JP5498905B2 - Lithographic printing plate support, method for producing lithographic printing plate support, and lithographic printing plate precursor - Google Patents
Lithographic printing plate support, method for producing lithographic printing plate support, and lithographic printing plate precursor Download PDFInfo
- Publication number
- JP5498905B2 JP5498905B2 JP2010216436A JP2010216436A JP5498905B2 JP 5498905 B2 JP5498905 B2 JP 5498905B2 JP 2010216436 A JP2010216436 A JP 2010216436A JP 2010216436 A JP2010216436 A JP 2010216436A JP 5498905 B2 JP5498905 B2 JP 5498905B2
- Authority
- JP
- Japan
- Prior art keywords
- diameter
- lithographic printing
- diameter hole
- treatment
- printing plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41N—PRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
- B41N1/00—Printing plates or foils; Materials therefor
- B41N1/04—Printing plates or foils; Materials therefor metallic
- B41N1/08—Printing plates or foils; Materials therefor metallic for lithographic printing
- B41N1/083—Printing plates or foils; Materials therefor metallic for lithographic printing made of aluminium or aluminium alloys or having such surface layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41N—PRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
- B41N3/00—Preparing for use and conserving printing surfaces
- B41N3/03—Chemical or electrical pretreatment
- B41N3/034—Chemical or electrical pretreatment characterised by the electrochemical treatment of the aluminum support, e.g. anodisation, electro-graining; Sealing of the anodised layer; Treatment of the anodic layer with inorganic compounds; Colouring of the anodic layer
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials For Photolithography (AREA)
- Printing Plates And Materials Therefor (AREA)
Description
本発明は、平版印刷版用支持体、平版印刷版用支持体の製造方法、および平版印刷版原版に関する。 The present invention relates to a lithographic printing plate support, a method for producing a lithographic printing plate support, and a lithographic printing plate precursor.
平版印刷法は水と油が本質的に混じり合わないことを利用した印刷方式であり、これに使用される平版印刷版の印刷版面には、水を受容して油性インキを反撥する領域(以下、この領域を「非画像部」という。)と、水を反撥して油性インキを受容する領域(以下、この領域を「画像部」という。)とが形成される。 The lithographic printing method is a printing method that utilizes the fact that water and oil are not essentially mixed. The printing plate surface of the lithographic printing plate used for this is a region that accepts water and repels oil-based ink (hereinafter referred to as “removal”). This region is referred to as a “non-image portion”) and a region that repels water and receives oil-based ink (hereinafter, this region is referred to as “image portion”).
平版印刷版に用いられる平版印刷版用アルミニウム支持体(以下、単に「平版印刷版用支持体」という。)は、その表面が非画像部を担うように使用されるため、親水性および保水性が優れていること、更にはその上に設けられる画像記録層との密着性が優れていること等の相反する種々の性能が要求される。支持体の親水性が低すぎると、印刷時に非画像部にインキが付着するようになり、ブランケット胴の汚れ、ひいてはいわゆる地汚れが発生する。また、支持体の保水性が低すぎると、印刷時に湿し水を多くしないとシャドー部のつまりが発生する。よって、いわゆる水幅が狭くなる。 An aluminum support for a lithographic printing plate used for a lithographic printing plate (hereinafter simply referred to as a “support for a lithographic printing plate”) is used so that its surface bears a non-image portion, and therefore has hydrophilicity and water retention. Are required to have various performances which are contradictory to each other, for example, excellent adhesion, and excellent adhesion to an image recording layer provided thereon. If the hydrophilicity of the support is too low, ink will adhere to the non-image area during printing, and the blanket cylinder will be soiled, and so-called background soiling will occur. On the other hand, if the water holding capacity of the support is too low, the shadow portion is clogged unless dampening water is increased during printing. Therefore, the so-called water width is narrowed.
これらの性能の良好な平版印刷版用支持体を得るために、様々な検討がなされている。例えば、特許文献1においては、粗面化したアルミニウム板の表面を第一段階として陽極酸化処理した後、第二段階として第一段階の陽極酸化皮膜のマイクロポアよりもポア径が小さくなる条件にて再び陽極酸化処理することにより、平版印刷版用支持体を製造する方法が開示されている。該平版印刷版用支持体を用いて得られる平版印刷版は、インキ払いを劣化させずに、感光層との密着性を向上させ、ハイライトが飛ばず耐刷性に優れることが記載されている。 Various studies have been made to obtain a lithographic printing plate support having good performance. For example, in Patent Document 1, after the surface of the roughened aluminum plate is anodized as the first stage, the pore diameter is smaller than the micropores of the first stage anodized film as the second stage. A method for producing a lithographic printing plate support by anodizing again is disclosed. The lithographic printing plate obtained by using the lithographic printing plate support is described to improve the adhesion with the photosensitive layer without deteriorating the ink removal, and the excellent printing durability with no highlights flying. Yes.
一方、印刷するときには、印刷を一時停止する場合がある。この場合、平版印刷版は、版胴に取り付けられた状態で放置され、雰囲気中の汚染の影響などにより、非画像部が汚れてしまう。このため、印刷を一時停止して再開したときに、正常な印刷が行われるまで何枚か印刷する必要が生じてしまい、印刷用紙の無駄が生じるなどの不都合がある。この不都合は、塩酸を含む酸性溶液中で電気化学的粗面化が施された平版印刷版に、特に顕著であることが判明している。なお、以下では、印刷を一時停止して再開したときに生じる損紙の枚数を放置払い性として評価し、損紙の枚数が少ないことを放置払い性が良好であるという。 On the other hand, when printing, printing may be temporarily stopped. In this case, the lithographic printing plate is left in a state where it is attached to the plate cylinder, and the non-image area becomes dirty due to the influence of contamination in the atmosphere. For this reason, when printing is paused and resumed, it becomes necessary to print several sheets until normal printing is performed, and there is a disadvantage that printing paper is wasted. This inconvenience has been found to be particularly noticeable in lithographic printing plates that have been electrochemically roughened in an acidic solution containing hydrochloric acid. In the following, the number of damaged paper sheets generated when printing is paused and restarted is evaluated as neglectability, and the fact that the number of damaged sheets is small is referred to as good neglectability.
さらに、近年進展が目覚ましいコンピュータ・ツウ・プレート(CTP)システムについては、多数の研究がなされている。中でも、一層の工程合理化と廃液処理問題の解決を目指すものとして、露光後、現像処理することなしにそのまま印刷機に装着して印刷できる平版印刷版原版が求められている。 In addition, many studies have been conducted on computer-to-plate (CTP) systems that have made remarkable progress in recent years. In particular, there is a need for a lithographic printing plate precursor that can be mounted on a printing machine as it is and printed without being subjected to development processing after exposure, in order to further streamline the process and solve the waste liquid treatment problem.
処理工程をなくす方法の一つに、露光済みの平版印刷版原版を印刷機の版胴に装着し、版胴を回転しながら湿し水とインキを供給することによって、平版印刷版原版の非画像部を除去する機上現像と呼ばれる方法がある。即ち、平版印刷版原版を露光後、そのまま印刷機に装着し、通常の印刷過程の中で現像処理が完了する方式である。このような機上現像に適した平版印刷版原版は、湿し水やインキ溶剤に可溶な画像記録層を有し、しかも、明室に置かれた印刷機上で現像されるのに明室取り扱い性を有することが必要とされる。なお、以下では、未露光部の印刷機上での機上現像が完了し、非画像部にインキが転写しない状態になるまでに要した印刷用紙の枚数を機上現像性として評価し、損紙の枚数が少ないことを機上現像性が良好であるという。 One method of eliminating the processing step is to mount the exposed lithographic printing plate precursor on the plate cylinder of the printing press, and supply dampening water and ink while rotating the plate cylinder to remove the lithographic printing plate precursor. There is a method called on-machine development that removes the image area. That is, the lithographic printing plate precursor is exposed to light and mounted on a printing machine as it is, and development processing is completed in a normal printing process. A lithographic printing plate precursor suitable for on-press development has an image recording layer that is soluble in fountain solution or an ink solvent, and is bright when developed on a press in a bright room. It is required to have room handling properties. In the following, the on-machine development on the printing machine in the unexposed area is completed, and the number of printing sheets required until the ink is not transferred to the non-image area is evaluated as on-machine developability. On-machine developability is said to be good when the number of sheets is small.
本発明者らが、特許文献1に具体的に記載されている平版印刷版用支持体を用いて得られる平版印刷版および平版印刷用原版の諸性能について検討を行ったところ、放置払い性と耐刷性、または、機上現像性と耐刷性とがトレードオフの関係にあり、これらの両立ができず、実用上必ずしも満足できるものではないことを見出した。さらに、平版印刷版用支持体の耐傷性についても、改良の必要があることを見出した。 The present inventors have examined various performances of a lithographic printing plate and a lithographic printing original plate obtained using the lithographic printing plate support specifically described in Patent Document 1, and found that It has been found that printing durability, or on-press developability and printing durability are in a trade-off relationship, and the two cannot be compatible and are not always satisfactory in practice. Furthermore, it has been found that the scratch resistance of the lithographic printing plate support needs to be improved.
そこで、本発明は、上記実情に鑑みて、平版印刷版としたときに放置払い性および耐刷性に優れ、かつ、優れた機上現像性を示す平版印刷版用原版を得ることができる、耐傷性に優れた平版印刷版用支持体、平版印刷版用支持体の製造方法、および平版印刷版原版を提供することを目的とする。 Therefore, in view of the above circumstances, the present invention can provide a lithographic printing plate precursor exhibiting excellent neglectability and printing durability when used as a lithographic printing plate, and exhibiting excellent on-press developability. An object is to provide a lithographic printing plate support excellent in scratch resistance, a method for producing a lithographic printing plate support, and a lithographic printing plate precursor.
本発明者らは、上記目的を達成すべく鋭意検討した結果、陽極酸化皮膜中のマイクロポアの形状を制御することにより、上記課題が解決できることを見出した。
すなわち、本発明は、以下の(1)〜(8)を提供する。
As a result of intensive studies to achieve the above object, the present inventors have found that the above problems can be solved by controlling the shape of the micropores in the anodized film.
That is, the present invention provides the following (1) to (8).
(1) アルミニウム板と、その上にアルミニウムの陽極酸化皮膜とを備え、該陽極酸化皮膜中に該アルミニウム板とは反対側の表面から深さ方向にのびるマイクロポアを有する平版印刷版用支持体であって、
該マイクロポアが、陽極酸化皮膜表面からの深さ(深さA)が5〜60nmである大径孔部と、前記大径孔部の底部と連通して、その連通位置(連通位置X)からの深さ(深さB)が10nm以上である小径孔部と、前記小径孔部の底部と連通して、その連通位置(連通位置Y)からの深さ方向にのびる中径孔部とから構成され、
前記深さBと前記中径孔部の深さCとの合計が510nm以上であり、
前記大径孔部の陽極酸化皮膜表面における平均径(大径孔部径)と、前記小径孔部の連通位置Xにおける平均径(小径孔部径)と、前記中径孔部の連通位置Yにおける平均径(中径孔部径)とが、以下の式(I)の関係を満たし、
式(I) 大径孔部径>中径孔部径>小径孔部径
前記大径孔部径と前記小径孔部径との比(小径孔部径/大径孔部径)が0.8以下であることを特徴とする平版印刷版用支持体。
(1) A lithographic printing plate support comprising an aluminum plate and an aluminum anodized film thereon, and having micropores extending in the depth direction from the surface opposite to the aluminum plate in the anodized film Because
The micropore communicates with a large-diameter hole having a depth (depth A) of 5 to 60 nm from the surface of the anodized film and a bottom of the large-diameter hole, and a communication position (communication position X). A small-diameter hole having a depth (depth B) of 10 nm or more, and a medium-diameter hole extending in the depth direction from the communication position (communication position Y) in communication with the bottom of the small-diameter hole. Consisting of
The sum of the depth B and the depth C of the medium-diameter hole is 510 nm or more,
The average diameter (large diameter hole diameter) on the anodized film surface of the large diameter hole, the average diameter (small diameter hole diameter) at the communication position X of the small diameter hole, and the communication position Y of the medium diameter hole And the average diameter (medium hole diameter) satisfy the relationship of the following formula (I),
Formula (I) Large-diameter hole diameter> Medium-diameter hole diameter> Small-diameter hole diameter The ratio of the large-diameter hole diameter to the small-diameter hole diameter (small-diameter hole diameter / large-diameter hole diameter) is 0. A support for a lithographic printing plate, which is 8 or less.
(2) 大径孔部径が、10〜60nmである、(1)に記載の平版印刷版用支持体。
(3) 小径孔部径が、1〜10nmである、(1)または(2)に記載の平版印刷版用支持体。
(4) 中径孔部径が、1nm超20nm以下である、(1)〜(3)のいずれかに記載の平版印刷版用支持体。
(2) The lithographic printing plate support according to (1), wherein the large-diameter hole diameter is 10 to 60 nm.
(3) The lithographic printing plate support according to (1) or (2), wherein the small-diameter hole part diameter is 1 to 10 nm.
(4) The lithographic printing plate support according to any one of (1) to (3), wherein the medium-diameter hole part diameter is more than 1 nm and not more than 20 nm.
(5) 小径孔部の深さ(深さB)と、中径孔部の深さ(深さC)との比(深さB/深さC)が、1.0以下である、(1)〜(4)のいずれかに記載の平版印刷版用支持体。
(6) アルミニウム板を陽極酸化する第1陽極酸化処理工程と、
第1陽極酸化処理工程で得られた陽極酸化皮膜を有するアルミニウム板を、酸水溶液またはアルカリ水溶液に接触させ、陽極酸化皮膜中のマイクロポアの径を拡大させるポアワイド処理工程と、
ポアワイド処理工程で得られたアルミニウム板を陽極酸化する第2陽極酸化処理工程と、
第2陽極酸化処理工程で得られたアルミニウム板を陽極酸化する第3陽極酸化処理工程とを備え、(1)〜(5)のいずれかに記載の平版印刷版用支持体を製造する、平版印刷版用支持体の製造方法。
(5) The ratio (depth B / depth C) of the depth (depth B) of the small diameter hole portion to the depth (depth C) of the medium diameter hole portion is 1.0 or less ( The support for a lithographic printing plate according to any one of 1) to (4).
(6) a first anodizing process for anodizing the aluminum plate;
A pore-wide treatment step in which the aluminum plate having the anodized film obtained in the first anodizing treatment step is brought into contact with an acid aqueous solution or an alkaline aqueous solution to increase the diameter of the micropores in the anodized film;
A second anodizing treatment step of anodizing the aluminum plate obtained in the pore wide treatment step;
A lithographic printing plate support according to any one of (1) to (5), which comprises a third anodizing treatment step of anodizing the aluminum plate obtained in the second anodizing treatment step A method for producing a printing plate support.
(7) (1)〜(5)のいずれかに記載の平版印刷版用支持体上に、画像記録層を有することを特徴とする平版印刷版原版。
(8) 画像記録層が、露光により画像を形成し、非露光部が印刷インキおよび/または湿し水により除去可能となる画像記録層である(7)に記載の平版印刷版原版。
(7) A lithographic printing plate precursor comprising an image recording layer on the lithographic printing plate support according to any one of (1) to (5).
(8) The lithographic printing plate precursor as described in (7), wherein the image recording layer is an image recording layer in which an image is formed by exposure and the non-exposed portion can be removed by printing ink and / or fountain solution.
本発明によれば、平版印刷版としたときに放置払い性および耐刷性に優れ、かつ、優れた機上現像性を示す平版印刷版用原版を得ることができる、耐傷性に優れた平版印刷版用支持体、平版印刷版用支持体の製造方法、および平版印刷版原版を提供することができる。 According to the present invention, it is possible to obtain a lithographic printing plate precursor exhibiting excellent neglectability and printing durability and excellent on-press developability when used as a lithographic printing plate. A printing plate support, a method for producing a lithographic printing plate support, and a lithographic printing plate precursor can be provided.
以下に本発明の平版印刷版用支持体、およびその製造方法について説明する。
本発明の平版印刷版用支持体は、アルミニウム板とその上に形成される陽極酸化皮膜とを備え、陽極酸化皮膜中のマイクロポアが、平均径の大きい大径孔部と、平均径の小さい小径孔部と、平均径が中程度の中径孔部とが深さ方向(皮膜の厚み方向)に沿って連結して構成される形状を有する。
特に、本発明においては、大径孔部、小径孔部、中径孔部の平均径および深さを制御することにより、トレードオフの関係とされていた放置払い性と耐刷性、または、機上現像性と耐刷性との関係を、より高いレベルで両立することができる。
The lithographic printing plate support of the present invention and the production method thereof will be described below.
The lithographic printing plate support of the present invention comprises an aluminum plate and an anodized film formed thereon, and the micropores in the anodized film have large diameter holes with a large average diameter and a small average diameter. The small-diameter hole portion and the medium-diameter hole portion having a medium average diameter are connected in the depth direction (the thickness direction of the film).
In particular, in the present invention, by controlling the average diameter and depth of the large-diameter hole portion, the small-diameter hole portion, and the medium-diameter hole portion, neglectability and printing durability, which have been a trade-off relationship, or The relationship between on-press developability and printing durability can be achieved at a higher level.
図1は、本発明の平版印刷版用支持体の一実施形態の模式的断面図である。
同図に示す平版印刷版用支持体10は、アルミニウム板12とアルミニウムの陽極酸化皮膜14とをこの順で積層した積層構造を有する。陽極酸化皮膜14は、その表面からアルミニウム板12側に向かってのびるマイクロポア16を有し、マイクロポア16は大径孔部18、小径孔部20、中径孔部22とから構成される。なお、ここではマイクロポアという用語は、陽極酸化皮膜中のポアを表す一般的に使われる用語であり、ポアのサイズを規定するものではない。
まず、アルミニウム板12および陽極酸化皮膜14について詳述する。
FIG. 1 is a schematic cross-sectional view of an embodiment of the lithographic printing plate support of the present invention.
The planographic printing plate support 10 shown in FIG. 1 has a laminated structure in which an aluminum plate 12 and an aluminum anodic oxide film 14 are laminated in this order. The anodic oxide film 14 has a micropore 16 extending from the surface thereof toward the aluminum plate 12, and the micropore 16 includes a large-diameter hole portion 18, a small-diameter hole portion 20, and a medium-diameter hole portion 22. Here, the term micropore is a commonly used term representing the pore in the anodized film and does not define the size of the pore.
First, the aluminum plate 12 and the anodized film 14 will be described in detail.
<アルミニウム板>
本発明に用いられるアルミニウム板12(アルミニウム支持体)は、寸度的に安定なアルミニウムを主成分とする金属であり、アルミニウムまたはアルミニウム合金からなる。純アルミニウム板の他、アルミニウムを主成分とし、微量の異元素を含む合金板、またはアルミニウム(合金)がラミネートもしくは蒸着されたプラスチックフィルムもしくは紙の中から選ばれる。更に、特公昭48−18327号公報に記載されているようなポリエチレンテレフタレートフィルム上にアルミニウムシートが結合された複合体シートでもかまわない。
<Aluminum plate>
The aluminum plate 12 (aluminum support) used in the present invention is a metal whose main component is aluminum that is dimensionally stable, and is made of aluminum or an aluminum alloy. In addition to a pure aluminum plate, an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements, or a plastic film or paper laminated or vapor-deposited with aluminum (alloy) is selected. Furthermore, a composite sheet in which an aluminum sheet is bonded to a polyethylene terephthalate film as described in Japanese Patent Publication No. 48-18327 may be used.
以下の説明において、上記に挙げたアルミニウムまたはアルミニウム合金からなる板をアルミニウム板12と総称する。アルミニウム合金に含まれる異元素には、ケイ素、鉄、マンガン、銅、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタンなどがあり、合金中の異元素の含有量は10質量%以下である。本発明では純アルミニウム板が好適であるが、完全に純粋なアルミニウムは製錬技術上製造が困難であるので、僅かに異元素を含有するものでもよい。このように本発明に適用されるアルミニウム板12は、その組成が特定されるものではなく、従来より公知公用の素材のもの、例えばJIS A 1050、JIS A 1100、JIS A 3103、JIS A 3005などを適宜利用することが出来る。 In the following description, the above-described plate made of aluminum or aluminum alloy is collectively referred to as an aluminum plate 12. The foreign elements contained in the aluminum alloy include silicon, iron, manganese, copper, magnesium, chromium, zinc, bismuth, nickel, titanium, etc., and the content of the foreign element in the alloy is 10% by mass or less. In the present invention, a pure aluminum plate is suitable. However, since pure aluminum is difficult to manufacture in terms of smelting technology, it may contain a slightly different element. Thus, the composition of the aluminum plate 12 applied to the present invention is not specified, and conventionally known and used materials such as JIS A 1050, JIS A 1100, JIS A 3103, JIS A 3005, etc. Can be used as appropriate.
また、本発明に用いられるアルミニウム板12は通常ウェブ状で連続走行させながら処理され、その幅は400mm〜2000mm程度、厚みはおよそ0.1mm〜0.6mm程度である。この幅や厚みは、印刷機の大きさ、印刷版の大きさおよびユーザーの希望により適宜変更することができる。
なお、アルミニウム板12には適宜後述の基板表面処理(粗面化処理)が施されてもよい。
Further, the aluminum plate 12 used in the present invention is usually processed while continuously running in a web shape, the width is about 400 mm to 2000 mm, and the thickness is about 0.1 mm to 0.6 mm. The width and thickness can be changed as appropriate according to the size of the printing press, the size of the printing plate, and the desire of the user.
The aluminum plate 12 may be appropriately subjected to substrate surface treatment (roughening treatment) described later.
<陽極酸化皮膜>
陽極酸化皮膜14は、陽極酸化処理によってアルミニウム板12の表面に作製される、皮膜表面に垂直であり、個々が均一に分布した極微細なマイクロポア16を有する陽極酸化アルミニウム皮膜を指す。該マイクロポア16は、アルミニウム板12とは反対側の陽極酸化皮膜表面から深さ(厚み)方向(アルミニウム板12側)に沿ってのびる。
<Anodized film>
The anodized film 14 refers to an anodized aluminum film that is formed on the surface of the aluminum plate 12 by an anodizing process and has ultrafine micropores 16 that are perpendicular to the film surface and are uniformly distributed. The micropore 16 extends along the depth (thickness) direction (the aluminum plate 12 side) from the surface of the anodized film opposite to the aluminum plate 12.
陽極酸化皮膜14中のマイクロポア16は、陽極酸化皮膜表面からの深さ(深さA)が5〜60nmである大径孔部18と、該大径孔部18の底部と連通し、その連通位置(以後、連通位置Xと称する)からの深さ(深さB)が10nm以上である小径孔部20と、該小径孔部の底部と連通し、その連通位置(連通位置Y)からの深さ方向に延びる中径孔部22とから構成されている。なお、小径孔部の深さBと中径孔部の深さCとの合計が510nm以上である。また、大径孔部18の陽極酸化皮膜表面における平均径(大径孔部径)と、小径孔部20の連通位置Xにおける平均径(小径孔部径)と、中径孔部22の連通位置Yにおける平均径(中径孔部径)とが、後述する所定の関係を満たしている。
以下に、大径孔部18、小径孔部20、中径孔部22について詳述する。
The micropores 16 in the anodized film 14 communicate with the large-diameter hole 18 having a depth (depth A) of 5 to 60 nm from the surface of the anodized film, and the bottom of the large-diameter hole 18. The small diameter hole portion 20 having a depth (depth B) of 10 nm or more from the communication position (hereinafter referred to as the communication position X) communicates with the bottom of the small diameter hole portion, and from the communication position (communication position Y). And a medium-diameter hole 22 extending in the depth direction. The total of the depth B of the small-diameter hole and the depth C of the medium-diameter hole is 510 nm or more. Further, the average diameter (large diameter hole diameter) of the large diameter hole 18 on the surface of the anodic oxide film, the average diameter (small diameter hole diameter) at the communication position X of the small diameter hole 20, and the communication of the medium diameter hole 22. The average diameter (medium hole diameter) at the position Y satisfies a predetermined relationship described later.
Below, the large diameter hole 18, the small diameter hole 20, and the medium diameter hole 22 will be described in detail.
(大径孔部)
大径孔部18は、図1に示すように、陽極酸化皮膜表面にある孔部である。
大径孔部18の陽極酸化皮膜表面からの深さ(深さA)は、5〜60nmである。つまり、大径孔部18は、陽極酸化皮膜表面から深さ方向(厚み方向)に5〜60nmのびる孔部である。該範囲であれば、本発明の効果(平版印刷版の耐刷性および放置払い性、平版印刷版原版の機上現像性など)が得られる。なかでも、該平版印刷版用支持体を用いて得られる平版印刷版の耐刷性、放置払い性、および、該支持体を用いて得られる平版印刷版原版の機上現像性がより優れる点で、大径孔部18の深さAは10〜50nmであることが好ましい。
大径孔部18の深さが5nm未満の場合、十分なアンカー効果が得られず、平版印刷版の耐刷性に劣る。深さが60nmを超える場合、平版印刷版の放置払い性と平版印刷版原版の機上現像性が劣る。
なお、上記深さは、陽極酸化皮膜14の断面の写真(15万倍)をとり、25個以上の大径孔部の深さを測定し、平均した値である。
(Large hole)
As shown in FIG. 1, the large-diameter hole 18 is a hole in the anodized film surface.
The depth (depth A) of the large-diameter hole 18 from the surface of the anodized film is 5 to 60 nm. That is, the large-diameter hole 18 is a hole extending from 5 to 60 nm in the depth direction (thickness direction) from the anodized film surface. Within this range, the effects of the present invention (printing durability and neglectability of the lithographic printing plate, on-press developability of the lithographic printing plate precursor, etc.) can be obtained. Among them, the printing durability of the lithographic printing plate obtained using the lithographic printing plate support, the neglectability, and the on-press developability of the lithographic printing plate precursor obtained using the support are more excellent. Thus, the depth A of the large-diameter hole 18 is preferably 10 to 50 nm.
When the depth of the large-diameter hole 18 is less than 5 nm, a sufficient anchor effect cannot be obtained and the printing durability of the lithographic printing plate is poor. When the depth exceeds 60 nm, the neglectability of the lithographic printing plate and the on-press developability of the lithographic printing plate precursor are inferior.
In addition, the said depth is the value which took the photograph (150,000 times) of the cross section of the anodic oxide film 14, measured the depth of the 25 or more large diameter hole part, and averaged it.
大径孔部18の陽極酸化皮膜表面における平均径(平均開口径、平均直径)は、後述する小径孔部20および中径孔部22の平均径と所定の関係を満たしていれば特に制限されない。なかでも、該平版印刷版用支持体を用いて得られる平版印刷版の耐刷性、放置払い性がより優れ、該支持体を用いて得られる平版印刷版原版の機上現像性がより優れる点で、10〜60nmであることが好ましい。
該平版印刷版用支持体を用いて得られる平版印刷版の耐刷性がより優れる点で、平均径は10〜50nmであることが好ましく、15〜50nmであることがより好ましく、20〜50nmであることがさらに好ましい。
平均径が10nm未満の場合、十分なアンカー効果が得られない場合があり、平版印刷版の耐刷性向上の程度が小さい。また、平均径が60nmを超える場合、粗面化した砂目を壊してしまい、耐刷性や放置払い性などの各種性能の向上の程度が小さい場合がある。
The average diameter (average opening diameter, average diameter) of the large-diameter hole 18 on the surface of the anodic oxide film is not particularly limited as long as it satisfies a predetermined relationship with the average diameter of the small-diameter hole 20 and the medium-diameter hole 22 described later. . Among them, the lithographic printing plate obtained by using the lithographic printing plate support is more excellent in printing durability and neglectability, and the on-press developability of the lithographic printing plate precursor obtained by using the support is more excellent. In this respect, the thickness is preferably 10 to 60 nm.
The average diameter is preferably 10 to 50 nm, more preferably 15 to 50 nm, and more preferably 20 to 50 nm, in that the printing durability of the lithographic printing plate obtained using the lithographic printing plate support is more excellent. More preferably.
When the average diameter is less than 10 nm, a sufficient anchor effect may not be obtained, and the degree of improvement in the printing durability of the lithographic printing plate is small. In addition, when the average diameter exceeds 60 nm, the roughened grain is broken, and the degree of improvement in various performances such as printing durability and neglectability may be small.
大径孔部18の平均径は、陽極酸化皮膜14表面を倍率15万倍のFE−SEMでN=4枚観察し、得られた4枚の画像において、400×600nm2の範囲に存在するマイクロポア(大径孔部)の径を測定し、平均した値である。
なお、大径孔部18の形状が円状でない場合は、円相当径を用いる。「円相当径」とは、開口部の形状を、開口部の投影面積と同じ投影面積をもつ円と想定したときの当該円の直径である。
The average diameter of the large-diameter hole portion 18 is in the range of 400 × 600 nm 2 in the four images obtained by observing the surface of the anodic oxide film 14 with N = 4 FE-SEM at a magnification of 150,000 times. It is the value obtained by measuring the diameter of the micropore (large-diameter hole) and averaging it.
In addition, when the shape of the large diameter hole 18 is not circular, a circle equivalent diameter is used. The “equivalent circle diameter” is a diameter of the circle when the shape of the opening is assumed to be a circle having the same projected area as the projected area of the opening.
大径孔部18の平均径とその底部が位置する深さAとの関係(深さA/平均径)は、0.1〜4.0の関係を満たすことが好ましい。該平版印刷版用支持体を用いて得られる平版印刷版の耐刷性、放置払い性、および、該支持体を用いて得られる平版印刷版原版の機上現像性がより優れる点で、(深さA/平均径)は0.3以上3.0未満であることが好ましく、0.3以上2.5未満であることがより好ましい。 It is preferable that the relationship (depth A / average diameter) between the average diameter of the large-diameter hole portion 18 and the depth A where the bottom portion is located satisfies the relationship of 0.1 to 4.0. In the point that the printing durability of the lithographic printing plate obtained by using the lithographic printing plate support, the neglectability, and the on-press developability of the lithographic printing plate precursor obtained by using the support are ( Depth A / average diameter) is preferably 0.3 or more and less than 3.0, and more preferably 0.3 or more and less than 2.5.
大径孔部18の形状は特に限定されず、略直管状(略円柱状)や、深さ方向(厚み方向)に向かって径が小さくなる円錐状などが挙げられ、好ましく略直管状である。また、大径孔部18の底部の形状は特に限定されず、曲面状(凸状)であっても、平面状であってもよい。
大径孔部18の内径は特に制限されないが、通常、開口部の径と同程度の大きさか、または開口部の径よりも小さい。なお、大径孔部18の内径は、通常、開口部の径よりも1〜10nm程度の差があってもよい。
The shape of the large-diameter hole 18 is not particularly limited, and examples thereof include a substantially straight tube (substantially columnar shape) and a conical shape whose diameter decreases in the depth direction (thickness direction), and is preferably a substantially straight tube. . The shape of the bottom of the large-diameter hole 18 is not particularly limited, and may be a curved surface (convex shape) or a flat shape.
The inner diameter of the large-diameter hole 18 is not particularly limited, but is usually the same size as the diameter of the opening or smaller than the diameter of the opening. In addition, the internal diameter of the large diameter hole 18 may usually have a difference of about 1 to 10 nm from the diameter of the opening.
(小径孔部)
小径孔部20は、図1に示すように、大径孔部18の底部と連通して、連通位置(以後、適宜、連通位置Xと称する)よりさらに深さ方向(厚み方向)に延びる孔部である。ひとつの小径孔部20は、通常ひとつの大径孔部18と連通するが、2つ以上の小径孔部20がひとつの大径孔部18の底部と連通していてもよい。
後述するように、大径孔部18の下部に小径孔部20があることにより、マイクロポア16内部にインクなどが深く浸透してしまうことを防ぐことができる。
小径孔部20の連通位置Xからの深さ(深さB)は、10nm以上である。つまり、小径孔部20は、上記大径孔部18との連通位置(連通位置X)からさらに深さ方向(厚み方向)に10nm以上のびる孔部である。該範囲であれば、本発明の効果(平版印刷版の耐刷性および放置払い性、平版印刷版原版の機上現像性など)が得られる。
放置払い性および機上現像性がより優れる点から、小径孔部20の深さBは、30nm以上であることが好ましく、50〜400nmであることがより好ましく、175〜400nmであることが更に好ましい。
深さBが10nm未満の場合、平版印刷版の放置払い性および機上現像性に劣る。
なお、上記深さは、陽極酸化皮膜14の断面の写真(15万倍)をとり、25個以上の小径孔部の深さを測定し、平均した値である。
(Small hole)
As shown in FIG. 1, the small-diameter hole 20 communicates with the bottom of the large-diameter hole 18 and extends further in the depth direction (thickness direction) than the communication position (hereinafter referred to as communication position X as appropriate). Part. One small-diameter hole 20 usually communicates with one large-diameter hole 18, but two or more small-diameter holes 20 may communicate with the bottom of one large-diameter hole 18.
As will be described later, the presence of the small-diameter hole 20 below the large-diameter hole 18 can prevent deep penetration of ink or the like into the micropore 16.
The depth (depth B) from the communication position X of the small-diameter hole 20 is 10 nm or more. That is, the small-diameter hole 20 is a hole extending more than 10 nm in the depth direction (thickness direction) from the communication position (communication position X) with the large-diameter hole 18. Within this range, the effects of the present invention (printing durability and neglectability of the lithographic printing plate, on-press developability of the lithographic printing plate precursor, etc.) can be obtained.
The depth B of the small-diameter hole 20 is preferably 30 nm or more, more preferably 50 to 400 nm, and even more preferably 175 to 400 nm, from the standpoint of better neglectability and on-press developability. preferable.
When the depth B is less than 10 nm, the lithographic printing plate is poor in neglectability and on-press developability.
In addition, the said depth is the value which took the photograph (150,000 times) of the cross section of the anodic oxide film 14, measured the depth of 25 or more small diameter holes, and averaged it.
小径孔部20の連通位置Xにおける平均径は、大径孔部18および後述する中径孔部22の平均径と所定の関係を満たしていれば特に制限されない。なかでも、平版印刷版の放置払い性および機上現像性がより優れる点で、平均径は1〜10nmであることが好ましく、1〜8nmがより好ましく、1〜7nmがさらに好ましい。
小径孔部20の平均径は、陽極酸化皮膜14表面を倍率15万倍のFE−SEMでN=4枚観察し、得られた4枚の画像において、400×600nm2の範囲に存在するマイクロポア(小径孔部)の径を測定し、平均した値である。
なお、小径孔部20の形状が円状でない場合は、円相当径を用いる。
The average diameter at the communication position X of the small diameter hole 20 is not particularly limited as long as it satisfies a predetermined relationship with the average diameter of the large diameter hole 18 and the medium diameter hole 22 described later. Among these, the average diameter is preferably 1 to 10 nm, more preferably 1 to 8 nm, and even more preferably 1 to 7 nm, from the viewpoint that the lithographic printing plate is more excellent in leaving property and on-press developability.
The average diameter of the small-diameter hole 20 is such that the surface of the anodic oxide film 14 is observed with N = 4 FE-SEMs with a magnification of 150,000 times, and the obtained four images have a microscopic range of 400 × 600 nm 2. It is the value obtained by measuring the diameter of the pore (small-diameter hole) and averaging it.
In addition, when the shape of the small diameter hole 20 is not circular, an equivalent circle diameter is used.
小径孔部20の連通位置Xにおける平均径と大径孔部18の陽極酸化皮膜表面における平均径との比(小径孔部径/大径孔部径)は、0.8以下である。
小径孔部径/大径孔部径の比が上記範囲内であれば、インキなどがマイクロポア16の内部に深く浸透することを防ぐため、結果として、本発明の効果(平版印刷版の耐刷性および放置払い性、平版印刷版原版の機上現像性など)が得られる。該比の下限としては0超であり、なかでも、耐刷性および放置払い性、機上現像性により優れる点で、0.65以下であることが好ましく、0.1〜0.5であることがより好ましい。
平均径の比が0.8を超えると、放置汚れ性、機上現像性が劣る。
The ratio (small diameter hole diameter / large diameter hole diameter) of the average diameter of the small diameter holes 20 at the communication position X to the average diameter of the large diameter holes 18 on the anodized film surface is 0.8 or less.
If the ratio of the small-diameter hole diameter / large-diameter hole diameter is within the above range, the ink or the like is prevented from penetrating deeply into the micropores 16. Printability and neglectability, on-press developability of a lithographic printing plate precursor, etc.). The lower limit of the ratio is more than 0, and in particular, it is preferably 0.65 or less, and more preferably 0.1 to 0.5, in terms of excellent printing durability, neglectability and on-press developability. It is more preferable.
If the ratio of the average diameter exceeds 0.8, the left-side stain property and the on-press developability are inferior.
小径孔部20の形状は特に限定されず、略直管状(略円柱状)や、深さ方向に向かって径が小さくなる円錐状などが挙げられ、好ましくは略直管状である。また、小径孔部20の底部の形状は特に限定されず、曲面状(凸状)であっても、平面状であってもよい。
小径孔部20の内径は特に制限されないが、通常、連通位置における径と同程度の大きさか、または該径よりも小さい。なお、小径孔部20の内径は、通常、連通位置Xにおける径よりも1〜10nm程度の差があってもよい。
The shape of the small-diameter hole 20 is not particularly limited, and includes a substantially straight tube (substantially cylindrical shape), a conical shape whose diameter decreases in the depth direction, and the like, preferably a substantially straight tube. Moreover, the shape of the bottom part of the small diameter hole part 20 is not specifically limited, A curved surface shape (convex shape) may be sufficient, and planar shape may be sufficient.
The inner diameter of the small-diameter hole 20 is not particularly limited, but is usually the same size as the diameter at the communication position or smaller than the diameter. In addition, the internal diameter of the small diameter hole part 20 may have a difference of about 1-10 nm from the diameter in the communication position X normally.
(中径孔部22)
中径孔部22は、図1に示すように、小径孔部20の底部と連通して、その連通位置(以後、適宜、連通位置Yと称する)よりさらに深さ方向(厚み方向)に延びる孔部である。小径孔部20の下部に中径孔部22が配置されることにより、平版印刷版の放置払い性の向上、および平版印刷版用支持体の耐傷性の向上が期待できる。さらに、生産性の点でも、中径孔部22を製造する際に、小径孔部20を製造するときよりも、より短期間で皮膜を成長させることができるので、高スループットで所望の平版印刷版支持体を得ることができる。
中径孔部22の連通位置Yからの深さ(深さC)は、後述する小径孔部の深さBとの間で所定の関係を満たしていればよいが、500nm以上であることが好ましい。つまり、中径孔部22は、上記小径孔部20との連通位置(連通位置Y)からさらに深さ方向(厚み方向)に500nm以上のびる孔部であることが好ましい。該範囲であれば、本発明の効果(平版印刷版の耐刷性および放置払い性、平版印刷版原版の機上現像性など)が得られる。平版印刷版用支持体の耐傷性および生産性の観点から、中径孔部20の深さCは、700〜1800nm以下であることが好ましく、900〜1500nmであることがより好ましい。
深さCが500nm未満の場合、平版印刷版用支持体の耐傷性に劣る場合がある。また、深さCが1800nm超の場合、中径孔部の効果が飽和する場合があると共に、平版印刷版用支持体の生産性にやや劣る場合がある。
なお、上記深さは、陽極酸化皮膜14の断面の写真(15万倍)をとり、25個以上の中径孔部の深さを測定し、平均した値である。
(Medium diameter hole 22)
As shown in FIG. 1, the medium-diameter hole portion 22 communicates with the bottom portion of the small-diameter hole portion 20 and extends further in the depth direction (thickness direction) than the communication position (hereinafter, referred to as communication position Y as appropriate). It is a hole. By disposing the medium-diameter hole portion 22 below the small-diameter hole portion 20, it is possible to expect improvement in the neglectability of the lithographic printing plate and improvement in scratch resistance of the lithographic printing plate support. Furthermore, also from the point of productivity, since the film can be grown in a shorter period of time when the medium-diameter hole portion 22 is manufactured than when the small-diameter hole portion 20 is manufactured, the desired lithographic printing can be performed with high throughput. A plate support can be obtained.
The depth (depth C) from the communication position Y of the medium-diameter hole 22 only needs to satisfy a predetermined relationship with the depth B of the small-diameter hole described later, but is 500 nm or more. preferable. That is, the medium-diameter hole 22 is preferably a hole extending 500 nm or more in the depth direction (thickness direction) from the communication position (communication position Y) with the small-diameter hole 20. Within this range, the effects of the present invention (printing durability and neglectability of the lithographic printing plate, on-press developability of the lithographic printing plate precursor, etc.) can be obtained. From the viewpoint of scratch resistance and productivity of the lithographic printing plate support, the depth C of the medium-diameter hole 20 is preferably 700 to 1800 nm or less, and more preferably 900 to 1500 nm.
When the depth C is less than 500 nm, the scratch resistance of the lithographic printing plate support may be inferior. Further, when the depth C exceeds 1800 nm, the effect of the medium-diameter hole portion may be saturated and the productivity of the lithographic printing plate support may be slightly inferior.
In addition, the said depth is the value which took the photograph (150,000 times) of the cross section of the anodic oxide film 14, measured the depth of 25 or more medium-diameter hole parts, and averaged it.
中径孔部22の連通位置Yにおける平均径は、上述した大径孔部18および小径孔部20の平均径と所定の関係を満たしていれば特に制限されない。なかでも、放置払い性、機上現像性の点で、平均径は1nm超20nm以下であることが好ましく、平均径3〜15nmであることが好ましく、5〜12nmがさらに好ましい。
中径孔部22の平均径は、皮膜上部(大径孔部と小径孔部のある領域)をアルゴンガスによって切削し、表面を倍率15万倍のFE−SEMでN=4枚観察し、得られた4枚の画像において、400×600nm2の範囲に存在するマイクロポア(中径孔部)の径を測定し、平均した値である。
なお、中径孔部22の形状が円状でない場合は、円相当径を用いる。
The average diameter at the communication position Y of the medium-diameter hole 22 is not particularly limited as long as it satisfies a predetermined relationship with the average diameters of the large-diameter hole 18 and the small-diameter hole 20 described above. Of these, the average diameter is preferably more than 1 nm and not more than 20 nm, more preferably from 3 to 15 nm, and even more preferably from 5 to 12 nm, from the standpoint of neglectability and on-press developability.
The average diameter of the medium-diameter hole portion 22 is obtained by cutting the upper portion of the film (region having a large-diameter hole portion and a small-diameter hole portion) with argon gas, and observing N = 4 surfaces with an FE-SEM with a magnification of 150,000 times, In the obtained four images, the diameters of micropores (medium hole portions) existing in the range of 400 × 600 nm 2 were measured and averaged.
In addition, when the shape of the medium diameter hole portion 22 is not circular, an equivalent circle diameter is used.
中径孔部22の連通位置Yにおける平均径と小径孔部20の陽極酸化皮膜表面における平均径との比(小径孔部径/中径孔部径)は、0.9以下であることが好ましい。該範囲であれば、本発明の効果(平版印刷版の耐刷性および放置払い性、平版印刷版原版の機上現像性など)が得られる。該比の下限としては0超であり、なかでも、放置汚れ性により優れる点で、0.8以下であることが好ましく、0.1〜0.75であることがより好ましい。
平均径の比が0.9を超えると、平版印刷版の放置汚れ性が劣る場合がある。
The ratio of the average diameter at the communication position Y of the medium-diameter hole 22 and the average diameter of the small-diameter hole 20 on the anodized film surface (small-diameter hole diameter / medium-diameter hole diameter) is 0.9 or less. preferable. Within this range, the effects of the present invention (printing durability and neglectability of the lithographic printing plate, on-press developability of the lithographic printing plate precursor, etc.) can be obtained. The lower limit of the ratio is more than 0, and in particular, it is preferably 0.8 or less, more preferably 0.1 to 0.75, from the standpoint of better standing dirtiness.
When the ratio of the average diameter exceeds 0.9, the lithographic printing plate may have poor stain resistance.
中径孔部22の形状は特に限定されず、略直管状(略円柱状)や、深さ方向に向かって径が小さくなる円錐状などが挙げられ、好ましくは略直管状である。また、中径孔部22の底部の形状は特に限定されず、曲面状(凸状)であっても、平面状であってもよい。
中径孔部22の内径は特に制限されないが、通常、連通位置Yにおける径と同程度の大きさか、または該径よりも小さい。なお、中径孔部22の内径は、通常、連通位置Yにおける径よりも1〜10nm程度の差があってもよい。
The shape of the medium-diameter hole portion 22 is not particularly limited, and examples thereof include a substantially straight tubular shape (substantially cylindrical shape) and a conical shape whose diameter decreases in the depth direction, and is preferably a substantially straight tubular shape. Moreover, the shape of the bottom part of the medium diameter hole part 22 is not specifically limited, A curved surface shape (convex shape) may be sufficient, and planar shape may be sufficient.
The inner diameter of the medium diameter hole portion 22 is not particularly limited, but is usually the same size as the diameter at the communication position Y or smaller than the diameter. Note that the inner diameter of the medium-diameter hole 22 may usually have a difference of about 1 to 10 nm from the diameter at the communication position Y.
上記大径孔部18の陽極酸化皮膜表面における平均径(大径孔部径)と、小径孔部20の連通位置Xにおける平均径(小径孔部径)と、中径孔部22の連通位置Yにおける平均径(中径孔部径)とは、以下の式(I)の関係を満たす。
式(I) 大径孔部径>中径孔部径>小径孔部径
The average diameter (large diameter hole diameter) of the large diameter hole 18 on the surface of the anodized film, the average diameter (small diameter hole diameter) at the communication position X of the small diameter hole 20, and the communication position of the medium diameter hole 22 The average diameter (medium hole diameter) in Y satisfies the relationship of the following formula (I).
Formula (I) Large diameter hole diameter> Medium diameter hole diameter> Small diameter hole diameter
小径孔部の深さBと、中径孔部の深さCとの比(深さB/深さC)は特に制限されないが、生産性および経済性の点から、1.0以下であることが好ましく、0.02〜0.9であることがより好ましく、0.2〜0.8であることが更に好ましい。 The ratio (depth B / depth C) between the depth B of the small-diameter hole and the depth C of the medium-diameter hole is not particularly limited, but is 1.0 or less from the viewpoint of productivity and economy. It is preferably 0.02-0.9, more preferably 0.2-0.8.
小径孔部20の深さB、および中径孔部22の深さCの合計は510nm以上である。上記範囲であれば、平版印刷版用支持体の耐傷性および生産性に優れる。なかでも、515nm〜2000nmであることが好ましく、750〜1800nmであることがより好ましく、950〜1800nmであることがさらに好ましい。深さが510nm未満であると、耐傷性に劣る。また、深さが2000nm超であると、処理時間が長期化し、生産性および経済性に劣る場合がある。 The sum of the depth B of the small-diameter hole 20 and the depth C of the medium-diameter hole 22 is 510 nm or more. If it is the said range, it is excellent in the scratch resistance and productivity of the lithographic printing plate support. Especially, it is preferable that it is 515 nm-2000 nm, it is more preferable that it is 750-1800 nm, and it is further more preferable that it is 950-1800 nm. If the depth is less than 510 nm, the scratch resistance is poor. Further, when the depth is more than 2000 nm, the treatment time is prolonged and the productivity and economy may be inferior.
陽極酸化皮膜14中でのマイクロポア16の密度は特に限定されないが、得られる平版印刷版の耐刷性および放置払い性、並びに、平版印刷版原版の機上現像性が優れる点で、50〜4000個/μm2であることが好ましく、100〜3000個/μm2であることがより好ましい。 The density of the micropores 16 in the anodized film 14 is not particularly limited, but it is 50 to 50 in terms of excellent printing durability and neglectability of the resulting lithographic printing plate and on-press developability of the lithographic printing plate precursor. The number is preferably 4000 / μm 2 , and more preferably 100 to 3000 / μm 2 .
陽極酸化皮膜14の皮膜量は特に限定されないが、平版印刷版用支持体の耐傷性が優れる点で、1.43〜5.50g/m2が好ましく、2.30〜4.00g/m2がより好ましい。 The coating amount of the anodic oxide coating 14 is not particularly limited, but is preferably 1.43 to 5.50 g / m 2 in view of excellent scratch resistance of the lithographic printing plate support, and 2.30 to 4.00 g / m 2. Is more preferable.
なお、上述した平版印刷版用支持体の表面には、後述する画像記録層を設けて、平版印刷用原版として使用することができる。 In addition, an image recording layer described later can be provided on the surface of the above-described lithographic printing plate support so that it can be used as a lithographic printing original plate.
<平版印刷版用支持体の製造方法>
以下に本発明の平版印刷版用支持体の製造方法について説明する。
本発明の平版印刷版用支持体の製造方法は特に限定されないが、以下の工程を順番に実施する製造方法が好ましい。
(粗面化処理工程)アルミニウム板に粗面化処理を施す工程
(第1陽極酸化処理工程)粗面化処理されたアルミニウム板を陽極酸化する工程
(ポアワイド処理工程)第1陽極酸化処理工程で得られた陽極酸化皮膜を有するアルミニウム板を、酸水溶液またはアルカリ水溶液に接触させ、該陽極酸化皮膜中のマイクロポアの径を拡大させる工程
(第2陽極酸化処理工程)ポアワイド処理工程で得られたアルミニウム板を陽極酸化する工程
(第3陽極酸化処理工程)第2陽極酸化処理工程で得られたアルミニウム板を陽極酸化する工程
(親水化処理工程)第3陽極酸化処理工程で得られたアルミニウム板に親水化処理を施す工程
以下に上記各工程について詳述する。なお、粗面化処理工程および親水化処理工程は、発明の効果上、必要がなければ実施しなくてもよい。また、図2において、第1陽極酸化処理工程から第3陽極酸化処理工程までを工程順に示す基板および陽極酸化皮膜の模式的断面図を示す。
<Method for producing support for lithographic printing plate>
The method for producing a lithographic printing plate support of the present invention will be described below.
Although the manufacturing method of the support for lithographic printing plates of this invention is not specifically limited, The manufacturing method which implements the following processes in order is preferable.
(Roughening treatment step) A step of roughening the aluminum plate (first anodizing step) A step of anodizing the roughened aluminum plate (pore wide treatment step) In the first anodizing step The obtained aluminum plate having an anodized film was brought into contact with an aqueous acid solution or an aqueous alkali solution to increase the diameter of the micropores in the anodized film (second anodizing process step). The step of anodizing the aluminum plate (third anodizing step) The step of anodizing the aluminum plate obtained in the second anodizing step (hydrophilizing step) The aluminum plate obtained in the third anodizing step The process of applying a hydrophilic treatment to the above process will be described in detail below. Note that the roughening treatment step and the hydrophilization treatment step may be omitted if not necessary for the effect of the invention. FIG. 2 is a schematic cross-sectional view of the substrate and the anodized film showing the order from the first anodizing step to the third anodizing step.
<粗面化処理工程>
粗面化処理工程は、上述したアルミニウム板の表面に、電気化学的粗面化処理を含む粗面化処理を施す工程である。該工程は、後述する第1陽極酸化処理工程の前に実施されることが好ましいが、アルミニウム板の表面がすでに好ましい表面形状を有していれば、特に実施しなくてもよい。
<Roughening treatment process>
The roughening treatment step is a step of subjecting the surface of the aluminum plate to a roughening treatment including an electrochemical roughening treatment. This step is preferably performed before the first anodizing step described later, but may not be performed as long as the surface of the aluminum plate already has a preferable surface shape.
粗面化処理は、電気化学的粗面化処理のみを施してもよいが、電気化学的粗面化処理と機械的粗面化処理および/または化学的粗面化処理とを組み合わせて施してもよい。
機械的粗面化処理と電気化学的粗面化処理とを組み合わせる場合には、機械的粗面化処理の後に、電気化学的粗面化処理を施すのが好ましい。
The surface roughening treatment may be performed only by electrochemical surface roughening treatment, but may be performed by combining electrochemical surface roughening treatment with mechanical surface roughening treatment and / or chemical surface roughening treatment. Also good.
When the mechanical surface roughening treatment and the electrochemical surface roughening treatment are combined, it is preferable to perform the electrochemical surface roughening treatment after the mechanical surface roughening treatment.
電気化学的粗面化処理は、硝酸や塩酸の水溶液中で施すのが好ましい。
機械的粗面化処理は、一般的には、アルミニウム板の表面を表面粗さRa:0.35〜1.0μmとする目的で施される。
機械的粗面化処理の諸条件は特に限定されないが、例えば、特公昭50−40047号公報に記載されている方法に従って施すことができる。機械的粗面化処理は、パミストン懸濁液を使用したブラシグレイン処理により施したり、転写方式で施したりすることができる。
また、化学的粗面化処理も特に限定されず、公知の方法に従って施すことができる。
The electrochemical surface roughening treatment is preferably performed in an aqueous solution of nitric acid or hydrochloric acid.
The mechanical surface roughening treatment is generally performed for the purpose of setting the surface of the aluminum plate to a surface roughness Ra : 0.35 to 1.0 μm.
Various conditions for the mechanical surface roughening treatment are not particularly limited. For example, the roughening treatment can be performed according to the method described in Japanese Patent Publication No. 50-40047. The mechanical surface roughening treatment can be performed by brush grain processing using a pumiston suspension or can be performed by a transfer method.
Further, the chemical surface roughening treatment is not particularly limited, and can be performed according to a known method.
機械的粗面化処理の後には、以下の化学エッチング処理を施すのが好ましい。
機械的粗面化処理の後に施される化学エッチング処理は、アルミニウム板の表面の凹凸形状のエッジ部分をなだらかにし、印刷時のインキの引っかかりを防止し、平版印刷版の耐汚れ性を向上させるとともに、表面に残った研磨材粒子等の不要物を除去するために行われる。
化学エッチング処理としては、酸によるエッチングやアルカリによるエッチングが知られているが、エッチング効率の点で特に優れている方法として、アルカリ溶液を用いる化学エッチング処理(以下、「アルカリエッチング処理」ともいう。)が挙げられる。
After the mechanical surface roughening treatment, the following chemical etching treatment is preferably performed.
The chemical etching process performed after the mechanical roughening process smoothes the uneven edges of the surface of the aluminum plate, prevents ink from being caught during printing, and improves the stain resistance of the lithographic printing plate At the same time, it is performed to remove unnecessary materials such as abrasive particles remaining on the surface.
As the chemical etching treatment, acid etching or alkali etching is known, but as a method that is particularly excellent in terms of etching efficiency, chemical etching treatment using an alkaline solution (hereinafter also referred to as “alkali etching treatment”). ).
アルカリ溶液に用いられるアルカリ剤は、特に限定されないが、例えば、カセイソーダ、カセイカリ、メタケイ酸ソーダ、炭酸ソーダ、アルミン酸ソーダ、グルコン酸ソーダ等が好適に挙げられる。
また、各アルカリ剤は、アルミニウムイオンを含有してもよい。アルカリ溶液の濃度は、0.01質量%以上であるのが好ましく、3質量%以上であるのがより好ましく、また、30質量%以下であるのが好ましく、25質量%以下であるのがより好ましい。
更に、アルカリ溶液の温度は室温以上であるのが好ましく、30℃以上であるのがより好ましく、80℃以下であるのが好ましく、75℃以下であるのがより好ましい。
The alkaline agent used in the alkaline solution is not particularly limited, and preferred examples include caustic soda, caustic potash, sodium metasilicate, sodium carbonate, sodium aluminate, and sodium gluconate.
Each alkaline agent may contain aluminum ions. The concentration of the alkaline solution is preferably 0.01% by mass or more, more preferably 3% by mass or more, more preferably 30% by mass or less, and more preferably 25% by mass or less. preferable.
Furthermore, the temperature of the alkaline solution is preferably room temperature or higher, more preferably 30 ° C. or higher, preferably 80 ° C. or lower, and more preferably 75 ° C. or lower.
エッチング量は、0.1g/m2以上であるのが好ましく、1g/m2以上であるのがより好ましく、また、20g/m2以下であるのが好ましく、10g/m2以下であるのがより好ましい。
また、処理時間は、エッチング量に対応して2秒〜5分であるのが好ましく、生産性向上の点から2〜10秒であるのがより好ましい。
The etching amount is preferably 0.1 g / m 2 or more, more preferably 1 g / m 2 or more, more preferably 20 g / m 2 or less, and 10 g / m 2 or less. Is more preferable.
The treatment time is preferably 2 seconds to 5 minutes corresponding to the etching amount, and more preferably 2 to 10 seconds from the viewpoint of improving productivity.
本発明においては、機械的粗面化処理後にアルカリエッチング処理を施した場合、アルカリエッチング処理により生じる生成物を除去するために、低温の酸性溶液を用いて化学エッチング処理(以下、「デスマット処理」ともいう。)を施すのが好ましい。
酸性溶液に用いられる酸は、特に限定されないが、例えば、硫酸、硝酸、塩酸が挙げられる。酸性溶液の濃度は、1〜50質量%であるのが好ましい。また、酸性溶液の温度は、20〜80℃であるのが好ましい。酸性溶液の濃度および温度がこの範囲であると、本発明の平版印刷版用支持体を用いた平版印刷版の耐ポツ状汚れ性がより向上する。
In the present invention, when an alkali etching treatment is performed after the mechanical surface roughening treatment, a chemical etching treatment (hereinafter referred to as “desmut treatment”) is performed using a low-temperature acidic solution in order to remove products generated by the alkali etching treatment. It is also preferable to apply.
Although the acid used for an acidic solution is not specifically limited, For example, a sulfuric acid, nitric acid, and hydrochloric acid are mentioned. The concentration of the acidic solution is preferably 1 to 50% by mass. Moreover, it is preferable that the temperature of an acidic solution is 20-80 degreeC. When the concentration and temperature of the acidic solution are within this range, the spot-like stain resistance of the lithographic printing plate using the lithographic printing plate support of the present invention is further improved.
本発明においては、上記粗面化処理は、所望により機械的粗面化処理および化学エッチング処理を施した後に、電気化学的粗面化処理を施す処理であるが、機械的粗面化処理を行わずに電気化学的粗面化処理を施す場合にも、電気化学的粗面化処理の前に、カセイソーダ等のアルカリ水溶液を用いて化学エッチング処理を施すことができる。これにより、アルミニウム板の表面近傍に存在する不純物等を除去することができる。 In the present invention, the roughening process is a process of applying an electrochemical roughening process after performing a mechanical roughening process and a chemical etching process as desired. Even when the electrochemical surface roughening treatment is performed without performing the chemical surface roughening treatment, the chemical etching treatment can be performed using an alkaline aqueous solution such as caustic soda before the electrochemical surface roughening treatment. Thereby, impurities existing in the vicinity of the surface of the aluminum plate can be removed.
電気化学的粗面化処理は、アルミニウム板の表面に微細な凹凸(ピット)を付与することが容易であるため、印刷性の優れた平版印刷版を作るのに適している。
電気化学的粗面化処理は、硝酸または塩酸を主体とする水溶液中で、直流または交流を用いて行われる。
The electrochemical roughening treatment is suitable for making a lithographic printing plate having excellent printability because it is easy to impart fine irregularities (pits) to the surface of the aluminum plate.
The electrochemical surface roughening treatment is performed using direct current or alternating current in an aqueous solution mainly composed of nitric acid or hydrochloric acid.
また、電気化学的粗面化処理の後には、以下の化学エッチング処理を行うのが好ましい。電気化学的粗面化処理後のアルミニウム板の表面には、スマットや金属間化合物が存在する。電気化学的粗面化処理の後に行われる化学エッチング処理においては、特にスマットを効率よく除去するため、まず、アルカリ溶液を用いて化学エッチング処理(アルカリエッチング処理)をするのが好ましい。アルカリ溶液を用いた化学エッチング処理の諸条件は、処理温度は20〜80℃であるのが好ましく、また、処理時間は1〜60秒であるのが好ましい。また、アルカリ溶液中にアルミニウムイオンを含有するのが好ましい。 Moreover, it is preferable to perform the following chemical etching process after an electrochemical roughening process. Smut and intermetallic compounds exist on the surface of the aluminum plate after the electrochemical roughening treatment. In the chemical etching process performed after the electrochemical surface roughening process, it is preferable to first perform a chemical etching process (alkali etching process) using an alkaline solution in order to efficiently remove smut. Regarding various conditions of the chemical etching treatment using an alkaline solution, the treatment temperature is preferably 20 to 80 ° C., and the treatment time is preferably 1 to 60 seconds. Moreover, it is preferable to contain aluminum ion in an alkaline solution.
更に、電気化学的粗面化処理後にアルカリ溶液を用いる化学エッチング処理を行った後、それにより生じる生成物を除去するために、低温の酸性溶液を用いて化学エッチング処理(デスマット処理)を行うのが好ましい。
また、電気化学的粗面化処理後にアルカリエッチング処理を行わない場合においても、スマットを効率よく除去するため、デスマット処理を行うのが好ましい。
Furthermore, after the electrochemical surface roughening treatment, a chemical etching treatment using an alkaline solution is performed, and then a chemical etching treatment (desmut treatment) is performed using a low-temperature acidic solution in order to remove the resulting products. Is preferred.
Even when the alkali etching treatment is not performed after the electrochemical surface roughening treatment, it is preferable to perform a desmut treatment in order to efficiently remove the smut.
本発明においては、上述した化学エッチング処理は、いずれも浸せき法、シャワー法、塗布法等により行うことができ、特に限定されない。 In the present invention, any of the above-described chemical etching treatments can be performed by a dipping method, a shower method, a coating method, or the like, and is not particularly limited.
<第1陽極酸化処理工程>
第1陽極酸化処理工程は、上述した粗面化処理が施されたアルミニウム板に陽極酸化処理を施すことにより、該アルミニウム板表面に深さ方向(厚み方向)にのびるマイクロポアを有するアルミニウムの酸化皮膜を形成する工程である。この第1陽極酸化処理により、図2(A)に示されるように、アルミニウム板12の表面に、マイクロポア16aを有するアルミニウムの陽極酸化皮膜14aが形成される。
<First anodizing process>
In the first anodizing treatment step, the aluminum plate having the micropores extending in the depth direction (thickness direction) is formed on the surface of the aluminum plate by anodizing the aluminum plate subjected to the roughening treatment. This is a step of forming a film. By the first anodic oxidation treatment, an aluminum anodic oxide film 14a having micropores 16a is formed on the surface of the aluminum plate 12, as shown in FIG.
第1陽極酸化処理は、この分野で従来から行われている方法で行うことができるが、上述したマイクロポア16を最終的に形成できるように適宜製造条件が設定される。
具体的には、第1陽極酸化処理工程において形成されるマイクロポア16aの平均径(平均開口径)は、通常、4〜14nm程度であることが好ましく、より好ましくは5〜10nmである。上記範囲内であれば、上述した所定の形状を有するマイクロポア16が形成しやすく、得られる平版印刷版および平版印刷版原版の性能もより優れる。
また、マイクロポア16aの深さは、通常、5nm以上100nm未満程度であり、好ましくは20〜60nmである。上記範囲内であれば、上述した所定の形状を有するマイクロポア16が形成しやすく、得られる平版印刷版および平版印刷版原版の性能もより優れる。
The first anodizing treatment can be performed by a method conventionally performed in this field, but manufacturing conditions are appropriately set so that the above-described micropore 16 can be finally formed.
Specifically, the average diameter (average opening diameter) of the micropores 16a formed in the first anodizing treatment step is usually preferably about 4 to 14 nm, and more preferably 5 to 10 nm. If it is in the said range, the micropore 16 which has the predetermined shape mentioned above will be easy to form, and the performance of the obtained lithographic printing plate and lithographic printing plate precursor will be more excellent.
Moreover, the depth of the micropore 16a is usually about 5 nm or more and less than 100 nm, preferably 20 to 60 nm. If it is in the said range, the micropore 16 which has the predetermined shape mentioned above will be easy to form, and the performance of the obtained lithographic printing plate and lithographic printing plate precursor will be more excellent.
マイクロポア16aのポア密度は特に限定されないが、ポア密度が50〜4000個/μm2であることが好ましく、100〜3000個/μm2であることがより好ましい。上記範囲内であれば、得られる平版印刷版の耐刷性および放置払い性、並びに、平版印刷版原版の機上現像性に優れる。 The pore density of the micropore 16a is not particularly limited, but the pore density is preferably 50 to 4000 / μm 2 , and more preferably 100 to 3000 / μm 2 . Within the above range, the resulting lithographic printing plate is excellent in printing durability and neglectability and on-press developability of the lithographic printing plate precursor.
また、第1陽極酸化処理工程により得られる陽極酸化皮膜の膜厚は、35〜120nmが好ましく、より好ましくは40〜90nmである。上記範囲内であれば、該工程を経て得られる平版印刷版用支持体を用いた平版印刷版の耐刷性および放置払い性、並びに、平版印刷版原版の機上現像性に優れる。
さらに、第1陽極酸化処理工程により得られる陽極酸化皮膜の皮膜量は、0.1〜0.3g/m2が好ましく、より好ましくは0.12〜0.25g/m2である。上記範囲内であれば、該工程を経て得られる平版印刷版用支持体を用いた平版印刷版の耐刷性および放置払い性、並びに、平版印刷版原版の機上現像性に優れる。
Moreover, 35-120 nm is preferable and, as for the film thickness of the anodic oxide film obtained by a 1st anodizing process process, More preferably, it is 40-90 nm. Within the above range, the lithographic printing plate using the lithographic printing plate support obtained through this step is excellent in printing durability and neglectability, and on-press developability of the lithographic printing plate precursor.
Furthermore, the film amount of the anodized film obtained by the first anodizing treatment step is preferably 0.1 to 0.3 g / m 2 , more preferably 0.12 to 0.25 g / m 2 . Within the above range, the lithographic printing plate using the lithographic printing plate support obtained through this step is excellent in printing durability and neglectability, and on-press developability of the lithographic printing plate precursor.
第1陽極酸化処理工程においては、硫酸、リン酸、シュウ酸、等の水溶液を主に電解浴として用いることができる。場合によっては、クロム酸、スルファミン酸、ベンゼンスルフォン酸等またはこれらの二種以上を組み合わせた水溶液または非水溶液を用いることもできる。上記のような電解浴中でアルミニウム板に直流または交流を流すと、アルミニウム板表面に陽極酸化皮膜を形成することができる。
なお、電解浴にはアルミニウムイオンが含まれていてもよい。アルミニウムイオンの含有量は特に限定されないが、1〜10g/Lが好ましい。
In the first anodizing treatment step, an aqueous solution of sulfuric acid, phosphoric acid, oxalic acid or the like can be mainly used as an electrolytic bath. Depending on the case, chromic acid, sulfamic acid, benzenesulfonic acid, etc., or an aqueous solution or a non-aqueous solution combining two or more of these may be used. When direct current or alternating current is passed through the aluminum plate in the electrolytic bath as described above, an anodized film can be formed on the surface of the aluminum plate.
The electrolytic bath may contain aluminum ions. Although content of aluminum ion is not specifically limited, 1-10 g / L is preferable.
陽極酸化処理の条件は使用される電解液によって適宜設定されるが、一般的には、電解液の濃度(硫酸などの電解質濃度)が1〜80質量%(好ましくは5〜20質量%)、液温5〜70℃(好ましくは10〜60℃)、電流密度0.5〜60A/dm2(好ましくは5〜50A/dm2)、電圧1〜100V(好ましくは5〜50V)、電解時間1〜100秒(好ましくは5〜60秒)の範囲が適当である。 The conditions for the anodizing treatment are appropriately set depending on the electrolytic solution used. In general, the concentration of the electrolytic solution (concentration of electrolyte such as sulfuric acid) is 1 to 80% by mass (preferably 5 to 20% by mass), Liquid temperature 5 to 70 ° C. (preferably 10 to 60 ° C.), current density 0.5 to 60 A / dm 2 (preferably 5 to 50 A / dm 2 ), voltage 1 to 100 V (preferably 5 to 50 V), electrolysis time A range of 1 to 100 seconds (preferably 5 to 60 seconds) is appropriate.
これらの陽極酸化処理のうちでも特に、英国特許第1,412,768号明細書に記載されている、硫酸中にて高電流密度で陽極酸化する方法が好ましい。 Among these anodizing treatments, the method of anodizing at a high current density in sulfuric acid described in British Patent 1,412,768 is particularly preferable.
<ポアワイド処理工程>
ポアワイド処理工程は、上述した第1陽極酸化処理工程により形成された陽極酸化皮膜に存在するマイクロポアの径(ポア径)を拡大させる処理(孔径拡大処理)である。このポアワイド処理により、図2(B)に示されるように、マイクロポア16aの径が拡大され、より大きな平均径を有するマイクロポア16bを有する陽極酸化皮膜14bが形成される。
このポアワイド処理により、マイクロポア16bの平均径は、10〜60nm(好ましくは、10〜50nm)の範囲まで拡大されることが好ましい。なお、このマイクロポア16bは、上述した大径孔部18に該当する部分となる。
また、該処理により、マイクロポア16bの表面からの深さは、上述した深さAと同程度となるように調整することが好ましい。
<Pore wide processing process>
The pore wide treatment step is a treatment (pore diameter enlargement treatment) for enlarging the diameter (pore diameter) of the micropores present in the anodized film formed by the first anodizing treatment step described above. By this pore-wide treatment, as shown in FIG. 2B, the diameter of the micropore 16a is enlarged, and an anodized film 14b having the micropore 16b having a larger average diameter is formed.
By this pore wide treatment, the average diameter of the micropores 16b is preferably expanded to a range of 10 to 60 nm (preferably 10 to 50 nm). The micropore 16b is a portion corresponding to the large-diameter hole 18 described above.
Moreover, it is preferable to adjust so that the depth from the surface of the micropore 16b may become comparable with the depth A mentioned above by this process.
ポアワイド処理は、上述した第1陽極酸化処理工程により得られたアルミニウム板を、酸水溶液またはアルカリ水溶液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。 The pore-wide treatment is performed by bringing the aluminum plate obtained by the above-described first anodizing treatment step into contact with an acid aqueous solution or an alkali aqueous solution. The method of making it contact is not specifically limited, For example, the immersion method and the spray method are mentioned. Of these, the dipping method is preferred.
ポアワイド処理工程においてアルカリ水溶液を使用する場合、水酸化ナトリウム、水酸化カリウム、および水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリ水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1〜5質量%であるのが好ましい。
なお、アルカリ水溶液のpH=11〜13に調整した後、10〜70℃(好ましくは20〜50℃)の条件下で、アルミニウム板をアルカリ水溶液に1〜300秒(好ましくは1〜50秒)接触させることが適当である。
この際、アルカリ処理液中に炭酸塩、硼酸塩、燐酸塩等の多価弱酸の金属塩を含んでもよい。
When an alkaline aqueous solution is used in the pore wide treatment step, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide, and lithium hydroxide. The concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
In addition, after adjusting to pH = 11-13 of alkaline aqueous solution, an aluminum plate is made into alkaline aqueous solution for 1-300 seconds (preferably 1-50 seconds) on the conditions of 10-70 degreeC (preferably 20-50 degreeC). It is appropriate to make it contact.
At this time, the alkali treatment liquid may contain a metal salt of a polyvalent weak acid such as carbonate, borate or phosphate.
ポアワイド処理工程において酸水溶液を使用する場合、硫酸、リン酸、硝酸、塩酸等の無機酸またはこれらの混合物の水溶液を用いることが好ましい。酸水溶液の濃度は、1〜80質量%が好ましく、より好ましくは5〜50質量%である。
なお、酸水溶液の液温5〜70℃(好ましくは10〜60℃)の条件下で、アルミニウム板を酸水溶液に1〜300秒(好ましくは1〜150秒)接触させることが適当である。
なお、アルカリ水溶液または酸水溶液中にはアルミニウムイオンが含まれていてもよい。アルミニウムイオンの含有量は特に限定されないが、0.5〜10g/Lが好ましい。
When an aqueous acid solution is used in the pore-wide treatment step, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, or a mixture thereof. The concentration of the acid aqueous solution is preferably 1 to 80% by mass, more preferably 5 to 50% by mass.
In addition, it is appropriate that the aluminum plate is brought into contact with the acid aqueous solution for 1 to 300 seconds (preferably 1 to 150 seconds) under the condition that the temperature of the aqueous acid solution is 5 to 70 ° C. (preferably 10 to 60 ° C.).
The alkaline aqueous solution or the acidic aqueous solution may contain aluminum ions. The content of aluminum ions is not particularly limited, but is preferably 0.5 to 10 g / L.
<第2陽極酸化処理工程>
第2陽極酸化処理工程は、上述したポアワイド処理が施されたアルミニウム板に陽極酸化処理を施すことにより、より深さ方向(厚み方向)にのびたマイクロポアを形成する工程である。この第2陽極酸化処理工程により、図2(C)に示されるように、深さ方向にのびたマイクロポア16cを有する陽極酸化皮膜14cが形成される。
この第2陽極酸化処理工程によって、平均径が拡大されたマイクロポア16bの底部に連通し、平均径がマイクロポア16b(大径孔部18に該当)の平均径より小さく、連通位置から深さ方向にのびる新たな孔部20aが形成される。該孔部20aが、上述した小径孔部20に該当する。
<Second anodizing process>
The second anodizing treatment step is a step of forming micropores extending in the depth direction (thickness direction) by subjecting the aluminum plate subjected to the above-described pore wide treatment to anodizing treatment. By this second anodizing treatment step, as shown in FIG. 2C, an anodized film 14c having micropores 16c extending in the depth direction is formed.
By this second anodizing treatment step, the average diameter is communicated with the bottom of the micropore 16b, the average diameter is smaller than the average diameter of the micropore 16b (corresponding to the large diameter hole 18), and the depth from the communicating position. A new hole 20a extending in the direction is formed. The hole 20a corresponds to the small diameter hole 20 described above.
第2陽極酸化処理工程においては、新たに形成される孔部20aの平均径および深さが上述した小径孔部20の所定範囲になるように処理が実施される。なお、処理に使用される電解浴は特に制限されず、例えば、上記の第1陽極酸化処理工程で説明した電解浴が挙げられる。
陽極酸化処理の条件は使用される電解液によって適宜設定されるが、一般的には、電解液の濃度が1〜80質量%(好ましくは5〜20質量%)、液温5〜70℃(好ましくは10〜60℃)、電流密度0.5〜60A/dm2(好ましくは1〜30A/dm2)、電圧1〜100V(好ましくは5〜50V)、電解時間1〜100秒(好ましくは5〜60秒)の範囲が適当である。
In the second anodizing treatment step, the treatment is performed so that the average diameter and depth of the newly formed hole 20a are within the predetermined range of the small diameter hole 20 described above. In addition, the electrolytic bath used for a process is not restrict | limited in particular, For example, the electrolytic bath demonstrated by said 1st anodizing process process is mentioned.
The conditions for anodizing treatment are appropriately set depending on the electrolytic solution used. In general, the concentration of the electrolytic solution is 1 to 80% by mass (preferably 5 to 20% by mass), and the liquid temperature is 5 to 70 ° C. ( Preferably 10 to 60 ° C., current density 0.5 to 60 A / dm 2 (preferably 1 to 30 A / dm 2 ), voltage 1 to 100 V (preferably 5 to 50 V), electrolysis time 1 to 100 seconds (preferably The range of 5 to 60 seconds is appropriate.
第2陽極酸化処理工程により得られる陽極酸化皮膜の膜厚は、通常、10〜500nmであることが好ましく、より好ましくは100〜500nmである。上記範囲内であれば、該工程を経て得られる平版印刷版用支持体を用いた平版印刷版の耐刷性および放置払い性、並びに、平版印刷版原版の機上現像性に優れる。
また、第2陽極酸化処理工程により得られる陽極酸化皮膜の皮膜量は、通常、0.03〜1.30g/m2であり、好ましくは0.26〜1.30g/m2である。上記範囲内であれば、該工程を経て得られる平版印刷版用支持体を用いた平版印刷版の耐刷性および放置払い性、並びに、平版印刷版原版の機上現像性に優れる。
The film thickness of the anodized film obtained by the second anodizing treatment step is usually preferably 10 to 500 nm, more preferably 100 to 500 nm. Within the above range, the lithographic printing plate using the lithographic printing plate support obtained through this step is excellent in printing durability and neglectability, and on-press developability of the lithographic printing plate precursor.
Moreover, the film amount of the anodized film obtained by the second anodizing treatment step is usually 0.03 to 1.30 g / m 2 , preferably 0.26 to 1.30 g / m 2 . Within the above range, the lithographic printing plate using the lithographic printing plate support obtained through this step is excellent in printing durability and neglectability, and on-press developability of the lithographic printing plate precursor.
<第3陽極酸化処理工程>
第3陽極酸化処理工程は、上述した第2陽極酸化処理が施されたアルミニウム板に陽極酸化処理を施すことにより、より深さ方向(厚み方向)にのびたマイクロポアを形成する工程である。この第3陽極酸化処理工程により、図2(D)に示されるように、深さ方向にのびたマイクロポア16dを有する陽極酸化皮膜14dが形成される。
この第3陽極酸化処理工程によって、第2陽極酸化処理で得られた孔部20aの底部に連通し、平均径が孔部20a(小径孔部20に該当)の平均径より大きく、連通位置から深さ方向にのびる新たな孔部22aが形成される。該孔部22aが、上述した中径孔部22に該当する。
<Third anodizing process>
The third anodizing treatment step is a step of forming micropores extending in the depth direction (thickness direction) by subjecting the aluminum plate subjected to the second anodizing treatment described above to anodizing treatment. By this third anodizing treatment step, as shown in FIG. 2D, an anodized film 14d having micropores 16d extending in the depth direction is formed.
By this third anodizing treatment step, it communicates with the bottom of the hole 20a obtained by the second anodizing treatment, the average diameter is larger than the average diameter of the hole 20a (corresponding to the small diameter hole 20), and from the communicating position. A new hole 22a extending in the depth direction is formed. The hole 22a corresponds to the medium-diameter hole 22 described above.
第3陽極酸化処理工程においては、新たに形成される孔部22aの平均径および深さが上述した中径孔部22の所定範囲になるように処理が実施される。なお、処理に使用される電解浴は特に制限されず、例えば、上記の第1陽極酸化処理工程で説明した電解浴が挙げられる。
陽極酸化処理の条件は使用される電解液によって適宜設定されるが、一般的には、電解液の濃度が1〜80質量%(好ましくは5〜20質量%)、液温5〜70℃(好ましくは10〜60℃)、電流密度0.5〜60A/dm2(好ましくは1〜30A/dm2)、電圧1〜100V(好ましくは5〜50V)、電解時間1〜100秒(好ましくは5〜60秒)の範囲が適当である。
In the third anodizing treatment step, the treatment is performed so that the average diameter and depth of the newly formed hole 22a are within the predetermined range of the medium diameter hole 22 described above. In addition, the electrolytic bath used for a process is not restrict | limited in particular, For example, the electrolytic bath demonstrated by said 1st anodizing process process is mentioned.
The conditions for anodizing treatment are appropriately set depending on the electrolytic solution used. In general, the concentration of the electrolytic solution is 1 to 80% by mass (preferably 5 to 20% by mass), and the liquid temperature is 5 to 70 ° C. ( Preferably 10 to 60 ° C., current density 0.5 to 60 A / dm 2 (preferably 1 to 30 A / dm 2 ), voltage 1 to 100 V (preferably 5 to 50 V), electrolysis time 1 to 100 seconds (preferably The range of 5 to 60 seconds is appropriate.
第3陽極酸化処理工程により得られる陽極酸化皮膜の膜厚は、通常、500〜1985nmであることが好ましく、より好ましくは900〜1500nmである。上記範囲内であれば、該工程を経て得られる平版印刷版用支持体を用いた平版印刷版の耐刷性および放置払い性、並びに、平版印刷版原版の機上現像性に優れる。
また、第3陽極酸化処理工程により得られる陽極酸化皮膜の皮膜量は、通常、1.30〜5.16g/m2であり、好ましくは2.34〜3.90g/m2である。上記範囲内であれば、該工程を経て得られる平版印刷版用支持体を用いた平版印刷版の耐刷性および放置払い性、並びに、平版印刷版原版の機上現像性に優れる。
The thickness of the anodized film obtained by the third anodizing treatment step is usually preferably 500 to 1985 nm, and more preferably 900 to 1500 nm. Within the above range, the lithographic printing plate using the lithographic printing plate support obtained through this step is excellent in printing durability and neglectability, and on-press developability of the lithographic printing plate precursor.
Moreover, the film amount of the anodized film obtained by the third anodizing treatment step is usually 1.30 to 5.16 g / m 2 , preferably 2.34 to 3.90 g / m 2 . Within the above range, the lithographic printing plate using the lithographic printing plate support obtained through this step is excellent in printing durability and neglectability, and on-press developability of the lithographic printing plate precursor.
第2陽極酸化処理工程により得られる陽極酸化皮膜の厚み(皮膜厚み2)と、第3陽極酸化処理工程により得られる陽極酸化皮膜の厚み(皮膜厚み3)との比(皮膜厚み2/皮膜厚み3)は、0.1〜0.9が好ましく、0.2〜0.8がより好ましい。上記範囲内であれば、生産性に優れ、かつ、平版印刷版用支持体の耐傷性に優れる。 Ratio (film thickness 2 / film thickness) of the thickness of the anodized film (film thickness 2) obtained by the second anodizing process and the thickness of the anodized film (film thickness 3) obtained by the third anodizing process 3) is preferably from 0.1 to 0.9, more preferably from 0.2 to 0.8. Within the above range, the productivity is excellent and the scratch resistance of the lithographic printing plate support is excellent.
<親水化処理工程>
本発明の平版印刷版用支持体の製造方法は、上述した第3陽極酸化処理工程の後、親水化処理を施す親水化処理工程を有していてもよい。なお、親水化処理としては、特許公開2005−254638の段落[0109]〜[0114]に開示される公知の方法が使用できる。
<Hydrophilic treatment process>
The method for producing a lithographic printing plate support of the present invention may have a hydrophilization treatment step in which a hydrophilization treatment is performed after the above-described third anodizing treatment step. In addition, as a hydrophilic treatment, the well-known method disclosed by paragraph [0109]-[0114] of patent publication 2005-254638 can be used.
なお、ケイ酸ソーダ、ケイ酸カリ等のアルカリ金属ケイ酸塩の水溶液に浸漬させる方法、親水性ビニルポリマーまたは親水性化合物を塗布して親水性の下塗層を形成させる方法等により、親水化処理を行うのが好ましい。 Hydrophilization by a method of immersing in an aqueous solution of an alkali metal silicate such as sodium silicate or potassium silicate, or a method of forming a hydrophilic undercoat layer by applying a hydrophilic vinyl polymer or hydrophilic compound. It is preferable to carry out the treatment.
ケイ酸ソーダ、ケイ酸カリ等のアルカリ金属ケイ酸塩の水溶液による親水化処理は、米国特許第2,714,066号明細書および米国特許第3,181,461号明細書に記載されている方法および手順に従って行うことができる。 Hydrophilization treatment with an aqueous solution of an alkali metal silicate such as sodium silicate and potassium silicate is described in US Pat. No. 2,714,066 and US Pat. No. 3,181,461. It can be performed according to methods and procedures.
<好適態様>
一方、本発明の平版印刷版用支持体としては、上述したアルミニウム板に対して、以下のA態様またはB態様に示す各処理を以下に示す順に施して得られる平版印刷版用支持体が好ましく、耐刷性の点から、特にA態様が好ましい。なお、以下の各処理の間に水洗を行うことが望ましい。ただし、連続して行う2つの工程(処理)が同じ組成の液を使用する場合は水洗を省いてもよい。
<Preferred embodiment>
On the other hand, the lithographic printing plate support of the present invention is preferably a lithographic printing plate support obtained by subjecting the above-described aluminum plate to the treatments shown in the following A and B aspects in the order shown below. From the viewpoint of printing durability, the A mode is particularly preferable. In addition, it is desirable to perform water washing between the following processes. However, in the case where two steps (processes) to be performed successively use a liquid having the same composition, washing with water may be omitted.
(A態様)
(2)アルカリ水溶液中で化学エッチング処理(第1アルカリエッチング処理)
(3)酸性水溶液中で化学エッチング処理(第1デスマット処理)
(4)硝酸を主体とする水溶液中で電気化学的粗面化処理(第1電気化学的粗面化処理)
(5)アルカリ水溶液中で化学エッチング処理(第2アルカリエッチング処理)
(6)酸性水溶液中で化学エッチング処理(第2デスマット処理)
(7)塩酸を主体とする水溶液中で電気化学的粗面化処理(第2電気化学的粗面化処理)
(8)アルカリ水溶液中で化学エッチング処理(第3アルカリエッチング処理)
(9)酸性水溶液中で化学エッチング処理(第3デスマット処理)
(10)陽極酸化処理およびポアワイド処理
(11)親水化処理
(A mode)
(2) Chemical etching treatment in alkaline aqueous solution (first alkali etching treatment)
(3) Chemical etching treatment in acidic aqueous solution (first desmutting treatment)
(4) Electrochemical roughening treatment in an aqueous solution mainly composed of nitric acid (first electrochemical roughening treatment)
(5) Chemical etching treatment in an aqueous alkali solution (second alkali etching treatment)
(6) Chemical etching treatment in acidic aqueous solution (second desmut treatment)
(7) Electrochemical roughening treatment in an aqueous solution mainly composed of hydrochloric acid (second electrochemical roughening treatment)
(8) Chemical etching treatment in an alkaline aqueous solution (third alkali etching treatment)
(9) Chemical etching treatment in acidic aqueous solution (third desmut treatment)
(10) Anodizing treatment and pore-wide treatment (11) Hydrophilization treatment
(B態様)
(2)アルカリ水溶液中で化学エッチング処理(第1アルカリエッチング処理)
(3)酸性水溶液中で化学エッチング処理(第1デスマット処理)
(12)塩酸を主体とする水溶液中で電気化学的粗面化処理
(5)アルカリ水溶液中で化学エッチング処理(第2アルカリエッチング処理)
(6)酸性水溶液中で化学エッチング処理(第2デスマット処理)
(10)陽極酸化処理およびポアワイド処理
(11)親水化処理
(B mode)
(2) Chemical etching treatment in alkaline aqueous solution (first alkali etching treatment)
(3) Chemical etching treatment in acidic aqueous solution (first desmutting treatment)
(12) Electrochemical roughening treatment in an aqueous solution mainly composed of hydrochloric acid (5) Chemical etching treatment in an aqueous alkali solution (second alkali etching treatment)
(6) Chemical etching treatment in acidic aqueous solution (second desmut treatment)
(10) Anodizing treatment and pore-wide treatment (11) Hydrophilization treatment
なお、上記A態様およびB態様の(2)の処理の前に、必要に応じて、(1)機械的粗面化処理を実施してもよい。なお、耐刷性などの観点からは、該(1)の処理は各態様に含まれないほうが好ましい。
ここで、上記(1)〜(12)における機械的粗面化処理、電気化学的粗面化処理、化学エッチング処理、陽極酸化処理および親水化処理は、上述した処理方法、条件と同様の方法で行うことができるが、以下に説明する処理方法、条件で施すのが好ましい。
In addition, you may implement a mechanical surface roughening process as needed before the process of (2) of the said A aspect and B aspect. From the viewpoint of printing durability and the like, it is preferable that the process (1) is not included in each embodiment.
Here, the mechanical surface roughening treatment, electrochemical surface roughening treatment, chemical etching treatment, anodizing treatment and hydrophilization treatment in the above (1) to (12) are the same as the above-described treatment methods and conditions. However, the treatment is preferably performed under the treatment method and conditions described below.
機械的粗面化処理は、毛径が0.2〜1.61mmの回転するナイロンブラシロールと、アルミニウム板表面に供給されるスラリー液で機械的に粗面化処理するのが好ましい。
研磨剤としては公知の物が使用できるが、珪砂、石英、水酸化アルミニウムまたはこれらの混合物が好ましい。
スラリー液の比重は1.05〜1.3が好ましい。勿論、スラリー液を吹き付ける方式、ワイヤーブラシを用いる方式、凹凸を付けた圧延ロールの表面形状をアルミニウム板に転写する方式などを用いてもよい。
The mechanical roughening treatment is preferably mechanically roughened with a rotating nylon brush roll having a bristle diameter of 0.2 to 1.61 mm and a slurry liquid supplied to the aluminum plate surface.
Although a well-known thing can be used as an abrasive | polishing agent, quartz sand, quartz, aluminum hydroxide, or a mixture thereof is preferable.
The specific gravity of the slurry liquid is preferably 1.05 to 1.3. Of course, a method of spraying a slurry liquid, a method of using a wire brush, a method of transferring the surface shape of an uneven rolling roll to an aluminum plate, or the like may be used.
アルカリ水溶液中での化学エッチング処理に用いるアルカリ水溶液の濃度は1〜30質量%が好ましく、アルミニウムおよびアルミニウム合金中に含有する合金成分が0〜10質量%含有していてよい。
アルカリ水溶液としては、特に苛性ソーダを主体とする水溶液が好ましい。液温は常温〜95℃で、1〜120秒間処理するのが好ましい。
エッチング処理が終了した後には、処理液を次工程に持ち込まないためにニップローラーによる液切りとスプレーによる水洗を行うのが好ましい。
The concentration of the alkaline aqueous solution used for the chemical etching treatment in the alkaline aqueous solution is preferably 1 to 30% by mass, and the alloy component contained in aluminum and the aluminum alloy may contain 0 to 10% by mass.
As the alkaline aqueous solution, an aqueous solution mainly composed of caustic soda is particularly preferable. The liquid temperature is preferably from room temperature to 95 ° C., and the treatment is preferably performed for 1 to 120 seconds.
After the etching process is completed, it is preferable to perform liquid draining with a nip roller and water washing with a spray so as not to bring the processing liquid into the next process.
第1アルカリエッチング処理におけるアルミニウム板の溶解量は、0.5〜30g/m2であるのが好ましく、1.0〜20g/m2であるのがより好ましく、3.0〜15g/m2であるのが更に好ましい。
第2アルカリエッチング処理においては、アルミニウム板の溶解量は、0.001〜30g/m2であるのが好ましく、0.1〜4g/m2であるのがより好ましく、0.2〜1.5g/m2であるのが更に好ましい。
第3アルカリエッチング処理においては、アルミニウム板の溶解量は、0.001〜30g/m2であるのが好ましく、0.01〜0.8g/m2であるのがより好ましく、0.02〜0.3g/m2であるのが更に好ましい。
Dissolution amount of the aluminum plate in the first alkali etching treatment is preferably from 0.5 to 30 g / m 2, more preferably from 1.0~20g / m 2, 3.0~15g / m 2 More preferably.
In the second alkali etching treatment, dissolved amount of the aluminum plate is preferably from 0.001~30g / m 2, more preferably from 0.1-4 g / m 2, 0.2 to 1. More preferably, it is 5 g / m 2 .
In the third alkali etching treatment, dissolved amount of the aluminum plate is preferably from 0.001~30g / m 2, more preferably from 0.01~0.8g / m 2, 0.02~ More preferably, it is 0.3 g / m 2 .
酸性水溶液中で化学エッチング処理(第1〜第3デスマット処理)では、燐酸、硝酸、硫酸、クロム酸、塩酸、またはこれらの2以上の酸を含む混酸が好適に用いられる。
酸性水溶液の濃度は0.5〜60質量%が好ましい。
また、酸性水溶液中にはアルミニウムおよびアルミニウム合金中に含有する合金成分が0〜5質量%溶解していてもよい。
また、液温は常温から95℃で実施され、処理時間は1〜120秒が好ましい。デスマット処理が終了した後には、処理液を次工程に持ち込まないためにニップローラーによる液切りとスプレーによる水洗を行うのが好ましい。
In chemical etching treatment (first to third desmutting treatment) in an acidic aqueous solution, phosphoric acid, nitric acid, sulfuric acid, chromic acid, hydrochloric acid, or a mixed acid containing two or more acids thereof is preferably used.
The concentration of the acidic aqueous solution is preferably 0.5 to 60% by mass.
Moreover, the alloy component contained in aluminum and aluminum alloy may melt | dissolve 0-5 mass% in acidic aqueous solution.
The liquid temperature is from room temperature to 95 ° C., and the treatment time is preferably 1 to 120 seconds. After the desmut treatment is completed, it is preferable to carry out liquid removal by a nip roller and water washing by spraying in order not to bring the treatment liquid into the next process.
電気化学的粗面化処理に用いられる水溶液について説明する。
第1電気化学的粗面化処理で用いる硝酸を主体とする水溶液は、通常の直流または交流を用いた電気化学的な粗面化処理に用いるものを使用でき、1〜100g/Lの硝酸水溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウムなどの硝酸イオン;塩化アルミニウム、塩化ナトリウム、塩化アンモニウムなどの塩酸イオン;等を有する塩酸または硝酸化合物の1つ以上を1g/L〜飽和まで添加して使用することができる。
また、硝酸を主体とする水溶液中には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリカ等のアルミニウム合金中に含まれる金属が溶解していてもよい。
具体的には、硝酸0.5〜2質量%水溶液中にアルミニウムイオンが3〜50g/Lとなるように塩化アルミニウム、硝酸アルミニウムを添加した液を用いるのが好ましい。
また、温度は10〜90℃が好ましく、40〜80℃がより好ましい。
The aqueous solution used for the electrochemical surface roughening treatment will be described.
The aqueous solution mainly composed of nitric acid used in the first electrochemical surface roughening treatment can be one used for an electrochemical surface roughening treatment using ordinary direct current or alternating current, and an aqueous nitric acid solution of 1 to 100 g / L. One or more of hydrochloric acid or nitric acid compound having nitric acid ions such as aluminum nitrate, sodium nitrate and ammonium nitrate; hydrochloric acid ions such as aluminum chloride, sodium chloride and ammonium chloride; be able to.
Moreover, the metal contained in aluminum alloys, such as iron, copper, manganese, nickel, titanium, magnesium, and a silica, may melt | dissolve in the aqueous solution which has nitric acid as a main component.
Specifically, it is preferable to use a solution in which aluminum chloride and aluminum nitrate are added so that aluminum ions are 3 to 50 g / L in a 0.5 to 2 mass% nitric acid aqueous solution.
The temperature is preferably 10 to 90 ° C, more preferably 40 to 80 ° C.
一方、第2電気化学的粗面化処理で用いる塩酸を主体とする水溶液は、通常の直流または交流を用いた電気化学的な粗面化処理に用いるものを使用でき、1〜100g/Lの塩酸水溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウムなどの硝酸イオン;塩化アルミニウム、塩化ナトリウム、塩化アンモニウムなどの塩酸イオン;等を有する塩酸または硝酸化合物の1つ以上を1g/L〜飽和まで添加して使用することができる。
また、塩酸を主体とする水溶液中には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリカ等のアルミニウム合金中に含まれる金属が溶解していてもよい。
具体的には、塩酸0.5〜2質量%水溶液中にアルミニウムイオンが3〜50g/Lとなるように塩化アルミニウム、硝酸アルミニウムを添加した液を用いるのが好ましい。
また、温度は10〜60℃が好ましく、20〜50℃がより好ましい。なお、次亜塩素酸を添加してもよい。
一方、B態様における塩酸水溶液中での電気化学的粗面化処理で用いる塩酸を主体とする水溶液は、通常の直流または交流を用いた電気化学的な粗面化処理に用いるものを使用でき、1〜100g/Lの塩酸水溶液に、硫酸を0〜30g/L添加して使用することができる。また、この溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウムなどの硝酸イオン;塩化アルミニウム、塩化ナトリウム、塩化アンモニウムなどの塩酸イオン;等を有する塩酸または硝酸化合物の1つ以上を1g/L〜飽和まで添加して使用することができる。
また、塩酸を主体とする水溶液中には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリカ等のアルミニウム合金中に含まれる金属が溶解していてもよい。
具体的には、硝酸0.5〜2質量%水溶液中に、アルミニウムイオンが3〜50g/Lとなるように塩化アルミニウム、硝酸アルミニウム等を添加した液を用いるのが好ましい。
また、温度は10〜60℃が好ましく、20〜50℃がより好ましい。なお、次亜塩素酸を添加してもよい。
On the other hand, the aqueous solution mainly composed of hydrochloric acid used in the second electrochemical surface roughening treatment can be one used for an electrochemical surface roughening treatment using normal direct current or alternating current, and has an amount of 1 to 100 g / L. One or more of hydrochloric acid or nitric acid compound having nitric acid ions such as aluminum nitrate, sodium nitrate and ammonium nitrate; hydrochloric acid ions such as aluminum chloride, sodium chloride and ammonium chloride; Can be used.
Moreover, the metal contained in aluminum alloys, such as iron, copper, manganese, nickel, titanium, magnesium, and a silica, may melt | dissolve in the aqueous solution which has hydrochloric acid as a main component.
Specifically, it is preferable to use a solution in which aluminum chloride and aluminum nitrate are added so that the aluminum ion is 3 to 50 g / L in an aqueous solution of 0.5 to 2% by mass of hydrochloric acid.
Moreover, 10-60 degreeC is preferable and 20-50 degreeC is more preferable. Hypochlorous acid may be added.
On the other hand, the aqueous solution mainly composed of hydrochloric acid used in the electrochemical surface roughening treatment in the aqueous hydrochloric acid solution in the embodiment B can be used for the electrochemical surface roughening treatment using ordinary direct current or alternating current, It can be used by adding 0-30 g / L of sulfuric acid to 1-100 g / L hydrochloric acid aqueous solution. In addition, one or more of hydrochloric acid or nitric acid compound having nitric acid ions such as aluminum nitrate, sodium nitrate and ammonium nitrate; hydrochloric acid ions such as aluminum chloride, sodium chloride and ammonium chloride; Can be used.
Moreover, the metal contained in aluminum alloys, such as iron, copper, manganese, nickel, titanium, magnesium, and a silica, may melt | dissolve in the aqueous solution which has hydrochloric acid as a main component.
Specifically, it is preferable to use a solution obtained by adding aluminum chloride, aluminum nitrate, or the like so that the aluminum ion is 3 to 50 g / L in an aqueous solution of 0.5 to 2% by mass of nitric acid.
Moreover, 10-60 degreeC is preferable and 20-50 degreeC is more preferable. Hypochlorous acid may be added.
電気化学的粗面化処理の交流電源波形は、サイン波、矩形波、台形波、三角波などを用いることができる。周波数は0.1〜250Hzが好ましい。 A sine wave, a rectangular wave, a trapezoidal wave, a triangular wave, or the like can be used as the AC power supply waveform for the electrochemical roughening treatment. The frequency is preferably 0.1 to 250 Hz.
図3は、本発明の平版印刷版用支持体の製造方法における電気化学的粗面化処理に用いられる交番波形電流波形図の一例を示すグラフである。
図3において、taはアノード反応時間、tcはカソード反応時間、tpは電流が0からピークに達するまでの時間、Iaはアノードサイクル側のピーク時の電流、Icはカソードサイクル側のピーク時の電流である。台形波において、電流が0からピークに達するまでの時間tpは1〜10msecが好ましい。電源回路のインピーダンスの影響のため、tpが1未満であると電流波形の立ち上がり時に大きな電源電圧が必要となり、電源の設備コストが高くなる。10msecより大きくなると、電解液中の微量成分の影響を受けやすくなり均一な粗面化が行われにくくなる。電気化学的な粗面化に用いる交流の1サイクルの条件が、アルミニウム板のアノード反応時間taとカソード反応時間tcの比tc/taが1〜20、アルミニウム板がアノード時の電気量Qcとアノード時の電気量Qaの比Qc/Qaが0.3〜20、アノード反応時間taが5〜1000msec、の範囲にあるのが好ましい。tc/taは2.5〜15であるのがより好ましい。Qc/Qaは2.5〜15であるのがより好ましい。電流密度は台形波のピーク値で電流のアノードサイクル側Ia、カソードサイクル側Icともに10〜200A/dm2が好ましい。Ic/Iaは0.3〜20の範囲にあるのが好ましい。電気化学的な粗面化が終了した時点でのアルミニウム板のアノード反応にあずかる電気量の総和は25〜1000C/dm2が好ましい。
FIG. 3 is a graph showing an example of an alternating waveform current waveform diagram used for electrochemical surface roughening in the method for producing a lithographic printing plate support of the present invention.
In FIG. 3, ta is the anode reaction time, tc is the cathode reaction time, tp is the time until the current reaches the peak from 0, Ia is the peak current on the anode cycle side, and Ic is the peak current on the cathode cycle side It is. In the trapezoidal wave, the time tp until the current reaches a peak from 0 is preferably 1 to 10 msec. Due to the influence of the impedance of the power supply circuit, if tp is less than 1, a large power supply voltage is required at the rise of the current waveform, and the equipment cost of the power supply increases. When it is longer than 10 msec, it is easily affected by a trace component in the electrolytic solution, and uniform surface roughening is difficult to be performed. The condition of one cycle of alternating current used for electrochemical surface roughening is that the ratio tc / ta of the anode reaction time ta to the cathode reaction time tc of the aluminum plate is 1 to 20, the quantity of electricity Qc when the aluminum plate is anode and the anode It is preferable that the ratio Qc / Qa of the amount of electricity Qa is 0.3 to 20 and the anode reaction time ta is 5 to 1000 msec. tc / ta is more preferably 2.5 to 15. Qc / Qa is more preferably 2.5 to 15. The current density is preferably a trapezoidal wave peak value of 10 to 200 A / dm 2 for both the anode cycle side Ia and the cathode cycle side Ic of the current. Ic / Ia is preferably in the range of 0.3-20. The total amount of electricity furnished to anode reaction of the aluminum plate at the time the electrochemical graining is finished preferably 25~1000C / dm 2.
本発明においては、交流を用いた電気化学的な粗面化に用いる電解槽は、縦型、フラット型、ラジアル型など公知の表面処理に用いる電解槽が使用可能であるが、特開平5−195300号公報に記載されているようなラジアル型電解槽が特に好ましい。 In the present invention, as an electrolytic cell used for electrochemical surface roughening using alternating current, known electrolytic cells such as vertical, flat and radial types can be used. A radial electrolytic cell as described in Japanese Patent No. 195300 is particularly preferred.
交流を用いた電気化学的な粗面化には図4に示した装置を用いることができる。
図4は、本発明の平版印刷版用支持体の製造方法における交流を用いた電気化学的粗面化処理におけるラジアル型セルの一例を示す側面図である。
図4において、50は主電解槽、51は交流電源、52はラジアルドラムローラ、53a,53bは主極、54は電解液供給口、55は電解液、56はスリット、57は電解液通路、58は補助陽極、60は補助陽極槽、Wはアルミニウム板である。電解槽を2つ以上用いるときには、電解条件は同じでもよいし、異なっていてもよい。
アルミニウム板Wは主電解槽50中に浸漬して配置されたラジアルドラムローラ52に巻装され、搬送過程で交流電源51に接続する主極53a、53bにより電解処理される。電解液55は電解液供給口54からスリット56を通じてラジアルドラムローラ52と主極53a、53bとの間の電解液通路57に供給される。主電解槽50で処理されたアルミニウム板Wは次いで補助陽極槽60で電解処理される。この補助陽極槽60には補助陽極58がアルミニウム板Wと対向配置されており、電解液55が補助陽極58とアルミニウム板Wとの間の空間を流れるように供給される。
The apparatus shown in FIG. 4 can be used for electrochemical surface roughening using alternating current.
FIG. 4 is a side view showing an example of a radial cell in an electrochemical surface roughening treatment using alternating current in the method for producing a lithographic printing plate support of the present invention.
In FIG. 4, 50 is a main electrolytic cell, 51 is an AC power source, 52 is a radial drum roller, 53a and 53b are main electrodes, 54 is an electrolyte supply port, 55 is an electrolyte, 56 is a slit, 57 is an electrolyte passage, 58 is an auxiliary anode, 60 is an auxiliary anode tank, and W is an aluminum plate. When two or more electrolytic cells are used, the electrolysis conditions may be the same or different.
The aluminum plate W is wound around a radial drum roller 52 disposed so as to be immersed in the main electrolytic cell 50, and is subjected to electrolytic treatment by main electrodes 53a and 53b connected to the AC power source 51 in the course of conveyance. The electrolytic solution 55 is supplied from the electrolytic solution supply port 54 to the electrolytic solution passage 57 between the radial drum roller 52 and the main poles 53a and 53b through the slit 56. The aluminum plate W treated in the main electrolytic cell 50 is then subjected to electrolytic treatment in the auxiliary anode cell 60. An auxiliary anode 58 is disposed opposite to the aluminum plate W in the auxiliary anode tank 60, and the electrolytic solution 55 is supplied so as to flow in the space between the auxiliary anode 58 and the aluminum plate W.
一方、電気化学的粗面化処理(第1および第2電気化学的粗面化処理)では、アルミニウム板とこれに対向する電極間に直流電流を加え、電気化学的に粗面化する方法であってもよい。 On the other hand, in the electrochemical surface roughening process (first and second electrochemical surface roughening processes), a direct current is applied between the aluminum plate and the electrode facing the aluminum plate to electrochemically roughen the surface. There may be.
<乾燥工程>
上述した工程により得られた平版印刷版用支持体を得た後、後述する画像記録層を設ける前に、平版印刷版用支持体の表面を乾燥させる処理(乾燥工程)を施すのが好ましい。
乾燥は、表面処理の最後の処理の後、水洗処理およびニップローラーで液切りしてから行うのが好ましい。具体的な条件としては特に制限されないが、熱風(50〜200℃)、または、冷風自然乾燥法等で乾燥することが好ましい。
<Drying process>
After obtaining the lithographic printing plate support obtained by the steps described above, it is preferable to perform a treatment (drying step) for drying the surface of the lithographic printing plate support before providing an image recording layer described later.
Drying is preferably performed after the final treatment of the surface treatment, after washing with water and draining with a nip roller. Although it does not restrict | limit especially as specific conditions, It is preferable to dry with a hot air (50-200 degreeC) or a cold-air natural drying method.
<平版印刷版原版>
本発明の平版印刷版用支持体には、以下に例示する感光層、感熱層等の画像記録層を設けて本発明の平版印刷版原版とすることができる。画像記録層は、特に限定されないが、例えば、特開2003−1956号公報の段落[0042]〜[0198]に記載される、コンベンショナルポジタイプ、コンベンショナルネガタイプ、フォトポリマータイプ、サーマルポジタイプ、サーマルネガタイプ、機上現像可能な無処理タイプが好適に挙げられる。
以下、好適な画像記録層について、詳細に説明する。
<Lithographic printing plate precursor>
The lithographic printing plate support of the present invention can be provided with an image recording layer such as a photosensitive layer and a heat-sensitive layer exemplified below to form the lithographic printing plate precursor of the present invention. The image recording layer is not particularly limited. For example, the conventional positive type, the conventional negative type, the photopolymer type, the thermal positive type, and the thermal negative type described in paragraphs [0042] to [0198] of JP-A-2003-1956. A non-processing type that can be developed on the machine is preferable.
Hereinafter, a suitable image recording layer will be described in detail.
<画像記録層>
本発明の平版印刷版原版に用いることができる好ましい画像記録層としては、印刷インキおよび/または湿し水により除去可能なものであり、具体的には、赤外線吸収剤と、重合開始剤と、重合性化合物を有し、赤外線の照射により記録可能な画像記録層であるのが好ましい。
本発明の平版印刷版原版においては、赤外線の照射により画像記録層の露光部が硬化して疎水性(親油性)領域を形成し、かつ、印刷開始時に未露光部が湿し水、インキまたは湿し水とインキとの乳化物によって支持体上から速やかに除去される。
以下、画像記録層の各構成成分について説明する。
<Image recording layer>
A preferred image recording layer that can be used in the lithographic printing plate precursor according to the present invention is a layer that can be removed by printing ink and / or fountain solution. Specifically, an infrared absorber, a polymerization initiator, The image recording layer preferably has a polymerizable compound and can be recorded by infrared irradiation.
In the lithographic printing plate precursor of the present invention, the exposed portion of the image recording layer is cured by infrared irradiation to form a hydrophobic (lipophilic) region, and the unexposed portion is dampened with water, ink or ink at the start of printing. It is quickly removed from the support by an emulsion of fountain solution and ink.
Hereinafter, each component of the image recording layer will be described.
(赤外線吸収剤)
本発明の平版印刷版原版を、760〜1200nmの赤外線を発するレーザーを光源として画像形成する場合には、通常、赤外線吸収剤を用いる。
赤外線吸収剤は、吸収した赤外線を熱に変換する機能と赤外線により励起して後述する重合開始剤(ラジカル発生剤)に電子移動/エネルギー移動する機能を有する。
本発明において使用することができる赤外線吸収剤は、波長760〜1200nmに吸収極大を有する染料または顔料である。
(Infrared absorber)
When forming an image of the lithographic printing plate precursor according to the present invention using a laser emitting infrared rays of 760 to 1200 nm as a light source, an infrared absorber is usually used.
The infrared absorber has a function of converting the absorbed infrared ray into heat and a function of being excited by the infrared ray and transferring electrons / energy to a polymerization initiator (radical generator) described later.
The infrared absorbent that can be used in the present invention is a dye or pigment having an absorption maximum at a wavelength of 760 to 1200 nm.
染料としては、市販の染料や、例えば、「染料便覧」(有機合成化学協会編集、昭和45年刊)等の文献に記載されている公知のものが利用できる。
具体的には、アゾ染料、金属錯塩アゾ染料、ピラゾロンアゾ染料、ナフトキノン染料、アントラキノン染料、フタロシアニン染料、カルボニウム染料、キノンイミン染料、メチン染料、シアニン染料、スクワリリウム色素、ピリリウム塩、金属チオレート錯体等の染料が挙げられる。例えば、特開2009-255434号公報の段落[0096]〜[0107]に開示される染料を好適に使用することができる。
一方、顔料としては、例えば、特開2009-255434号公報の段落[0108]〜[0112]に記載される顔料が利用できる。
As the dye, commercially available dyes, for example, known dyes described in documents such as “Dye Handbook” (edited by the Society for Synthetic Organic Chemistry, published in 1970) can be used.
Specifically, dyes such as azo dyes, metal complex azo dyes, pyrazolone azo dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, carbonium dyes, quinoneimine dyes, methine dyes, cyanine dyes, squarylium dyes, pyrylium salts, metal thiolate complexes, etc. Is mentioned. For example, the dyes disclosed in paragraphs [0096] to [0107] of JP2009-255434A can be suitably used.
On the other hand, as the pigment, for example, pigments described in paragraphs [0108] to [0112] of JP2009-255434A can be used.
(重合開始剤)
上記重合開始剤は、光、熱あるいはその両方のエネルギーによりラジカルを発生し、重合性の不飽和基を有する化合物の重合を開始、促進する化合物であり、本発明においては、熱によりラジカルを発生する化合物(熱ラジカル発生剤)を使用するのが好ましい。
上記重合開始剤としては、公知の熱重合開始剤や結合解離エネルギーの小さな結合を有する化合物、光重合開始剤などを使用することができる。
重合開始剤としては、例えば、特開2009-255434号公報の段落[0115]〜[0141]に記載される重合開始剤などが利用できる。
(Polymerization initiator)
The polymerization initiator is a compound that generates radicals by energy of light, heat, or both, and initiates and accelerates polymerization of a compound having a polymerizable unsaturated group. In the present invention, it generates radicals by heat. It is preferable to use a compound (thermal radical generator).
As the polymerization initiator, a known thermal polymerization initiator, a compound having a bond with a small bond dissociation energy, a photopolymerization initiator, or the like can be used.
As the polymerization initiator, for example, polymerization initiators described in paragraphs [0115] to [0141] of JP-A-2009-255434 can be used.
なお、重合開始剤としてオニウム塩などが使用でき、反応性、安定性の面から上記オキシムエステル化合物あるいはジアゾニウム塩、ヨードニウム塩、スルホニウム塩が好適なものとして挙げられる。 In addition, an onium salt etc. can be used as a polymerization initiator, and the said oxime ester compound or a diazonium salt, an iodonium salt, and a sulfonium salt are mentioned suitably from the surface of reactivity and stability.
これらの重合開始剤は、画像記録層を構成する全固形分に対し0.1〜50質量%、好ましくは0.5〜30質量%、特に好ましくは1〜20質量%の割合で添加することができる。この範囲で、良好な感度と印刷時の非画像部の良好な汚れ難さが得られる。 These polymerization initiators are added in a proportion of 0.1 to 50% by mass, preferably 0.5 to 30% by mass, particularly preferably 1 to 20% by mass, based on the total solid content constituting the image recording layer. Can do. Within this range, good sensitivity and good stain resistance of the non-image area during printing can be obtained.
(重合性化合物)
重合性化合物は、少なくとも一個のエチレン性不飽和二重結合を有する付加重合性化合物であり、末端エチレン性不飽和結合を少なくとも1個、好ましくは2個以上有する化合物から選択される。本発明においては、このような化合物は本発明の技術分野において広く知られるものを特に限定無く用いることができる。
重合性化合物としては、例えば、特開2009-255434号公報の段落[0142]〜[0163]に例示される重合性化合物などが使用できる。
(Polymerizable compound)
The polymerizable compound is an addition polymerizable compound having at least one ethylenically unsaturated double bond, and is selected from compounds having at least one, preferably two or more terminal ethylenically unsaturated bonds. In the present invention, those compounds widely known in the technical field of the present invention can be used without any particular limitation.
As the polymerizable compound, for example, polymerizable compounds exemplified in paragraphs [0142] to [0163] of JP-A-2009-255434 can be used.
また、イソシアネートとヒドロキシル基の付加反応を用いて製造されるウレタン系付加重合性化合物も好適である。その具体例としては、特公昭48−41708号公報に記載されている1分子に2個以上のイソシアネート基を有するポリイソシアネート化合物に、下記一般式(I)で示されるヒドロキシル基を含有するビニルモノマーを付加させた1分子中に2個以上の重合性ビニル基を含有するビニルウレタン化合物等が挙げられる。 Also suitable are urethane-based addition polymerizable compounds produced by the addition reaction of isocyanate and hydroxyl groups. Specific examples thereof include a vinyl monomer containing a hydroxyl group represented by the following general formula (I) in a polyisocyanate compound having two or more isocyanate groups per molecule described in JP-B-48-41708. And vinyl urethane compounds containing two or more polymerizable vinyl groups in one molecule to which is added.
CH2=C(R4)COOCH2CH(R5)OH (A)
(ただし、R4およびR5は、HまたはCH3を示す。)
CH 2 = C (R 4) COOCH 2 CH (R 5) OH (A)
(However, R 4 and R 5 represent H or CH 3. )
重合性化合物は、画像記録層中の不揮発性成分に対して、好ましくは5〜80質量%、さらに好ましくは25〜75質量%の範囲で使用される。また、これらは単独で用いても2種以上併用してもよい。 The polymerizable compound is used in an amount of preferably 5 to 80% by mass, more preferably 25 to 75% by mass, based on the nonvolatile component in the image recording layer. These may be used alone or in combination of two or more.
(バインダーポリマー)
本発明においては、画像記録層には、画像記録層の皮膜形成性を向上させるためバインダーポリマーを用いることができる。
バインダーポリマーは従来公知のものを制限なく使用でき、皮膜性を有するポリマーが好ましい。このようなバインダーポリマーとしては、具体的には、例えば、アクリル樹脂、ポリビニルアセタール樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、ポリアミド樹脂、エポキシ樹脂、メタクリル樹脂、ポリスチレン系樹脂、ノボラック型フェノール系樹脂、ポリエステル樹脂、合成ゴム、天然ゴム等が挙げられる。
バインダーポリマーは、画像部の皮膜強度を向上するために、架橋性を有していてもよい。バインダーポリマーに架橋性を持たせるためには、エチレン性不飽和結合等の架橋性官能基を高分子の主鎖中または側鎖中に導入すればよい。架橋性官能基は、共重合により導入してもよい。
バインダーポリマーとしては、例えば、特開2009-255434号公報の段落[0165]〜[0172]に開示されるバインダーポリマーを使用することもできる。
(Binder polymer)
In the present invention, a binder polymer can be used for the image recording layer in order to improve the film forming property of the image recording layer.
Conventionally known binder polymers can be used without limitation, and polymers having film properties are preferred. Specifically, as such a binder polymer, for example, acrylic resin, polyvinyl acetal resin, polyurethane resin, polyurea resin, polyimide resin, polyamide resin, epoxy resin, methacrylic resin, polystyrene resin, novolac phenolic resin, Polyester resin, synthetic rubber, natural rubber and the like can be mentioned.
The binder polymer may have crosslinkability in order to improve the film strength of the image area. In order to impart crosslinkability to the binder polymer, a crosslinkable functional group such as an ethylenically unsaturated bond may be introduced into the main chain or side chain of the polymer. The crosslinkable functional group may be introduced by copolymerization.
As the binder polymer, for example, binder polymers disclosed in paragraphs [0165] to [0172] of JP-A-2009-255434 can be used.
バインダーポリマーの含有量は、画像記録層の全固形分に対して、5〜90質量%であり、5〜80質量%であるのが好ましく、10〜70質量%であるのがより好ましい。この範囲で、良好な画像部の強度と画像形成性が得られる。
また、重合性化合物とバインダーポリマーは、質量比で0.5/1〜4/1となる量で用いるのが好ましい。
The content of the binder polymer is 5 to 90% by mass, preferably 5 to 80% by mass, and more preferably 10 to 70% by mass with respect to the total solid content of the image recording layer. Within this range, good image area strength and image formability can be obtained.
Moreover, it is preferable to use a polymeric compound and a binder polymer in the quantity used as 0.5 / 1-4/1 by mass ratio.
(界面活性剤)
画像記録層には、印刷開始時の機上現像性を促進させるため、および、塗布面状を向上させるために界面活性剤を用いるのが好ましい。
界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、フッ素系界面活性剤等が挙げられる。
界面活性剤としては、例えば、特開2009-255434号公報の段落[0175]〜[0179]に開示される界面活性剤などを使用できる。
(Surfactant)
In the image recording layer, it is preferable to use a surfactant in order to promote on-press developability at the start of printing and to improve the coated surface state.
Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and fluorosurfactants.
As the surfactant, for example, surfactants disclosed in paragraphs [0175] to [0179] of JP-A-2009-255434 can be used.
界面活性剤は、単独でまたは2種以上を組み合わせて用いることができる。
界面活性剤の含有量は、画像記録層の全固形分に対して、0.001〜10質量%であるのが好ましく、0.01〜5質量%であるのがより好ましい。
Surfactant can be used individually or in combination of 2 or more types.
The content of the surfactant is preferably 0.001 to 10% by mass and more preferably 0.01 to 5% by mass with respect to the total solid content of the image recording layer.
画像記録層には、さらに必要に応じてこれら以外に種々の化合物を添加してもよい。例えば、特開2009-255434号公報の段落[0181]〜[0190]に開示される着色剤、焼き出し剤、重合禁止剤、高級脂肪酸誘導体、可塑剤、無機微粒子、低分子親水性化合物などが挙げられる。 In addition to these, various compounds may be added to the image recording layer as necessary. For example, colorants, print-out agents, polymerization inhibitors, higher fatty acid derivatives, plasticizers, inorganic fine particles, low molecular weight hydrophilic compounds and the like disclosed in paragraphs [0181] to [0190] of JP-A-2009-255434 are disclosed. Can be mentioned.
<画像記録層の形成>
画像記録層は、必要な上記各成分を溶剤に分散または溶かして塗布液を調製した後、該塗布液を支持体上に塗布することにより形成される。ここで、使用する溶剤としては、エチレンジクロライド、シクロヘキサノン、メチルエチルケトン、メタノール、エタノール、プロパノール、エチレングリコールモノメチルエーテル、1−メトキシ−2−プロパノール、2−メトキシエチルアセテート、1−メトキシ−2−プロピルアセテート、水等を挙げることができるが、これに限定されるものではない。
これらの溶剤は、単独または混合して使用される。塗布液の固形分濃度は、好ましくは1〜50質量%である。
<Formation of image recording layer>
The image recording layer is formed by preparing a coating solution by dispersing or dissolving the necessary components described above in a solvent and then coating the coating solution on a support. Here, as a solvent to be used, ethylene dichloride, cyclohexanone, methyl ethyl ketone, methanol, ethanol, propanol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-methoxyethyl acetate, 1-methoxy-2-propyl acetate, Although water etc. can be mentioned, it is not limited to this.
These solvents are used alone or in combination. The solid content concentration of the coating solution is preferably 1 to 50% by mass.
また、塗布、乾燥後に得られる平版印刷版用支持体上の画像記録層塗布量(固形分)は、用途によって異なるが、一般的に0.3〜3.0g/m2が好ましい。この範囲で、良好な感度と画像記録層の良好な皮膜特性が得られる。
塗布する方法としては、例えば、バーコーター塗布、回転塗布、スプレー塗布、カーテン塗布、ディップ塗布、エアナイフ塗布、ブレード塗布、ロール塗布等を挙げられる。
Further, coating amount of the image-recording layer on the lithographic printing plate support obtained after drying (solid content) may be varied according to the intended purpose, generally 0.3 to 3.0 g / m 2 is preferred. Within this range, good sensitivity and good film characteristics of the image recording layer can be obtained.
Examples of the coating method include bar coater coating, spin coating, spray coating, curtain coating, dip coating, air knife coating, blade coating, and roll coating.
<下塗り層>
本発明の平版印刷版原版においては、上述した画像記録層と平版印刷版用支持体との間に下塗り層を設けることが望ましい。
<Undercoat layer>
In the lithographic printing plate precursor according to the invention, it is desirable to provide an undercoat layer between the image recording layer and the lithographic printing plate support described above.
下塗り層は、基板吸着性基、重合性基および親水性基を有するポリマーを含有することが好ましい。
基板吸着性基、重合性基および親水性基を有するポリマーとしては、吸着性基を有するモノマー、親水性基を有するモノマー、および、重合性反応基(架橋性基)を有するモノマーを共重合した下塗り用高分子樹脂を挙げることができる。
下塗り用高分子樹脂に使用できるモノマーとしては、例えば、特開2009-255434号公報の段落[0197]〜[0210]などに記載されるモノマーが挙げられる。
The undercoat layer preferably contains a polymer having a substrate adsorptive group, a polymerizable group, and a hydrophilic group.
As the polymer having a substrate adsorptive group, a polymerizable group and a hydrophilic group, a monomer having an adsorptive group, a monomer having a hydrophilic group, and a monomer having a polymerizable reactive group (crosslinkable group) were copolymerized. Mention may be made of polymer resins for undercoating.
Examples of the monomer that can be used in the undercoat polymer resin include monomers described in paragraphs [0197] to [0210] of JP-A-2009-255434.
下塗り層塗布液を支持体に塗布する方法としては、公知の種々の方法を用いることができる。例えば、バーコーター塗布、回転塗布、スプレー塗布、カーテン塗布、ディップ塗布、エアナイフ塗布、ブレード塗布、ロール塗布等を挙げることができる。
下塗り層の塗布量(固形分)は、0.1〜100mg/m2であるのが好ましく、1〜50mg/m2であるのがより好ましい。
Various known methods can be used as a method of applying the undercoat layer coating solution to the support. Examples thereof include bar coater coating, spin coating, spray coating, curtain coating, dip coating, air knife coating, blade coating, and roll coating.
The coating amount (solid content) of the undercoat layer is preferably from 0.1-100 mg / m 2, and more preferably 1 to 50 mg / m 2.
<保護層>
本発明の平版印刷版原版においては、画像記録層における傷等の発生防止、酸素遮断、高照度レーザー露光時のアブレーション防止のため、必要に応じて、画像記録層の上に保護層を設けることができる。
保護層については、以前より種々検討がなされており、例えば、米国特許第3、458、311号明細書および特公昭55−49729号公報に詳細に記載されている。
また、保護層に用いられる材料としては、例えば、特開2009-255434号公報の段落[0213]〜[02227]などに記載される材料(水溶性高分子化合物、無機質の層状化合物など)を用いることができる。
<Protective layer>
In the lithographic printing plate precursor according to the present invention, a protective layer is provided on the image recording layer as necessary in order to prevent the occurrence of scratches in the image recording layer, to block oxygen, and to prevent ablation during high-illuminance laser exposure. Can do.
Various studies have been made on the protective layer. For example, the protective layer is described in detail in US Pat. No. 3,458,311 and JP-B-55-49729.
As a material used for the protective layer, for example, materials described in paragraphs [0213] to [02227] of JP-A-2009-255434 (water-soluble polymer compounds, inorganic layered compounds, etc.) are used. be able to.
調製された保護層塗布液を、支持体上に備えられた画像記録層の上に塗布し、乾燥して保護層を形成する。塗布溶剤はバインダーとの関連において適宜選択することができるが、水溶性ポリマーを用いる場合には、蒸留水、精製水を用いることが好ましい。保護層の塗布方法は、特に制限されるものではなく、例えば、ブレード塗布法、エアナイフ塗布法、グラビア塗布法、ロールコーティング塗布法、スプレー塗布法、ディップ塗布法、バー塗布法等が挙げられる。 The prepared protective layer coating solution is applied onto the image recording layer provided on the support and dried to form a protective layer. The coating solvent can be appropriately selected in relation to the binder, but when a water-soluble polymer is used, it is preferable to use distilled water or purified water. The coating method of the protective layer is not particularly limited, and examples thereof include a blade coating method, an air knife coating method, a gravure coating method, a roll coating coating method, a spray coating method, a dip coating method, and a bar coating method.
保護層の塗布量としては、乾燥後の塗布量で、0.01〜10g/m2の範囲であることが好ましく、0.02〜3g/m2の範囲がより好ましく、最も好ましくは0.02〜1g/m2の範囲である。 The coating amount of the protective layer, the coating amount after drying is preferably in the range of 0.01 to 10 g / m 2, more preferably in the range of 0.02 to 3 g / m 2, and most preferably 0. It is in the range of 02 to 1 g / m 2 .
上記のような画像記録層を有する本発明の平版印刷版原版は、平版印刷版としたときに優れた放置払い性、耐刷性を示しつつ、機上現像型の場合は機上現像性が向上した平版印刷版原版となる。 The lithographic printing plate precursor of the present invention having the image recording layer as described above exhibits excellent neglectability and printing durability when used as a lithographic printing plate, while in-machine development type exhibits on-machine developability. An improved lithographic printing plate precursor.
以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
<平版印刷版用支持体の製造>
厚さ0.3mmの材質1Sのアルミニウム合金板に対し、下記(A)から(F)のうち下記第1表に示す処理を施し、平版印刷版用支持体を製造した。なお、全ての処理工程の間には水洗処理を施し、水洗処理の後にはニップローラーで液切りを行った。
<Manufacture of lithographic printing plate support>
The treatment shown in the following Table 1 among the following (A) to (F) was performed on the aluminum alloy plate of material 1S having a thickness of 0.3 mm to produce a lithographic printing plate support. In addition, the water washing process was performed between all the process processes, and the liquid draining was performed with the nip roller after the water washing process.
<処理A>
(A−a)機械的粗面化処理(ブラシグレイン法)
図5に示したような装置を使って、パミスの懸濁液(比重1.1g/cm3)を研磨スラリー液としてアルミニウム板の表面に供給しながら、回転する束植ブラシにより機械的粗面化処理を行った。図5において、1はアルミニウム板、2および4はローラ状ブラシ(本実施例において、束植ブラシ)、3は研磨スラリー液、5、6、7および8は支持ローラである。
機械的粗面化処理は、研磨材のメジアン径(μm)を30μm、ブラシ本数を4本、ブラシの回転数(rpm)を250rpmとした。束植ブラシの材質は6・10ナイロンで、ブラシ毛の直径0.3mm、毛長50mmであった。ブラシは、φ300mmのステンレス製の筒に穴をあけて密になるように植毛した。束植ブラシ下部の2本の支持ローラ(φ200mm)の距離は300mmであった。束植ブラシはブラシを回転させる駆動モータの負荷が、束植ブラシをアルミニウム板に押さえつける前の負荷に対して10kWプラスになるまで押さえつけた。ブラシの回転方向はアルミニウム板の移動方向と同じであった。
<Process A>
(Aa) Mechanical roughening treatment (brush grain method)
Using a device as shown in FIG. 5, a mechanical rough surface by a rotating bundle-planting brush while supplying a suspension of pumice (specific gravity 1.1 g / cm 3 ) as a polishing slurry liquid to the surface of the aluminum plate. The treatment was performed. In FIG. 5, 1 is an aluminum plate, 2 and 4 are roller-like brushes (bundling brushes in this embodiment), 3 is a polishing slurry, and 5, 6, 7 and 8 are support rollers.
In the mechanical surface roughening treatment, the median diameter (μm) of the abrasive was 30 μm, the number of brushes was 4, and the number of rotations (rpm) of the brushes was 250 rpm. The material of the bunch planting brush was 6 · 10 nylon, with a bristle diameter of 0.3 mm and a bristle length of 50 mm. The brush was planted so as to be dense by making a hole in a stainless steel tube having a diameter of 300 mm. The distance between the two support rollers (φ200 mm) at the bottom of the bundle-planting brush was 300 mm. The bundle brush was pressed until the load of the drive motor for rotating the brush became 10 kW plus with respect to the load before the bundle brush was pressed against the aluminum plate. The rotating direction of the brush was the same as the moving direction of the aluminum plate.
(A−b)アルカリエッチング処理
上記で得られたアルミニウム板に、カセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%のカセイソーダ水溶液を、温度70℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。アルミニウム溶解量は、10g/m2であった。
(Ab) Alkaline etching treatment The aluminum plate obtained above was etched by spraying a caustic soda aqueous solution having a caustic soda concentration of 26 mass% and an aluminum ion concentration of 6.5 mass% with a spray tube at a temperature of 70 ° C. . Then, water washing by spraying was performed. The amount of aluminum dissolved was 10 g / m 2 .
(A−c)酸性水溶液中でのデスマット処理
次に、硝酸水溶液中でデスマット処理を行った。デスマット処理に用いる硝酸水溶液は、次工程の電気化学的な粗面化に用いた硝酸の廃液を用いた。その液温は35℃であった。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(Ac) Desmutting treatment in acidic aqueous solution Next, desmutting treatment was performed in an aqueous nitric acid solution. The nitric acid aqueous solution used for the desmut treatment was a nitric acid waste solution used for electrochemical roughening in the next step. The liquid temperature was 35 ° C. The desmutting liquid was sprayed and sprayed for 3 seconds.
(A−d)電気化学的粗面化処理
硝酸電解60Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。このときの電解液は、温度35℃、硝酸10.4g/Lの水溶液に硝酸アルミニウムを添加してアルミニウムイオン濃度を4.5g/Lに調整した電解液を用いた。交流電源波形は図3に示した波形であり、電流値がゼロからピークに達するまでの時間tpが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。電解槽は図4に示すものを使用した。電流密度は電流のピーク値で30A/dm2、補助陽極には電源から流れる電流の5%を分流させた。電気量(C/dm2)はアルミニウム板が陽極時の電気量の総和で185C/dm2であった。その後、スプレーによる水洗を行った。
(Ad) Electrochemical roughening treatment An electrochemical roughening treatment was carried out continuously using an alternating voltage of nitric acid electrolysis 60 Hz. As the electrolytic solution at this time, an electrolytic solution in which aluminum nitrate was adjusted to 4.5 g / L by adding aluminum nitrate to an aqueous solution having a temperature of 35 ° C. and nitric acid of 10.4 g / L was used. The AC power supply waveform is the waveform shown in FIG. 3. The time tp until the current value reaches a peak from zero is 0.8 msec, the duty ratio is 1: 1, and a trapezoidal rectangular wave AC is used with the carbon electrode as the counter electrode. An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell shown in FIG. 4 was used. The current density was 30 A / dm 2 at the peak current value, and 5% of the current flowing from the power source was shunted to the auxiliary anode. Amount of electricity (C / dm 2) the aluminum plate was 185C / dm 2 as the total quantity of electricity when the anode. Then, water washing by spraying was performed.
(A−e)アルカリエッチング処理
上記で得られたアルミニウム板に、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液を、温度50℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。アルミニウム溶解量は、0.5g/m2であった。
(Ae) Alkaline etching treatment The aluminum plate obtained above was etched by spraying a caustic soda aqueous solution having a caustic soda concentration of 5 mass% and an aluminum ion concentration of 0.5 mass% with a spray tube at a temperature of 50C. . Then, water washing by spraying was performed. The amount of dissolved aluminum was 0.5 g / m 2 .
(A−f)酸性水溶液中でのデスマット処理
次に、硫酸水溶液中でデスマット処理を行った。デスマット処理に用いる硫酸水溶液は、硫酸濃度170g/L、アルミニウムイオン濃度5g/Lの液を用いた。その液温は、30℃であった。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(Af) Desmutting treatment in acidic aqueous solution Next, desmutting treatment was performed in an aqueous sulfuric acid solution. The sulfuric acid aqueous solution used for the desmut treatment was a solution having a sulfuric acid concentration of 170 g / L and an aluminum ion concentration of 5 g / L. The liquid temperature was 30 ° C. The desmutting liquid was sprayed and sprayed for 3 seconds.
(A−g)電気化学的粗面化処理
塩酸電解60Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。電解液は、液温35℃、塩酸6.2g/Lの水溶液に塩化アルミニウムを添加してアルミニウムイオン濃度を4.5g/Lに調整した電解液を用いた。交流電源波形は図3に示した波形であり、電流値がゼロからピークに達するまでの時間tpが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。電解槽は図4に示すものを使用した。
電流密度は電流のピーク値で25A/dm2であり、塩酸電解における電気量(C/dm2)はアルミニウム板が陽極時の電気量の総和で63C/dm2であった。その後、スプレーによる水洗を行った。
(Ag) Electrochemical roughening treatment An electrochemical roughening treatment was continuously performed using an alternating voltage of hydrochloric acid electrolysis 60 Hz. As the electrolytic solution, an electrolytic solution in which aluminum chloride was adjusted to 4.5 g / L by adding aluminum chloride to an aqueous solution having a liquid temperature of 35 ° C. and hydrochloric acid of 6.2 g / L was used. The AC power supply waveform is the waveform shown in FIG. 3. The time tp until the current value reaches a peak from zero is 0.8 msec, the duty ratio is 1: 1, and a trapezoidal rectangular wave AC is used with the carbon electrode as the counter electrode. An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell shown in FIG. 4 was used.
The current density was 25A / dm 2 at the peak of electric current amount of hydrochloric acid electrolysis (C / dm 2) the aluminum plate was 63C / dm 2 as the total quantity of electricity when the anode. Then, water washing by spraying was performed.
(A−h)アルカリエッチング処理
上記で得られたアルミニウム板に、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液を、温度50℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。アルミニウム溶解量は、0.1g/m2であった。
(Ah) Alkaline etching treatment The aluminum plate obtained above was etched by spraying a caustic soda aqueous solution having a caustic soda concentration of 5 mass% and an aluminum ion concentration of 0.5 mass% with a spray tube at a temperature of 50C. . Then, water washing by spraying was performed. The amount of aluminum dissolved was 0.1 g / m 2 .
(A−i)酸性水溶液中でのデスマット処理
次に、硫酸水溶液中でデスマット処理を行った。具体的には、陽極酸化処理工程で発生した廃液(硫酸170g/L水溶液中にアルミニウムイオン5g/Lを溶解)を用い、液温35℃で4秒間デスマット処理を行った。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(Ai) Desmutting treatment in acidic aqueous solution Next, desmutting treatment was performed in an aqueous sulfuric acid solution. Specifically, desmutting treatment was performed for 4 seconds at a liquid temperature of 35 ° C. using the waste liquid generated in the anodizing treatment step (dissolving 5 g / L of aluminum ions in a 170 g / L aqueous solution of sulfuric acid). The desmutting liquid was sprayed and sprayed for 3 seconds.
(A−j)第1段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第1段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Aj) First stage anodizing treatment The first stage anodizing treatment was performed using a direct current electrolysis anodizing apparatus having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(A−k)ポアワイド処理
上記陽極酸化処理したアルミニウム板を、温度35℃、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液に表1に示す条件にて浸漬し、ポアワイド処理を行った。その後、スプレーによる水洗を行った。
(Ak) Pore wide treatment The above anodized aluminum plate was immersed in a caustic soda aqueous solution having a temperature of 35 ° C., a caustic soda concentration of 5 mass%, and an aluminum ion concentration of 0.5 mass% under the conditions shown in Table 1, and a pore wide treatment. Went. Then, water washing by spraying was performed.
(A−l)第2段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第2段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(A-l) Second stage anodizing treatment The second stage anodizing treatment was performed using an anodizing apparatus based on direct current electrolysis having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(A−m)第3段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第3段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Am) Third stage anodizing treatment The third stage anodizing treatment was performed using an anodizing apparatus based on direct current electrolysis having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(A−n)シリケート処理
非画像部の親水性を確保するため、2.5質量%3号ケイ酸ソーダ水溶液を用いて50℃で7秒間ディップしてシリケート処理を施した。Siの付着量は10mg/m2であった。その後、スプレーによる水洗を行った。
(An) Silicate treatment In order to ensure the hydrophilicity of the non-image part, a silicate treatment was performed by dipping at 50 ° C. for 7 seconds using a 2.5 mass% No. 3 sodium silicate aqueous solution. The adhesion amount of Si was 10 mg / m 2 . Then, water washing by spraying was performed.
<処理(B)>
(B−a)アルカリエッチング処理
アルミニウム板に、カセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%のカセイソーダ水溶液を、温度70℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。後に電気化学的粗面化処理を施す面のアルミニウム溶解量は、1.0g/m2であった。
<Process (B)>
(Ba) Alkaline Etching Treatment An aluminum plate was etched by spraying a caustic soda aqueous solution having a caustic soda concentration of 26 mass% and an aluminum ion concentration of 6.5 mass% with a spray tube at a temperature of 70 ° C. Then, water washing by spraying was performed. The amount of aluminum dissolved on the surface that was later subjected to electrochemical surface roughening was 1.0 g / m 2 .
(B−b)酸性水溶液中でのデスマット処理(第1デスマット処理)
次に、酸性水溶液中でデスマット処理を行った。デスマット処理に用いる酸性水溶液は、硫酸150g/Lの水溶液を用いた。その液温は30℃であった。デスマット液はスプレーにより吹き付けて、3秒間デスマット処理した。その後、水洗処理を行った。
(Bb) Desmutting treatment in acidic aqueous solution (first desmutting treatment)
Next, desmut treatment was performed in an acidic aqueous solution. The acidic aqueous solution used for the desmut treatment was an aqueous solution of 150 g / L sulfuric acid. The liquid temperature was 30 ° C. The desmutting liquid was sprayed and sprayed for 3 seconds. Then, the water washing process was performed.
(B−c)塩酸水溶液中での電気化学的粗面化処理
次に、塩酸濃度14g/L、アルミニウムイオン濃度13g/L、硫酸濃度3g/Lの電解液を用い、交流電流を用いて電解粗面化処理を行った。電解液の液温は30℃であった。アルミニウムイオン濃度は塩化アルミニウムを添加して調整した。
交流電流の波形は正と負の波形が対称な正弦波であり、周波数は50Hz、交流電流1周期におけるアノード反応時間とカソード反応時間は1:1、電流密度は交流電流波形のピーク電流値で75A/dm2であった。また、電気量はアルミニウム板がアノード反応に預かる電気量の総和で450C/dm2であり、電解処理は125C/dm2ずつ4秒間の通電間隔を開けて4回に分けて行った。アルミニウム板の対極にはカーボン電極を用いた。その後、水洗処理を行った。
(Bc) Electrochemical surface roughening treatment in aqueous hydrochloric acid solution Next, an electrolytic solution having a hydrochloric acid concentration of 14 g / L, an aluminum ion concentration of 13 g / L, and a sulfuric acid concentration of 3 g / L is used and electrolysis is performed using an alternating current. A roughening treatment was performed. The liquid temperature of the electrolytic solution was 30 ° C. The aluminum ion concentration was adjusted by adding aluminum chloride.
The waveform of the alternating current is a sine wave in which positive and negative waveforms are symmetrical, the frequency is 50 Hz, the anode reaction time and the cathode reaction time in one cycle of the alternating current are 1: 1, and the current density is the peak current value of the alternating current waveform. It was 75 A / dm 2 . The amount of electricity is 450 C / dm 2 in terms of the total amount of electricity that the aluminum plate entrusts to the anode reaction, and the electrolytic treatment was performed four times at intervals of 125 C / dm 2 for 4 seconds. A carbon electrode was used as the counter electrode of the aluminum plate. Then, the water washing process was performed.
(B−d)アルカリエッチング処理
電気化学的粗面化処理後のアルミニウム板を、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液を、温度35℃でスプレー管により吹き付けてエッチング処理を行った。電気化学的粗面化処理が施された面のアルミニウムの溶解量は0.1g/m2であった。その後、水洗処理を行った。
(Bd) Alkali etching treatment Etching of the aluminum plate after electrochemical surface roughening treatment by spraying a caustic soda aqueous solution having a caustic soda concentration of 5 mass% and an aluminum ion concentration of 0.5 mass% with a spray tube at a temperature of 35 ° C. Processed. The amount of aluminum dissolved on the surface subjected to the electrochemical surface roughening treatment was 0.1 g / m 2 . Then, the water washing process was performed.
(B−e)酸性水溶液中でのデスマット処理
次に、酸性水溶液中でのデスマット処理を行った。デスマット処理に用いる酸性水溶液は、陽極酸化処理工程で発生した廃液(硫酸170g/L水溶液中にアルミニウムイオン5.0g/L溶解)を用いた。液温は30℃であった。デスマット液はスプレーに吹き付けて3秒間デスマット処理を行った。
(Be) Desmutting treatment in acidic aqueous solution Next, desmutting treatment in acidic aqueous solution was performed. As the acidic aqueous solution used for the desmut treatment, the waste solution generated in the anodizing treatment step (dissolved in aluminum solution of 5.0 g / L of aluminum ions in 170 g / L of sulfuric acid) was used. The liquid temperature was 30 ° C. The desmutting liquid was sprayed on the spray and desmutted for 3 seconds.
(B−f)第1段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第1段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Bf) First stage anodizing treatment The first stage anodizing treatment was performed using a direct current electrolysis anodizing apparatus having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(B−g)ポアワイド処理
上記陽極酸化処理したアルミニウム板を、温度35℃、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液に表1に示す条件にて浸漬し、ポアワイド処理を行った。その後、スプレーによる水洗を行った。
(Bg) Pore-wide treatment The anodized aluminum plate was immersed in an aqueous caustic soda solution having a temperature of 35 ° C., a caustic soda concentration of 5 mass%, and an aluminum ion concentration of 0.5 mass% under the conditions shown in Table 1, and a pore-wide treatment was performed. Went. Then, water washing by spraying was performed.
(B−h)第2段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第2段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Bh) Second stage anodizing treatment The second stage anodizing treatment was performed using an anodizing apparatus based on direct current electrolysis having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(B−i)第3段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第3段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Bi) Third stage anodizing treatment The third stage anodizing treatment was performed using an anodizing apparatus based on direct current electrolysis having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(B−j)シリケート処理
非画像部の親水性を確保するため、2.5質量%3号ケイ酸ソーダ水溶液を用いて50℃で7秒間ディップしてシリケート処理を施した。Siの付着量は10mg/m2であった。その後、スプレーによる水洗を行った。
(Bj) Silicate treatment In order to ensure the hydrophilicity of the non-image area, a silicate treatment was performed by dipping at 50 ° C. for 7 seconds using a 2.5 mass% No. 3 sodium silicate aqueous solution. The adhesion amount of Si was 10 mg / m 2 . Then, water washing by spraying was performed.
<処理(C)>
(C−a)機械的粗面化処理(ブラシグレイン法)
図5に示したような装置を使って、パミスの懸濁液(比重1.1g/cm3)を研磨スラリー液としてアルミニウム板の表面に供給しながら、回転する束植ブラシにより機械的粗面化処理を行った。
機械的粗面化処理は、研磨材のメジアン径(μm)を30μm、ブラシ本数を4本、ブラシの回転数(rpm)を250rpmとした。束植ブラシの材質は6・10ナイロンで、ブラシ毛の直径0.3mm、毛長50mmであった。ブラシは、φ300mmのステンレス製の筒に穴をあけて密になるように植毛した。束植ブラシ下部の2本の支持ローラ(φ200mm)の距離は300mmであった。束植ブラシはブラシを回転させる駆動モータの負荷が、束植ブラシをアルミニウム板に押さえつける前の負荷に対して10kWプラスになるまで押さえつけた。ブラシの回転方向はアルミニウム板の移動方向と同じであった。
<Process (C)>
(Ca) Mechanical roughening treatment (brush grain method)
Using a device as shown in FIG. 5, a mechanical rough surface by a rotating bundle-planting brush while supplying a suspension of pumice (specific gravity 1.1 g / cm 3 ) as a polishing slurry liquid to the surface of the aluminum plate. The treatment was performed.
In the mechanical surface roughening treatment, the median diameter (μm) of the abrasive was 30 μm, the number of brushes was 4, and the number of rotations (rpm) of the brushes was 250 rpm. The material of the bunch planting brush was 6 · 10 nylon, with a bristle diameter of 0.3 mm and a bristle length of 50 mm. The brush was planted so as to be dense by making a hole in a stainless steel tube having a diameter of 300 mm. The distance between the two support rollers (φ200 mm) at the bottom of the bundle-planting brush was 300 mm. The bundle brush was pressed until the load of the drive motor for rotating the brush became 10 kW plus with respect to the load before the bundle brush was pressed against the aluminum plate. The rotating direction of the brush was the same as the moving direction of the aluminum plate.
(C−b)アルカリエッチング処理
上記で得られたアルミニウム板に、カセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%のカセイソーダ水溶液を、温度70℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。アルミニウム溶解量は、10g/m2であった。
(Cb) Alkaline etching treatment The aluminum plate obtained above was etched by spraying a caustic soda aqueous solution having a caustic soda concentration of 26 mass% and an aluminum ion concentration of 6.5 mass% with a spray tube at a temperature of 70 ° C. . Then, water washing by spraying was performed. The amount of aluminum dissolved was 10 g / m 2 .
(C−c)酸性水溶液中でのデスマット処理
次に、酸性水溶液中でのデスマット処理を行った。デスマット処理に用いる酸性水溶液は、陽極酸化処理工程で発生した廃液(硫酸170g/L水溶液中にアルミニウムイオン5.0g/L溶解)を用いた。液温は30℃であった。デスマット液はスプレーに吹き付けて3秒間デスマット処理を行った。
(Cc) Desmutting treatment in acidic aqueous solution Next, desmutting treatment in acidic aqueous solution was performed. As the acidic aqueous solution used for the desmut treatment, the waste solution generated in the anodizing treatment step (dissolved in aluminum solution of 5.0 g / L of aluminum ions in 170 g / L of sulfuric acid) was used. The liquid temperature was 30 ° C. The desmutting liquid was sprayed on the spray and desmutted for 3 seconds.
(C−d)第1段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第1段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Cd) First stage anodizing treatment The first stage anodizing treatment was performed using a direct current electrolysis anodizing apparatus having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(C−e)ポアワイド処理
上記陽極酸化処理したアルミニウム板を、温度35℃、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液に表1に示す条件にて浸漬し、ポアワイド処理を行った。その後、スプレーによる水洗を行った。
(Ce) Pore wide treatment The anodized aluminum plate was immersed in an aqueous caustic soda solution having a temperature of 35 ° C., a caustic soda concentration of 5 mass%, and an aluminum ion concentration of 0.5 mass% under the conditions shown in Table 1, and a pore wide treatment was performed. Went. Then, water washing by spraying was performed.
(C−f)第2段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第2段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Cf) Second stage anodizing treatment The second stage anodizing treatment was performed using a direct current electrolysis anodizing apparatus having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(C−g)第3段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第3段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Cg) Third stage anodizing treatment The third stage anodizing treatment was performed using an anodizing apparatus using direct current electrolysis having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(C−h)シリケート処理
非画像部の親水性を確保するため、2.5質量%3号ケイ酸ソーダ水溶液を用いて50℃で7秒間ディップしてシリケート処理を施した。Siの付着量は10mg/m2であった。その後、スプレーによる水洗を行った。
(Ch) Silicate treatment In order to ensure the hydrophilicity of the non-image part, a silicate treatment was performed by dipping at 50 ° C. for 7 seconds using a 2.5 mass% No. 3 sodium silicate aqueous solution. The adhesion amount of Si was 10 mg / m 2 . Then, water washing by spraying was performed.
<処理(D)>
(D−a)機械的粗面化処理(ブラシグレイン法)
図5に示したような装置を使って、パミスの懸濁液(比重1.1g/cm3)を研磨スラリー液としてアルミニウム板の表面に供給しながら、回転する束植ブラシにより機械的粗面化処理を行った。
機械的粗面化処理は、研磨材のメジアン径(μm)を30μm、ブラシ本数を4本、ブラシの回転数(rpm)を250rpmとした。束植ブラシの材質は6・10ナイロンで、ブラシ毛の直径0.3mm、毛長50mmであった。ブラシは、φ300mmのステンレス製の筒に穴をあけて密になるように植毛した。束植ブラシ下部の2本の支持ローラ(φ200mm)の距離は300mmであった。束植ブラシはブラシを回転させる駆動モータの負荷が、束植ブラシをアルミニウム板に押さえつける前の負荷に対して10kWプラスになるまで押さえつけた。ブラシの回転方向はアルミニウム板の移動方向と同じであった。
<Process (D)>
(Da) Mechanical roughening treatment (brush grain method)
Using a device as shown in FIG. 5, a mechanical rough surface by a rotating bundle-planting brush while supplying a suspension of pumice (specific gravity 1.1 g / cm 3 ) as a polishing slurry liquid to the surface of the aluminum plate. The treatment was performed.
In the mechanical surface roughening treatment, the median diameter (μm) of the abrasive was 30 μm, the number of brushes was 4, and the number of rotations (rpm) of the brushes was 250 rpm. The material of the bunch planting brush was 6 · 10 nylon, with a bristle diameter of 0.3 mm and a bristle length of 50 mm. The brush was planted so as to be dense by making a hole in a stainless steel tube having a diameter of 300 mm. The distance between the two support rollers (φ200 mm) at the bottom of the bundle-planting brush was 300 mm. The bundle brush was pressed until the load of the drive motor for rotating the brush became 10 kW plus with respect to the load before the bundle brush was pressed against the aluminum plate. The rotating direction of the brush was the same as the moving direction of the aluminum plate.
(D−b)アルカリエッチング処理
上記で得られたアルミニウム板に、カセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%のカセイソーダ水溶液を、温度70℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。アルミニウム溶解量は、10g/m2であった。
(Db) Alkaline etching treatment The aluminum plate obtained above was etched by spraying a caustic soda aqueous solution having a caustic soda concentration of 26 mass% and an aluminum ion concentration of 6.5 mass% with a spray tube at a temperature of 70 ° C. . Then, water washing by spraying was performed. The amount of aluminum dissolved was 10 g / m 2 .
(D−c)酸性水溶液中でのデスマット処理
次に、硝酸水溶液中でデスマット処理を行った。デスマット処理に用いる硝酸水溶液は、次工程の電気化学的な粗面化に用いた硝酸の廃液を用いた。その液温は35℃であった。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(Dc) Desmutting treatment in acidic aqueous solution Next, desmutting treatment was performed in an aqueous nitric acid solution. The nitric acid aqueous solution used for the desmut treatment was a nitric acid waste solution used for electrochemical roughening in the next step. The liquid temperature was 35 ° C. The desmutting liquid was sprayed and sprayed for 3 seconds.
(D−d)電気化学的粗面化処理
硝酸電解60Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。このときの電解液は、温度35℃、硝酸10.4g/Lの水溶液に硝酸アルミニウムを添加してアルミニウムイオン濃度を4.5g/Lに調整した電解液を用いた。交流電源波形は図3に示した波形であり、電流値がゼロからピークに達するまでの時間tpが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。電解槽は図4に示すものを使用した。電流密度は電流のピーク値で30A/dm2、補助陽極には電源から流れる電流の5%を分流させた。電気量(C/dm2)はアルミニウム板が陽極時の電気量の総和で185C/dm2であった。その後、スプレーによる水洗を行った。
(Dd) Electrochemical surface roughening treatment An electrochemical surface roughening treatment was performed continuously using an alternating voltage of nitric acid electrolysis 60 Hz. As the electrolytic solution at this time, an electrolytic solution in which aluminum nitrate was adjusted to 4.5 g / L by adding aluminum nitrate to an aqueous solution having a temperature of 35 ° C. and nitric acid of 10.4 g / L was used. The AC power supply waveform is the waveform shown in FIG. 3. The time tp until the current value reaches a peak from zero is 0.8 msec, the duty ratio is 1: 1, and a trapezoidal rectangular wave AC is used with the carbon electrode as the counter electrode. An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell shown in FIG. 4 was used. The current density was 30 A / dm 2 at the peak current value, and 5% of the current flowing from the power source was shunted to the auxiliary anode. Amount of electricity (C / dm 2) the aluminum plate was 185C / dm 2 as the total quantity of electricity when the anode. Then, water washing by spraying was performed.
(D−e)アルカリエッチング処理
上記で得られたアルミニウム板に、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液を、温度50℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。アルミニウム溶解量は、0.5g/m2であった。
(De) Alkaline etching treatment The aluminum plate obtained above was etched by spraying a caustic soda aqueous solution having a caustic soda concentration of 5 mass% and an aluminum ion concentration of 0.5 mass% with a spray tube at a temperature of 50C. . Then, water washing by spraying was performed. The amount of dissolved aluminum was 0.5 g / m 2 .
(D−f)酸性水溶液中でのデスマット処理
次に、硫酸水溶液中でデスマット処理を行った。デスマット処理に用いる硫酸水溶液は、硫酸濃度170g/L、アルミニウムイオン濃度5g/Lの液を用いた。その液温は、30℃であった。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(Df) Desmutting treatment in acidic aqueous solution Next, desmutting treatment was carried out in an aqueous sulfuric acid solution. The sulfuric acid aqueous solution used for the desmut treatment was a solution having a sulfuric acid concentration of 170 g / L and an aluminum ion concentration of 5 g / L. The liquid temperature was 30 ° C. The desmutting liquid was sprayed and sprayed for 3 seconds.
(D−g)第1段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第1段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Dg) First stage anodizing treatment The first stage anodizing treatment was performed using a direct current electrolysis anodizing apparatus having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(D−h)ポアワイド処理
上記陽極酸化処理したアルミニウム板を、温度35℃、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液に表1に示す条件にて浸漬し、ポアワイド処理を行った。その後、スプレーによる水洗を行った。
(Dh) Pore wide treatment The anodized aluminum plate was immersed in an aqueous caustic soda solution having a temperature of 35 ° C., a caustic soda concentration of 5 mass%, and an aluminum ion concentration of 0.5 mass% under the conditions shown in Table 1, and a pore wide treatment was performed. Went. Then, water washing by spraying was performed.
(D−i)第2段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第2段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Di) Second stage anodizing treatment The second stage anodizing treatment was performed using a direct current electrolysis anodizing apparatus having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(D−j)第3段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第3段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Dj) Third stage anodizing treatment The third stage anodizing treatment was performed using an anodizing apparatus based on direct current electrolysis having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(D−k)シリケート処理
非画像部の親水性を確保するため、2.5質量%3号ケイ酸ソーダ水溶液を用いて50℃で7秒間ディップしてシリケート処理を施した。Siの付着量は10mg/m2であった。その後、スプレーによる水洗を行った。
(Dk) Silicate treatment In order to ensure the hydrophilicity of the non-image part, silicate treatment was performed by dipping at 50 ° C. for 7 seconds using a 2.5 mass% No. 3 sodium silicate aqueous solution. The adhesion amount of Si was 10 mg / m 2 . Then, water washing by spraying was performed.
<処理(E)>
(E−a)アルカリエッチング処理
アルミニウム板に、カセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%のカセイソーダ水溶液を、温度70℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。後に電気化学的粗面化処理を施す面のアルミニウム溶解量は、5g/m2であった。
<Process (E)>
(Ea) Alkaline etching treatment An aluminum plate was etched by spraying an aqueous caustic soda solution having a caustic soda concentration of 26 mass% and an aluminum ion concentration of 6.5 mass% with a spray tube at a temperature of 70C. Then, water washing by spraying was performed. The amount of aluminum dissolved on the surface that was later subjected to electrochemical surface roughening was 5 g / m 2 .
(E−b)酸性水溶液中でのデスマット処理
次に、硝酸水溶液中でデスマット処理を行った。デスマット処理に用いる硝酸水溶液は、次工程の電気化学的な粗面化に用いた硝酸の廃液を用いた。その液温は35℃であった。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(Eb) Desmutting treatment in acidic aqueous solution Next, desmutting treatment was performed in an aqueous nitric acid solution. The nitric acid aqueous solution used for the desmut treatment was a nitric acid waste solution used for electrochemical roughening in the next step. The liquid temperature was 35 ° C. The desmutting liquid was sprayed and sprayed for 3 seconds.
(E−c)電気化学的粗面化処理
硝酸電解60Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。このときの電解液は、温度35℃、硝酸10.4g/Lの水溶液に硝酸アルミニウムを添加してアルミニウムイオン濃度を4.5g/Lに調整した電解液を用いた。交流電源波形は図3に示した波形であり、電流値がゼロからピークに達するまでの時間tpが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。電解槽は図4に示すものを使用した。電流密度は電流のピーク値で30A/dm2、補助陽極には電源から流れる電流の5%を分流させた。電気量(C/dm2)はアルミニウム板が陽極時の電気量の総和で250C/dm2であった。その後、スプレーによる水洗を行った。
(Ec) Electrochemical surface roughening treatment An electrochemical surface roughening treatment was performed continuously using an alternating voltage of nitric acid electrolysis 60 Hz. As the electrolytic solution at this time, an electrolytic solution in which aluminum nitrate was adjusted to 4.5 g / L by adding aluminum nitrate to an aqueous solution having a temperature of 35 ° C. and nitric acid of 10.4 g / L was used. The AC power supply waveform is the waveform shown in FIG. 3. The time tp until the current value reaches a peak from zero is 0.8 msec, the duty ratio is 1: 1, and a trapezoidal rectangular wave AC is used with the carbon electrode as the counter electrode. An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell shown in FIG. 4 was used. The current density was 30 A / dm 2 at the peak current value, and 5% of the current flowing from the power source was shunted to the auxiliary anode. The amount of electricity (C / dm 2 ) was 250 C / dm 2 in terms of the total amount of electricity when the aluminum plate was an anode. Then, water washing by spraying was performed.
(E−d)アルカリエッチング処理
上記で得られたアルミニウム板に、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液を、温度50℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。アルミニウム溶解量は、0.2g/m2であった。
(Ed) Alkaline etching treatment The aluminum plate obtained above was etched by spraying a caustic soda aqueous solution having a caustic soda concentration of 5 mass% and an aluminum ion concentration of 0.5 mass% with a spray tube at a temperature of 50C. . Then, water washing by spraying was performed. The amount of aluminum dissolved was 0.2 g / m 2 .
(E−e)酸性水溶液中でのデスマット処理
次に、陽極酸化処理工程で発生した廃液(硫酸170g/L水溶液中にアルミニウムイオン5g/Lを溶解)を用い、液温35℃で4秒間デスマット処理を行った。硫酸水溶液中でデスマット処理を行った。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(Ee) Desmutting treatment in acidic aqueous solution Next, using the waste liquid generated in the anodizing step (dissolving 5 g / L of aluminum ions in 170 g / L aqueous solution of sulfuric acid), desmutting at a liquid temperature of 35 ° C. for 4 seconds. Processed. The desmut treatment was performed in an aqueous sulfuric acid solution. The desmutting liquid was sprayed and sprayed for 3 seconds.
(E−f)第1段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第1段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Ef) First stage anodizing treatment The first stage anodizing treatment was performed using a direct current electrolysis anodizing apparatus having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(E−g)ポアワイド処理
上記陽極酸化処理したアルミニウム板を、温度35℃、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液に表1に示す条件にて浸漬し、ポアワイド処理を行った。その後、スプレーによる水洗を行った。
(Eg) Pore wide treatment The anodized aluminum plate was immersed in an aqueous caustic soda solution having a temperature of 35 ° C., a caustic soda concentration of 5 mass%, and an aluminum ion concentration of 0.5 mass% under the conditions shown in Table 1, and a pore wide treatment was performed. Went. Then, water washing by spraying was performed.
(E−h)第2段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第2段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Eh) Second stage anodizing treatment The second stage anodizing treatment was performed using a direct current electrolysis anodizing apparatus having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(E−i)第3段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第3段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Ei) Third stage anodizing treatment The third stage anodizing treatment was performed using a direct current electrolysis anodizing apparatus having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(E−j)シリケート処理
非画像部の親水性を確保するため、2.5質量%3号ケイ酸ソーダ水溶液を用いて50℃で7秒間ディップしてシリケート処理を施した。Siの付着量は10mg/m2であった。その後、スプレーによる水洗を行った。
(Ej) Silicate treatment In order to ensure the hydrophilicity of the non-image area, a silicate treatment was performed by dipping at 50 ° C. for 7 seconds using a 2.5 mass% No. 3 sodium silicate aqueous solution. The adhesion amount of Si was 10 mg / m 2 . Then, water washing by spraying was performed.
<処理(F)>
(F−a)アルカリエッチング処理
アルミニウム板に、カセイソーダ濃度26質量%、アルミニウムイオン濃度6.5質量%のカセイソーダ水溶液を、温度70℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。後に電気化学的粗面化処理を施す面のアルミニウム溶解量は、5g/m2であった。
<Process (F)>
(Fa) Alkaline etching treatment An aluminum plate was etched by spraying a caustic soda aqueous solution having a caustic soda concentration of 26 mass% and an aluminum ion concentration of 6.5 mass% with a spray tube at a temperature of 70C. Then, water washing by spraying was performed. The amount of aluminum dissolved on the surface that was later subjected to electrochemical surface roughening was 5 g / m 2 .
(F−b)酸性水溶液中でのデスマット処理
次に、硝酸水溶液中でデスマット処理を行った。デスマット処理に用いる硝酸水溶液は、次工程の電気化学的な粗面化に用いた硝酸の廃液を用いた。その液温は35℃であった。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(Fb) Desmutting treatment in acidic aqueous solution Next, desmutting treatment was performed in an aqueous nitric acid solution. The nitric acid aqueous solution used for the desmut treatment was a nitric acid waste solution used for electrochemical roughening in the next step. The liquid temperature was 35 ° C. The desmutting liquid was sprayed and sprayed for 3 seconds.
(F−c)電気化学的粗面化処理
硝酸電解60Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。このときの電解液は、温度35℃、硝酸10.4g/Lの水溶液に硝酸アルミニウムを添加してアルミニウムイオン濃度を4.5g/Lに調整した電解液を用いた。交流電源波形は図3に示した波形であり、電流値がゼロからピークに達するまでの時間tpが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。電解槽は図4に示すものを使用した。電流密度は電流のピーク値で30A/dm2、補助陽極には電源から流れる電流の5%を分流させた。電気量(C/dm2)はアルミニウム板が陽極時の電気量の総和で250C/dm2であった。その後、スプレーによる水洗を行った。
(Fc) Electrochemical surface roughening treatment An electrochemical surface roughening treatment was continuously performed using an alternating voltage of nitric acid electrolysis 60 Hz. As the electrolytic solution at this time, an electrolytic solution in which aluminum nitrate was adjusted to 4.5 g / L by adding aluminum nitrate to an aqueous solution having a temperature of 35 ° C. and nitric acid of 10.4 g / L was used. The AC power supply waveform is the waveform shown in FIG. 3. The time tp until the current value reaches a peak from zero is 0.8 msec, the duty ratio is 1: 1, and a trapezoidal rectangular wave AC is used with the carbon electrode as the counter electrode. An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell shown in FIG. 4 was used. The current density was 30 A / dm 2 at the peak current value, and 5% of the current flowing from the power source was shunted to the auxiliary anode. The amount of electricity (C / dm 2 ) was 250 C / dm 2 in terms of the total amount of electricity when the aluminum plate was an anode. Then, water washing by spraying was performed.
(F−d)アルカリエッチング処理
上記で得られたアルミニウム板に、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液を、温度50℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。アルミニウム溶解量は、0.2g/m2であった。
(Fd) Alkaline etching treatment The aluminum plate obtained above was etched by spraying a caustic soda aqueous solution having a caustic soda concentration of 5 mass% and an aluminum ion concentration of 0.5 mass% with a spray tube at a temperature of 50 ° C. . Then, water washing by spraying was performed. The amount of aluminum dissolved was 0.2 g / m2.
(F−g)酸性水溶液中でのデスマット処理
次に、硫酸水溶液中でデスマット処理を行った。デスマット処理に用いる硫酸水溶液は、硫酸濃度170g/L、アルミニウムイオン濃度5g/Lの液を用いた。その液温は、30℃であった。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(Fg) Desmutting treatment in acidic aqueous solution Next, desmutting treatment was performed in an aqueous sulfuric acid solution. The sulfuric acid aqueous solution used for the desmut treatment was a solution having a sulfuric acid concentration of 170 g / L and an aluminum ion concentration of 5 g / L. The liquid temperature was 30 ° C. The desmutting liquid was sprayed and sprayed for 3 seconds.
(F−h)電気化学的粗面化処理
塩酸電解60Hzの交流電圧を用いて連続的に電気化学的な粗面化処理を行った。電解液は、液温35℃、塩酸6.2g/Lの水溶液に塩化アルミニウムを添加してアルミニウムイオン濃度を4.5g/Lに調整した電解液を用いた。交流電源波形は図3に示した波形であり、電流値がゼロからピークに達するまでの時間tpが0.8msec、duty比1:1、台形の矩形波交流を用いて、カーボン電極を対極として電気化学的な粗面化処理を行った。補助アノードにはフェライトを用いた。電解槽は図4に示すものを使用した。電流密度は電流のピーク値で25A/dm2であり、塩酸電解における電気量(C/dm2)はアルミニウム板が陽極時の電気量の総和で63C/dm2であった。その後、スプレーによる水洗を行った。
(Fh) Electrochemical surface roughening treatment An electrochemical surface roughening treatment was carried out continuously using an alternating voltage of hydrochloric acid electrolysis 60 Hz. As the electrolytic solution, an electrolytic solution in which aluminum chloride was adjusted to 4.5 g / L by adding aluminum chloride to an aqueous solution having a liquid temperature of 35 ° C. and hydrochloric acid of 6.2 g / L was used. The AC power supply waveform is the waveform shown in FIG. 3. The time tp until the current value reaches a peak from zero is 0.8 msec, the duty ratio is 1: 1, and a trapezoidal rectangular wave AC is used with the carbon electrode as the counter electrode. An electrochemical roughening treatment was performed. Ferrite was used for the auxiliary anode. The electrolytic cell shown in FIG. 4 was used. The current density was 25A / dm 2 at the peak of electric current amount of hydrochloric acid electrolysis (C / dm 2) the aluminum plate was 63C / dm 2 as the total quantity of electricity when the anode. Then, water washing by spraying was performed.
(F−i)アルカリエッチング処理
上記で得られたアルミニウム板に、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液を、温度50℃でスプレー管により吹き付けてエッチング処理を行った。その後、スプレーによる水洗を行った。アルミニウム溶解量は、0.1g/m2であった。
(Fi) Alkaline etching treatment The aluminum plate obtained above was etched by spraying a caustic soda aqueous solution having a caustic soda concentration of 5 mass% and an aluminum ion concentration of 0.5 mass% with a spray tube at a temperature of 50 ° C. . Then, water washing by spraying was performed. The amount of aluminum dissolved was 0.1 g / m 2 .
(F−j)酸性水溶液中でのデスマット処理
次に、硫酸水溶液中でデスマット処理を行った。具合的には、陽極酸化処理工程で発生した廃液(硫酸170g/L水溶液中にアルミニウムイオン5g/Lを溶解)を用い、液温35℃で4秒間デスマット処理を行った。デスマット液はスプレーにて吹き付けて3秒間デスマット処理を行った。
(Fj) Desmutting treatment in acidic aqueous solution Next, desmutting treatment was performed in an aqueous sulfuric acid solution. Specifically, the desmut treatment was performed for 4 seconds at a liquid temperature of 35 ° C. using the waste liquid generated in the anodizing treatment step (dissolving 5 g / L of aluminum ions in a 170 g / L aqueous solution of sulfuric acid). The desmutting liquid was sprayed and sprayed for 3 seconds.
(F−k)第1段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第1段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Fk) First stage anodizing treatment The first stage anodizing treatment was performed using a direct current electrolysis anodizing apparatus having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(F−l)ポアワイド処理
上記陽極酸化処理したアルミニウム板を、温度35℃、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%のカセイソーダ水溶液に表1に示す条件にて浸漬し、ポアワイド処理を行った。その後、スプレーによる水洗を行った。
(Fl) Pore wide treatment The above anodized aluminum plate was immersed in an aqueous caustic soda solution having a temperature of 35 ° C, a caustic soda concentration of 5 mass%, and an aluminum ion concentration of 0.5 mass% under the conditions shown in Table 1, and a pore wide treatment was performed. Went. Then, water washing by spraying was performed.
(F−m)第2段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第2段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Fm) Second stage anodizing treatment The second stage anodizing treatment was performed using an anodizing apparatus based on direct current electrolysis having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(F−n)第3段階の陽極酸化処理
図6に示す構造の直流電解による陽極酸化装置を用いて第3段階の陽極酸化処理を行った。表1に示す条件にて陽極酸化処理を行い、所定の皮膜厚の陽極酸化皮膜を形成した。
(Fn) Third stage anodizing treatment The third stage anodizing treatment was performed using an anodizing apparatus based on direct current electrolysis having the structure shown in FIG. Anodization was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
(F−o)シリケート処理
非画像部の親水性を確保するため、2.5質量%3号ケイ酸ソーダ水溶液を用いて50℃で7秒間ディップしてシリケート処理を施した。Siの付着量は10mg/m2であった。その後、スプレーによる水洗を行った。
(Fo) Silicate treatment In order to ensure the hydrophilicity of the non-image area, a silicate treatment was performed by dipping at 50 ° C. for 7 seconds using a 2.5 mass% No. 3 sodium silicate aqueous solution. The adhesion amount of Si was 10 mg / m 2 . Then, water washing by spraying was performed.
上記第3陽極酸化処理工程後のマイクロポアを有する陽極酸化皮膜中の大径孔部、小径孔部、および中径孔部の平均径および深さを、表2にまとめて示す。
なお、マイクロポアの平均径のうち、大径孔部および小径孔部の平均径は、支持体表面(陽極酸化皮膜表面)を倍率15万倍のFE−SEMでN=4枚観察し、得られた4枚の画像において、400×600nm2の範囲に存在するマイクロポア(大径孔部、小径孔部および中径孔部の平均径)の径を測定し、平均した値である。中径孔部22の平均径は、皮膜上部(大径孔部と小径孔部のある領域)をアルゴンガスによって切削し、表面を倍率15万倍のFE−SEMでN=4枚観察し、得られた4枚の画像において、400×600nm2の範囲に存在するマイクロポア(中径孔部)の径を測定し、平均した値である。
なお、上記大径孔部の平均径は皮膜表面における平均径であり、小径孔部の平均径は連通位置Xでの平均径であり、中径孔部の平均径は連通位置Yでの平均径である。
さらに、マイクロポアの深さ(大径孔部、小径孔部および中径孔部の深さ)は、支持体(陽極酸化皮膜)の断面をFE−TEMで観察し、得られた画像において、任意のマイクロポア25個の深さを測定し、平均した値である。
Table 2 summarizes the average diameter and depth of the large-diameter hole portion, small-diameter hole portion, and medium-diameter hole portion in the anodized film having micropores after the third anodizing treatment step.
Among the average diameters of the micropores, the average diameters of the large-diameter hole part and the small-diameter hole part were obtained by observing N = 4 sheets of the support surface (anodized film surface) with an FE-SEM at a magnification of 150,000 times. In the obtained four images, the diameters of the micropores (average diameters of the large diameter hole part, the small diameter hole part, and the medium diameter hole part) existing in the range of 400 × 600 nm 2 were measured and averaged. The average diameter of the medium-diameter hole portion 22 is obtained by cutting the upper portion of the film (region having a large-diameter hole portion and a small-diameter hole portion) with argon gas, and observing N = 4 surfaces with an FE-SEM with a magnification of 150,000 times, In the obtained four images, the diameters of micropores (medium hole portions) existing in the range of 400 × 600 nm 2 were measured and averaged.
The average diameter of the large diameter hole is the average diameter on the surface of the coating, the average diameter of the small diameter hole is the average diameter at the communication position X, and the average diameter of the medium diameter hole is the average at the communication position Y. Is the diameter.
Furthermore, the depth of the micropores (depth of the large diameter hole portion, small diameter hole portion and medium diameter hole portion) is obtained by observing the cross section of the support (anodized film) with FE-TEM, It is a value obtained by measuring and averaging the depths of 25 arbitrary micropores.
なお、上記(A)から(F)のうち、第1陽極酸化処理、ポアワイド処理、第2陽極酸化処理、または第3陽極酸化処理の条件を変更して、比較例1〜16を実施した。条件は、第1表に示す。表中「−」は、未実施を意味する。 In addition, among the above (A) to (F), Comparative Examples 1 to 16 were carried out by changing the conditions of the first anodizing treatment, the pore widening treatment, the second anodizing treatment, or the third anodizing treatment. The conditions are shown in Table 1. In the table, “-” means not implemented.
<平版印刷版原版の製造>
上記で製造した各平版印刷版用支持体に対し、下記下塗り液を乾燥塗布量が28mg/m2になるよう塗布して、下塗り層を設けた。
<Manufacture of lithographic printing plate precursor>
The following undercoat liquid was applied to each lithographic printing plate support produced above so that the dry coating amount was 28 mg / m 2 , thereby providing an undercoat layer.
<下塗り層用塗布液>
・下記構造の下塗り層用化合物(1) 0.18g
・ヒドロキシエチルイミノ二酢酸 0.10g
・メタノール 55.24g
・水 6.15g
<Coating liquid for undercoat layer>
-Undercoat layer compound (1) having the following structure: 0.18 g
・ Hydroxyethyliminodiacetic acid 0.10g
・ Methanol 55.24g
・ Water 6.15g
次いで、上記のようにして形成された下塗り層上に、画像記録層塗布液をバー塗布した後、100℃60秒でオーブン乾燥し、乾燥塗布量1.3g/m2の画像記録層を形成した。
全ての画像記録層塗布液は、各感光液およびミクロゲル液を塗布直前に混合し攪拌することにより得た。
Next, the image recording layer coating solution is bar-coated on the undercoat layer formed as described above, and then oven-dried at 100 ° C. for 60 seconds to form an image recording layer having a dry coating amount of 1.3 g / m 2. did.
All the image recording layer coating solutions were obtained by mixing and stirring the respective photosensitive solutions and microgel solutions immediately before coating.
<感光液>
・バインダーポリマー(1)〔下記構造〕 0.24g
・赤外線吸収剤(1)〔下記構造〕 0.030g
・ラジカル重合開始剤(1)〔下記構造〕 0.162g
・重合性化合物 トリス(アクリロイルオキシエチル)イソシアヌレート(NKエステルA−9300、新中村化学社製) 0.192g
・低分子親水性化合物トリス(2−ヒドロキシエチル)イソシアヌレート
0.062g
・低分子親水性化合物(1)〔下記構造〕 0.052g
・感脂化剤
ホスホニウム化合物(1)〔下記構造〕 0.055g
・感脂化剤
ベンジル−ジメチル−オクチルアンモニウム・PF6塩 0.018g
・ベタイン誘導体(C−1)〔下記構造〕 0.010g
・フッ素系界面活性剤(1)〔下記構造〕 0.008g
・メチルエチルケトン 1.091g
・1−メトキシ−2−プロパノール 8.609g
<Photosensitive solution>
-Binder polymer (1) [the following structure] 0.24 g
Infrared absorber (1) [the following structure] 0.030 g
-Radical polymerization initiator (1) [the following structure] 0.162 g
Polymerizable compound Tris (acryloyloxyethyl) isocyanurate (NK ester A-9300, manufactured by Shin-Nakamura Chemical Co., Ltd.) 0.192 g
・ Low molecular weight hydrophilic compound tris (2-hydroxyethyl) isocyanurate
0.062g
・ Low molecular weight hydrophilic compound (1) [the following structure] 0.052 g
-Sensitizing agent Phosphonium compound (1) [the following structure] 0.055 g
・ Sensitizer Benzyl-dimethyl-octylammonium ・ PF 6 salt 0.018g
-Betaine derivative (C-1) [the following structure] 0.010 g
・ Fluorosurfactant (1) [The following structure] 0.008g
・ Methyl ethyl ketone 1.091g
・ 1-methoxy-2-propanol 8.609g
<ミクロゲル液>
・ミクロゲル(1) 2.640g
・蒸留水 2.425g
<Microgel solution>
・ Microgel (1) 2.640 g
・ Distilled water 2.425g
上記のバインダーポリマー(1)、赤外線吸収剤(1)、ラジカル重合開始剤(1)、ホスホニウム化合物(1)、低分子親水性化合物(1)およびフッ素系界面活性剤(1)の構造は、以下に示す通りである。 The structures of the binder polymer (1), the infrared absorber (1), the radical polymerization initiator (1), the phosphonium compound (1), the low molecular weight hydrophilic compound (1) and the fluorine-based surfactant (1) are as follows: It is as shown below.
上記に記載のミクロゲル(1)は、以下のようにして合成されたものである。 The microgel (1) described above is synthesized as follows.
<ミクロゲル(1)の合成>
油相成分として、トリメチロールプロパンとキシレンジイソシアナート付加体(タケネートD−110N、三井武田ケミカル社製)10g、ペンタエリスリトールトリアクリレート(SR444、日本化薬社製)3.15g、およびパイオニンA−41C(竹本油脂社製)0.1gを酢酸エチル17gに溶解した。水相成分としてPVA−205の4質量%水溶液40gを調製した。油相成分および水相成分を混合し、ホモジナイザーを用いて12,000rpmで10分間乳化した。得られた乳化物を、蒸留水25gに添加し、室温で30分攪拌後、50℃で3時間攪拌した。このようにして得られたミクロゲル液の固形分濃度を、15質量%になるように蒸留水を用いて希釈し、これを上記ミクロゲル(1)とした。ミクロゲルの平均粒径を光散乱法により測定したところ、平均粒径は0.2μmであった。
<Synthesis of Microgel (1)>
As oil phase components, trimethylolpropane and xylene diisocyanate adduct (Takenate D-110N, manufactured by Mitsui Takeda Chemical Co., Ltd.) 10 g, pentaerythritol triacrylate (SR444, manufactured by Nippon Kayaku Co., Ltd.) 3.15 g, and Pionein A- 0.1 g of 41C (manufactured by Takemoto Yushi Co., Ltd.) was dissolved in 17 g of ethyl acetate. As an aqueous phase component, 40 g of a 4% by mass aqueous solution of PVA-205 was prepared. The oil phase component and the aqueous phase component were mixed and emulsified for 10 minutes at 12,000 rpm using a homogenizer. The obtained emulsion was added to 25 g of distilled water, stirred at room temperature for 30 minutes, and then stirred at 50 ° C. for 3 hours. The microgel solution thus obtained was diluted with distilled water to a solid content concentration of 15% by mass, and this was used as the microgel (1). When the average particle size of the microgel was measured by a light scattering method, the average particle size was 0.2 μm.
次いで、上記のようにして形成された画像記録層上に、さらに下記組成の保護層塗布液をバー塗布した後、120℃60秒でオーブン乾燥し、乾燥塗布量0.15g/m2の保護層を形成し、平版印刷版原版を得た。 Then, a protective layer coating solution having the following composition was further bar-coated on the image recording layer formed as described above, and then oven-dried at 120 ° C. for 60 seconds to provide a dry coating amount of 0.15 g / m 2 . A layer was formed to obtain a lithographic printing plate precursor.
<保護層用塗布液>
・無機質層状化合物分散液(1) 1.5g
・ポリビニルアルコール(CKS50、スルホン酸変性、けん化度99モル%以上、重合度300、日本合成化学工業社製)6質量%水溶液 0.55g
・ポリビニルアルコール(PVA−405、けん化度81.5モル%重合度500、クラレ社製)6質量%水溶液 0.03g
・界面活性剤(エマレックス710、日本エマルジョン社製)1質量%水溶液
8.60g
・イオン交換水 6.0g
<Coating liquid for protective layer>
・ Inorganic layered compound dispersion (1) 1.5 g
-Polyvinyl alcohol (CKS50, sulfonic acid modification, saponification degree 99 mol% or more, polymerization degree 300, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) 6% by mass aqueous solution 0.55 g
-Polyvinyl alcohol (PVA-405, saponification degree 81.5 mol% polymerization degree 500, Kuraray Co., Ltd.) 6 mass% aqueous solution 0.03g
-1% by weight aqueous solution of surfactant (Emalex 710, manufactured by Nippon Emulsion)
8.60g
・ Ion-exchanged water 6.0g
上記に記載の無機質層状化合物分散液(1)は、以下のようにして調製されたものである。 The inorganic layered compound dispersion (1) described above is prepared as follows.
(無機質層状化合物分散液(1)の調製)
イオン交換水193.6gに合成雲母ソマシフME−100(コープケミカル(株)製)6.4gを添加し、ホモジナイザーを用いて平均粒径(レーザー散乱法)が3μmになるまで分散した。得られた分散粒子のアスペクト比は100以上であった。
(Preparation of inorganic layered compound dispersion (1))
6.4 g of synthetic mica Somasif ME-100 (manufactured by Coop Chemical Co., Ltd.) was added to 193.6 g of ion-exchanged water, and dispersed using an homogenizer until the average particle size (laser scattering method) became 3 μm. The aspect ratio of the obtained dispersed particles was 100 or more.
<平版印刷版原板の評価>
(機上現像性)
得られた平版印刷版原版を赤外線半導体レーザー搭載の富士フイルム(株)製Luxel PLATESETTER T−6000IIIにて、外面ドラム回転数1000rpm、レーザー出力70%、解像度2400dpiの条件で露光した。露光画像にはベタ画像および20μmドットFMスクリーンの50%網点チャートを含むようにした。
得られた露光済み原版を現像処理することなく、(株)小森コーポレーション製印刷機LITHRONE26の版胴に取り付けた。Ecolity−2(富士フイルム(株)製)/水道水=2/98(容量比)の湿し水とValues−G(N)墨インキ(大日本インキ化学工業(株)製)とを用い、LITHRONE26の標準自動印刷スタート方法で湿し水とインキとを供給して機上現像した後、毎時10000枚の印刷速度で、特菱アート(76.5kg)紙に印刷を100枚行った。
50%網点チャートの未露光部の印刷機上での機上現像が完了し、網点非画像部にインキが転写しない状態になるまでに要した印刷用紙の枚数を機上現像性として計測した。機上現像性のよい方から順に、◎(損紙15枚以下)、○(16〜20枚)、△(21〜30枚)×(31枚以上)で表した。結果を表3に示す。なお、実用上、「×」でないことが好ましい。
<Evaluation of planographic printing plate>
(On-press developability)
The resulting lithographic printing plate precursor was exposed with a Luxel PLASETTER T-6000III manufactured by Fuji Film Co., Ltd. equipped with an infrared semiconductor laser under the conditions of an outer drum rotation speed of 1000 rpm, a laser output of 70%, and a resolution of 2400 dpi. The exposure image includes a solid image and a 50% dot chart of a 20 μm dot FM screen.
The obtained exposed original plate was attached to a plate cylinder of a printing machine LITHRONE 26 manufactured by Komori Corporation without developing. Equality-2 (manufactured by FUJIFILM Corporation) / tap water = 2/98 (volume ratio) dampening water and Values-G (N) black ink (manufactured by Dainippon Ink & Chemicals, Inc.) After dampening water and ink were supplied by the standard automatic printing start method of LITHRONE 26 and developed on the machine, 100 sheets were printed on Tokuhishi Art (76.5 kg) paper at a printing speed of 10,000 sheets per hour.
Measures the number of print sheets required until the on-press development on the printing machine in the unexposed area of the 50% halftone chart is completed and the ink is not transferred to the halftone dot non-image area as the on-press developability. did. In order from the one with the best on-press developability, it was represented by ◎ (15 sheets or less of damaged paper), ○ (16 to 20 sheets), Δ (21 to 30 sheets) × (31 sheets or more). The results are shown in Table 3. In practice, it is preferably not “x”.
(放置払い枚数)
上記機上現像終了後、良好な印刷物が得られるようになった後に、印刷を一旦停止し、25℃、湿度50%の部屋において、印刷機上で1時間放置して、印刷を再開した時に、汚れのない良好な印刷物が得られるまでに要した印刷用紙の損紙枚数を評価した。放置払い性のよい方から順に、◎(損紙50枚以下)、○(51〜75枚)、△(76〜300枚)、×(301枚以上)で表した。結果を表3に示す。なお、実用上、「×」でないことが好ましい。
(Number of neglected payments)
After the on-press development is completed, after a good printed matter can be obtained, the printing is temporarily stopped, and the printing is resumed after being left on the printing press for 1 hour in a room at 25 ° C. and a humidity of 50%. Then, the number of damaged sheets of printing paper required until a good print with no stain was obtained was evaluated. In order from the one with the best neglectability, it is represented by ◎ (50 sheets or less of waste paper), ○ (51 to 75 sheets), Δ (76 to 300 sheets), and × (301 sheets or more). The results are shown in Table 3. In practice, it is preferably not “x”.
(耐刷性)
上記同様の印刷機及び手法で機上現像したのち、さらに印刷を続けた。ベタ画像の濃度が薄くなり始めたと目視で認められた時点の印刷枚数により、耐刷性を評価した。印刷枚数が1万枚未満のものを×××、1万枚以上1万5千枚未満のものを××、1万5千枚以上2万枚未満のものを×、2万枚以上2万5千枚未満のものを○、2万5千枚以上3万枚未満のものを◎、3万枚以上のものを◎◎とした。結果を表3に示す。実用上、「×××」「××」「×」でないことが好ましい。
(Print life)
After on-press development using the same printing machine and method as described above, printing was further continued. The printing durability was evaluated based on the number of printed sheets when it was visually recognized that the density of the solid image started to decrease. XX for printing less than 10,000 pages XX, 10000 for 10,000 or more and less than 15,000 pages, XX for 15,000 or more and less than 20,000 pages, 20,000 or more 2 Those with less than 55,000 sheets were rated as ○, those with 25,000 or more but less than 30,000 were ◎, and those with 30,000 or more were rated as ◎◎. The results are shown in Table 3. Practically, it is preferably not “xxx”, “xxx”, or “x”.
(耐傷性)
平版印刷版用支持体の耐傷性は、得られた平版印刷版用支持体表面の引っ掻き試験により評価した。結果を表3に示す。
引っ掻き試験は、連続加重式引っ掻き強度試験器(SB−53、新東科学社製)を用いて、サファイヤ針0.4mmφ、針の移動速度10cm/秒の条件下、加重50gおよび100gで行った。
その結果、50g、100g条件とも針によるキズがアルミニウム合金板(素地)の表面に達していないものを耐傷性に優れるものとして「○」と評価し、50g条件のみ針によるキズがアルミニウム合金板(素地)の表面に達していないものを「△」、50g、100g条件とも達しているものを「×」と評価した。なお、耐傷性に優れる平版印刷版用支持体は、平版印刷版原版にしたときの巻き取り時および積層中における画像記録層へのキズの転写を抑制でき、非画像部の汚れを抑制することができる。
なお、実用上、「×」でないことが好ましい。
(Scratch resistance)
The scratch resistance of the lithographic printing plate support was evaluated by a scratch test on the surface of the obtained lithographic printing plate support. The results are shown in Table 3.
The scratch test was performed using a continuous load-type scratch strength tester (SB-53, manufactured by Shinto Kagaku Co., Ltd.) under the conditions of a sapphire needle of 0.4 mmφ and a needle moving speed of 10 cm / sec at a load of 50 g and 100 g. .
As a result, in both 50 g and 100 g conditions, the case where scratches by the needle did not reach the surface of the aluminum alloy plate (base) was evaluated as “◯” as being excellent in scratch resistance. Those that did not reach the surface of the “base” were evaluated as “Δ”, and those that reached both the 50 g and 100 g conditions were evaluated as “x”. In addition, the lithographic printing plate support having excellent scratch resistance can suppress the transfer of scratches to the image recording layer during winding and laminating when making a lithographic printing plate precursor, and suppress stains on non-image areas. Can do.
In practice, it is preferably not “x”.
上記表3に示すように、所定の範囲の平均径および深さを示すマイクロポアが形成されたアルミニウムの陽極酸化皮膜を備える平版印刷用支持体を用いた平版印刷版(実施例1〜23)においては、優れた耐刷性、放置払い性、機上現像性および耐傷性を示すことが確認された。なお、実施例1〜23において得られたマイクロポアを構成する大径孔部、小径孔部、および中径孔部の形状は共に略直管状であった。
また、実施例4および5を比較すると、小径孔部の深さが30nm以上である実施例5において、より優れた効果を示すことが確認された。
実施例6〜9を比較すると、所定の大径孔部の平均径を有する実施例7および8において、より優れた効果を示すことが確認された。
実施例10〜14を比較すると、小径孔部の平均径がより小さい実施例10および11において、より優れた効果を示すことが確認された。
As shown in Table 3 above, a lithographic printing plate using a lithographic printing support provided with an aluminum anodic oxide film on which micropores having an average diameter and depth in a predetermined range are formed (Examples 1 to 23) It was confirmed that the film exhibited excellent printing durability, neglectability, on-press developability and scratch resistance. In addition, the shape of the large diameter hole part, the small diameter hole part, and the medium diameter hole part which comprise the micropore obtained in Examples 1-23 was substantially straight tube shape.
Further, when Examples 4 and 5 were compared, it was confirmed that Example 5 in which the depth of the small-diameter hole portion is 30 nm or more shows a more excellent effect.
When Examples 6 to 9 were compared, it was confirmed that Examples 7 and 8 having an average diameter of a predetermined large-diameter hole portion showed a more excellent effect.
When Examples 10 to 14 were compared, it was confirmed that Examples 10 and 11 in which the average diameter of the small-diameter holes was smaller showed a more excellent effect.
一方、本発明の平均径および深さの関係を満たさない比較例1〜16においては、実施例1〜23と比較して効果の劣る結果のみが得られた。
特に、特開平11−291657号公報において具体的に開示されている実施例1〜5を再現した比較例6〜10においては、放置払い性および機上現像性に劣る結果が得られた。
On the other hand, in Comparative Examples 1 to 16 that do not satisfy the relationship between the average diameter and depth of the present invention, only inferior results were obtained as compared with Examples 1 to 23.
In particular, in Comparative Examples 6 to 10 in which Examples 1 to 5 specifically disclosed in JP-A No. 11-291657 were reproduced, results inferior in neglectability and on-press developability were obtained.
また、実施例1において、所望の陽極酸化皮膜形状を得るために費やした全処理時間は、35秒程度であり、短時間で所望の支持体を得ることができた。 In Example 1, the total processing time spent for obtaining the desired anodic oxide film shape was about 35 seconds, and the desired support could be obtained in a short time.
1、12 アルミニウム板
2、4 ローラ状ブラシ
3 研磨スラリー液
5、6、7、8 支持ローラ
ta アノード反応時間
tc カソード反応時間
tp 電流が0からピークに達するまでの時間
Ia アノードサイクル側のピーク時の電流
Ic カソードサイクル側のピーク時の電流
10 平版印刷版用支持体
14、14a、14b、14c、14d アルミニウム陽極酸化皮膜
16、16a、16b、16c、16d マイクロポア
18 大径孔部
20 小径孔部
20a 孔部
22 中径孔部
22a 孔部
50 主電解槽
51 交流電源
52 ラジアルドラムローラ
53a,53b 主極
54 電解液供給口
55 電解液
56 補助陽極
60 補助陽極槽
W アルミニウム板
610 陽極酸化処理装置
612 給電槽
614 電解処理槽
616 アルミニウム板
618、626 電解液
620 給電電極
622、628 ローラ
624 ニップローラー
630 電解電極
632 槽壁
634 直流電源
DESCRIPTION OF SYMBOLS 1,12 Aluminum plate 2, 4 Roller-like brush 3 Polishing slurry liquid 5, 6, 7, 8 Support roller ta Anode reaction time tc Cathode reaction time tp Time until current reaches peak from 0 Ia At peak time on anode cycle side Current Ic Current at peak on the cathode cycle side 10 Lithographic printing plate support 14, 14a, 14b, 14c, 14d Aluminum anodized film 16, 16a, 16b, 16c, 16d Micropore 18 Large diameter hole 20 Small diameter hole Part 20a Hole part 22 Medium-diameter hole part 22a Hole part 50 Main electrolytic cell 51 AC power supply 52 Radial drum roller 53a, 53b Main electrode 54 Electrolyte supply port 55 Electrolytic solution 56 Auxiliary anode 60 Auxiliary anode tank W Aluminum plate 610 Anodizing treatment Equipment 612 Feed tank 614 Electrolytic treatment tank 616 Aluminum 618,626 electrolyte 620 feeding electrodes 622,628 roller 624 nip roller 630 electrolytic electrode 632 tank wall 634 a DC power source
Claims (8)
該マイクロポアが、陽極酸化皮膜表面からの深さ(深さA)が5〜60nmである大径孔部と、前記大径孔部の底部と連通して、その連通位置(連通位置X)からの深さ(深さB)が10nm以上である小径孔部と、前記小径孔部の底部と連通して、その連通位置(連通位置Y)からの深さ方向にのびる中径孔部とから構成され、
前記深さBと前記中径孔部の深さCとの合計が510nm以上であり、
前記大径孔部の陽極酸化皮膜表面における平均径(大径孔部径)と、前記小径孔部の連通位置Xにおける平均径(小径孔部径)と、前記中径孔部の連通位置Yにおける平均径(中径孔部径)とが、以下の式(I)の関係を満たし、
式(I) 大径孔部径>中径孔部径>小径孔部径
前記大径孔部径と前記小径孔部径との比(小径孔部径/大径孔部径)が0.8以下であることを特徴とする平版印刷版用支持体。 A support for a lithographic printing plate comprising an aluminum plate and an anodized film of aluminum thereon, and having micropores extending in a depth direction from the surface opposite to the aluminum plate in the anodized film. ,
The micropore communicates with a large-diameter hole having a depth (depth A) of 5 to 60 nm from the surface of the anodized film and a bottom of the large-diameter hole, and a communication position (communication position X). A small-diameter hole having a depth (depth B) of 10 nm or more, and a medium-diameter hole extending in the depth direction from the communication position (communication position Y) in communication with the bottom of the small-diameter hole. Consisting of
The sum of the depth B and the depth C of the medium-diameter hole is 510 nm or more,
The average diameter (large diameter hole diameter) on the anodized film surface of the large diameter hole, the average diameter (small diameter hole diameter) at the communication position X of the small diameter hole, and the communication position Y of the medium diameter hole And the average diameter (medium hole diameter) satisfy the relationship of the following formula (I),
Formula (I) Large-diameter hole diameter> Medium-diameter hole diameter> Small-diameter hole diameter The ratio of the large-diameter hole diameter to the small-diameter hole diameter (small-diameter hole diameter / large-diameter hole diameter) is 0. A support for a lithographic printing plate, which is 8 or less.
前記第1陽極酸化処理工程で得られた陽極酸化皮膜を有するアルミニウム板を、酸水溶液またはアルカリ水溶液に接触させ、前記陽極酸化皮膜中のマイクロポアの径を拡大させるポアワイド処理工程と、
前記ポアワイド処理工程で得られたアルミニウム板を陽極酸化する第2陽極酸化処理工程と、
前記第2陽極酸化処理工程で得られたアルミニウム板を陽極酸化する第3陽極酸化処理工程とを備え、請求項1〜5のいずれかに記載の平版印刷版用支持体を製造する、平版印刷版用支持体の製造方法。 A first anodizing process for anodizing the aluminum plate;
A pore-wide treatment step in which the aluminum plate having the anodized film obtained in the first anodizing treatment step is brought into contact with an acid aqueous solution or an alkali aqueous solution to increase the diameter of the micropores in the anodized film;
A second anodizing treatment step of anodizing the aluminum plate obtained in the pore wide treatment step;
A lithographic printing comprising: a third anodizing treatment step for anodizing the aluminum plate obtained in the second anodizing treatment step, and producing a lithographic printing plate support according to any one of claims 1 to 5 A method for producing a plate support.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010216436A JP5498905B2 (en) | 2010-09-28 | 2010-09-28 | Lithographic printing plate support, method for producing lithographic printing plate support, and lithographic printing plate precursor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010216436A JP5498905B2 (en) | 2010-09-28 | 2010-09-28 | Lithographic printing plate support, method for producing lithographic printing plate support, and lithographic printing plate precursor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012071435A JP2012071435A (en) | 2012-04-12 |
JP5498905B2 true JP5498905B2 (en) | 2014-05-21 |
Family
ID=46167790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010216436A Expired - Fee Related JP5498905B2 (en) | 2010-09-28 | 2010-09-28 | Lithographic printing plate support, method for producing lithographic printing plate support, and lithographic printing plate precursor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5498905B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112015001857B1 (en) * | 2012-07-27 | 2021-09-14 | Fujifilm Corporation | LITHOGRAPHIC PRINT PLATE SUPPORT, LITHOGRAPHIC PRINT PLATE PRECURSOR AND LITHOGRAPHIC PRINT PLATE PRODUCTION METHOD |
US10828884B2 (en) * | 2017-03-02 | 2020-11-10 | Eastman Kodak Company | Lithographic printing plate precursors and method of use |
CN109863034B (en) * | 2017-09-29 | 2020-11-27 | 富士胶片株式会社 | Lithographic printing plate precursor, method for producing lithographic printing plate, and lithographic printing method |
CN109996683B (en) * | 2017-10-31 | 2020-05-19 | 富士胶片株式会社 | Lithographic printing plate precursor, method for producing lithographic printing plate, printing method, and method for producing aluminum support |
US11117412B2 (en) | 2019-10-01 | 2021-09-14 | Eastman Kodak Company | Lithographic printing plate precursors and method of use |
-
2010
- 2010-09-28 JP JP2010216436A patent/JP5498905B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012071435A (en) | 2012-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5498371B2 (en) | Lithographic printing plate support, method for producing lithographic printing plate support, and lithographic printing plate precursor | |
JP5205480B2 (en) | Support for lithographic printing plate and lithographic printing plate precursor | |
JP5498403B2 (en) | Lithographic printing plate support, method for producing lithographic printing plate support, and lithographic printing plate precursor | |
JP5813063B2 (en) | Lithographic printing plate support, method for producing the same, and lithographic printing plate precursor | |
WO2013111652A1 (en) | Lithographic printing plate support, lithographic printing plate support manufacturing method and lithographic printing plate master | |
JP5612531B2 (en) | Support for lithographic printing plate and lithographic printing plate precursor | |
WO2019044087A1 (en) | Planographic printing plate original plate, method for manufacturing planographic printing plate, and printing method | |
US8978555B2 (en) | Lithographic printing plate support and presensitized plate | |
WO2019087516A1 (en) | Planographic printing plate original plate, method for manufacturing planographic printing plate, printing method, and method for manufacturing aluminum support body | |
JP2005254638A (en) | Method of manufacturing support for lithographic printing plate | |
JP5498905B2 (en) | Lithographic printing plate support, method for producing lithographic printing plate support, and lithographic printing plate precursor | |
JP2015189021A (en) | Support for lithographic printing plate and manufacturing method therefor and lithographic printing original plate | |
JP5203477B2 (en) | Support for lithographic printing plate and lithographic printing plate precursor | |
JP6639662B2 (en) | Aluminum support for lithographic printing plate and lithographic printing plate precursor | |
JP2004354918A (en) | Lithographic printing original plate | |
JP2004354905A (en) | Lithographic printing original plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140310 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5498905 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |