JP5478087B2 - Optical frequency domain reflection measurement method and apparatus - Google Patents

Optical frequency domain reflection measurement method and apparatus Download PDF

Info

Publication number
JP5478087B2
JP5478087B2 JP2009031687A JP2009031687A JP5478087B2 JP 5478087 B2 JP5478087 B2 JP 5478087B2 JP 2009031687 A JP2009031687 A JP 2009031687A JP 2009031687 A JP2009031687 A JP 2009031687A JP 5478087 B2 JP5478087 B2 JP 5478087B2
Authority
JP
Japan
Prior art keywords
light
measurement
beat signal
interferometer
output light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009031687A
Other languages
Japanese (ja)
Other versions
JP2010185842A (en
Inventor
優介 古敷谷
文彦 伊藤
ファン・シンユー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009031687A priority Critical patent/JP5478087B2/en
Publication of JP2010185842A publication Critical patent/JP2010185842A/en
Application granted granted Critical
Publication of JP5478087B2 publication Critical patent/JP5478087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Description

本発明は、光部品や光伝送路において反射光や後方散乱光を高空間分解能で測定することができる光周波数領域反射測定方法とこの方法を用いた測定装置に関する。   The present invention relates to an optical frequency domain reflection measurement method capable of measuring reflected light and backscattered light with high spatial resolution in an optical component or an optical transmission line, and a measurement apparatus using this method.

高空間分解能にて光部品や光伝送路からの反射光および後方散乱光を測定する事が可能な手法として、非特許文献1に示すようなコヒーレント光を用いた光周波数領域反射測定方法(C−OFDR)がある。光周波数領域反射測定方法は、測定対象に周波数掃引されたコヒーレント光を入射し、測定対象からの反射光および後方散乱光と、あらかじめ分岐された参照光をコヒーレント検波し、得られた測定ビート信号を周波数解析することで、測定対象内の任意の位置での反射光および後方散乱光強度を得て、測定対象の損失分布や故障点の特定を可能にする技術である。   As a technique capable of measuring reflected light and backscattered light from an optical component or an optical transmission line with high spatial resolution, an optical frequency domain reflection measurement method using coherent light as shown in Non-Patent Document 1 (C -OFDR). In the optical frequency domain reflection measurement method, frequency-swept coherent light is incident on the measurement object, and the reflected and backscattered light from the measurement object and the reference light branched in advance are coherently detected, and the obtained measurement beat signal Is a technique for obtaining the reflected light and backscattered light intensity at an arbitrary position in the measurement object and identifying the loss distribution and the failure point of the measurement object.

さらに、非特許文献2に示すように、参照干渉計を用いて光源のコヒーレンス特性をモニタして測定ビート信号を補正することで、レーザコヒーレンス長を越える領域においても、光源の位相揺らぎ(光源位相雑音)による反射スペクトルの広がりを補償し高精度な測定結果を得ることができるとされている。   Further, as shown in Non-Patent Document 2, by monitoring the coherence characteristics of the light source using a reference interferometer and correcting the measurement beat signal, the phase fluctuation of the light source (light source phase) is also obtained in a region exceeding the laser coherence length. It is said that a highly accurate measurement result can be obtained by compensating the spread of the reflection spectrum due to noise.

W.Eickhoff and R.Ulrich,Applied physics Letters,vol.39,no9,pp.693-695,1981W. Eickhoff and R. Ulrich, Applied physics Letters, vol. 39, no 9, pp. 693-695, 1981 X.Fan,Y.Koshikiya and F.Ito,Optics Letters,vol.32.no.22,pp.3227-3229,2007X.Fan 、 Y.Koshikiya and F.Ito, Optics Letters, vol.32.no.22, pp.3227-3229,2007 “小型防音ボックス”、[online]、[2008年11月28日検索]、インターネット<URL:https://www.soundenvironment.jp/soundproof-box.htm>“Small Soundproof Box”, [online], [searched on November 28, 2008], Internet <URL: https://www.soundenvironment.jp/soundproof-box.htm> “遮音シート”、[online]、[2008年11月28日検索]、インターネット<URL:https://www.nittobo.co.jp/kw/juuken/syaon.html>“Sound insulation sheet”, [online], [searched on November 28, 2008], Internet <URL: https://www.nittobo.co.jp/kw/juuken/syaon.html>

しかし、既存の技術においては参照干渉計に音、振動、温度変化等の外乱が加わることで光源位相雑音とは別の位相揺らぎ(外乱による位相雑音)が重畳され、このような外乱が重畳されたモニタビート信号では測定ビート信号を正しく補正できないという問題があった。   However, in existing technologies, disturbances such as sound, vibration, and temperature change are added to the reference interferometer, and phase fluctuations (phase noise due to disturbances) different from the light source phase noise are superimposed, and such disturbances are superimposed. The monitor beat signal has a problem that the measurement beat signal cannot be corrected correctly.

特に参照干渉計に用いられる遅延長が長い場合は外乱を受ける区間が長くなるため、外乱による位相雑音が大きくなる。これにより測定ビート信号を十分補正できず反射スペクトルが広がり、高精度な測定が不可能となる。このように、外乱の影響によって参照干渉計による補正の効果が小さくなってしまうため、外乱による位相揺らぎは光周波数領域反射測定方法(OFDR)を測定距離の長い対象物へ適用する際の大きな障害となっていた。   In particular, when the delay length used in the reference interferometer is long, the section subjected to the disturbance becomes long, so that the phase noise due to the disturbance becomes large. As a result, the measurement beat signal cannot be sufficiently corrected, the reflection spectrum is widened, and high-accuracy measurement is impossible. As described above, the effect of the correction by the reference interferometer becomes small due to the influence of the disturbance. Therefore, the phase fluctuation due to the disturbance is a great obstacle when the optical frequency domain reflection measurement method (OFDR) is applied to an object with a long measurement distance. It was.

前述した課題を解決するために本発明は、光周波数を時間に対して掃引する光源からの出力光を二分岐して参照干渉計及び測定干渉計にそれぞれ入射し、前記参照干渉計では前記光源からの出力光と該出力光を遅延ファイバで遅延させた光とのモニタビート信号を検出し、前記測定干渉計では前記光源からの出力光と該出力光を測定対象に入射させることにより得られる後方散乱光及び反射光との測定ビート信号を検出し、前記測定ビート信号を前記モニタビート信号に基づいて補正し、測定対象における光波伝播方向の反射率を測定する光周波数領域反射測定方法(OFDR)において、前記参照干渉計の遅延ファイバが受ける外乱である音による光波の位相揺らぎを抑圧するために参照干渉計の遅延ファイバに防音措置を施すことを特徴とする。 In order to solve the above-mentioned problem, the present invention divides the output light from a light source that sweeps the optical frequency with respect to time and enters the reference interferometer and the measurement interferometer, respectively. Is obtained by detecting the monitor beat signal between the output light from the light and the light obtained by delaying the output light with a delay fiber, and the measurement interferometer makes the output light from the light source and the output light incident on the measurement object An optical frequency domain reflection measurement method (OFDR) that detects a measurement beat signal of backscattered light and reflected light, corrects the measurement beat signal based on the monitor beat signal, and measures a reflectance in a light wave propagation direction in a measurement target. in), characterized by applying soundproofing measures delay fiber of the reference interferometer for applying suppress the light wave phase fluctuation due to sound a disturbance delay fiber of the reference interferometer is subjected To.

また本発明の光周波数領域反射測定装置は、光周波数を時間に対して掃引する光源と、前記光源からの出力光が入射され、入射された出力光と出力光を遅延ファイバで遅延させた光とのモニタビート信号を検出する参照干渉計と、前記光源からの出力光が入射され、入射された出力光と出力光を測定対象に入射させることにより得られる後方散乱光及び反射光との測定ビート信号を検出する測定干渉計と、前記モニタビート信号及び前記測定ビート信号を受信してサンプリングするサンプリング部と、前記サンプリング部でサンプリングされた測定ビート信号をモニタビート信号に基づいて補正し、測定対象における光波伝播方向の反射率を測定する解析部と、前記参照干渉計の遅延ファイバに設けられた外乱である音による光波の位相揺らぎを抑圧するための防音機構とを具備することを特徴とするものである。 The optical frequency domain reflectometry apparatus of the present invention includes a light source that sweeps an optical frequency with respect to time, light that is output from the light source, and light that has been incident and delayed by a delay fiber. A reference interferometer for detecting a monitor beat signal, and measurement of backscattered light and reflected light obtained by making the output light from the light source incident and making the incident output light and the output light incident on the measurement object A measurement interferometer that detects a beat signal, a sampling unit that receives and samples the monitor beat signal and the measurement beat signal, a measurement beat signal sampled by the sampling unit is corrected based on the monitor beat signal, and is measured an analysis unit that measures the reflectance of light wave propagation direction in a subject, provided the delay fiber of the reference interferometer, light waves of the phase swing due to sound a disturbance It is characterized in that it comprises a soundproof mechanism for suppressing the technique.

本発明の光周波数領域反射測定方法は、参照干渉計の遅延ファイバが受ける例えば音によって生じる光波の位相揺らぎ等の外乱による光波の位相揺らぎを抑庄することができ、測定距離の長い対象であっても高分解能な測定を行うことが可能となる。   The optical frequency domain reflection measurement method of the present invention can suppress phase fluctuations of light waves due to disturbances such as light wave phase fluctuations caused by sound, for example, which is received by the delay fiber of the reference interferometer, and is an object with a long measurement distance. However, high-resolution measurement can be performed.

本発明の実施形態に係る光周波数領域反射測定装置を示す構成説明図である。It is a structure explanatory view showing an optical frequency domain reflection measuring apparatus according to an embodiment of the present invention. 本発明の実施形態に係る光周波数領域反射測定方法で測定された反射点のスペクトルを示す図で、(a)は参照干渉計の遅延ファイバを防音箱に入れない場合、(b)は参照干渉計の遅延ファイバを防音箱に入れた場合である。It is a figure which shows the spectrum of the reflective point measured with the optical frequency domain reflection measuring method which concerns on embodiment of this invention, (a) is a case where the delay fiber of a reference interferometer is not put in a soundproof box, (b) is reference interference. This is when the total delay fiber is placed in a soundproof box.

以下、本発明の実施の形態について、詳細に説明する。
図1において、11は周波数掃引光源、12,18,21,22,23は光方向性結合器、13は測定干渉計、14は測定対象、15は参照干渉計、16はサンプリング部、17は解析部、19は遅延ファイバ、20は防音機構、24,26は光受信器、25,27はサンプリング装置、28はクロック発生器、29は演算処理装置、30は出力光、31は測定光、32はモニタリング光、33は信号光、34は局発光である。
Hereinafter, embodiments of the present invention will be described in detail.
In FIG. 1, 11 is a frequency sweep light source, 12, 18, 21, 22, and 23 are optical directional couplers, 13 is a measurement interferometer, 14 is a measurement object, 15 is a reference interferometer, 16 is a sampling unit, and 17 is Analysis unit, 19 is a delay fiber, 20 is a soundproofing mechanism, 24 and 26 are optical receivers, 25 and 27 are sampling devices, 28 is a clock generator, 29 is an arithmetic processing unit, 30 is output light, 31 is measurement light, 32 is monitoring light, 33 is signal light, and 34 is local light.

本発明の実施形態に係る光周波数領域反射測定装置は、図1に示すように、光周波数を時間に対して掃引する周波数掃引光源11から出力された出力光30が光方向性結合器12により分岐され、一方は測定光31として測定干渉計13および測定対象14に入射し、他方は出力光30のコヒーレンス特性をモニタするモニタリング光32として参照干渉計15に入射する。   As shown in FIG. 1, the optical frequency domain reflectometry apparatus according to the embodiment of the present invention uses an optical directional coupler 12 to output light 30 output from a frequency sweep light source 11 that sweeps the optical frequency with respect to time. One is incident on the measurement interferometer 13 and the measurement object 14 as the measurement light 31, and the other is incident on the reference interferometer 15 as the monitoring light 32 for monitoring the coherence characteristics of the output light 30.

参照干渉計15は光方向性結合器18,21及び遅延ファイバ19より構成され、入射されたモニタリング光32(出力光30)とモニタリング光32を遅延ファイバ19で遅延させた光とのモニタビート信号を検出する。参照干渉計15の遅延ファイバ19には外乱による光波の位相揺らぎを抑圧する機構、例えば音が外乱として作用することによって生じる光波の位相揺らぎを抑圧する防音機構20が設けられる。   The reference interferometer 15 includes optical directional couplers 18 and 21 and a delay fiber 19, and a monitor beat signal between the incident monitoring light 32 (output light 30) and the light obtained by delaying the monitoring light 32 by the delay fiber 19. Is detected. The delay fiber 19 of the reference interferometer 15 is provided with a mechanism for suppressing the phase fluctuation of the light wave due to the disturbance, for example, a soundproof mechanism 20 for suppressing the phase fluctuation of the light wave caused by the sound acting as a disturbance.

測定干渉計13は光方向性結合器22,23より構成され、信号光33(出力光30,測定光31)と測定光31(出力光30)を測定対象14に入射させることにより得られる後方散乱光及び反射光の局発光34との測定ビート信号を検出する。   The measurement interferometer 13 includes optical directional couplers 22 and 23, and is obtained by causing the signal light 33 (output light 30, measurement light 31) and the measurement light 31 (output light 30) to enter the measurement object 14. The measurement beat signal with the local light 34 of the scattered light and the reflected light is detected.

参照干渉計15で検出されたモニタビート信号はサンプリング部16の光受信器24で受信してサンプリング装置25でサンプリングする。測定干渉計13で検出された測定ビート信号はサンプリング部16の光受信器26で受信してサンプリング装置27でサンプリングする。サンプリング装置25,27には解析部17のクロック発生器28からクロックパルスが入力される。   The monitor beat signal detected by the reference interferometer 15 is received by the optical receiver 24 of the sampling unit 16 and sampled by the sampling device 25. The measurement beat signal detected by the measurement interferometer 13 is received by the optical receiver 26 of the sampling unit 16 and sampled by the sampling device 27. Clock pulses are input from the clock generator 28 of the analysis unit 17 to the sampling devices 25 and 27.

サンプリング装置25でサンプリングされたモニタビート信号及びサンプリング装置27でサンプリングされた測定ビート信号は解析部17の演算処理装置29に入力され、演算処理装置29は演算処理によってサンプリングされた測定ビート信号をモニタビート信号のコヒーレンス特性に基づいて補正し、測定対象14における反射光および後方散乱光の強度分布を得、測定対象14における光波伝播方向の反射率を測定する。   The monitor beat signal sampled by the sampling device 25 and the measurement beat signal sampled by the sampling device 27 are input to the arithmetic processing device 29 of the analysis unit 17, and the arithmetic processing device 29 monitors the measurement beat signal sampled by the arithmetic processing. Correction is performed based on the coherence characteristics of the beat signal, the intensity distribution of the reflected light and the backscattered light at the measurement object 14 is obtained, and the reflectance in the light wave propagation direction at the measurement object 14 is measured.

サンプリング装置25は光受信器24から入力されるモニタビート信号をサンプリングし、サンプリングデータXnを内部メモリなどに記録する。演算処理装置29は前記サンプリングデータXnの位相を求める上で、連続関数X(t)を計算する。一方、サンプリング装置27は、光受信器26から入力される測定ビート信号を同じ間隔でサンプリングし、サンプリングデータYnを内部メモリなどに記録する。   The sampling device 25 samples the monitor beat signal input from the optical receiver 24 and records the sampling data Xn in an internal memory or the like. The arithmetic processing unit 29 calculates a continuous function X (t) when obtaining the phase of the sampling data Xn. On the other hand, the sampling device 27 samples the measurement beat signal input from the optical receiver 26 at the same interval, and records the sampling data Yn in an internal memory or the like.

さらに演算処理装置29は、サンプリング装置25から受け取った関数X(t)とサンプリング装置27から受け取ったデータYnとを利用して、サンプリング処理とFFT(高速フーリエ変換)処理とを含むデータ処理を、N回にわたり繰り返す。これにより得たデータFFTは、記録される。そして演算処理装置29は、データFFT、FFT、…、FFTを利用して測定結果を計算する。 Further, the arithmetic processing unit 29 uses the function X (t) received from the sampling unit 25 and the data Yn received from the sampling unit 27 to perform data processing including sampling processing and FFT (fast Fourier transform) processing. Repeat N times. The data FFT N obtained in this way is recorded. The arithmetic processing unit 29 calculates the measurement result using the data FFT 1 , FFT 2 ,..., FFT N.

このように、光源11のコヒーレンス特性をモニタする参照干渉計15を設け、そのモニタの結果に基づいて測定干渉計13における測定結果を補正するようにしている。参照干渉計15において自己遅延ホモダイン検波により光源11の出力光のモニタビート信号を生じさせ、そのビート信号の参照信号を作り出し、その作り出した参照信号に基づき測定干渉計13のビート信号をサンプリングして、得られた数列にFFT処理を施して測定結果を得るようにしている。   As described above, the reference interferometer 15 for monitoring the coherence characteristic of the light source 11 is provided, and the measurement result in the measurement interferometer 13 is corrected based on the result of the monitor. The reference interferometer 15 generates a monitor beat signal of the output light of the light source 11 by self-delayed homodyne detection, generates a reference signal of the beat signal, and samples the beat signal of the measurement interferometer 13 based on the generated reference signal. The obtained number sequence is subjected to FFT processing to obtain a measurement result.

すなわち、光周波数を時間に対して掃引する周波数掃引光源11からの出力光を二分岐して参照干渉計15及び測定干渉計13にそれぞれ入射し、前記参照干渉計15では前記光源11からの出力光と該出力光を遅延ファイバで遅延させた光とのモニタビート信号を検出し、前記測定干渉計13では前記光源11からの出力光と該出力光を測定対象14に入射させることにより得られる後方散乱光及び反射光との測定ビート信号を検出し、前記測定ビート信号を前記モニタビート信号に基づいて補正し、測定対象14における光波伝播方向の反射率を測定する光周波数領域反射測定方法(OFDR)において、前記参照干渉計15の遅延ファイバ19が受ける外乱による光波の位相揺らぎを抑庄する措置、例えば防音措置を施すことを特徴とする。   That is, the output light from the frequency swept light source 11 that sweeps the optical frequency with respect to time is split into two beams and incident on the reference interferometer 15 and the measurement interferometer 13, respectively. The reference interferometer 15 outputs the light from the light source 11. A monitor beat signal between the light and the light obtained by delaying the output light with a delay fiber is detected, and the measurement interferometer 13 obtains the output light from the light source 11 and the output light incident on the measurement object 14. An optical frequency domain reflection measurement method for detecting a measurement beat signal of backscattered light and reflected light, correcting the measurement beat signal based on the monitor beat signal, and measuring the reflectance in the light wave propagation direction in the measurement target 14 ( In the OFDR), a measure for suppressing phase fluctuation of the light wave due to the disturbance received by the delay fiber 19 of the reference interferometer 15, for example, a soundproof measure is taken. That.

参照干渉計15の遅延ファイバ19における防音機構20としては、例えば非特許文献3に示すような小型防音ボックスや非特許文献4に示すような遮音シート等を貼り付けた密閉性の高い箱の内部に参照干渉計15を設置することで実現可能である。   As the soundproofing mechanism 20 in the delay fiber 19 of the reference interferometer 15, for example, a small soundproof box as shown in Non-Patent Document 3 or a highly airtight box with a soundproof sheet as shown in Non-Patent Document 4 is attached. This can be realized by installing the reference interferometer 15 in the above.

また、光波は測定装置において極めて長い光路長を有する遅延ファイバ19中を伝播する際に最も外乱の影響を受けるため、防音を施す範囲は少なくとも参照干渉計15に用いている遅延ファイバ19部分でなければならない。従って、遅延ファイバ19が防音機構20の内部にあれば、その防音機構20に収容する範囲は装置全体に及んでも同様の効果が得られる。但し、防音機構20の内部に音源が存在してはならない。   Further, since the light wave is most affected by the disturbance when propagating through the delay fiber 19 having an extremely long optical path length in the measuring apparatus, the range to be sound-insulated must be at least the delay fiber 19 used in the reference interferometer 15. I must. Therefore, if the delay fiber 19 is inside the soundproof mechanism 20, the same effect can be obtained even if the range accommodated in the soundproof mechanism 20 extends to the entire apparatus. However, no sound source should be present inside the soundproof mechanism 20.

図2は遮音シートを内部に貼り付けた木製の防音箱内に参照干渉計15の遅延ファイバ(5km)19を収容した際に得られるモニタビート信号を用いて測定ビート信号を補正した場合(b)と、遅延ファイバ19を防音箱に収容しなかった際に得られるモニタビート信号を用いて測定ビート信号を補正した場合(a)に得られるOFDR測定の結果(40km地点近傍の波形)を示している。   FIG. 2 shows a case where the measurement beat signal is corrected using the monitor beat signal obtained when the delay fiber (5 km) 19 of the reference interferometer 15 is housed in a wooden soundproof box with a sound insulation sheet attached inside (b) ) And the result of OFDR measurement (waveform in the vicinity of the 40 km point) obtained when the measurement beat signal is corrected using the monitor beat signal obtained when the delay fiber 19 is not accommodated in the soundproof box. ing.

測定対象14は長さ40kmのシングルモードファイバであり、遠端はAdPC研磨されたSCコネクタの開放端とした。参照干渉計15を防音箱に収容することによって、反射点におけるスペクトルの分解能である半値全幅が110cmから10cmに狭窄化されており、分解能が向上していることが分かる。このように、参照干渉計15に防音機構20を施すことで音による光波の位相揺らぎを抑圧し、周波数掃引光源11のコヒーレント特性を正確にモニタしたモニタビート信号を得ることができ、測定ビート信号を正しく補正できる。   The measurement object 14 was a single-mode fiber having a length of 40 km, and the far end was an open end of an AdPC polished SC connector. By accommodating the reference interferometer 15 in the soundproof box, the full width at half maximum, which is the spectral resolution at the reflection point, is narrowed from 110 cm to 10 cm, and it can be seen that the resolution is improved. In this way, by applying the soundproofing mechanism 20 to the reference interferometer 15, the phase fluctuation of the light wave due to sound can be suppressed, and a monitor beat signal that accurately monitors the coherent characteristics of the frequency sweep light source 11 can be obtained. Can be corrected correctly.

上記は参照干渉計15に加わる外乱が音の場合について述べたが、温度変化、振動が外乱として参照干渉計15に作用し、光波の位相揺らぎを生じさせる場合においても、それぞれ温調機構および防振機構を参照干渉計15に施すことで正確に光源コヒーレント特性をモニタすることができ、分解能向上が実現されることは明らかである。   The above describes the case where the disturbance applied to the reference interferometer 15 is sound. However, even when the temperature change and vibration act on the reference interferometer 15 as disturbances and cause phase fluctuations of the light wave, the temperature adjustment mechanism and the anti-vibration respectively. It is obvious that the light source coherent characteristic can be accurately monitored by applying the vibration mechanism to the reference interferometer 15, and the resolution can be improved.

以上のように、本発明の実施形態に係る光周波数領域反射測定方法を用いることにより、参照干渉計によって得られる光源コヒーレンシ特性のモニタが正しく行われるため、参照干渉計による測定ビート信号に対する最大の補正効果が得られ、反射スペクトルの広がりを抑えて高精度な光周波数領域反射測定方法を長距離に渡って提供することが可能になる。   As described above, since the light source coherency characteristic obtained by the reference interferometer is correctly monitored by using the optical frequency domain reflection measurement method according to the embodiment of the present invention, the maximum beat signal measured by the reference interferometer can be maximized. A correction effect is obtained, and it becomes possible to provide a highly accurate optical frequency domain reflection measurement method over a long distance by suppressing the spread of the reflection spectrum.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

11…周波数掃引光源、12,18,21,22,23…光方向性結合器、13…測定干渉計、14…測定対象、15…参照干渉計、16…サンプリング部、17…解析部、19…遅延ファイバ、20…防音機構、24,26…光受信器、25,27…サンプリング装置、28…クロック発生器、29…演算処理装置、30…出力光、31…測定光、32…モニタリング光、33…信号光、34…局発光。   DESCRIPTION OF SYMBOLS 11 ... Frequency sweep light source, 12, 18, 21, 22, 23 ... Optical directional coupler, 13 ... Measurement interferometer, 14 ... Measurement object, 15 ... Reference interferometer, 16 ... Sampling part, 17 ... Analysis part, 19 DESCRIPTION OF SYMBOLS ... Delay fiber, 20 ... Soundproofing mechanism, 24, 26 ... Optical receiver, 25, 27 ... Sampling device, 28 ... Clock generator, 29 ... Arithmetic processing device, 30 ... Output light, 31 ... Measurement light, 32 ... Monitoring light 33 ... Signal light, 34 ... Local light emission.

Claims (2)

光周波数を時間に対して掃引する光源からの出力光を二分岐して参照干渉計及び測定干渉計にそれぞれ入射し、前記参照干渉計では前記光源からの出力光と該出力光を遅延ファイバで遅延させた光とのモニタビート信号を検出し、前記測定干渉計では前記光源からの出力光と該出力光を測定対象に入射させることにより得られる後方散乱光及び反射光との測定ビート信号を検出し、前記測定ビート信号を前記モニタビート信号に基づいて補正し、測定対象における光波伝播方向の反射率を測定する光周波数領域反射測定方法において、
前記参照干渉計の遅延ファイバが受ける外乱である音による光波の位相揺らぎを抑圧するために参照干渉計の遅延ファイバに防音措置を施すことを特徴とする光周波数領域反射測定方法。
The output light from the light source that sweeps the optical frequency with respect to time is bifurcated and is incident on the reference interferometer and the measurement interferometer, respectively. In the reference interferometer, the output light from the light source and the output light are transmitted through a delay fiber. A monitor beat signal with delayed light is detected, and in the measurement interferometer, a measurement beat signal of output light from the light source and backscattered light and reflected light obtained by making the output light incident on a measurement object is detected. In the optical frequency domain reflection measurement method for detecting and correcting the measurement beat signal based on the monitor beat signal, and measuring the reflectance in the light wave propagation direction in the measurement target,
Optical frequency domain reflectometry method characterized by applying soundproofing measures delay fiber of the reference interferometer for applying suppress the light wave phase fluctuation due to sound a disturbance delay fiber of the reference interferometer is subjected.
光周波数を時間に対して掃引する光源と、
前記光源からの出力光が入射され、入射された出力光と出力光を遅延ファイバで遅延させた光とのモニタビート信号を検出する参照干渉計と、
前記光源からの出力光が入射され、入射された出力光と出力光を測定対象に入射させることにより得られる後方散乱光及び反射光との測定ビート信号を検出する測定干渉計と、
前記モニタビート信号及び前記測定ビート信号を受信してサンプリングするサンプリング部と、
前記サンプリング部でサンプリングされた測定ビート信号をモニタビート信号に基づいて補正し、測定対象における光波伝播方向の反射率を測定する解析部と、
前記参照干渉計の遅延ファイバに設けられた外乱である音による光波の位相揺らぎを抑圧するための防音機構と
を具備することを特徴とする光周波数領域反射測定装置。
A light source that sweeps the optical frequency over time;
A reference interferometer for detecting a monitor beat signal of the output light from the light source and the incident output light and the light obtained by delaying the output light with a delay fiber;
A measurement interferometer for detecting a measurement beat signal of backscattered light and reflected light obtained by making the output light from the light source incident and making the incident output light and output light incident on a measurement object;
A sampling unit that receives and samples the monitor beat signal and the measurement beat signal;
An analysis unit that corrects the measurement beat signal sampled by the sampling unit based on the monitor beat signal, and measures the reflectance in the light wave propagation direction in the measurement target;
An optical frequency domain reflection measurement apparatus comprising: a soundproofing mechanism for suppressing phase fluctuation of a light wave caused by a disturbance sound , provided in a delay fiber of the reference interferometer.
JP2009031687A 2009-02-13 2009-02-13 Optical frequency domain reflection measurement method and apparatus Active JP5478087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009031687A JP5478087B2 (en) 2009-02-13 2009-02-13 Optical frequency domain reflection measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009031687A JP5478087B2 (en) 2009-02-13 2009-02-13 Optical frequency domain reflection measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2010185842A JP2010185842A (en) 2010-08-26
JP5478087B2 true JP5478087B2 (en) 2014-04-23

Family

ID=42766578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031687A Active JP5478087B2 (en) 2009-02-13 2009-02-13 Optical frequency domain reflection measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP5478087B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110749419A (en) * 2019-09-12 2020-02-04 芯华创(武汉)光电科技有限公司 OFDR detection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561679B2 (en) * 2011-06-27 2014-07-30 日本電信電話株式会社 Optical frequency domain reflection measurement method and optical frequency domain reflection measurement apparatus
JP6406418B1 (en) * 2017-11-15 2018-10-17 沖電気工業株式会社 Optical fiber sensor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4316773B2 (en) * 2000-05-24 2009-08-19 株式会社フジクラ Anti-vibration and sound-proof structure of optical branching coupling element and optical delay element
CN101611301B (en) * 2007-02-28 2012-11-07 日本电信电话株式会社 Optical refractometry measuring method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110749419A (en) * 2019-09-12 2020-02-04 芯华创(武汉)光电科技有限公司 OFDR detection method
CN110749419B (en) * 2019-09-12 2021-04-13 芯华创(武汉)光电科技有限公司 OFDR detection method

Also Published As

Publication number Publication date
JP2010185842A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
Muanenda Recent advances in distributed acoustic sensing based on phase‐sensitive optical time domain reflectometry
US10295380B2 (en) Method and apparatus for multiple localized interferometric measurements
EP2128588B1 (en) Optical refractometry measuring method and device
US10539476B2 (en) Temperature or strain distribution sensor comprising a coherent receiver to determine a temperature or a strain associated with a device under test
JP6342019B2 (en) Distributed optical fiber acoustic wave detector
KR101130344B1 (en) Apparatus and method of distributed fiber sensor using Brillouin optical time domain analysis based on Brillouin dynamic grating
CN103196584B (en) Measurement method for temperature and stress in fiber and Brillouin optical time domain reflectometer
JP6893137B2 (en) Optical fiber vibration detection sensor and its method
US6825934B2 (en) Vibration noise mitigation in an interferometric system
JP6796043B2 (en) Light reflection measuring device and its method
JP4769668B2 (en) Optical reflectometry measuring method and apparatus
JP6751379B2 (en) Optical time domain reflectometry method and optical time domain reflectometry apparatus
US6900895B2 (en) Phase noise compensation in an interferometric system
JP5478087B2 (en) Optical frequency domain reflection measurement method and apparatus
CN106768895A (en) A kind of detection method of list, multimode fibre range self-adapting
JP6561747B2 (en) Temperature measuring device, temperature measuring method and temperature measuring program
JP5582473B2 (en) Optical frequency domain reflection measurement method and optical frequency domain reflection measurement apparatus
JP5613627B2 (en) Laser optical coherence function measuring method and measuring apparatus
JP5207252B2 (en) Optical frequency domain reflection measurement method and optical frequency domain reflection measurement apparatus
JP5470320B2 (en) Laser light coherence length measuring method and measuring apparatus
JP6751378B2 (en) Optical time domain reflectometry method and optical time domain reflectometry apparatus
JP4990853B2 (en) Optical polarization state distribution measuring method and apparatus
Koshikiya et al. Highly sensitive coherent optical frequency-domain reflectometry employing SSB-modulator with cm-level spatial resolution over 5 km
Ogu et al. Long range static and dynamic strain measurement by using phase-noise-compensated OFDR
WO2024121840A1 (en) Systems and methods for optical time domain reflectometry based distributed acoustic sensing using delayed optical pulses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5478087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150