熱路を形成することで、LEDチップ温度上昇を抑えた発光効率のよい発光体を得ることができる。
さらに、本構成のような円柱状のLED光源に対しては、図19に示すように、発光効率向上や配光制御の面から、レンズ7の側面の上下方向に例えばプリズムやシリンドリカルストライプなどの凹凸形状7aを加えるように構成してもよい。
FIGS. 28 and 29 show configuration examples in which the LED package 6 of FIGS. 20C and 24F is disposed in the concave portion of the light guide plate 15, respectively. In this example, the surface of the package substrate of the LED package 3 is formed of a highly reflective material so that the side surface portion of the lens 7 and the side surface portion of the light guide plate 15 are in contact with the recess of the light guide plate 15 having a lens size. Since the lens 7 portion is thin and small in diameter, the opening size of the LED light source installation portion of the light guide plate 15 can be reduced with respect to the thin light guide plate 15, while suppressing the light emission intensity directly above the LED light source, and in the center direction of the LED light source. About a light component, it is comprised so that the light-diffusion effect or partial light attenuation effect may be given by the light source arrangement recessed part upper surface light control part 22 as needed, and the light emission uniformity on the surface of a light-guide plate may be raised.
In the example of FIG. 27, FIG. 28, or FIG. 29, the lens diameter of the LED light source is reduced, and the thermally conductive package portion is configured to be clearly larger than the lens diameter. With such a configuration, the heat transfer area can be widened against the large heat generated by the high-power LED chip, and the back surface of the metal light guide plate case having a large area as shown in FIGS. 27, 28, and 29. By forming a heat radiation path in close contact with each other, it is possible to obtain a light-emitting body with good luminous efficiency that suppresses the LED chip temperature rise.
Further, for a columnar LED light source such as this configuration, as shown in FIG. 19, from the surface of luminous efficiency improvement and light distribution control, for example, prisms, cylindrical stripes, etc. in the vertical direction of the side surface of the lens 7 You may comprise so that the uneven | corrugated shape 7a may be added.

以上のような構成により、LED光源23が配置される領域に面する導光板15の側面や、導光板15の表面にLED光源23の配光特性に応じ光制御機能を設けることで、面発光体としての発光効率及び輝度均一性を向上させることが可能となる。なお、本実施の形態では、導光板を対象とした面状発光体を例として本LED光源を用いた発光体の特性向上に係わる構成を説明したが、例えば棒状発光体においても上記と同様の構成により、配光及び熱的な面で特性のよい発光体を得ることができる。   With the configuration described above, surface light emission is achieved by providing a light control function according to the light distribution characteristics of the LED light source 23 on the side surface of the light guide plate 15 facing the region where the LED light source 23 is disposed or on the surface of the light guide plate 15. It becomes possible to improve luminous efficiency and luminance uniformity as a body. In the present embodiment, the configuration relating to the improvement of the characteristics of the light emitter using the LED light source has been described by taking a planar light emitter intended for the light guide plate as an example. According to the configuration, a light emitter having good characteristics in terms of light distribution and heat can be obtained.

以上説明したように、本発明は大光束かつ薄型で側方への発光強度が高いLED光源と、それを用いた発光体に係わるものであり、屋内外設置を問わず、小〜大光束照明用、液晶バックライト用など広い用途に用いることができるものである。   As described above, the present invention relates to an LED light source having a large luminous flux, a thin shape, and a high lateral emission intensity, and a light emitting body using the LED light source. It can be used for a wide range of applications such as LCD and liquid crystal backlights.

1 放熱性基板、2 ダム材、3 LEDチップ、4 蛍光材料、5 封止樹脂(透光性樹脂)、6 LEDパッケージ部、7 レンズ、8 凹部、9 レンズ周縁配光対策部、10 反射部材、15 導光板、16 LED光源収容部、17 導光板ケース、18 放熱性材料、19 高反射性材料、20 背面光制御パタン敷設部、21 光源収容部側面光制御部、22 光源収容部レンズ対向面光制御部、23 LED光源、24 凹凸形状(又は微細プリズム形状)、26 階段形状部、27 光濃度調整部、30 蛍光材料含有樹脂、31 第一のダム材、32 第二のダム材、33 蛍光材料、34 蛍光材料、35 中間導光材料層、36 開口部。   DESCRIPTION OF SYMBOLS 1 Heat radiation board | substrate, 2 Dam material, 3 LED chip, 4 Fluorescent material, 5 Sealing resin (translucent resin), 6 LED package part, 7 Lens, 8 Recessed part, 9 Lens periphery light distribution countermeasure part, 10 Reflective member , 15 Light guide plate, 16 LED light source accommodating portion, 17 Light guide plate case, 18 Heat radiating material, 19 Highly reflective material, 20 Back light control pattern laying portion, 21 Light source accommodating portion side light control portion, 22 Light source accommodating portion facing the lens Surface light control unit, 23 LED light source, 24 concave / convex shape (or fine prism shape), 26 stepped shape portion, 27 light density adjustment unit, 30 fluorescent material-containing resin, 31 first dam material, 32 second dam material, 33 Fluorescent material, 34 Fluorescent material, 35 Intermediate light guide material layer, 36 Opening.

Claims (25)

放熱性基板に少なくとも1つのLEDチップが実装され、前記LEDチップが透光性材料で封止されているLEDパッケージ部と、
前記LEDパッケージ部上に配置され、前記各LEDチップの直上部で前記LEDチップ側に凹んだ凹部が形成されたレンズと、を備え、
前記レンズは、
前記凹部の形状が前記LEDチップの中心軸上に頂角を有する逆円錐または逆多角錐形状であるとともに、前記凹部の開始端から前記レンズの外周端に向かって該レンズの厚さが徐々に薄くなる湾曲形状を有し、
前記レンズの外周端部が前記LEDパッケージ部の外周端から突出し、突出した部分の背面から光を放射させるように形成されている
ことを特徴とするLED光源。
An LED package part in which at least one LED chip is mounted on a heat dissipating substrate, and the LED chip is sealed with a translucent material; and
A lens that is disposed on the LED package part and has a concave portion formed on the LED chip side immediately above each LED chip; and
The lens is
The shape of the recess is an inverted cone or inverted polygonal pyramid having an apex angle on the central axis of the LED chip, and the thickness of the lens gradually increases from the start end of the recess toward the outer peripheral end of the lens. It has a curved shape that becomes thinner,
An LED light source, wherein an outer peripheral end portion of the lens protrudes from an outer peripheral end of the LED package portion, and light is emitted from a back surface of the protruding portion.
前記レンズの前記凹部の斜面を光反射性材料で形成したことを特徴とする請求項1記載のLED光源。   The LED light source according to claim 1, wherein the slope of the concave portion of the lens is formed of a light reflective material. 前記レンズは、前記凹部の開始端部分のレンズ厚みを一番厚くするように形成することを特徴とする請求項1又は2記載のLED光源。   3. The LED light source according to claim 1, wherein the lens is formed such that a lens thickness of a start end portion of the concave portion is maximized. 複数個の前記LEDチップを前記放熱性基板の実装領域に散在させ、互いに間隔を開けて実装配置したことを特徴とする請求項1〜3のいずれかに記載のLED光源。   The LED light source according to any one of claims 1 to 3, wherein a plurality of the LED chips are scattered in a mounting region of the heat-radiating substrate and are mounted and spaced apart from each other. 複数個の前記LEDチップを円環状に等間隔で実装配置したことを特徴とする請求項1〜4のいずれかに記載のLED光源。   The LED light source according to claim 1, wherein a plurality of the LED chips are mounted and arranged in an annular shape at equal intervals. 前記放熱性基板の前記LEDチップ実装側表面が鏡面反射性を有することを特徴とする請求項1〜5のいずれかに記載のLED光源。   The LED light source according to claim 1, wherein the LED chip mounting side surface of the heat dissipation substrate has specular reflectivity. 前記逆円錐または前記逆多角錐形状の凹部の頂角を構成する斜面が、前記LEDチップから出射した光の少なくとも一部を全反射させる斜面であることを特徴とする請求項1〜6のいずれかに記載のLED光源。   7. The slope according to claim 1, wherein the slope that constitutes the apex angle of the inverted cone or the inverted polygonal cone-shaped recess is a slope that totally reflects at least part of the light emitted from the LED chip. The LED light source of crab. 前記レンズの前記凹部の開始端の直径が、前記LEDチップの対角寸法以上となっていることを特徴とする請求項1〜7のいずれかに記載のLED光源。   The LED light source according to any one of claims 1 to 7, wherein a diameter of a start end of the concave portion of the lens is equal to or larger than a diagonal dimension of the LED chip. 前記レンズの外周端形状を円形状としていることを特徴とする請求項1〜8のいずれかに記載のLED光源。   The LED light source according to claim 1, wherein an outer peripheral end shape of the lens is a circular shape. 前記LEDチップの周囲に、少なくとも表面に光反射性が付与されたダム材を設け、前記ダム材の内側に前記透光性材料が充填されていることを特徴とする請求項1〜9のいずれかに記載のLED光源。   The dam material provided with light reflectivity at least on the surface is provided around the LED chip, and the translucent material is filled inside the dam material. The LED light source of crab. 前記放熱性基板が、金属またはセラミック材料であることを特徴とする請求項1〜10のいずれかに記載のLED光源。   The LED light source according to claim 1, wherein the heat dissipating substrate is a metal or a ceramic material. 前記LEDパッケージ部に、前記LEDチップに励起発光し前記LEDチップと異なる色光あるいは波長の光を発する蛍光材料を備えたことを特徴とする請求項1〜11のいずれかに記載のLED光源。   The LED light source according to claim 1, wherein the LED package part includes a fluorescent material that emits light by exciting the LED chip and emits light having a different color or wavelength from the LED chip. 前記蛍光材料は前記LEDチップの上部表面または側面に積層された蛍光材料層であることを特徴とする請求項12記載のLED光源。   The LED light source according to claim 12, wherein the fluorescent material is a fluorescent material layer laminated on an upper surface or a side surface of the LED chip. 前記LEDチップ配置位置に対応するレンズの背面に蛍光材料を備えたことを特徴とする請求項1〜11のいずれかに記載のLED光源。   The LED light source according to claim 1, further comprising a fluorescent material on a back surface of a lens corresponding to the LED chip arrangement position. 前記LEDパッケージ部は、各LEDチップ毎に囲まれるダム材を有するとともに、前記ダム材の内側を、蛍光材料を含んだ透光性樹脂で封止したことを特徴とする請求項1〜12のいずれかに記載のLED光源。   The LED package portion has a dam material surrounded by each LED chip, and the inside of the dam material is sealed with a translucent resin containing a fluorescent material. The LED light source in any one. 前記LEDパッケージ部は、各LEDチップ毎に囲まれるダム材を有するとともに、前記ダム材の内側を、透光性樹脂で充填し、かつ各LEDチップ上面にシート状の蛍光材料を備えたことを特徴とする請求項1〜12のいずれかに記載のLED光源。   The LED package portion has a dam material surrounded by each LED chip, the inside of the dam material is filled with a light-transmitting resin, and a sheet-like fluorescent material is provided on the upper surface of each LED chip. The LED light source according to claim 1, wherein the LED light source is a light source. 前記LEDパッケージ部は、前記レンズとの対向面に前記ダム材の内側部に対応する大きさの開口部を有し、該開口部の内表面を光反射性とした中間導光材料層を有することを特徴とする請求項15または16記載のLED光源。   The LED package portion has an opening having a size corresponding to an inner portion of the dam material on a surface facing the lens, and an intermediate light guide material layer having an inner surface of the opening as light reflectivity. The LED light source according to claim 15 or 16. 前記レンズの背面に、前記開口部に差し込み可能な凸部を形成し、かつ前記凸部表面に蛍光材料を備えることを特徴とする請求項17記載のLED光源。   The LED light source according to claim 17, wherein a convex portion that can be inserted into the opening is formed on the back surface of the lens, and a fluorescent material is provided on the surface of the convex portion. 請求項1〜18のいずれかに記載のLED光源と透光性導光部材とを組み合わせたことを特徴とする発光体。   A light emitter comprising a combination of the LED light source according to claim 1 and a translucent light guide member. 前記透光性導光部材が前記LED光源を収容する凹部または開口部を有する導光板であることを特徴とする請求項19記載の発光体。   The light-emitting body according to claim 19, wherein the translucent light-guiding member is a light-guiding plate having a recess or an opening that accommodates the LED light source. 前記LED光源の背面外周端より外側の領域を光反射性材料で覆ったことを特徴とする請求項20記載の発光体。   21. The light emitter according to claim 20, wherein a region outside a rear outer peripheral edge of the LED light source is covered with a light reflective material. 前記透光性導光部材の前記LED光源との対向面に、透過光の輝度均斉化に寄与する光制御部材または光制御構造を備えたことを特徴とする請求項20または21記載の発光体。   The light emitter according to claim 20 or 21, further comprising: a light control member or a light control structure that contributes to brightness uniformity of transmitted light on a surface of the translucent light guide member facing the LED light source. . 前記透光性導光部材の前記LED光源側端面との対向面に、縞状に縦に延びる凹凸形状が形成されていることを特徴とする請求項20〜22のいずれかに記載の発光体。   The light emitting body according to any one of claims 20 to 22, wherein an uneven shape extending vertically in a stripe shape is formed on a surface of the translucent light guide member facing the end surface on the LED light source side. . 前記透光性導光部材のLED光源収容部の側面形状が、前記LED光源の前記レンズ形状に沿った湾曲形状又は階段形状であることを特徴とする請求項20〜23のいずれかに記載の発光体。   The side surface shape of the LED light source housing portion of the translucent light guide member is a curved shape or a staircase shape along the lens shape of the LED light source. Luminous body. 前記透光性導光部材と前記LED光源との間に生じる空間に、透光性樹脂を充填したことを特徴とする請求項20〜24のいずれかに記載の発光体。   The light emitter according to any one of claims 20 to 24, wherein a space formed between the light transmissive light guide member and the LED light source is filled with a light transmissive resin.
JP2012137945A 2012-06-19 2012-06-19 LED light source and light emitter using the same Active JP5538479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137945A JP5538479B2 (en) 2012-06-19 2012-06-19 LED light source and light emitter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137945A JP5538479B2 (en) 2012-06-19 2012-06-19 LED light source and light emitter using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008259263A Division JP5025612B2 (en) 2008-10-06 2008-10-06 LED light source and light emitter using the same

Publications (2)

Publication Number Publication Date
JP2012227536A JP2012227536A (en) 2012-11-15
JP5538479B2 true JP5538479B2 (en) 2014-07-02

Family

ID=47277302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137945A Active JP5538479B2 (en) 2012-06-19 2012-06-19 LED light source and light emitter using the same

Country Status (1)

Country Link
JP (1) JP5538479B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5612491B2 (en) * 2011-01-14 2014-10-22 パナソニック株式会社 Light source for illumination
JP6345443B2 (en) * 2014-03-04 2018-06-20 シチズン時計株式会社 LED bulb
JP6296396B2 (en) * 2015-09-28 2018-03-20 パナソニックIpマネジメント株式会社 lighting equipment
CN113641035A (en) * 2021-03-23 2021-11-12 达亮电子(滁州)有限公司 Backlight module and display device
TW202413843A (en) * 2022-08-11 2024-04-01 美商科銳Led公司 Solid state light emitting components with unitary lens structures
WO2024113880A1 (en) * 2022-11-29 2024-06-06 深圳市千岩科技有限公司 Panel light and panel light apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679621B2 (en) * 2002-06-24 2004-01-20 Lumileds Lighting U.S., Llc Side emitting LED and lens
JP2004349646A (en) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd Light-emitting device
KR101080355B1 (en) * 2004-10-18 2011-11-04 삼성전자주식회사 Light emitting diode, lens for the same
JP2006186297A (en) * 2004-12-03 2006-07-13 Toshiba Corp Semiconductor light emitting device and its manufacturing method
JP4629426B2 (en) * 2004-12-16 2011-02-09 ライツ・アドバンスト・テクノロジー株式会社 Light guide and flat illumination device
KR101197046B1 (en) * 2005-01-26 2012-11-06 삼성디스플레이 주식회사 Two dimensional light source of using light emitting diode and liquid crystal display panel of using the two dimensional light source
KR20060135207A (en) * 2005-06-24 2006-12-29 엘지.필립스 엘시디 주식회사 Light emitting diode lamp improving luminance and backlight assembly using the same
JP2007049019A (en) * 2005-08-11 2007-02-22 Koha Co Ltd Light emitting device
JP2007067116A (en) * 2005-08-30 2007-03-15 Toshiba Lighting & Technology Corp Light-emitting device
DE102005061208A1 (en) * 2005-09-30 2007-04-12 Osram Opto Semiconductors Gmbh lighting device
JP2007123390A (en) * 2005-10-26 2007-05-17 Kyocera Corp Light emitting device
JP4844246B2 (en) * 2006-06-09 2011-12-28 豊田合成株式会社 Light emitting device and liquid crystal display backlight device
JP2008041290A (en) * 2006-08-02 2008-02-21 Akita Denshi Systems:Kk Lighting device and manufacturing method therefor
CN101523620B (en) * 2006-09-29 2012-06-06 罗姆股份有限公司 Semiconductor light emitting device

Also Published As

Publication number Publication date
JP2012227536A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5025612B2 (en) LED light source and light emitter using the same
JP4869275B2 (en) Light source module and light emitting device
TWI426625B (en) Light emitting unit
JP5097548B2 (en) Lighting system
KR101203133B1 (en) Led lighting device
JP4960406B2 (en) Light emitting diode light source module
JP5538479B2 (en) LED light source and light emitter using the same
KR102307214B1 (en) Led module with uniform phosphor illumination
JP2006309242A (en) Optical lens, light emitting element package using same, and backlight unit
TWI671574B (en) Light source module and display appartus
JP2013105748A (en) Illumination apparatus
JP2011114341A (en) Light emitting element package, and method of manufacturing the same
JP2009266974A (en) Light-emitting device and light-emitting apparatus
JP2004191718A (en) Led light source device
JP5119379B2 (en) Surface illumination light source device and surface illumination device
JP2012227537A (en) Led light source and luminous body using the same
JP2005197320A (en) Luminous light source and optical device using it
KR20180039787A (en) LED module with lens
TW201506321A (en) Light emitting diode light source module
JP6127347B2 (en) lighting equipment
US10312408B2 (en) Light emitting diode chip scale packaging structure and direct type backlight module
JP2007173133A (en) Light source unit and surface light emitting device
JP4645240B2 (en) Planar light emitting device
WO2013175752A1 (en) Wavelength conversion member, optical element, light-emitting device, and projection device
JP2015035306A (en) Luminaire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5538479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250