JP5522114B2 - Shock absorbing member - Google Patents

Shock absorbing member Download PDF

Info

Publication number
JP5522114B2
JP5522114B2 JP2011097805A JP2011097805A JP5522114B2 JP 5522114 B2 JP5522114 B2 JP 5522114B2 JP 2011097805 A JP2011097805 A JP 2011097805A JP 2011097805 A JP2011097805 A JP 2011097805A JP 5522114 B2 JP5522114 B2 JP 5522114B2
Authority
JP
Japan
Prior art keywords
wood
absorbing member
impact
shock absorbing
impact load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011097805A
Other languages
Japanese (ja)
Other versions
JP2012228926A (en
Inventor
修久 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Original Assignee
Toyota Auto Body Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd filed Critical Toyota Auto Body Co Ltd
Priority to JP2011097805A priority Critical patent/JP5522114B2/en
Publication of JP2012228926A publication Critical patent/JP2012228926A/en
Application granted granted Critical
Publication of JP5522114B2 publication Critical patent/JP5522114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、車両衝突時等の衝撃荷重を受けて変形することでその衝撃荷重を効率的に吸収できるように構成された衝撃吸収部材に関する。   The present invention relates to an impact absorbing member configured to be able to efficiently absorb an impact load by receiving and deforming the impact load at the time of a vehicle collision or the like.

車両衝突時等の衝撃荷重を受けて変形し、その衝撃荷重を吸収できるように構成された衝撃吸収部材に関する技術が特許文献1に記載されている。
特許文献1に記載された衝撃吸収部材100は、図12に示すように、アルミニウム合金製の筒状のハウジング102と、そのハウジング102内に収納された高剛性の発泡弾性体104とから構成されている。この衝撃吸収部材100は、車両のバンパーやドアのインパクトビーム等に使用されており、衝突荷重を筒状のハウジング102の側面で受けてその車両衝突時の衝撃荷重及び振動エネルギーとを吸収できるように構成されている。
Patent Document 1 discloses a technique related to an impact absorbing member configured to be deformed by receiving an impact load at the time of a vehicle collision or the like and to absorb the impact load.
As shown in FIG. 12, the impact absorbing member 100 described in Patent Document 1 includes a cylindrical housing 102 made of an aluminum alloy and a highly rigid foamed elastic body 104 housed in the housing 102. ing. The impact absorbing member 100 is used for a bumper of a vehicle, an impact beam of a door, and the like so that it can receive a collision load on the side surface of the cylindrical housing 102 and absorb the impact load and vibration energy at the time of the vehicle collision. It is configured.

特開2001−246995号公報Japanese Patent Laid-Open No. 2001-246995

上記した衝撃吸収部材100では、車両の衝突荷重を主としてハウジング102で受ける構成であり、発泡弾性体104のみで前記衝突荷重を受けることはできない。したがって、前記衝撃吸収部材100を高荷重域で使用する場合には、筒状のハウジング102の強度を高める必要があり、そのハウジング102の肉厚寸法を増加させたり、ハウジング102の内部を仕切り壁等により複数に仕切る等の対策が必要になる。この結果、衝撃吸収部材100の重量が増加し、さらに構造が複雑になってコスト高となる。
また、上記した衝撃吸収部材100では、一般的に、その衝撃吸収部材100が衝撃荷重を受けて変形する際に、変形が始まる際の荷重(初期荷重)が変形継続中の荷重よりも大きくなる。このため、衝突初期に前記衝撃吸収部材100を介して車両等に大きな衝突荷重が加わるようになる。
The above-described impact absorbing member 100 is configured to receive a vehicle collision load mainly by the housing 102, and cannot receive the collision load only by the foamed elastic body 104. Therefore, when the shock absorbing member 100 is used in a high load region, it is necessary to increase the strength of the cylindrical housing 102, and the thickness of the housing 102 is increased, or the interior of the housing 102 is divided into partition walls. It is necessary to take measures such as partitioning into multiple parts. As a result, the weight of the shock absorbing member 100 is increased, and the structure is further complicated and the cost is increased.
In the above-described impact absorbing member 100, generally, when the impact absorbing member 100 is deformed by receiving an impact load, a load (initial load) at the time of starting deformation becomes larger than a load during the ongoing deformation. . For this reason, a large collision load is applied to the vehicle or the like via the shock absorbing member 100 in the early stage of the collision.

本発明は、上記問題点を解決するためになされたものであり、本発明が解決しようとする課題は、衝撃吸収部材の構成を簡単にしてコスト低減を図るとともに、衝撃吸収部材が変形する際の初期荷重を小さくすることである。   The present invention has been made to solve the above-mentioned problems, and the problem to be solved by the present invention is to simplify the configuration of the shock absorbing member to reduce the cost and to deform the shock absorbing member. The initial load is reduced.

上記した課題は、各請求項の発明によって解決される。
請求項1の衝撃吸収部材は、軸方向から衝撃荷重を受けられるように配置され、前記衝撃荷重を受けて軸方向に潰れる筒状部材と、年輪の軸心方向が前記筒状部材の軸方向に沿うように、その筒状部材に収納されており、前記衝撃荷重に対する強度が前記筒状部材よりも大きい第1の木材と、前記年輪の軸心方向が前記衝撃荷重方向と一致する前記第1の木材よりも前記衝撃荷重に対する強度が小さい部材で、前記第1の木材と共に前記筒状部材に収納されている緩衝材と、前記第1の木材、及び緩衝材の外側面と前記筒状部材の内壁面との間に全周に亘って隙間が形成されるように、前記筒状部材に対する前記第1の木材、及び緩衝材の位置決めを行なう位置決め手段とを有することを特徴とする。
The above-described problems are solved by the inventions of the claims.
The impact absorbing member according to claim 1 is arranged so as to receive an impact load from an axial direction, and receives a cylindrical member that collapses in the axial direction upon receiving the impact load, and an axial direction of an annual ring is an axial direction of the cylindrical member. And the first wood whose strength against the impact load is greater than that of the tubular member, and the axial direction of the annual ring coincides with the impact load direction. A cushioning material housed in the tubular member together with the first wood, the first wood, the outer surface of the cushioning material, and the tubular shape. It has a positioning means for positioning the first wood and the cushioning material with respect to the cylindrical member so that a gap is formed over the entire circumference between the inner wall surface of the member.

本発明によると、第1の木材は衝撃荷重に対する強度が筒状部材よりも大きいため、主にその木材によって前記衝撃荷重を受けられるようになる。
さらに、第1の木材、及び緩衝材の外側面と筒状部材の内壁面との間には、隙間が形成されているため、筒状部材が第1の木材等と共に軸方向に潰れる際、その筒状部材が径方向内側に変形し易くなり、前記筒状部材は第1の木材等の周囲でジャバラ状に潰れるようになる。これにより、第1の木材等はジャバラ状に潰れた筒状部材によって周囲からバランス良く支えられ、転倒し難くなる。この結果、前記第1の木材等により衝撃荷重が効率的に受けられるようになる。
このように、衝撃吸収部材の構成が筒状部材に第1の木材、及び緩衝材を収納するだけの簡単なものになるため、衝撃吸収部材の製作コスト低減を図ることができる。
さらに、緩衝材は衝撃荷重に対する強度が前記第1の木材よりも小さく設定されているため、その木材が潰れるよりも先に前記緩衝材が比較的小さな荷重で潰れるようになる。このため、衝撃吸収部材の潰れ開始時の荷重(初期荷重)を小さくすることができ、従来のように、大きな初期荷重が衝撃吸収部材を介して車両等に加わることがなくなる。
According to the present invention, since the first wood has higher strength against the impact load than the cylindrical member, the impact load can be received mainly by the wood.
Furthermore, since a gap is formed between the outer surface of the first wood and the cushioning material and the inner wall surface of the tubular member, when the tubular member is crushed in the axial direction together with the first wood, The cylindrical member is easily deformed radially inward, and the cylindrical member is crushed in a bellows shape around the first wood or the like. Thereby, the 1st wood etc. are supported with good balance from the circumference by the cylindrical member crushed in the shape of a bellows, and it becomes difficult to fall down. As a result, the impact load can be efficiently received by the first wood or the like.
Thus, since the structure of the shock absorbing member is simple enough to house the first wood and the buffer material in the cylindrical member, the manufacturing cost of the shock absorbing member can be reduced.
Further, since the buffer material is set to have a lower strength against the impact load than the first wood, the buffer material is crushed with a relatively small load before the wood is crushed. For this reason, the load (initial load) at the start of crushing of the shock absorbing member can be reduced, and a large initial load is not applied to the vehicle or the like via the shock absorbing member as in the conventional case.

請求項2の発明によると、緩衝材は、年輪の軸心方向が衝撃荷重方向に対して交差するように配置された第1の木材であることを特徴とする。
ここで、同じ木材であっても、年輪の軸心方向が衝撃荷重方向に対して交差するように配置された場合には、年輪の軸心方向が衝撃荷重方向と一致する場合と比べ、約1/10程度の荷重で潰れるようになる。
このため、年輪の軸心方向が衝撃荷重方向に対して交差するように配置された第1の木材を緩衝材として使用することで、初期荷重を確実に低下させることができる。
According to a second aspect of the present invention, the cushioning material is a first wood arranged such that the axial center direction of the annual ring intersects the impact load direction.
Here, even when the same wood is used, when the axial center direction of the annual ring intersects with the impact load direction, it is approximately compared with the case where the axial center direction of the annual ring matches the impact load direction. It becomes crushed with a load of about 1/10.
For this reason, an initial load can be reliably reduced by using the 1st wood arrange | positioned so that the axial center direction of an annual ring may cross | intersect an impact load direction as a shock absorbing material.

請求項3の発明によると、緩衝材は、第1の木材よりも強度が小さな第2の木材であり、年輪の軸心方向が前記衝撃荷重方向に向くように配置されていることを特徴とする。
このため、第1の木材よりも安価の木材を使用することが可能になる。
請求項4の発明によると、緩衝材は、硬質発泡弾性体であることを特徴とする。
このため、硬質発泡弾性体の発泡倍率等を調整することで、衝撃荷重に対する強度調整が容易になり、初期荷重を希望する値に近づけることができる。
According to the invention of claim 3, the cushioning material is the second wood having a strength lower than that of the first wood, and is arranged such that the axial direction of the annual ring is directed to the impact load direction. To do.
For this reason, it becomes possible to use cheaper wood than the first wood.
According to the invention of claim 4, the shock absorbing material is a hard foam elastic body.
For this reason, by adjusting the expansion ratio of the hard foamed elastic body, the strength adjustment with respect to the impact load becomes easy, and the initial load can be brought close to a desired value.

請求項5の発明によると、筒状部材の軸方向における緩衝材の長さ寸法は、前記筒状部材の軸方向の長さ寸法の約40パーセント以下に設定されていることを特徴とする。
請求項6の発明によると、位置決め手段は、筒状部材の内壁面から突出した複数の突起であり、第1の木材、及び緩衝材の外側面を周方向から囲むように配置されていることを特徴とする。
According to the invention of claim 5, the length dimension of the cushioning material in the axial direction of the cylindrical member is set to about 40% or less of the length dimension of the cylindrical member in the axial direction.
According to the invention of claim 6, the positioning means is a plurality of protrusions protruding from the inner wall surface of the cylindrical member, and is arranged so as to surround the first wood and the outer surface of the cushioning material from the circumferential direction. It is characterized by.

請求項7の発明によると、筒状部材は角筒形に形成されて、第1の木材、及び緩衝材は角柱形に形成されており、前記隙間の寸法が一定であることを特徴とする。
このため、第1の木材及び筒状部材が周方向において均等に潰れるようになる。
請求項8の発明によると、筒状部材はアルミ合金による成形品であり、第1の木材は杉材であることを特徴とする。
請求項9の発明によると、筒状部材の厚み寸法が約0.4mmから約1.1mmの範囲内にあるときに、前記隙間が0.5mm以上に設定されていることを特徴とする。
このため、第1の木材、及び緩衝材により大荷重を効率的に受けられるとともに、筒状部材が第1の木材等の周囲でジャバラ状に潰れ、その木材等を回りから効果的に支えられるようになる。
According to the invention of claim 7, the cylindrical member is formed in a rectangular tube shape, the first wood and the cushioning material are formed in a rectangular column shape, and the size of the gap is constant. .
For this reason, a 1st wood and a cylindrical member come to be crushed equally in the circumferential direction.
According to the invention of claim 8, the cylindrical member is a molded article made of an aluminum alloy, and the first wood is cedar.
According to the invention of claim 9, when the thickness dimension of the cylindrical member is in the range of about 0.4 mm to about 1.1 mm, the gap is set to 0.5 mm or more.
Therefore, a large load can be efficiently received by the first wood and the cushioning material, and the cylindrical member is crushed into a bellows around the first wood and the like, and the wood and the like are effectively supported from around. It becomes like this.

本発明によると、衝撃吸収部材の構成が簡単になるためコスト低減を図れるとともに、衝撃吸収部材が潰れる際の初期荷重を小さくできる。   According to the present invention, since the structure of the impact absorbing member is simplified, the cost can be reduced and the initial load when the impact absorbing member is crushed can be reduced.

本発明の実施形態1に係る衝撃吸収部材を備える車両前部の模式平面図である。It is a schematic plan view of a vehicle front part provided with the impact-absorbing member which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る衝撃吸収部材の全体縦断面図である。It is a whole longitudinal cross-sectional view of the impact-absorbing member which concerns on Embodiment 1 of this invention. 図2のIII-III矢視模式断面図である。FIG. 3 is a schematic cross-sectional view taken along the line III-III in FIG. 2. 図2のIV-IV矢視模式断面図である。FIG. 4 is a schematic cross-sectional view taken along arrow IV-IV in FIG. 2. 前記衝撃吸収部材が衝撃荷重を受けて軸方向に潰れた様子を表す模式斜視図(A図)、A図のB-B矢視断面図(B図)、A図のC-C矢視断面図(C図)、A図、B図のD-D矢視断面図(D図)、及びB図のE-E矢視断面図(E図)である。Schematic perspective view (A diagram) showing a state in which the impact absorbing member is crushed in the axial direction by receiving an impact load, BB arrow sectional view (B diagram) of FIG. A, CC arrow sectional view of FIG. ), A and B, DD sectional view (D diagram), and B, EE sectional view (E diagram). 前記衝撃吸収部材に加わる衝撃荷重と、その前記衝撃吸収部材の潰れ量(ストローク)との関係を表す測定データ(A図、B図)である。It is the measurement data (A figure, B figure) showing the relationship between the impact load added to the said impact-absorbing member, and the crushing amount (stroke) of the said impact-absorbing member. 変更例1に係る衝撃吸収部材の模式縦断面図である。It is a model longitudinal cross-sectional view of the impact-absorbing member which concerns on the example 1 of a change. 変更例1に係る衝撃吸収部材に加わる衝撃荷重と、その前記衝撃吸収部材の潰れ量(ストローク)との関係を表す測定データである。It is measurement data showing the relationship between the impact load added to the impact-absorbing member which concerns on the example 1 of a change, and the crushing amount (stroke) of the said impact-absorbing member. 変更例2に係る衝撃吸収部材の模式縦断面図である。It is a model longitudinal cross-sectional view of the impact-absorbing member which concerns on the example 2 of a change. 変更例3に係る衝撃吸収部材の模式横断面図である。10 is a schematic cross-sectional view of an impact absorbing member according to Modification 3. FIG. 変更例4に係る衝撃吸収部材の模式横断面図である。10 is a schematic cross-sectional view of an impact absorbing member according to Modification Example 4. FIG. 従来の衝撃吸収部材の横断面図である。It is a cross-sectional view of a conventional impact absorbing member.

[実施形態1]
以下、図1から図11に基づいて本発明の実施形態1に係る衝撃吸収部材について説明する。
なお、図中に示すX方向、Y方向、及びZ方向は、衝撃吸収部材が取付けられる車両の幅方向、高さ方向、及び前後方向に対応している。
[Embodiment 1]
Hereinafter, the impact absorbing member according to Embodiment 1 of the present invention will be described with reference to FIGS.
The X direction, the Y direction, and the Z direction shown in the figure correspond to the width direction, the height direction, and the front-rear direction of the vehicle to which the shock absorbing member is attached.

<衝撃吸収部材10の取付け部分概要について>
本実施形態に係る衝撃吸収部材10は、車両衝突時の衝撃荷重を受けてその衝撃荷重を吸収する部材であり、図1に示すように、フロントバンパ(図示省略)のバンパーリインフォース3と車両2の左右のサイドメンバ5との間に配置されるクラッシュボックスの部分に取付けられている。
<About the mounting portion outline of the shock absorbing member 10>
The impact absorbing member 10 according to the present embodiment is a member that receives an impact load at the time of a vehicle collision and absorbs the impact load. As shown in FIG. 1, the bumper reinforcement 3 of the front bumper (not shown) and the vehicle 2 It is attached to the part of the crash box arranged between the left and right side members 5.

<衝撃吸収部材10の構成について>
衝撃吸収部材10は、図2〜図4に示すように、筒状部材20と、その筒状部材20に隙間Sを介した状態で収納される木材12、及び緩衝材40と、筒状部材20に対して木材12、及び緩衝材40を位置決めするための位置決め手段30とから構成されている。
筒状部材20は、軸方向から衝撃荷重を受けられるように設置され、前記衝撃荷重を受けて軸方向に潰れるように構成されている。筒状部材20は、アルミ合金を使用した押出成形品であり、角筒形に形成されている。ここで、筒状部材20の肉厚寸法は約0.5mm程度に設定されている。なお、前記肉厚寸法は、約0.4mm〜1.1mmの範囲内に設定するのが好ましい。
ここで、筒状部材20の軸方向における強度は、木材12、及び緩衝材40の軸方向における強度よりも小さく設定されている。
<About the structure of the impact-absorbing member 10>
As shown in FIGS. 2 to 4, the shock absorbing member 10 includes a tubular member 20, a wood 12 stored in the tubular member 20 with a gap S interposed therebetween, a buffer material 40, and a tubular member. 20 includes a wood 12 and positioning means 30 for positioning the cushioning material 40.
The cylindrical member 20 is installed so as to receive an impact load from the axial direction, and is configured to be crushed in the axial direction upon receiving the impact load. The cylindrical member 20 is an extruded product using an aluminum alloy, and is formed in a rectangular tube shape. Here, the thickness of the cylindrical member 20 is set to about 0.5 mm. The wall thickness is preferably set within a range of about 0.4 mm to 1.1 mm.
Here, the strength of the cylindrical member 20 in the axial direction is set to be smaller than the strength of the wood 12 and the cushioning material 40 in the axial direction.

<衝撃吸収部材10の木材12について>
木材12は、図2、図4に示すように、横断面形状が正方形の角柱形に形成されており、その角柱の縦(Y方向)、横(X方向)寸法が筒状部材20の縦、横寸法よりも一定寸法だけ小さな値に設定されている。即ち、木材12が筒状部材20に収納されて、図4に示すように、同軸、かつ同位相に位置決めされた状態で、筒状部材20の内壁上面21u、内壁下面21d、内壁左側面21f、及び内壁右側面21rと、木材12の上面12u、下面12d、左側面12f、及び右側面12rとの間にはそれぞれ一定寸法の隙間Sが形成されるようになる。木材12は、年輪12kの軸心方向が長手方向(軸方向)に延びるように角柱形に成形されている。このため、木材12を筒状部材20に収納した状態で、その木材12の年輪12kの軸心方向が筒状部材20の軸方向とほぼ一致するようになる。即ち、衝突時の衝撃荷重の方向と木材12の年輪12kの軸方向とが一致するようになる。
<About the wood 12 of the shock absorbing member 10>
As shown in FIGS. 2 and 4, the wood 12 is formed in a square prism shape having a square cross-sectional shape, and the vertical (Y direction) and horizontal (X direction) dimensions of the prism are vertical of the cylindrical member 20. The value is set to a value smaller than the horizontal dimension by a certain dimension. That is, when the wood 12 is stored in the cylindrical member 20 and positioned coaxially and in phase as shown in FIG. 4, the inner wall upper surface 21u, the inner wall lower surface 21d, and the inner wall left side surface 21f of the cylindrical member 20 are arranged. In addition, gaps S of a certain size are formed between the right side surface 21r of the inner wall and the upper surface 12u, the lower surface 12d, the left side surface 12f, and the right side surface 12r of the wood 12. The wood 12 is formed in a prismatic shape so that the axial center direction of the annual ring 12k extends in the longitudinal direction (axial direction). For this reason, in a state where the wood 12 is stored in the cylindrical member 20, the axial center direction of the annual ring 12 k of the wood 12 substantially coincides with the axial direction of the cylindrical member 20. That is, the direction of the impact load at the time of collision coincides with the axial direction of the annual ring 12k of the wood 12.

<衝撃吸収部材10の緩衝材40について>
緩衝材40は、年輪12kの軸心方向が前記衝撃荷重の方向と一致する木材12よりも前記衝突荷重に対する強度が小さい部材であり、前記木材12よりも小さな荷重でその木材12よりも先に潰れるように構成されている。緩衝材40は、木材12と同じ木材であり、年輪12kの軸心方向が前記衝撃荷重の方向と交差するように前記筒状部材20の先端部分に収納されている。即ち、緩衝材40は、木材12と等しい横断面形状の角柱形に形成されており、筒状部材20の内壁上面21u、内壁下面21d、内壁左側面21f、及び内壁右側面21rと、緩衝材40の上面41、下面42、左側面43、及び右側面44との間にはそれぞれ一定寸法の隙間Sが形成されるようになる。
上記したように、緩衝材40は年輪12kの軸心方向が前記衝撃荷重の方向と交差するように位置決めされているため、同じ木材であっても前記衝撃荷重に対する強度が前記木材12の1/10程度になる。なお、木材12としては、例えば、杉材が好適に使用される。
<About the shock absorbing material 40 of the shock absorbing member 10>
The shock absorbing material 40 is a member having a lower strength against the collision load than the wood 12 in which the axial center direction of the annual ring 12k coincides with the direction of the impact load, and is ahead of the wood 12 with a load smaller than the wood 12. It is configured to collapse. The cushioning material 40 is the same wood as the wood 12 and is housed in the distal end portion of the cylindrical member 20 so that the axial center direction of the annual ring 12k intersects the direction of the impact load. That is, the cushioning material 40 is formed in a prismatic shape having a cross-sectional shape equal to that of the wood 12, and includes an inner wall upper surface 21u, an inner wall lower surface 21d, an inner wall left side surface 21f, an inner wall right side surface 21r, and a cushioning material. Between the upper surface 41, the lower surface 42, the left side surface 43, and the right side surface 44 of the 40, gaps S having a certain size are formed.
As described above, the cushioning material 40 is positioned so that the axial center direction of the annual ring 12k intersects the direction of the impact load. It becomes about 10. In addition, as the wood 12, for example, cedar is preferably used.

ここで、筒状部材20の軸方向(Z方向)の長さ寸法は、約70mmに設定されており、緩衝材40のZ方向の長さ寸法が約10mm、木材12のZ方向の長さ寸法が約60mmに設定されている。また、緩衝材40、及び木材12の縦(Y方向)、横(X方向)寸法は約40mmに設定されている。
なお、緩衝材40の長さ寸法を約5mm〜25mmの間に設定し、木材12の長さ寸法を約65mm〜45mmの間で設定しても良い。
Here, the length dimension of the cylindrical member 20 in the axial direction (Z direction) is set to about 70 mm, the length dimension of the buffer material 40 in the Z direction is about 10 mm, and the length of the wood 12 in the Z direction. The dimension is set to about 60mm. Further, the vertical (Y direction) and horizontal (X direction) dimensions of the buffer material 40 and the wood 12 are set to about 40 mm.
The length dimension of the cushioning material 40 may be set between about 5 mm and 25 mm, and the length dimension of the wood 12 may be set between about 65 mm and 45 mm.

<衝撃吸収部材10の位置決め手段30について>
位置決め手段30は、筒状部材20の先端側(図2において左端側)と基端部側(右側)において緩衝材40、及び木材12を前記筒状部材20に対して同軸、かつ同位相に位置決めする部材である。位置決め手段30は、筒状部材20の先端側で緩衝材40、及び木材12を位置決めする半球状の突起32と、筒状部材20の基端部側で木材12を位置決めするクリップ38とから構成されている。
位置決め手段30の突起32は、緩衝材40、及び木材12の先端部を周方向から押える突起であり、筒状部材20と緩衝材40、木材12間の隙間Sと等しい突出寸法を備えている。前記突起32は、図3に示すように、筒状部材20の内壁上面21u、内壁下面21d、内壁左側面21f、及び内壁右側面21rの各面の幅方向中央位置であって、かつ、図2に示すように、緩衝材40に対応する位置と木材12の先端部分に対応する位置との軸方向(Z方向)二箇所に設けられている。
<Regarding the positioning means 30 of the shock absorbing member 10>
The positioning means 30 is configured so that the cushioning material 40 and the wood 12 are coaxial and in phase with the tubular member 20 on the distal end side (left end side in FIG. 2) and the proximal end side (right side) of the tubular member 20. It is a member to be positioned. The positioning means 30 includes a buffer 40 and a hemispherical protrusion 32 that positions the wood 12 on the distal end side of the cylindrical member 20, and a clip 38 that positions the wood 12 on the proximal end side of the cylindrical member 20. Has been.
The protrusion 32 of the positioning means 30 is a protrusion that presses the tip of the buffer material 40 and the wood 12 from the circumferential direction, and has a protrusion size equal to the gap S between the tubular member 20, the buffer material 40, and the wood 12. . As shown in FIG. 3, the protrusion 32 is a central position in the width direction of each of the inner wall upper surface 21u, the inner wall lower surface 21d, the inner wall left surface 21f, and the inner wall right surface 21r of the cylindrical member 20, and As shown in FIG. 2, it is provided at two positions in the axial direction (Z direction) of a position corresponding to the cushioning material 40 and a position corresponding to the tip portion of the wood 12.

位置決め手段30のクリップ38は、四個一組で使用されるクリップであり、筒状部材20と木材12間の隙間Sにその隙間Sと等しい厚み寸法の板を嵌め込むことで、その木材12の位置決めを行えるように構成されている。即ち、クリップ38は、筒状部材20と木材12間の隙間Sに挿入される挿入板部38wと、その挿入板部38wと共に筒状部材20の基端部を厚み方向(表裏)から挟む板バネ部38sとから構成されている。そして、筒状部材20の内壁上面21u、内壁下面21d、内壁左側面21f、及び内壁右側面21rと木材12の上面12u、下面12d、左側面12f、及び右側面12rとの間に、図4に示すように、それぞれクリップ38の挿入板部38wを挿入することで、木材12の位置決めを行えるようになる。また、この状態で、各々のクリップ38は、板バネ部38sのバネ力で前記筒状部材20の基端部に取付けられるようになる。
ここで、筒状部材20の縦(Y方向)、横(X方向)寸法は、緩衝材40、及び木材12間の隙間Sが0.8mm〜1.3mmの範囲内になるように設定されている。
なお、前記隙間Sの寸法は、約0.5mm以上に設定するのが好ましい。
The clip 38 of the positioning means 30 is a clip that is used as a set of four pieces, and by inserting a plate having a thickness dimension equal to the gap S into the gap S between the tubular member 20 and the wood 12, the wood 12 It is comprised so that positioning of can be performed. That is, the clip 38 is a plate that sandwiches the insertion plate portion 38w inserted into the gap S between the tubular member 20 and the wood 12 and the proximal end portion of the tubular member 20 together with the insertion plate portion 38w from the thickness direction (front and back). It is comprised from the spring part 38s. And between the inner wall upper surface 21u, inner wall lower surface 21d, inner wall left side surface 21f, and inner wall right side surface 21r of the cylindrical member 20, and the upper surface 12u, lower surface 12d, left side surface 12f, and right side surface 12r of the wood 12, FIG. As shown, the wood 12 can be positioned by inserting the insertion plate portion 38w of the clip 38, respectively. In this state, each clip 38 is attached to the proximal end portion of the tubular member 20 by the spring force of the leaf spring portion 38s.
Here, the vertical (Y direction) and horizontal (X direction) dimensions of the cylindrical member 20 are set so that the clearance S between the buffer material 40 and the wood 12 is within a range of 0.8 mm to 1.3 mm. .
The dimension of the gap S is preferably set to about 0.5 mm or more.

<衝撃吸収部材10の働きについて>
次に、図5、図6に基づいて、前記衝撃吸収部材10の働きについて説明する。
ここで、図6(A)は、本実施形態に係る衝撃吸収部材10(図2参照)に加わる衝撃荷重の大きさを縦軸、前記衝撃吸収部材10の軸方向における潰れ量(ストローク)を横軸に表したグラフである。また、図6(B)は、緩衝材40を使用せず、筒状部材20に木材12のみを収納した構成の衝撃吸収部材(図示省略)において、衝撃荷重の大きさと潰れ量(ストローク)との関係を表すグラフである。
図6(B)に示すように、緩衝材40を使用しない衝撃吸収部材の場合、 車両2が前方衝突をして前記衝撃吸収部材に対して軸方向から衝撃荷重が加わり、その衝撃荷重が許容値H(例えば、5〜6×104N )を超えると、衝撃吸収部材が軸方向に潰れて前記衝撃荷重が吸収される。このとき、図6(B)のF0矢視部に示すように、衝撃吸収部材が潰れ始まる際の荷重(初期荷重)が潰れ継続中の荷重よりも大きくなるため、衝突初期に前記衝撃吸収部材を介して車両2に大きな衝突荷重が加わるようになる。
<About the function of the shock absorbing member 10>
Next, the function of the shock absorbing member 10 will be described with reference to FIGS.
Here, FIG. 6A shows the magnitude of the impact load applied to the impact absorbing member 10 (see FIG. 2) according to the present embodiment on the vertical axis, and the amount of crushing (stroke) in the axial direction of the impact absorbing member 10. It is a graph represented on the horizontal axis. FIG. 6B shows the magnitude of the impact load and the amount of crushing (stroke) in an impact absorbing member (not shown) having a configuration in which only the wood 12 is stored in the cylindrical member 20 without using the cushioning material 40. It is a graph showing the relationship.
As shown in FIG. 6B, in the case of an impact absorbing member that does not use the buffer material 40, the vehicle 2 collides forward and an impact load is applied to the impact absorbing member from the axial direction, and the impact load is allowed. When the value H (for example, 5 to 6 × 10 4 N) is exceeded, the impact absorbing member is crushed in the axial direction and the impact load is absorbed. At this time, as indicated by the arrow F0 in FIG. 6B, since the load (initial load) when the shock absorbing member starts to be crushed becomes larger than the load that continues to be crushed, the shock absorbing member at the initial stage of the collision. A large collision load is applied to the vehicle 2 through the vehicle.

しかし、本実施形態に係る衝撃吸収部材10では、衝撃荷重に対する強度が前記木材12に対して約1/10程度の緩衝材40が設けられているため、車両2が前方衝突時に、先ず、緩衝材40、及びその緩衝材40を囲む筒状部材20の先端部分が潰れるようになる。このため、図6(A)のF1矢視部に示すように、緩衝材40を使用しない衝撃吸収部材と比較して初期荷重を大幅に低減できるようになる。
また、緩衝材40、及び木材12の外側面と筒状部材20の内壁面との間には約0.8mm〜1.3mm の隙間Sが形成されているため、図5(A)〜(E)に示すように、筒状部材20が緩衝材40、及び木材12と共に潰れる際、その筒状部材20が径方向内側に変形し易くなり、図5(D)(E)に示すように、前記筒状部材20は木材12の周囲でジャバラ状に潰れるようになる。
However, in the shock absorbing member 10 according to the present embodiment, since the shock absorbing material 40 having a strength with respect to the impact load is about 1/10 that of the wood 12, the shock absorbing member 10 is first buffered when the vehicle 2 collides forward. The front end portion of the cylindrical member 20 surrounding the material 40 and the buffer material 40 is crushed. For this reason, as shown to F1 arrow part of FIG. 6 (A), compared with the impact-absorbing member which does not use the shock absorbing material 40, an initial load can be reduced significantly.
Further, since a gap S of about 0.8 mm to 1.3 mm is formed between the buffer material 40 and the outer surface of the wood 12 and the inner wall surface of the cylindrical member 20, FIGS. As shown in FIGS. 5D and 5E, when the cylindrical member 20 is crushed together with the cushioning material 40 and the wood 12, the cylindrical member 20 is easily deformed radially inward. The cylindrical member 20 is crushed in a bellows shape around the wood 12.

即ち、衝撃吸収部材10の先端側の第1曲げ位置L1(図5(D)参照)では、例えば、図5(B)に示すように、筒状部材20の上部と下部とはそれぞれ径方向外側に変形し、左部と右部は径方向内側の変形する。これにより、第1曲げ位置L1では、筒状部材20の上部と下部とが山形に膨らみ(図5(B)(D)参照)、左部と右部は木材12の外側面に当接するまで溝状に変形するようになる(図5(B)(E)参照)。
また、第1曲げ位置L1の後側に位置する第2曲げ位置L2では、図5(C)に示すように、筒状部材20の上部と下部とは木材12の外側面に当接するまで溝状に変形し、左部と右部は山形に膨らむように変形する。
また、第2曲げ位置L2の後側に位置する第3曲げ位置L3では、第1曲げ位置L1と同様に変形し、第3曲げ位置L3の後側に位置する第4曲げ位置L3では、第2曲げ位置L2と同様に変形するようになる。
このように、筒状部材20は、上部、下部と左部、右部とで位相が約90°ずれた状態で、前記木材12の周囲でジャバラ状に潰れるようになる。
そして、筒状部材20が木材12の周囲でジャバラ状に潰れることで、その筒状部材20が木材12の転倒を防止できるようになる。この結果、木材12が軸方向に確実に潰れ、図6(B)に示すように、木材12等が潰れたストローク分だけ、衝撃荷重が吸収されるようになる。
なお、隙間Sの寸法が零に近い場合には、筒状部材20が木材12の周囲でジャバラ状に潰れることができず、筒状部材20が部分的に軸方向に裂けるようになる。この結果、筒状部材20が木材12をバランス良く支えることができず、木材12が途中で転倒して、軸方向の衝撃荷重を効率的に吸収できなくなる。
即ち、木材12が本発明の第1の木材に相当する。
That is, at the first bending position L1 (see FIG. 5D) on the tip side of the shock absorbing member 10, for example, as shown in FIG. It deforms outward, and the left and right parts deform radially inward. Thereby, in the 1st bending position L1, the upper part and the lower part of the cylindrical member 20 swell in a mountain shape (refer FIG. 5 (B) (D)), and a left part and a right part are contacted with the outer surface of the timber 12. It becomes deformed into a groove shape (see FIGS. 5B and 5E).
Further, in the second bending position L2 located on the rear side of the first bending position L1, as shown in FIG. 5C, the upper and lower portions of the tubular member 20 are grooves until they come into contact with the outer surface of the wood 12. The left part and the right part are deformed so as to swell in a mountain shape.
In addition, the third bending position L3 located behind the second bending position L2 is deformed in the same manner as the first bending position L1, and the fourth bending position L3 located behind the third bending position L3 is changed to the first bending position L3. The second bending position L2 is deformed.
As described above, the cylindrical member 20 is crushed in a bellows shape around the wood 12 in a state where the phase is shifted by about 90 ° between the upper part, the lower part, the left part, and the right part.
Then, the cylindrical member 20 is crushed in a bellows shape around the wood 12, so that the cylindrical member 20 can prevent the wood 12 from overturning. As a result, the wood 12 is reliably crushed in the axial direction, and as shown in FIG. 6B, the impact load is absorbed by the stroke of the crushed wood 12 and the like.
In addition, when the dimension of the clearance gap S is close to zero, the cylindrical member 20 cannot be crushed in a bellows shape around the wood 12, and the cylindrical member 20 is partially split in the axial direction. As a result, the cylindrical member 20 cannot support the wood 12 in a well-balanced manner, and the wood 12 falls down in the middle and cannot efficiently absorb the impact load in the axial direction.
That is, the wood 12 corresponds to the first wood of the present invention.

<本実施形態に係る衝撃吸収部材10の長所について>
本実施形態に係る衝撃吸収部材10によると、木材12、及び緩衝材40は衝撃荷重に対する強度が筒状部材20よりも大きいため、その木材12、及び緩衝材40によって前記衝撃荷重を受けられるようになる。
さらに、木材12、及び緩衝材40の外側面と筒状部材20の内壁面との間には、隙間Sが形成されているため、筒状部材20が木材12等と共に軸方向に潰れる際、その筒状部材20が径方向内側に変形し易くなり、筒状部材20は木材12等の周囲でジャバラ状に潰れるようになる。これにより、木材12等はジャバラ状に潰れた筒状部材20によって周囲からバランス良く支えられ、転倒し難くなる。この結果、木材12等により衝撃荷重が効率的に受けられるようになる。
このように、衝撃吸収部材10の構成が筒状部材20に木材12、及び緩衝材40を収納するだけの簡単なものになるため、衝撃吸収部材10の製作コスト低減を図ることができる。
さらに、緩衝材40は衝撃荷重に対する強度が木材12よりも小さく設定されているため、その木材12が潰れるよりも先に緩衝材40が比較的小さな荷重で潰れるようになる。このため、衝撃吸収部材10の潰れ開始時の荷重(初期荷重)を小さくすることができ、従来のように、大きな初期荷重が衝撃吸収部材を介して車両2に加わることがなくなる。
<Advantages of the shock absorbing member 10 according to the present embodiment>
According to the impact absorbing member 10 according to the present embodiment, the wood 12 and the buffer material 40 are stronger in strength against the impact load than the cylindrical member 20, so that the wood 12 and the buffer material 40 can receive the impact load. become.
Furthermore, since a gap S is formed between the outer surface of the wood 12 and the cushioning material 40 and the inner wall surface of the tubular member 20, when the tubular member 20 is crushed in the axial direction together with the wood 12 and the like, The cylindrical member 20 is easily deformed radially inward, and the cylindrical member 20 is crushed in a bellows shape around the wood 12 or the like. Thereby, the wood 12 and the like are supported from the surroundings in a well-balanced manner by the cylindrical member 20 crushed in a bellows shape, and it is difficult to fall down. As a result, the impact load can be efficiently received by the wood 12 or the like.
Thus, since the structure of the shock absorbing member 10 is simple enough to house the wood 12 and the buffer material 40 in the cylindrical member 20, the manufacturing cost of the shock absorbing member 10 can be reduced.
Furthermore, since the buffer material 40 is set to have a lower strength against the impact load than the wood 12, the buffer material 40 is crushed with a relatively small load before the wood 12 is crushed. For this reason, the load (initial load) at the start of crushing of the shock absorbing member 10 can be reduced, and a large initial load is not applied to the vehicle 2 via the shock absorbing member as in the conventional case.

また、緩衝材40は、年輪の軸心方向が衝撃荷重方向に対して交差するように配置された木材である。ここで、同じ木材であっても、年輪の軸心方向が衝撃荷重方向に対して交差するように配置された場合には、年輪の軸心方向が衝撃荷重方向と一致する場合と比べ、約1/10程度の荷重で潰れるようになる。
このため、年輪の軸心方向が衝撃荷重方向に対して交差するように配置された木材12を緩衝材として使用することで、初期荷重を確実に低下させることができる。さらに、衝撃吸収部材10を構成する材料の種類が増えず、また短い木材12を緩衝材40として使用することが可能になるため、歩留まりが向上する。
また、筒状部材20は角筒形に形成されて、木材12、及び緩衝材40は角柱形に形成されており、隙間Sの寸法が一定であるため、木材12等と筒状部材20が周方向において均等に潰れるようになる。
また、筒状部材20の厚み寸法が約0.4mmから約1.1mmのアルミ材であり、隙間Sが0.5mm以上に設定されているため、木材12、及び緩衝材40により大荷重を効率的に受けられるとともに、筒状部材20が木材等の周囲でジャバラ状に潰れ、その木材12等を回りから効果的に支えられるようになる。
Further, the buffer material 40 is wood that is arranged so that the axial center direction of the annual ring intersects the impact load direction. Here, even when the same wood is used, when the axial center direction of the annual ring intersects with the impact load direction, it is approximately compared with the case where the axial center direction of the annual ring matches the impact load direction. It becomes crushed with a load of about 1/10.
For this reason, an initial load can be reliably reduced by using the wood 12 arrange | positioned so that the axial center direction of an annual ring may cross | intersect an impact load direction as a shock absorbing material. Furthermore, since the types of materials constituting the shock absorbing member 10 do not increase and the short wood 12 can be used as the buffer material 40, the yield is improved.
Moreover, since the cylindrical member 20 is formed in a square cylinder shape, the wood 12 and the buffer material 40 are formed in a prismatic shape, and the dimension of the gap S is constant, the wood 12 and the cylindrical member 20 are It will be crushed equally in the circumferential direction.
Moreover, since the cylindrical member 20 is an aluminum material having a thickness dimension of about 0.4 mm to about 1.1 mm and the gap S is set to 0.5 mm or more, a large load is efficiently applied by the wood 12 and the buffer material 40. In addition to being received, the cylindrical member 20 is crushed into a bellows around the wood or the like, and the wood 12 and the like are effectively supported from around.

<変更例>
ここで、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における変更が可能である。例えば、本実施形態では、緩衝材40として年輪の軸心方向が衝撃荷重方向に対して交差するように配置された木材12(杉材)を使用する例を示した。しかし、図7に示すように、緩衝材46として、木材12(杉材)よりも強度の小さい木材、例えば、バルサ材を使用し、年輪の軸心方向を衝撃荷重方向に沿わせるように配置することも可能である。これにより、図8のグラフのF2矢視部に示すように、初期荷重を低減させることができる。また、バルサ材を使用することで、衝撃吸収部材10のコストを低減することができる。即ち、バルサ材が本発明の第2の木材に相当する。
また、図9に示すように、緩衝材47として硬質発泡弾性材を使用することも可能である。このため、硬質発泡弾性体の発泡倍率等を調整することで、衝撃荷重に対する強度調整が容易になり、初期荷重を希望する値に近づけることができる。
ここで、緩衝材40、46、47は、衝撃吸収部材10の先端部分に配置せず、図9に示すように、木材12と木材12の間に挟み、衝撃吸収部材10の軸方向中央寄りの位置に配置することも可能である。
さらに、本実施形態では、角筒状の筒状部材20に対して四角柱形の木材12、緩衝材40を挿入して、隙間Sの寸法をほぼ一定に保持する例を示した。しかし、図10に示すように、角筒状の筒状部材20に対して六角柱形の木材12等を挿入しても良いし、図11に示すように、角筒状の筒状部材20に対して楕円柱形の木材12等を挿入することも可能である。
<Example of change>
Here, the present invention is not limited to the above-described embodiment, and can be modified without departing from the gist of the present invention. For example, in this embodiment, the example which uses the timber 12 (cedar material) arrange | positioned so that the axial center direction of an annual ring may cross | intersect with an impact load direction as the buffer material 40 was shown. However, as shown in FIG. 7, wood having a lower strength than wood 12 (cedar wood), for example, balsa wood, is used as the buffer material 46, and the axial center direction of the annual rings is arranged along the impact load direction. It is also possible to do. Thereby, as shown to F2 arrow part of the graph of FIG. 8, an initial load can be reduced. Moreover, the cost of the impact-absorbing member 10 can be reduced by using a balsa material. That is, the balsa material corresponds to the second wood of the present invention.
Further, as shown in FIG. 9, it is possible to use a hard foamed elastic material as the buffer material 47. For this reason, by adjusting the expansion ratio of the hard foamed elastic body, the strength adjustment with respect to the impact load becomes easy, and the initial load can be brought close to a desired value.
Here, the cushioning members 40, 46 and 47 are not arranged at the tip portion of the shock absorbing member 10, but are sandwiched between the wood 12 and the wood 12, as shown in FIG. It is also possible to arrange at the position.
Furthermore, in this embodiment, the example which inserts the square columnar timber 12 and the shock absorbing material 40 with respect to the square cylindrical cylindrical member 20, and hold | maintains the dimension of the clearance gap S substantially constant was shown. However, as shown in FIG. 10, hexagonal columnar wood 12 or the like may be inserted into the rectangular tubular member 20, or as shown in FIG. 11, the rectangular tubular member 20. It is also possible to insert an elliptical columnar wood 12 or the like.

10・・・・衝撃吸収部材
12k・・・年輪
12・・・・木材(第1の木材)
20・・・・筒状部材
32・・・・突起(位置決め手段)
38・・・・クリップ(位置決め手段)
40・・・・緩衝材
46・・・・緩衝材(第2の木材)
47・・・・緩衝材
S・・・・・隙間
10 .... Shock absorbing member 12k ... Annual ring 12 .... Wood (first wood)
20... Cylindrical member 32... Projection (positioning means)
38... Clip (positioning means)
40 ··· Buffer material 46 ··· Buffer material (second wood)
47 ··· Buffer material S ··· Clearance

Claims (9)

軸方向から衝撃荷重を受けられるように配置され、前記衝撃荷重を受けて軸方向に潰れる筒状部材と、
年輪の軸心方向が前記筒状部材の軸方向に沿うように、その筒状部材に収納されており、前記衝撃荷重に対する強度が前記筒状部材よりも大きい第1の木材と、
前記年輪の軸心方向が前記衝撃荷重方向と一致する前記第1の木材よりも前記衝撃荷重に対する強度が小さい部材で、前記第1の木材と共に前記筒状部材に収納されている緩衝材と、
前記第1の木材、及び緩衝材の外側面と前記筒状部材の内壁面との間に全周に亘って隙間が形成されるように、前記筒状部材に対する前記第1の木材、及び緩衝材の位置決めを行なう位置決め手段と、
を有することを特徴とする衝撃吸収部材。
A cylindrical member disposed so as to receive an impact load from the axial direction, and crushed in the axial direction in response to the impact load;
A first wood that is housed in the tubular member such that the axial direction of the annual ring is along the axial direction of the tubular member, and the strength against the impact load is greater than that of the tubular member;
A cushioning material housed in the tubular member together with the first wood, with a member having a lower strength against the impact load than the first wood whose axial direction coincides with the impact load direction;
The first wood and the buffer for the tubular member so that a gap is formed over the entire circumference between the outer surface of the first wood and the cushioning material and the inner wall surface of the tubular member. Positioning means for positioning the material;
An impact-absorbing member comprising:
請求項1に記載された衝撃吸収部材であって、
前記緩衝材は、前記年輪の軸心方向が前記衝撃荷重方向に対して交差するように配置された前記第1の木材であることを特徴とする衝撃吸収部材。
The shock absorbing member according to claim 1,
The shock-absorbing member, wherein the cushioning material is the first wood disposed so that the axial center direction of the annual ring intersects the impact load direction.
請求項1に記載された衝撃吸収部材であって、
前記緩衝材は、前記第1の木材よりも強度が小さな第2の木材であり、年輪の軸心方向が前記衝撃荷重方向に向くように配置されていることを特徴とする衝撃吸収部材。
The shock absorbing member according to claim 1,
The shock absorbing member is a second wood having a strength lower than that of the first wood, and is arranged so that an axial center direction of an annual ring is directed to the impact load direction.
請求項1に記載された衝撃吸収部材であって、
前記緩衝材は、硬質発泡弾性体であることを特徴とする衝撃吸収部材。
The shock absorbing member according to claim 1,
The shock absorbing member is a hard foam elastic body.
請求項1から請求項4のいずれかに記載された衝撃吸収部材であって、
前記筒状部材の軸方向における前記緩衝材の長さ寸法は、前記筒状部材の軸方向の長さ寸法の約40パーセント以下に設定されていることを特徴とする衝撃吸収部材。
The impact absorbing member according to any one of claims 1 to 4,
The shock absorbing member according to claim 1, wherein a length dimension of the cushioning material in the axial direction of the cylindrical member is set to about 40% or less of a length dimension of the cylindrical member in the axial direction.
請求項1から請求項5のいずれかに記載された衝撃吸収部材であって、
前記位置決め手段は、前記筒状部材の内壁面から突出した複数の突起であり、前記第1の木材、及び緩衝材の外側面を周方向から囲むように配置されていることを特徴とする衝撃吸収部材。
The impact absorbing member according to any one of claims 1 to 5,
The positioning means is a plurality of protrusions protruding from the inner wall surface of the cylindrical member, and is arranged so as to surround the first wood and the outer surface of the cushioning material from the circumferential direction. Absorbing member.
請求項1から請求項6のいずれかに記載された衝撃吸収部材であって、
前記筒状部材は角筒形に形成されて、前記第1の木材、及び緩衝材は角柱形に形成されており、前記隙間の寸法が一定であることを特徴とする衝撃吸収部材。
The impact absorbing member according to any one of claims 1 to 6,
The shock absorbing member, wherein the cylindrical member is formed in a rectangular tube shape, the first wood and the cushioning material are formed in a prismatic shape, and the size of the gap is constant.
請求項1から請求項7のいずれかに記載された衝撃吸収部材であって、
前記筒状部材はアルミ合金による成形品であり、
前記第1の木材は杉材であることを特徴とする衝撃吸収部材。
The impact absorbing member according to any one of claims 1 to 7,
The cylindrical member is a molded product made of an aluminum alloy,
The impact absorbing member, wherein the first wood is cedar.
請求項8に記載された衝撃吸収部材であって、
前記筒状部材の厚み寸法が約0.4mmから約1.1mmの範囲内で設定されており、前記隙間が0.5mm以上に設定されていることを特徴とする衝撃吸収部材。
The shock absorbing member according to claim 8,
The impact absorbing member, wherein the cylindrical member has a thickness dimension set in a range of about 0.4 mm to about 1.1 mm, and the gap is set to 0.5 mm or more.
JP2011097805A 2011-04-26 2011-04-26 Shock absorbing member Active JP5522114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097805A JP5522114B2 (en) 2011-04-26 2011-04-26 Shock absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011097805A JP5522114B2 (en) 2011-04-26 2011-04-26 Shock absorbing member

Publications (2)

Publication Number Publication Date
JP2012228926A JP2012228926A (en) 2012-11-22
JP5522114B2 true JP5522114B2 (en) 2014-06-18

Family

ID=47430875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097805A Active JP5522114B2 (en) 2011-04-26 2011-04-26 Shock absorbing member

Country Status (1)

Country Link
JP (1) JP5522114B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776537B2 (en) * 2011-12-26 2015-09-09 トヨタ車体株式会社 Shock absorber for vehicle
JP6398853B2 (en) * 2015-04-13 2018-10-03 トヨタ車体株式会社 Shock absorbing member
KR101705533B1 (en) * 2015-11-26 2017-02-10 국방과학연구소 Automatic column collapse apparatus by impact load

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647390Y2 (en) * 1975-11-04 1981-11-06
JP2001153169A (en) * 1999-11-26 2001-06-08 Japan Automobile Research Inst Inc Hybrid impact absorbing member
JP2001182769A (en) * 1999-12-27 2001-07-06 Showa Alum Corp Shock-absorbing member
JP2001246995A (en) * 2000-03-02 2001-09-11 Tokai Rubber Ind Ltd Impact and vibration energy absorbing member
JP2004148994A (en) * 2002-10-30 2004-05-27 Tokai Rubber Ind Ltd Impact absorbing member for vehicle

Also Published As

Publication number Publication date
JP2012228926A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
WO2012073680A1 (en) Shock absorbing member
WO2012140803A1 (en) Impact absorption member
JP5802190B2 (en) Car cabin side wall structure
US7533913B2 (en) Front structure for car body
JP4518061B2 (en) Vehicle front shock-absorbing structure
JP2007038756A (en) Bumper beam for vehicle
US8353545B1 (en) Compact energy absorbing vehicle crash structure
CN109263588B (en) Energy-absorbing box, crashproof roof beam subassembly and vehicle
JP5522114B2 (en) Shock absorbing member
CN103112418A (en) Crush box and vehicle bumper apparatus including the same
US11173958B2 (en) Crash box
JP2012035691A (en) Towing hook mounting structure of vehicle
KR101061380B1 (en) Car Bumper Stai
JP2016159855A (en) Bumper absorber attachment structure
JP5056545B2 (en) Bumper mounting structure for vehicles
JP2001260726A (en) Vehicle seat
KR20150080408A (en) Bombe fixing structure
JP6983045B2 (en) Buffer stopper
JP2009101731A (en) Vehicle body front structure
JP5674132B2 (en) Impact energy absorber
JP2018052467A (en) Impact absorption member
JP5486250B2 (en) Shock absorber and bumper device for vehicle
JP2012171506A (en) Vehicular bumper
JP6968497B2 (en) Knee bolster structure
JP2006321360A (en) Bumper structure for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5522114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250