JP5515111B2 - Moisture detector - Google Patents

Moisture detector Download PDF

Info

Publication number
JP5515111B2
JP5515111B2 JP2010003134A JP2010003134A JP5515111B2 JP 5515111 B2 JP5515111 B2 JP 5515111B2 JP 2010003134 A JP2010003134 A JP 2010003134A JP 2010003134 A JP2010003134 A JP 2010003134A JP 5515111 B2 JP5515111 B2 JP 5515111B2
Authority
JP
Japan
Prior art keywords
moisture
circuit unit
resonance circuit
radio wave
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010003134A
Other languages
Japanese (ja)
Other versions
JP2011141238A (en
Inventor
浩一 平沢
卓裕 中村
雅一 伊藤
一裕 原
佳員 船岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2010003134A priority Critical patent/JP5515111B2/en
Publication of JP2011141238A publication Critical patent/JP2011141238A/en
Application granted granted Critical
Publication of JP5515111B2 publication Critical patent/JP5515111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Description

本発明は、水分検知装置に係り、特におむつ類等の濡れを非接触で検知することができる水分検知装置に関する。   The present invention relates to a moisture detection device, and more particularly to a moisture detection device that can detect wetness of diapers and the like in a non-contact manner.

近年、高齢化に伴い介護を必要とする人が増加する傾向にあり、おむつ装着者も増加する傾向にある。おむつ装着者は失禁等によりおむつが排泄物(小便あるいは大便)により濡れた状態となると不快であるし、速やかに取り除かないとおむつかぶれの原因になるなど衛生上の問題も生じるので、介護者がこれをなるべく早く検知する必要があるため、各種のおむつ濡れセンサが開発されている。   In recent years, with the aging, the number of people who need nursing care tends to increase, and the number of people wearing diapers also tends to increase. A person wearing a diaper is uncomfortable if the diaper becomes wet with excrement (urine or stool) due to incontinence, etc., and may cause hygiene problems such as diaper rash if not removed promptly. Since it is necessary to detect this as soon as possible, various diaper wetness sensors have been developed.

おむつ等の水分検知対象物を装着した人や介護者の負担になることなく、水分を検知できる水分検知装置として、コイルパターン及びコンデンサパターンからなる共振回路を絶縁体に設け、共振周波数の送信電波が送信されている場に乾燥状態で存在する時に反射電波を発生する共振体と、場に送信電波を送信するとともに送信に同期して受信動作を行い、送受信機の送信が停止してから受信される残留電波の受信強度に基づいて水分を検知する送受信機とを備えた水分検知装置が提案されている(特許文献1参照)。   A resonance circuit consisting of a coil pattern and a capacitor pattern is provided on the insulator as a moisture detection device that can detect moisture without burdening the person or caregiver wearing a moisture detection target such as a diaper, and transmitting a radio wave with a resonance frequency. Resonator that generates reflected radio waves when it is present in a dry field where it is transmitted, transmits the radio wave to the field, performs reception operation in synchronization with transmission, and receives after the transmission of the transceiver stops There has been proposed a moisture detection device including a transmitter / receiver that detects moisture based on the received intensity of residual radio waves (see Patent Document 1).

特開2000−241366号公報JP 2000-241366 A

しかしながら、上記水分検知装置では、コイルパターン及びコンデンサパターンからなる共振回路自体に水分が付着する構成であり、Q値の変化が大きく、反射電波の有無で水分の有無を判断することになる。このため、濡れの程度を判別するのが難しいという問題がある。また、おむつが濡れた場合、共振回路と受信回路との距離が検知可能な範囲を超えている場合、おむつをはいていない等により共振回路がない場合のいずれの状態であるかについては、反射電波の有無だけでは判別できないという問題がある。   However, the moisture detection device has a configuration in which moisture adheres to the resonance circuit itself composed of the coil pattern and the capacitor pattern, and the change in the Q value is large, and the presence or absence of moisture is determined based on the presence or absence of the reflected radio wave. For this reason, there is a problem that it is difficult to determine the degree of wetting. Whether the diaper is wet, the distance between the resonant circuit and the receiving circuit exceeds the detectable range, or the diaper is not worn, etc. There is a problem that it cannot be determined only by the presence or absence of radio waves.

本発明は、上述の事情に基づいてなされたもので、送受信機と共振回路との距離の影響を受けることなく水分の検知が可能で、且つ水分の付着の程度を非接触で検知することができる水分検知装置を提供することを目的とする。   The present invention has been made based on the above-described circumstances, and can detect moisture without being affected by the distance between the transceiver and the resonance circuit, and can detect the degree of moisture adhesion without contact. An object of the present invention is to provide a moisture detecting device capable of performing the above.

本発明の水分検知装置は、コイルとコンデンサからなる共振回路部と、該共振回路部に接続され、水分によって電気的導通および/または抵抗値変化を生じるように構成されたセンサ部と、発振回路部からの送信電波により、前記共振回路部は反射電波を発生させ、該反射電波を受信する受信回路部と、該受信回路部が受信した前記反射電波を解析する解析回路を備え、該解析回路は、前記反射電波の減衰振動波形を解析し、少なくとも2つのタイミングの電圧を比較することにより、前記センサ部における水分を検知するとともに、共振回路部の不存在を検知する、ことを特徴とする。
The moisture detection device of the present invention includes a resonance circuit unit composed of a coil and a capacitor, a sensor unit connected to the resonance circuit unit and configured to cause electrical conduction and / or resistance value change by moisture, and an oscillation circuit The resonance circuit unit generates a reflected radio wave by a transmission radio wave from the unit, and includes a reception circuit unit that receives the reflected radio wave, and an analysis circuit that analyzes the reflected radio wave received by the reception circuit unit, the analysis circuit Analyzes the damped oscillation waveform of the reflected radio wave and compares at least two timing voltages to detect moisture in the sensor unit and to detect the absence of a resonant circuit unit. .

本発明によれば、水分によってセンサ部に電流経路が生じ、また、濡れの程度に応じてセンサ部の抵抗値が変化する。水分を含んだことによってセンサ部がもった電気的抵抗によって、共振回路部より発生する反射電波の波形が影響をうける。かかる波形を、濡れている場合と濡れていない場合とにおける反射電波の波形における減衰定数αによってとらえ、その変化を解析することによって、濡れ状態か否かの判別が可能となり、また、共振回路の有無を非接触で判別することができる。減衰定数αは反射電波における減衰振動波形の少なくとも2つのタイミングの電圧を比較することにより解析可能であるので、送受信機と共振回路との距離に影響されず、安定した水分の検知が可能である。   According to the present invention, a current path is generated in the sensor unit due to moisture, and the resistance value of the sensor unit changes according to the degree of wetting. The waveform of the reflected radio wave generated from the resonance circuit unit is affected by the electrical resistance of the sensor unit due to moisture. This waveform is captured by the attenuation constant α in the waveform of the reflected radio wave when it is wet and when it is not wet, and by analyzing the change, it is possible to determine whether it is wet or not. Presence / absence can be determined without contact. The attenuation constant α can be analyzed by comparing the voltages of at least two timings of the damped oscillation waveform in the reflected radio wave, so that it is possible to detect moisture stably without being affected by the distance between the transceiver and the resonance circuit. .

本発明の一実施例のおむつ濡れ検知装置の斜視図である。It is a perspective view of the diaper wetness detection apparatus of one Example of this invention. 異方性導電織布の縦糸と横糸の織り込み状態を模式的に示す斜視図である。It is a perspective view which shows typically the weaving state of the warp and the weft of an anisotropic conductive fabric. (a)は共振回路部にセンサ部の2本の導電性糸を接続した状態の平面図であり、(b)はその等価回路図である。(A) is a top view of the state which connected the two electroconductive thread | yarns of the sensor part to the resonance circuit part, (b) is the equivalent circuit schematic. 本発明の一実施例の送受信機の構成例を示す図である。It is a figure which shows the structural example of the transmitter / receiver of one Example of this invention. 発振部の送信波形(a)と共振回路部の減衰振動波形(b)を示す波形図である。なお、(b)は共振部の波形であるが、受信アンテナに誘起される波形も相似となる。It is a wave form diagram which shows the transmission waveform (a) of an oscillation part, and the damped oscillation waveform (b) of a resonance circuit part. Note that (b) shows the waveform of the resonance part, but the waveform induced in the receiving antenna is similar. センサ部が乾いている場合と濡れている場合の減衰振動波形を示す波形図である。It is a wave form diagram which shows a damping vibration waveform when the sensor part is dry and when it is wet. 減衰定数αの解析のベースとなる送信波形例および各種受信波形例のシミュレーション結果を示す波形図である。It is a wave form diagram which shows the simulation result of the example of a transmission waveform used as the base of analysis of attenuation constant (alpha), and various examples of a received waveform.

以下、本発明の実施形態について、図1乃至図7を参照して説明する。なお、各図中、同一または相当する部材または要素には、同一の符号を付して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 7. In addition, in each figure, the same code | symbol is attached | subjected and demonstrated to the same or equivalent member or element.

図1は、本発明のおむつ濡れ等の検知装置の概要を示す。紙おむつ等からなるおむつ本体11には吸収材12を備え、装着者が失禁等をした場合には、排泄物(小便あるいは大便)を吸収する。そして、この検知装置においては、おむつ本体11の内部に、一例として、2本の導電性糸を長手方向に配置した異方性導電織布からなる、水分のセンサ部13を備える。送受信装置15は、おむつの濡れを検知するための装置であり、介護者等が携帯可能な大きさのものである。   FIG. 1 shows an outline of a detection device such as a diaper wetting of the present invention. The diaper main body 11 made of a paper diaper or the like is provided with an absorbent material 12 and absorbs excrement (urine or stool) when the wearer incontinence or the like. And in this detection apparatus, the inside of the diaper main body 11 is equipped with the moisture sensor part 13 which consists of an anisotropic conductive woven fabric which has arrange | positioned two electroconductive thread | yarns to a longitudinal direction as an example. The transmission / reception device 15 is a device for detecting wetness of the diaper, and has a size that can be carried by a caregiver or the like.

異方性導電織布の構成例を図2に示す。異方性導電織布は、縦糸xとして絶縁性糸間に少なくとも2本の導電性糸Z,Zを含み、横糸yとして絶縁性糸を織り込んだものである。この例では、導電性糸Z,Zとしてポリエステル繊維からなる糸に無電界銅めっきしたものを用い、絶縁性糸x、yとしてポリエステル繊維からなる糸を用いている。織り込まれた導電性糸Z,Zは織布の長手方向に導電性糸Z,Z同士が交わることなく平行に配置され、該方向に電気導電性を有すると同時に通常の糸と同様の柔軟性を有し、装着者の皮膚に優しい織布となる。また、絶縁性糸に吸水性の高いポリエステル繊維を用いることで、排泄物に対してより高い保持性を有する。   A configuration example of the anisotropic conductive woven fabric is shown in FIG. The anisotropic conductive woven fabric includes at least two conductive yarns Z and Z between the insulating yarns as the warp yarn x, and woven the insulating yarn as the weft yarn y. In this example, electroless copper-plated yarns made of polyester fibers are used as the conductive yarns Z and Z, and yarns made of polyester fibers are used as the insulating yarns x and y. The woven conductive yarns Z and Z are arranged in parallel in the longitudinal direction of the woven fabric so that the conductive yarns Z and Z do not cross each other, and have electric conductivity in the direction and at the same time, the same flexibility as a normal yarn. The woven fabric is gentle to the wearer's skin. Moreover, it has higher retainability with respect to excrement by using a polyester fiber with high water absorption for the insulating yarn.

図3(a)はセンサ部13と共振回路部14とを接続した状態を示し、コイルLとコンデンサCからなる共振回路部14に、センサ部13を構成する異方性導電織布からなる2本の導電性糸Z,Zが接続されている。この例では、共振回路部14のコイルL又はコンデンサCのどちらかの両端に、センサ部13の2本の導電性糸Z,Zの一端を接続し、他端を開放状態とする。導電性糸Z,Zの間隔は1mm〜20mm程度の範囲で適宜設定することができる。センサ部13自体は2本の導電性糸を長手方向に配置した異方性導電織布から構成されているため安価であり、これを共振回路部14と接続することで、センシング部分を単純化できる。   3A shows a state in which the sensor unit 13 and the resonance circuit unit 14 are connected. The resonance circuit unit 14 including the coil L and the capacitor C is connected to the resonance circuit unit 14 including the anisotropic conductive fabric constituting the sensor unit 13. Two conductive yarns Z, Z are connected. In this example, one end of the two conductive yarns Z and Z of the sensor unit 13 is connected to either end of either the coil L or the capacitor C of the resonance circuit unit 14 and the other end is opened. The distance between the conductive yarns Z and Z can be set as appropriate within a range of about 1 mm to 20 mm. The sensor unit 13 itself is inexpensive because it is composed of an anisotropic conductive woven fabric in which two conductive yarns are arranged in the longitudinal direction, and the sensing part is simplified by connecting it to the resonance circuit unit 14. it can.

2本の導電性糸Z,Zの一端には端子20a,20bを備え、共振回路部14の端子と接続したり切り離したりできるようにすることが好ましい。この際、共振回路14全体は端子20a、20bを除き、防水ケースあるいは袋内に設置され、共振回路部14には水分が付着しないように構成されているとともに、センサ部13と共振回路部14とを任意に接続可能とすることが好ましい。これにより、センサ部13のみを使い捨てとし、共振回路部14を繰り返し使用することも可能である。   It is preferable that terminals 20a and 20b are provided at one ends of the two conductive yarns Z and Z so that they can be connected to and disconnected from the terminals of the resonance circuit unit 14. At this time, except for the terminals 20a and 20b, the entire resonance circuit 14 is installed in a waterproof case or bag so that moisture does not adhere to the resonance circuit section 14, and the sensor section 13 and the resonance circuit section 14 are also configured. Are preferably connectable to each other. Thereby, it is also possible to make only the sensor part 13 disposable and to use the resonance circuit part 14 repeatedly.

図3(b)はそのような濡れセンサを含む共振回路部14の等価回路である。濡れセンサとしての機能を、図において可変抵抗Rとして示している。センサ部13が乾いているときは、導電性糸Z,Z間に電流は生じていない。センサ部13が濡れて導電性糸Z,Z間に水分を含むと、導電性糸Z,Z間が電気的に導通して電流が生じる。水分を多量に含んだ場合は、水分が少量である場合に比べて、導電性糸Z,Z間に生じる抵抗値が小さくなる。   FIG. 3B is an equivalent circuit of the resonance circuit unit 14 including such a wetness sensor. The function as a wetness sensor is shown as a variable resistor R in the figure. When the sensor unit 13 is dry, no current is generated between the conductive yarns Z and Z. When the sensor unit 13 is wet and contains moisture between the conductive yarns Z and Z, the conductive yarns Z and Z are electrically connected to generate a current. When a large amount of moisture is included, the resistance value generated between the conductive yarns Z and Z is smaller than when the moisture is small.

図4は本発明の送受信装置15の構成例である。送受信装置15は、高周波交番磁束を間欠的に発生する発振機21及び送信アンテナ22(発振回路部)と、共振回路部14の発生する交番磁束を検出する受信アンテナ23及び受信回路24(受信回路部)と減衰振動の解析回路26から成る。タイミング回路25は、送信や受信、波形解析の開始タイミング等に関する信号を発生する。送信アンテナ22と受信アンテナ23は、金属線よりなるコイル、または図示しない基体上に形成したスパイラル状の導電膜よりなるコイルである。送信感度を向上する目的でフェライトなどのコアを設けても良い。   FIG. 4 is a configuration example of the transmission / reception device 15 of the present invention. The transceiver 15 includes an oscillator 21 and a transmission antenna 22 (oscillation circuit unit) that intermittently generate high-frequency alternating magnetic flux, and a reception antenna 23 and a reception circuit 24 (reception circuit) that detect the alternating magnetic flux generated by the resonance circuit unit 14. Part) and an analysis circuit 26 for damped vibration. The timing circuit 25 generates signals related to transmission and reception, start timing of waveform analysis, and the like. The transmission antenna 22 and the reception antenna 23 are a coil made of a metal wire or a coil made of a spiral conductive film formed on a base (not shown). A core such as ferrite may be provided for the purpose of improving transmission sensitivity.

なお、図示は省略するが、送受信装置15は、液晶表示パネルやLEDなどを用いた報知手段および出力回路を備えており、解析回路26の解析に基づいて、おむつの濡れの有無、おむつ交換の要否、共振回路部14の有無、検知エラーなどの情報を報知することができる。かかる報知は音声により行うことも可能である。また、送受信装置15には、水分検知を実行するためのスイッチや、必要な電源なども備えている。なお、発振機21及び送信アンテナ22と、受信アンテナ23及び受信回路24と解析回路26とは、別の装置にしてもよい。その場合、解析回路26は受信波形の減衰部分のみを切り出す同期回路を備える必要がある。   Although not shown, the transmission / reception device 15 includes a notification means using a liquid crystal display panel, an LED, and the like and an output circuit. Based on the analysis of the analysis circuit 26, whether or not the diaper is wet, whether the diaper is changed or not. Information such as necessity, presence / absence of the resonance circuit unit 14 and detection error can be notified. Such notification can also be performed by voice. The transmission / reception device 15 also includes a switch for executing moisture detection, a necessary power source, and the like. The oscillator 21 and the transmission antenna 22, the reception antenna 23, the reception circuit 24, and the analysis circuit 26 may be separate devices. In this case, the analysis circuit 26 needs to include a synchronization circuit that cuts out only the attenuated portion of the received waveform.

共振回路部14は図1に示すとおりおむつ側に装着されており、前述のセンサ部13が接続されている。センサ部13の抵抗値が共振回路部14のQに及ぼす影響を受信回路24および解析回路26で減衰振動波形の減衰定数αの変化として検出し、センサ部13の水分の有無を検知する装置である。コイルの誘導結合を利用するため、共振回路部14のコイル部分と、送信アンテナコイル22、受信アンテナコイル23は誘導結合で結合されている。   The resonance circuit unit 14 is mounted on the diaper side as shown in FIG. 1 and is connected to the sensor unit 13 described above. An apparatus for detecting the influence of the resistance value of the sensor unit 13 on the Q of the resonance circuit unit 14 as a change in the damping constant α of the damped vibration waveform by the receiving circuit 24 and the analysis circuit 26 and detecting the presence or absence of moisture in the sensor unit 13 is there. In order to use the inductive coupling of the coil, the coil portion of the resonance circuit unit 14, the transmission antenna coil 22, and the reception antenna coil 23 are coupled by inductive coupling.

この装置は、センサ部13と共振回路部14からなる共振回路の減衰振動波形を解析することで、送受信部と共振回路部の距離を気にすることなく精度良く濡れを検知できる。また、距離の3乗に反比例して減衰する誘導電磁界を利用しているため、1m程度の適度な距離に系全体が入っていないと動作しない。したがって、同一室内に複数のおむつ装着者がいても、近くのおむつの濡れのみを調べることが出来る。   By analyzing the damped vibration waveform of the resonance circuit composed of the sensor unit 13 and the resonance circuit unit 14, this apparatus can detect wetting with high accuracy without worrying about the distance between the transmission / reception unit and the resonance circuit unit. In addition, since an induction electromagnetic field that attenuates in inverse proportion to the cube of the distance is used, the system does not operate unless the entire system is within an appropriate distance of about 1 m. Therefore, even if there are a plurality of diaper wearers in the same room, it is possible to examine only the wetness of a nearby diaper.

この回路では、センサ部13が乾いているとき、即ち導電性糸Z,Z間が絶縁状態において、共振回路部14は所定の周波数で共振するが、濡れて導電性糸Z,Z間が導通すると振幅が小さくなる。しかしながら、送受信部と共振回路部の距離にも振幅は強く影響されるため、センサ部13が濡れているのか、それとも送受信と共振回路とが離れているのか、振幅の大小のみでは両者を判別できない。振幅の大小で濡れを測定しようとすると、送受信部と共振回路部の距離を常に一定に保たねばならず、実用性において課題がある。   In this circuit, when the sensor unit 13 is dry, that is, when the conductive yarns Z and Z are in an insulated state, the resonance circuit unit 14 resonates at a predetermined frequency, but is wet and conducts between the conductive yarns Z and Z. Then the amplitude becomes smaller. However, since the amplitude is also strongly influenced by the distance between the transmission / reception unit and the resonance circuit unit, whether the sensor unit 13 is wet or whether the transmission / reception unit and the resonance circuit are separated from each other cannot be determined only by the magnitude of the amplitude. . If wetting is to be measured with the magnitude of the amplitude, the distance between the transmission / reception unit and the resonance circuit unit must always be kept constant, which is problematic in practicality.

そこで、本発明では、発振機21による発振をOFFにした直後に共振回路部14から再放射される磁束の減衰振動の減衰定数を解析する。そうすることで、Q値の低下を検出し、送受信部と共振回路部の距離に影響されず濡れを検知する。発振機21は、図5(a)に示すように、所定の高周波(例えば周波数f=125kHz)を発振するが、任意の時間(例えば1.6ms)でON−OFFを繰り返すバースト波形を送信する。   Therefore, in the present invention, the damping constant of the damping vibration of the magnetic flux re-radiated from the resonance circuit unit 14 immediately after turning off the oscillation by the oscillator 21 is analyzed. By doing so, a decrease in the Q value is detected, and wetting is detected without being affected by the distance between the transmission / reception unit and the resonance circuit unit. As shown in FIG. 5A, the oscillator 21 oscillates a predetermined high frequency (for example, frequency f = 125 kHz), but transmits a burst waveform that repeats ON-OFF at an arbitrary time (for example, 1.6 ms). .

共振回路部14は、発振機21の磁束変化を受けて誘導され共振するが、発振がOFFされると共振回路内の抵抗に阻害され振動はしだいに弱まり減衰し、やがて電流は流れなくなる。発振機21が発振し始めると再び共振が始まる(図5(b)参照)。   The resonance circuit section 14 is induced to resonate in response to a change in the magnetic flux of the oscillator 21, but when the oscillation is turned off, the resistance in the resonance circuit inhibits the vibration, and the vibration gradually weakens and attenuates, and no current flows. When the oscillator 21 starts to oscillate, resonance starts again (see FIG. 5B).

受信回路24では、発振OFF後の共振回路部14の減衰振動波形を捉える。共振回路部14は減衰する振動電流iに比例した磁束Hを再放射する。受信回路24は受信アンテナ23を備え、磁束Hに誘導されて電圧パルスを出力する。この電圧変化は減衰波と相似形となる。受信回路24により受信した反射電波の波形を、解析回路26によって解析する方法について以下に説明する。   The receiving circuit 24 captures the damped vibration waveform of the resonance circuit unit 14 after the oscillation is turned off. The resonance circuit unit 14 re-radiates the magnetic flux H proportional to the oscillating current i that attenuates. The receiving circuit 24 includes a receiving antenna 23 and is induced by the magnetic flux H to output a voltage pulse. This voltage change is similar to the decay wave. A method for analyzing the waveform of the reflected radio wave received by the receiving circuit 24 by the analyzing circuit 26 will be described below.

バースト停止直後の共振回路部14のコイル電流の減衰振動波形は一般に式(1)で表される。また、減衰振動波形の模式図を図6に示す。

Figure 0005515111
但し、io:t=0(発振OFF時)におけるコイル電流、α:減衰定数、f:周波数、θ:初期位相角、t:時間 The damped oscillation waveform of the coil current of the resonance circuit unit 14 immediately after the burst is stopped is generally expressed by Expression (1). FIG. 6 shows a schematic diagram of the damped vibration waveform.
Figure 0005515111
However, io: coil current at t = 0 (when oscillation is OFF), α: attenuation constant, f: frequency, θ: initial phase angle, t: time

式(1)は、αが小さいということは振動が時間的にゆるやかに減衰することを示し、αが大きいということは急激に減衰することを示している。もし、共振回路14と並列にセンサ部13を組み込んだ場合、抵抗Rの抵抗値が無限大(濡れていない)であるときは減衰定数αが小さく、抵抗Rの抵抗値が生じている(濡れている)ときは減衰定数αが大きいという関係になる。   Equation (1) indicates that a small α indicates that the vibration is gradually attenuated in time, and a large α indicates that the α is rapidly attenuated. If the sensor unit 13 is incorporated in parallel with the resonance circuit 14, when the resistance value of the resistor R is infinite (not wet), the attenuation constant α is small and the resistance value of the resistor R is generated (wetting). The damping constant α is large.

さて、解析回路26には発振OFF直後の電圧Vと一定時間経過後の電圧Vをサンプリングし保持する回路が備えられている。また、解析回路26にはV/Vを出力する例えばアナログ除算器が組み込まれている。すなわちサンプリングされた両者のV/Vが大きいときα大(乾いている)、同様にV/Vが小さいときα小(濡れている)ということになるので、センサ部13の濡れの程度を判別できる。 Well, it is provided with a circuit for sampling the voltage V 2 after a lapse of a predetermined time and voltage V 1 of the immediately oscillation OFF held in the analyzing circuit 26. Further, for example, an analog divider that outputs V 2 / V 1 is incorporated in the analysis circuit 26. That is, when the sampled V 2 / V 1 is large, α is large (dry), and when V 2 / V 1 is small, α is small (wet). Can be determined.

送受信部と共振回路部の距離が大きくなると両者の結合が弱まり波高は小さくなるが、VとVの比は変わらず相似形で全体の波高が小さくなる。従って、減衰定数αを検知することで、一定距離内において、距離に影響されずに非接触で濡れの程度を検出可能としている。 When the distance between the transmission / reception unit and the resonance circuit unit increases, the coupling between the two decreases and the wave height decreases, but the ratio between V 1 and V 2 does not change, and the overall wave height decreases with a similar shape. Therefore, by detecting the attenuation constant α, it is possible to detect the degree of wetting without contact within a fixed distance without being affected by the distance.

なお、発振と受信とを切り替えることが可能なスイッチを備え、タイミング回路25によりスイッチ切り替えの制御をすることによって、送信アンテナ22と受信アンテナ23とを、単一の送受信アンテナによって共用することができる。なお、センサ部13は共振回路に直列に接続しても良い。この場合、センサ部13の抵抗値の低下⇒Qの上昇⇒バースト発振直後の減衰振動の有無の確認、で減衰があれば(α小なら)濡れている、無ければ(α大なら)濡れていないという見分け方になる。   In addition, the switch which can switch oscillation and reception is provided, and the transmission antenna 22 and the reception antenna 23 can be shared by a single transmission / reception antenna by controlling the switch switching by the timing circuit 25. . The sensor unit 13 may be connected in series with the resonance circuit. In this case, the resistance value of the sensor unit 13 decreases ⇒ Q increases ⇒ Check for the presence or absence of damped vibration immediately after burst oscillation. If there is attenuation (if α is small), it is wet (if α is large). It becomes a way of distinguishing that there is no.

上記の方法なら送受信部をオムツに接近させて反応があれば濡れているということになるので、距離には無関係にはならない(あまり遠くだと反応しなくなる)が、αを見ずとも反応の有無だけで検出できる。これは、ディップメーターと似た方式ではあるが、ディップメーターのように周波数を振る必要がないという利点がある。   In the above method, if the transmitter / receiver is brought close to the diaper and there is a response, it will be wet, so it will not be related to the distance (it will not respond if it is too far), but it will not react even if you do not see α It can be detected only by the presence or absence. This is a method similar to a dip meter, but has the advantage that it is not necessary to oscillate the frequency unlike a dip meter.

なお、従来の水分検知装置は、共振回路のコイルパターンあるいは、コンデンサパターンが短絡したときに反射電波が出なくなることを利用して、水分の有無を検知する方式である(特許文献1の0012欄参照)。この方式では、少しの水分でも共振回路を短絡させることになり、濡れの程度の判定は困難である。しかしながら、本発明の水分検知装置は、共振回路部14とは別にセンサ部13を備え、共振回路部14には水分が入らず、センサ部13にのみ水分が入り、抵抗値が変化するようになっている。   The conventional moisture detection device is a method for detecting the presence or absence of moisture by utilizing the fact that a reflected radio wave is not emitted when the coil pattern of the resonance circuit or the capacitor pattern is short-circuited (column 0012 in Patent Document 1). reference). In this method, even a small amount of moisture causes the resonant circuit to be short-circuited, and it is difficult to determine the degree of wetting. However, the moisture detection device of the present invention includes the sensor unit 13 separately from the resonance circuit unit 14 so that moisture does not enter the resonance circuit unit 14 but only moisture enters the sensor unit 13 and the resistance value changes. It has become.

このため、本発明の水分検知装置は、濡れの程度に応じてセンサ部13の抵抗値が広く変化し、Q値の変化幅の制御が容易である。それ故、濡れの程度に応じて抵抗値が変化し、Q値が変化し、減衰定数αが変化するので、減衰定数αから濡れの程度を判別することができる。   For this reason, in the moisture detection device of the present invention, the resistance value of the sensor unit 13 varies widely depending on the degree of wetting, and the control of the change width of the Q value is easy. Therefore, the resistance value changes according to the degree of wetting, the Q value changes, and the attenuation constant α changes, so that the degree of wetting can be determined from the attenuation constant α.

また、従来の水分検知装置では、共振回路部分で直接濡れを検知するため、ある程度の大きさのコイルパターンおよびコンデンサパターンからなる共振回路部分を、捩れやすいおむつの股下に配置する必要がある。しかしながら、共振回路部分が捻れると、L値またはC値が変化し、共振周波数が変化し、送受信回路の共振周波数とずれが生じ易いという問題がある。共振させるための所定のL値を出すには、なんらかのデザイン的工夫が必須であるが、強固な構造にすると装着部位がデリケートな場所であるので、装着者に違和感が生じることになる。一方、本発明の水分検知装置では、コイルパターンおよびコンデンサパターンはカードのような形状で邪魔にならない位置に別途取り付けることも可能であるし、おむつに内蔵する場合でも捩れにくい腹部や臀部に配置すればよいので、上記の問題が生ぜず、安定性の高い水分検知が行える。   In addition, in the conventional moisture detection device, since the wetting is directly detected by the resonance circuit portion, it is necessary to arrange the resonance circuit portion composed of a coil pattern and a capacitor pattern of a certain size in the crotch of the diaper that is easily twisted. However, when the resonance circuit portion is twisted, there is a problem that the L value or the C value changes, the resonance frequency changes, and a deviation from the resonance frequency of the transmission / reception circuit tends to occur. In order to obtain a predetermined L value for resonating, some design ingenuity is essential. However, if a strong structure is used, the wearing site is a delicate place, and the wearer feels uncomfortable. On the other hand, in the moisture detection device of the present invention, the coil pattern and the capacitor pattern can be separately attached to a position that does not get in the way like a card, and they are arranged on the abdomen and buttocks that are difficult to twist even when incorporated in a diaper. Therefore, the above-mentioned problems do not occur and highly stable moisture detection can be performed.

また、従来の水分検知装置では、おむつが濡れた時とセンサが存在しないときの応答が同じになり、両者を判別できない(特許文献1の0024欄参照)。しかしながら、本発明の水分検知装置ではおむつが濡れたときにV2/V1=小という応答、V1とV2が両者ノイズ成分だけとなりほぼ等しくV2/V1=1のときおむつなしと処理することができるので、両者を判別することができる。これには水分付着量に対応したQ値の変化率が緩やかであるという面も寄与している。   Moreover, in the conventional water | moisture content detection apparatus, when a diaper gets wet and the response when a sensor does not exist becomes the same, both cannot be discriminate | determined (refer the 0024 column of patent document 1). However, in the moisture detection device of the present invention, when the diaper gets wet, the response is V2 / V1 = small, and both V1 and V2 are only noise components, and when V2 / V1 = 1, it can be treated as no diaper. Both can be discriminated. This also contributes to the fact that the rate of change of the Q value corresponding to the amount of water adhesion is moderate.

図7は、各種波形のシミュレーション結果を示す。(a)は送信コイル22における送信波形例を示す。周波数125kHzで発振した波形を0.4ms間送出し、時刻tで発振OFFする。(b)は受信コイル23における受信波形例を示し、センサ部13をオープン(抵抗値無限大)とした完全に水分が無い場合である。この場合にも、コイルおよびコンデンサ自体の抵抗分により発振OFFとなる時刻t以降は振動波形が減衰する。 FIG. 7 shows simulation results of various waveforms. (A) shows an example of a transmission waveform in the transmission coil 22. The waveform oscillates at a frequency 125kHz sent between 0.4 ms, oscillates OFF at time t 0. (B) shows an example of a received waveform in the receiving coil 23, in which the sensor unit 13 is open (resistance value is infinite) and there is no moisture. Also in this case, the vibration waveform attenuates after time t 0 when the oscillation is turned off due to the resistance of the coil and the capacitor itself.

この減衰は、i=i−αtで表され、減衰定数αを求める式に変換すると、
α=−ln(i/i0)/t となる。例えば、発振OFF(t)から、0.01ms後の値をi、0.04ms後の値をi、0.04−0.01=0.03msをtとして計算すると、この場合の減衰定数αは約14000〔s−1〕となる。
This attenuation is expressed by i = i 0 e −αt , and when converted into an expression for obtaining the attenuation constant α,
α = −ln (i / i0) / t For example, from the oscillation OFF (t 0 ), when the value after 0.01 ms is calculated as i 0 , the value after 0.04 ms is set as i, and 0.04−0.01 = 0.03 ms is calculated as t, the attenuation in this case The constant α is about 14000 [s −1 ].

(c)はセンサ部13が濡れた状態で、センサ部13の端子間抵抗が2kΩとした場合の受信コイル23における受信波形例を示す。この場合の上記と同じ基準で計算した減衰定数αは約79000〔s−1〕となる。 (C) shows an example of a received waveform in the receiving coil 23 when the sensor unit 13 is wet and the resistance between the terminals of the sensor unit 13 is 2 kΩ. In this case, the attenuation constant α calculated on the same basis as above is about 79000 [s −1 ].

(d)は共振回路部14およびセンサ部13が存在しない場合である。例えばおむつ装着者がいない場合である。この場合には受信コイル23の受信波形は送信コイル22の送信波形の直接受信分のみとなり、t後の振幅はほぼゼロである。tから0.01ms後の受信波形が観測されないので、この場合にはおむつ装着者がいないと判断される。このとき、tから0.01msと0.03ms後の受信波形は両者ノイズ成分だけになりほぼ等しくなるので、減衰定数αは約0〔s―1〕となる。センサ部13がかなり濡れた場合にも、急激な減衰の結果V1とV2がほぼ同じになる可能性が考えられるが、センサ部13の端子間抵抗を例えば1kΩ以上などに設定しておく事は可能である。つまりtから0.01ms後の受信波形がゼロにならないようにできる。このように、端子間の最低抵抗値を設定することにより、過剰な濡れの場合αは極めて大きくなり、装着者不在の場合αは0になるので判別が可能となる。 (D) is a case where the resonance circuit part 14 and the sensor part 13 do not exist. For example, there is no diaper wearer. The received waveform of the reception coil 23 is only the direct reception amount of the transmission waveform of the transmission coil 22 in the case, amplitude after t 0 is approximately zero. Since the received waveform after 0.01 ms from t 0 is not observed, it is determined that there is no diaper wearer in this case. At this time, since the received waveforms after 0.01 ms and 0.03 ms from t 0 are only equal to both noise components, the attenuation constant α is about 0 [s −1 ]. Even if the sensor unit 13 is considerably wet, there is a possibility that V1 and V2 become substantially the same as a result of rapid attenuation. However, it is possible to set the resistance between the terminals of the sensor unit 13 to 1 kΩ or more, for example. Is possible. That is, the received waveform after 0.01 ms from t 0 can be prevented from becoming zero. In this way, by setting the minimum resistance value between the terminals, α becomes extremely large in the case of excessive wetting, and α becomes 0 in the absence of the wearer, so that discrimination is possible.

従って、減衰定数αを検知することで、送受信コイル22,23と共振回路部14との距離にかかわらず、おむつ濡れの程度および共振回路部14自体の不存在を確実に検知できる。   Therefore, by detecting the attenuation constant α, it is possible to reliably detect the degree of diaper wetting and the absence of the resonance circuit unit 14 itself regardless of the distance between the transmission / reception coils 22 and 23 and the resonance circuit unit 14.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

本発明は、減衰振動波形の減衰定数αを検知することで、送受信コイルと共振回路部との距離にかかわらず、おむつ濡れの程度および共振回路部自体の不存在を確実に検知できる。従って、介護等の分野でおむつ濡れの検知等に好適に利用可能である。   The present invention can reliably detect the degree of diaper wetting and the absence of the resonance circuit unit itself regardless of the distance between the transmission / reception coil and the resonance circuit unit by detecting the attenuation constant α of the damped vibration waveform. Therefore, it can be suitably used for detecting diaper wetting in the field of nursing care and the like.

Claims (4)

コイルとコンデンサからなる共振回路部と、
該共振回路部に接続され、水分によって電気的導通および/または抵抗値変化を生じるように構成されたセンサ部と、
発振回路部からの送信電波により、前記共振回路部は反射電波を発生させ、該反射電波を受信する受信回路部と、
該受信回路部が受信した前記反射電波を解析する解析回路を備え、
該解析回路は、前記反射電波の減衰振動波形を解析し、少なくとも2つのタイミングの電圧を比較することにより、前記センサ部における水分を検知するとともに、共振回路部の不存在を検知する、水分検知装置。
A resonant circuit unit comprising a coil and a capacitor;
A sensor unit connected to the resonant circuit unit and configured to cause electrical conduction and / or a change in resistance value due to moisture;
The resonance circuit unit generates a reflected radio wave by a transmission radio wave from the oscillation circuit unit, and receives the reflected radio wave;
An analysis circuit for analyzing the reflected radio wave received by the receiving circuit unit;
The analysis circuit analyzes a damped oscillation waveform of the reflected radio wave and compares at least two timing voltages to detect moisture in the sensor unit and to detect the absence of a resonant circuit unit. apparatus.
反射電波の減衰振動波形の解析は、発振OFF直後の電圧と、その後一定期間経過後の電圧を比較することによる、請求項1に記載の水分検知装置。   The moisture detection device according to claim 1, wherein the analysis of the damped oscillation waveform of the reflected radio wave is performed by comparing a voltage immediately after the oscillation is turned off with a voltage after a certain period of time thereafter. 前記共振回路部には水分が付着しないように構成されている、請求項1に記載の水分検知装置。   The moisture detection apparatus according to claim 1, wherein moisture is not attached to the resonance circuit unit. 前記センサ部は少なくとも2本の導電性糸を長手方向に配置した異方性導電織布からなる、請求項1に記載の水分検知装置。   The moisture detection device according to claim 1, wherein the sensor unit is made of an anisotropic conductive woven fabric in which at least two conductive yarns are arranged in the longitudinal direction.
JP2010003134A 2010-01-08 2010-01-08 Moisture detector Expired - Fee Related JP5515111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003134A JP5515111B2 (en) 2010-01-08 2010-01-08 Moisture detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003134A JP5515111B2 (en) 2010-01-08 2010-01-08 Moisture detector

Publications (2)

Publication Number Publication Date
JP2011141238A JP2011141238A (en) 2011-07-21
JP5515111B2 true JP5515111B2 (en) 2014-06-11

Family

ID=44457181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003134A Expired - Fee Related JP5515111B2 (en) 2010-01-08 2010-01-08 Moisture detector

Country Status (1)

Country Link
JP (1) JP5515111B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016027359A1 (en) * 2014-08-22 2017-06-29 富士通株式会社 State estimation method, state estimation system, clothes and monitoring system
CN108366868B (en) * 2015-12-02 2021-08-10 株式会社村田制作所 Sanitary article with RFID tag for moisture detection
JP6806295B2 (en) * 2016-02-23 2021-01-06 国立大学法人山形大学 Liquid detection sensor for diapers and liquid detection device
CN106226363A (en) * 2016-07-12 2016-12-14 无锡市华东电力设备有限公司 A kind of monitoring system ensureing that power equipment safety runs
DE102016114286B3 (en) * 2016-08-02 2018-01-18 Tews Elektronik Gmbh & Co. Kg Method for measuring absorbent hygiene articles
CN106645215A (en) * 2017-01-22 2017-05-10 中国农业大学 Device for measuring moisture contents of corn ears on basis of high-frequency electromagnetic waves
JP7563409B2 (en) * 2022-03-07 2024-10-08 富士電機株式会社 Sensor system and method for measuring gas-liquid ratio

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773660A (en) * 1980-10-27 1982-05-08 Ketsuto Kagaku Kenkyusho:Kk Electric type moisture meter
NL1010067C2 (en) * 1998-09-11 2000-03-27 Tno System for detecting the presence of moisture.
JP2002224151A (en) * 2001-01-30 2002-08-13 Matsushita Electric Works Ltd Diaper exchange timing sensor and diaper exchange timing detecting device
JP2007240470A (en) * 2006-03-13 2007-09-20 Kuraray Co Ltd Urine leakage sensor and urine leakage sensing diaper

Also Published As

Publication number Publication date
JP2011141238A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5515111B2 (en) Moisture detector
US7918801B2 (en) Sensors for monitoring movements, apparatus and systems therefor, and methods for manufacture and use
EP2485694B1 (en) Method and system for detecting moisture at an absorbent article
US6916968B2 (en) Urine detection system and method
CN105101922B (en) Wireless sensor system and method
EP0605420B1 (en) Surgical implement detector utilizing capacitive coupling
US9241839B2 (en) Absorbent article fullness indicator
US6774800B2 (en) Patient incontinence monitoring apparatus and method of use thereof
JP3717068B2 (en) Liquid detection sensor and liquid detection device
ES2386542T3 (en) Disposable items with fault detection system
US9278033B2 (en) Contactless passive sensing for absorbent articles
EA023505B1 (en) Moisture detecting module and a receiving unit
CN103582469B (en) Including the sensing system of additional article
KR20190018379A (en) Excrements detection device and reader for diaper
JP2020151458A (en) Biological information monitor apparatus and magnetic resonance imaging apparatus
JP2011045613A (en) Diaper wetting detector
CN210144921U (en) Mattress cover for detecting resonance frequency of equipment and system for detecting moisture
US10709616B2 (en) Contactless magnetic probe sensing and impedance imaging of liquid and solid excrement in diapers and other underclothing
KR20230132469A (en) Flexible sensor device for moisture detection
US20060238360A1 (en) Reusable waste issue alarm device apparatus for the diaper
EP0952785A1 (en) Conductance measuring apparatus
KR960018575A (en) Detection device, detection method and sensor
AU2002334671A1 (en) Urine detection system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140312

R150 Certificate of patent or registration of utility model

Ref document number: 5515111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees