JP5463566B2 - Molded body and method for producing the same - Google Patents

Molded body and method for producing the same Download PDF

Info

Publication number
JP5463566B2
JP5463566B2 JP2009133218A JP2009133218A JP5463566B2 JP 5463566 B2 JP5463566 B2 JP 5463566B2 JP 2009133218 A JP2009133218 A JP 2009133218A JP 2009133218 A JP2009133218 A JP 2009133218A JP 5463566 B2 JP5463566 B2 JP 5463566B2
Authority
JP
Japan
Prior art keywords
fibrous
carbon
molded body
carbons
fibrous carbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009133218A
Other languages
Japanese (ja)
Other versions
JP2010280517A (en
Inventor
威 日方
淳一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009133218A priority Critical patent/JP5463566B2/en
Publication of JP2010280517A publication Critical patent/JP2010280517A/en
Application granted granted Critical
Publication of JP5463566B2 publication Critical patent/JP5463566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

本発明は成形体およびその製造方法に関し、より特定的には強度に優れた成形体およびその製造方法に関する。   The present invention relates to a molded body and a method for producing the same, and more particularly to a molded body having excellent strength and a method for producing the same.

繊維状炭素は優れた導電性および機械的強度を有することが知られている。繊維状炭素のなかでもカーボンナノチューブやカーボンナノファイバーは繊維径が微小であるため、将来のナノエレクトロニクス材料として期待されている。   Fibrous carbon is known to have excellent electrical conductivity and mechanical strength. Among the fibrous carbons, carbon nanotubes and carbon nanofibers are expected to be future nanoelectronic materials because of their small fiber diameters.

繊維状炭素は繊維径の違いによりカーボンナノチューブ(繊維径1〜10nm)、カーボンナノファイバー(繊維径10〜1000nm)および炭素繊維(繊維径約10μm)に分類される。このうちカーボンナノチューブは、炭素原子が規則的に配列されたグランフェンシートをチューブ状に丸めた中空の円筒形状を有している。このような形状のカーボンナノチューブをたとえば電子放出源として用いた場合には、その先端に電界集中が起こり易く、高い放出電流密度が期待できる。また、カーボンナノチューブは、化学的、物理的安定性が高い特性を有するので、動作真空中の残留ガスの吸着やイオン衝撃等に対して安定であることが予想される。   Fibrous carbon is classified into carbon nanotubes (fiber diameter of 1 to 10 nm), carbon nanofibers (fiber diameter of 10 to 1000 nm), and carbon fibers (fiber diameter of about 10 μm) depending on the fiber diameter. Among these, the carbon nanotube has a hollow cylindrical shape in which a granfen sheet in which carbon atoms are regularly arranged is rolled into a tube shape. When carbon nanotubes having such a shape are used as, for example, an electron emission source, electric field concentration tends to occur at the tip, and a high emission current density can be expected. In addition, since carbon nanotubes have high chemical and physical stability, they are expected to be stable against adsorption of residual gas and ion bombardment in an operating vacuum.

また複数のカーボンナノチューブやカーボンナノファイバーから形成された成形体も優れた導電性を有すると考えられるため、将来の機能性材料として期待されている。   In addition, a molded body formed from a plurality of carbon nanotubes and carbon nanofibers is considered to have excellent conductivity, and is expected as a functional material in the future.

しかし、従来の成形体はカーボンナノチューブやカーボンナノファイバー同士が物理的接触のみで結合されているため、実用的な強度を得ることが困難であった。   However, since the conventional molded body has carbon nanotubes or carbon nanofibers bonded together only by physical contact, it has been difficult to obtain practical strength.

したがって本発明の目的は、強度に優れた成形体およびその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a molded article excellent in strength and a method for producing the same.

本発明は、繊維径1μm以下の互いに結合した複数の繊維状炭素と、Gaとを含む成形体である。本発明に係る成形体によれば、複数の繊維状炭素が互いに結合しているため、強度に優れている。   The present invention is a molded body containing a plurality of fibrous carbons bonded to each other and having a fiber diameter of 1 μm or less and Ga. According to the molded body according to the present invention, since a plurality of fibrous carbons are bonded to each other, the strength is excellent.

本発明に係る成形体において好ましくは、繊維状炭素はカーボンナノチューブまたはカーボンナノファイバーである。通常、カーボンナノチューブまたはカーボンナノファイバーは表面にグラフェン欠陥端部を有している。本発明に係る成形体によれば、該グラフェン欠陥端部同士が結合することにより複数の繊維状炭素が一体化されているため、強度に優れている。   In the molded body according to the present invention, the fibrous carbon is preferably a carbon nanotube or a carbon nanofiber. Usually, carbon nanotubes or carbon nanofibers have graphene defect ends on the surface. According to the molded body according to the present invention, a plurality of fibrous carbons are integrated by bonding the end portions of the graphene defects, so that the strength is excellent.

本発明に係る成形体において好ましくは、シート状に形成されている。シート状に形成されているため、様々な用途に用いることができる。   The molded body according to the present invention is preferably formed in a sheet shape. Since it is formed in a sheet shape, it can be used for various applications.

本発明に係る成形体の製造方法は、繊維径1μm以下の複数の繊維状炭素の各々の表面にGaを付着させる工程と、Gaを付着させた複数の繊維状炭素同士を圧接する工程を含む。本発明に係る成形体の製造方法によれば、Gaは繊維状炭素表面のグラフェン欠陥端部に付着し、グラフェン欠陥端部を活性化させる。グラフェン欠陥端部が活性化された複数の繊維状炭素同士を圧接すると、接触する異なる繊維状炭素表面のグラフェン欠陥端部同士がGaを介して結合する。その結果、強度に優れた成形体を得ることができる。   The method for producing a molded body according to the present invention includes a step of attaching Ga to each surface of a plurality of fibrous carbons having a fiber diameter of 1 μm or less, and a step of press-contacting the plurality of fibrous carbons to which Ga is attached. . According to the method for producing a molded body according to the present invention, Ga adheres to the graphene defect end portion on the surface of the fibrous carbon, and activates the graphene defect end portion. When a plurality of fibrous carbons whose graphene defect ends are activated are pressed together, the graphene defect ends on different fibrous carbon surfaces that come into contact with each other are bonded via Ga. As a result, a molded body having excellent strength can be obtained.

なお、本明細書中において「圧接」とは、2つの物質を密着させた状態で圧力を加えることにより、2つの物質を結合させることを意味する。   In the present specification, “pressure contact” means that two substances are bonded by applying pressure in a state where the two substances are in close contact with each other.

本発明に係る成形体の製造方法において好ましくは、複数の繊維状炭素の各々の表面にGaを付着させる工程は、繊維状炭素の各々の表面をGa蒸気に接触させる工程を含む。Ga蒸気は繊維状炭素表面のグラフェン欠陥端部との結合性に優れているため、グラフェン欠陥端部へのガリウムの付着を効率的に行うことができる。   Preferably, in the method for producing a molded body according to the present invention, the step of attaching Ga to each surface of the plurality of fibrous carbons includes a step of bringing each surface of the fibrous carbons into contact with Ga vapor. Since Ga vapor is excellent in the bonding property with the graphene defect end portion on the surface of the fibrous carbon, gallium can be efficiently attached to the graphene defect end portion.

本発明に係る成形体の製造方法において好ましくは、複数の繊維状炭素同士を圧接する工程は、複数の繊維状炭素の各々の表面を加熱する工程を含む。複数の繊維状炭素の各々の表面を加熱することで、接触する異なる繊維状炭素表面のグラフェン欠陥端部同士の結合を効率的に行うことができる。   Preferably, in the method for producing a molded body according to the present invention, the step of pressing the plurality of fibrous carbons includes a step of heating the surface of each of the plurality of fibrous carbons. By heating the surface of each of the plurality of fibrous carbons, the graphene defect ends on the different fibrous carbon surfaces that are in contact with each other can be efficiently bonded.

本発明に係る成形体の製造方法において好ましくは、複数の繊維状炭素同士を圧接する工程の後で、複数の繊維状炭素の各々の表面を加熱する工程をさらに備える。複数の繊維状炭素の各々の表面を加熱することで、接触する異なる繊維状炭素表面のグラフェン欠陥端部同士の結合を効率的に行うことができる。   Preferably, the method for producing a molded body according to the present invention further includes a step of heating each surface of the plurality of fibrous carbons after the step of pressing the plurality of fibrous carbons together. By heating the surface of each of the plurality of fibrous carbons, the graphene defect ends on the different fibrous carbon surfaces that are in contact with each other can be efficiently bonded.

本発明に係る成形体の製造方法において好ましくは、複数の繊維状炭素の各々の表面を加熱する工程は、複数の繊維状炭素を600℃以上に加熱する工程を含む。複数の繊維状炭素を600℃以上に加熱することで、接触する異なる繊維状炭素表面のグラフェン欠陥端部同士の結合を効率的に行うことができる。   Preferably, in the method for producing a molded body according to the present invention, the step of heating the surface of each of the plurality of fibrous carbons includes a step of heating the plurality of fibrous carbons to 600 ° C. or higher. By heating a plurality of fibrous carbons to 600 ° C. or higher, graphene defect ends on different fibrous carbon surfaces that come into contact with each other can be efficiently bonded.

本発明に係る成形体の製造方法において好ましくは、複数の繊維状炭素同士を圧接する工程は、複数の繊維状炭素に1×105Pa以上の圧力をかける工程を含む。複数の繊維状炭素に1×105Pa以上の圧力をかけることで、接触する異なる繊維状炭素表面のグラフェン欠陥端部同士の結合を効率的に行うことができる。 Preferably, in the method for producing a molded body according to the present invention, the step of pressing the plurality of fibrous carbons includes a step of applying a pressure of 1 × 10 5 Pa or more to the plurality of fibrous carbons. By applying a pressure of 1 × 10 5 Pa or more to a plurality of fibrous carbons, it is possible to efficiently bond the graphene defect ends on different fibrous carbon surfaces that come into contact with each other.

本発明によれば、強度に優れた成形体を得ることができる。   According to the present invention, a molded product having excellent strength can be obtained.

(a)本発明の実施形態における成形体を示す模式図である。(b)(a)の線分IB−IBにおける断面模式図である。(A) It is a schematic diagram which shows the molded object in embodiment of this invention. (B) It is a cross-sectional schematic diagram in line segment IB-IB of (a). 本発明の一実施の形態における成形体の製造方法の第一工程を示す模式図である。It is a schematic diagram which shows the 1st process of the manufacturing method of the molded object in one embodiment of this invention. 本発明の一実施の形態における成形体の製造方法の第二工程を示す模式図である。It is a schematic diagram which shows the 2nd process of the manufacturing method of the molded object in one embodiment of this invention. 本発明の一実施の形態における成形体の製造方法の第三工程を示す模式図である。It is a schematic diagram which shows the 3rd process of the manufacturing method of the molded object in one embodiment of this invention.

以下、図面に基づいて本発明の実施の形態を説明する、なお、以下の図面において同一のまたは相当する部分には同一の参照符号を付しその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference characters, and description thereof will not be repeated.

<成形体>
図1(a)は本発明の実施形態における成形体を示す模式図である。図1(b)は図1(a)の線分IB−IBにおける断面模式図である。
<Molded body>
Fig.1 (a) is a schematic diagram which shows the molded object in embodiment of this invention. FIG. 1B is a schematic cross-sectional view taken along line IB-IB in FIG.

図1(a)に示すように、本発明の一実施の形態における成形体10は、たとえば複数の繊維状炭素1が互いに結合しており、たとえば複数の繊維状炭素が集束または積層することにより一体化されている。ここで集束するとは複数の繊維状炭素1が集まって束になることを意味しており、積層するとは複数の繊維状炭素1が積み重なって層になっていることを意味する。   As shown in FIG. 1 (a), a molded body 10 according to an embodiment of the present invention includes, for example, a plurality of fibrous carbons 1 bonded to each other, and, for example, a plurality of fibrous carbons being focused or laminated. It is integrated. Here, the term “bundling” means that a plurality of fibrous carbons 1 are gathered to form a bundle, and the term “stacking” means that the plurality of fibrous carbons 1 are stacked to form a layer.

図1(a)においては、成形体10はシート状に成形されているが、形状は特に制限されず、波打ちシート状、円筒状、たらい状などとすることができる。成形体を構成する繊維状炭素の積層方向の厚みは特に制限されないが、10〜1000μmであることが取り扱いおよび成形性の観点から好ましい。   In FIG. 1A, the molded body 10 is formed into a sheet shape, but the shape is not particularly limited, and may be a corrugated sheet shape, a cylindrical shape, a tub shape, or the like. The thickness in the stacking direction of the fibrous carbon constituting the molded body is not particularly limited, but is preferably 10 to 1000 μm from the viewpoint of handling and moldability.

図1(b)を参照して、各々の繊維状炭素1の繊維径dは1μm以下であり、表面にはGa原子2が付着している。   With reference to FIG.1 (b), the fiber diameter d of each fibrous carbon 1 is 1 micrometer or less, and the Ga atom 2 has adhered to the surface.

<繊維状炭素>
本発明の一実施の形態における成形体10を構成する繊維状炭素1としては、繊維径が1μm以下のカーボンナノチューブ(繊維径1〜10nm)またはカーボンナノファイバー(繊維径10〜1000nm)を用いることができる。
<Fibrous carbon>
As the fibrous carbon 1 constituting the molded body 10 in one embodiment of the present invention, carbon nanotubes (fiber diameter 1 to 10 nm) or carbon nanofibers (fiber diameter 10 to 1000 nm) having a fiber diameter of 1 μm or less are used. Can do.

カーボンナノチューブとしては、1層の6角網目のチューブから構成されているシングルウォールナノチューブ(以下、「SWNT」と略称する)でも、多層の6角網目のチューブから構成されているマルチウォールナノチューブ(以下、「MWNT」と略称する)でもよい。一般に、SWNTのほうがフレキシブルであり、MWNTのように多層になればなるほど剛直になる傾向にある。SWNTとMWNTとは、その性質を考慮して、目的に応じて使い分けることが望ましい。   As the carbon nanotube, a single wall nanotube (hereinafter abbreviated as “SWNT”) composed of a single-layer hexagonal network tube, or a multi-wall nanotube (hereinafter referred to as “SWNT”) composed of a multilayer hexagonal network tube (hereinafter referred to as “SWNT”). , Abbreviated as “MWNT”). In general, SWNT is more flexible, and tends to become more rigid as the number of layers increases like MWNT. SWNT and MWNT are desirably used properly according to the purpose in consideration of their properties.

適用可能な繊維状炭素1の長さとしては、特に限定されるものではないが、一般的に10nm〜10000μmの範囲のものが用いられ、100nm〜1000μmの範囲のものが好ましく用いられる。   The applicable length of the fibrous carbon 1 is not particularly limited, but generally, a length in the range of 10 nm to 10000 μm is used, and a length in the range of 100 nm to 1000 μm is preferably used.

<Ga(ガリウム)原子>
Ga原子2は繊維状炭素1の表面に付着しており、特に繊維状炭素1表面のグラフェン欠陥端部と結合していると考えられる。成形体10におけるGa原子は、グラフェン接合の触媒として用いるため、Gaの付着をできるだけ欠陥近傍部分に限定するようにし、極力使用量を少なくすることが好ましい。
<Ga (gallium) atom>
The Ga atom 2 is attached to the surface of the fibrous carbon 1, and is considered to be particularly bonded to the graphene defect end portion on the surface of the fibrous carbon 1. Since Ga atoms in the molded body 10 are used as a catalyst for graphene bonding, it is preferable to limit the adhesion of Ga to the vicinity of the defect as much as possible and reduce the amount used as much as possible.

<成形体の製造方法>
本発明の一実施の形態における成形体10の製造方法を図2〜図4を用いて説明する。成形体の製造方法は、図3に示すように繊維径1μm以下の複数の繊維状炭素の各々の表面にGaを付着させる工程と、図4に示すようにGaを付着させた複数の繊維状炭素同士を圧接する工程とを含む。
<Method for producing molded body>
The manufacturing method of the molded object 10 in one embodiment of this invention is demonstrated using FIGS. As shown in FIG. 3, the method for producing a molded body includes a step of attaching Ga to each surface of a plurality of fibrous carbons having a fiber diameter of 1 μm or less, and a plurality of fibrous forms having Ga attached thereto as shown in FIG. And a step of pressing the carbons together.

(繊維状炭素の準備)
図2を参照して、通常、繊維状炭素1は表面にグラフェン欠陥端部3を有していると考えられる。グラフェン欠陥端部では、繊維状炭素を構成するグラフェンにおいて式(1)に示すように炭素原子同士が結合せず、不対電子が残存していると推定できる。
(Preparation of fibrous carbon)
Referring to FIG. 2, it is generally considered that fibrous carbon 1 has a graphene defect end 3 on the surface. At the graphene defect end, it can be estimated that carbon atoms are not bonded to each other and unpaired electrons remain in the graphene constituting the fibrous carbon as shown in the formula (1).

Figure 0005463566
Figure 0005463566

繊維状炭素1はできるだけ分散した状態のものを準備する。
(繊維状炭素の各々の表面へGaを付着させる工程)
次に、繊維状炭素1の各々の表面にGa原子2を付着させる工程(以下、「Ga付着工程」ともいう)を実施する。
The fibrous carbon 1 is prepared in a dispersed state as much as possible.
(Step of attaching Ga to each surface of fibrous carbon)
Next, a step of attaching Ga atoms 2 to each surface of the fibrous carbon 1 (hereinafter also referred to as “Ga attachment step”) is performed.

図3を参照して、Gaを付着させるための装置25はチャンバ22と、ヒーター23と、容器24とを備えている。チャンバ22の外壁にはヒーター23が設けられており、チャンバ22の内部には容器24が配置されている。容器24の内部にはヒーター23によって加熱された液体Ga20が充填されている。液体Ga20の加熱温度は、600〜2000℃であることが好ましい。チャンバ22の図中左側には真空排気系22aが設けられている。   Referring to FIG. 3, the device 25 for depositing Ga includes a chamber 22, a heater 23, and a container 24. A heater 23 is provided on the outer wall of the chamber 22, and a container 24 is disposed inside the chamber 22. The container 24 is filled with liquid Ga20 heated by the heater 23. The heating temperature of the liquid Ga20 is preferably 600 to 2000 ° C. An evacuation system 22 a is provided on the left side of the chamber 22 in the drawing.

Ga付着工程は、チャンバ22内に複数の繊維状炭素1を配置し、繊維状炭素1の表面に液体Ga20を加熱して得られたGa蒸気21を接触させることにより行う。バルクのGaと炭素は状態図としては非固溶系である。しかし、ミクロのスケールではGa蒸気21を繊維状炭素1に接触させると、Ga原子2と繊維状炭素1の表面のグラフェン欠陥端部3に結合が生じる。この結果、たとえば式(2)に示すようにグラフェン欠陥端部3が活性化される。このときの繊維状炭素の温度は、600℃以下であることが好ましい。   The Ga adhesion step is performed by arranging a plurality of fibrous carbons 1 in the chamber 22 and bringing the surface of the fibrous carbon 1 into contact with Ga vapor 21 obtained by heating the liquid Ga20. Bulk Ga and carbon are non-solid solutions as a phase diagram. However, when the Ga vapor 21 is brought into contact with the fibrous carbon 1 on a micro scale, bonding occurs between the Ga atom 2 and the graphene defect end portion 3 on the surface of the fibrous carbon 1. As a result, for example, the graphene defect end 3 is activated as shown in Formula (2). The temperature of the fibrous carbon at this time is preferably 600 ° C. or less.

Figure 0005463566
Figure 0005463566

なおGa付着工程は、液体Gaの代わりに、InGa合金を気化させることにより行われる。また、上述の方法の代わりに、液体Ga中に複数の繊維状炭素1を浸漬することにより行われる。   The Ga adhesion step is performed by vaporizing an InGa alloy instead of liquid Ga. Moreover, it replaces with the above-mentioned method and is performed by immersing the some fibrous carbon 1 in liquid Ga.

繊維状炭素1が分散しているものであればGa付着工程において、Gaを繊維状炭素表面により均一に付着させることができる。   If the fibrous carbon 1 is dispersed, Ga can be more uniformly adhered to the fibrous carbon surface in the Ga adhesion step.

(Gaを付着させた複数の繊維状炭素同士を圧接する工程)
次に、Gaを付着させた複数の繊維状炭素同士を圧接する工程(以下、「圧接工程」ともいう)を実施する。
(Step of pressing a plurality of fibrous carbons to which Ga is attached)
Next, a step of press-contacting a plurality of fibrous carbons to which Ga is attached (hereinafter also referred to as “press-contact step”) is performed.

図4を参照して、たとえば金型などに複数の繊維状炭素1を充填し、複数の繊維状炭素1に圧力を加える。これにより、複数の繊維状炭素1同士が結合する。これは以下の理由によるものと推測される。複数の繊維状炭素1同士を密着させた状態で圧力を加えると、たとえば式(3)に示すようにグラフェン欠陥端部3同士が直接結合する。   Referring to FIG. 4, for example, a mold is filled with a plurality of fibrous carbons 1 and pressure is applied to the plurality of fibrous carbons 1. Thereby, the some fibrous carbon 1 couple | bonds together. This is presumed to be due to the following reason. When pressure is applied in a state where a plurality of fibrous carbons 1 are in close contact with each other, the graphene defect end portions 3 are directly bonded to each other as shown in, for example, the formula (3).

Figure 0005463566
Figure 0005463566

この結果、複数の繊維状炭素1同士が集束または積層することにより一体化し、成形体10となる。該成形体10は、複数の繊維状炭素1同士が炭素の共有結合で結合していると推測されるため、優れた強度を有する。   As a result, the plurality of fibrous carbons 1 are integrated by converging or stacking to form a molded body 10. Since this molded object 10 is estimated that the some fibrous carbon 1 is couple | bonded by the covalent bond of carbon, it has the outstanding intensity | strength.

なお、上記圧接工程を行うと同時に、または上記圧接行程の後に、複数の繊維状炭素の各々の表面を加熱してもよい。これにより繊維状炭素1のグラフェン欠陥端部3とGa原子2との結合が外れるものと推測される。また、複数の繊維状炭素1の各々の表面を加熱する場合には、複数の繊維状炭素を600℃以上、より好ましくは800〜1100℃に加熱することが好ましい。複数の繊維状炭素を600℃以上に加熱することで、Ga原子2の脱離が促進されて、繊維状炭素表面のグラフェン欠陥端部同士の結合が促進される。   In addition, you may heat the surface of each of several fibrous carbon simultaneously with performing the said press-contact process, or after the said press-contact process. Thereby, it is estimated that the bond between the graphene defect end portion 3 of the fibrous carbon 1 and the Ga atom 2 is released. Moreover, when heating each surface of the some fibrous carbon 1, it is preferable to heat several fibrous carbon to 600 degreeC or more, More preferably, it is 800-1100 degreeC. By heating the plurality of fibrous carbons to 600 ° C. or higher, the elimination of Ga atoms 2 is promoted, and the bonding between the graphene defect ends on the fibrous carbon surface is promoted.

圧接工程において、複数の繊維状炭素に1×105Pa以上、好ましくは1×106Pa以上の圧力をかけることが好ましい。複数の繊維状炭素に1×105Pa以上の圧力をかけることで、接触する異なる繊維状炭素表面のグラフェン欠陥端部同士の結合を効率的に行うことができる。 In the pressure welding step, it is preferable to apply a pressure of 1 × 10 5 Pa or more, preferably 1 × 10 6 Pa or more to the plurality of fibrous carbons. By applying a pressure of 1 × 10 5 Pa or more to a plurality of fibrous carbons, it is possible to efficiently bond the graphene defect ends on different fibrous carbon surfaces that come into contact with each other.

成形体の成形は、シート状や波打ちシート状などの所望の形状の金型に、複数の繊維状炭素を配置した後に圧接工程を実施する。   For forming the formed body, a plurality of fibrous carbons are arranged in a mold having a desired shape such as a sheet shape or a corrugated sheet shape, and then a pressing process is performed.

<実施例1>
触媒(鉄、コバルト、ニッケルなど)を除去する処理を施した、できるだけ分散したカーボンナノチューブを準備した。実施例1で使用したカーボンナノチューブの平均繊維径は20nm、平均繊維長さは100μmである。
<Example 1>
Carbon nanotubes dispersed as much as possible were prepared, which were subjected to treatment for removing the catalyst (iron, cobalt, nickel, etc.). The carbon nanotubes used in Example 1 have an average fiber diameter of 20 nm and an average fiber length of 100 μm.

次に当該カーボンナノチューブを熱処理炉内に設置した。熱処理炉を10-6Torrの減圧下で400℃に加熱し、熱処理炉内の坩堝中の液体Gaを気化してGa蒸気を発生させ、カーボンナノチューブ表面にGaを付着させた。 Next, the carbon nanotube was placed in a heat treatment furnace. The heat treatment furnace was heated to 400 ° C. under a reduced pressure of 10 −6 Torr, the liquid Ga in the crucible in the heat treatment furnace was vaporized to generate Ga vapor, and Ga was adhered to the carbon nanotube surface.

その後、Gaを付着させたCNTを積層させ、厚さ0.2mm程度で5mm×20mm角の大きさのシートを成形した。その後、シートに100kgf/cm2(98×105Pa)の圧力をかけるとともに熱処理炉内の温度を1000℃に昇温した後、圧力をかけた状態で室温まで冷却した。 Thereafter, CNTs to which Ga was attached were laminated, and a sheet having a thickness of about 0.2 mm and a size of 5 mm × 20 mm square was formed. Thereafter, a pressure of 100 kgf / cm 2 (98 × 10 5 Pa) was applied to the sheet, and the temperature in the heat treatment furnace was increased to 1000 ° C., and then the sheet was cooled to room temperature while the pressure was applied.

得られたシート状の成形体の引張破断強度を引っ張り試験機で測定した。
実施例1の成形体の引張破断強度は4GPaであった。
The tensile strength at break of the obtained sheet-like molded body was measured with a tensile tester.
The tensile strength at break of the molded body of Example 1 was 4 GPa.

<実施例2>
触媒(鉄、コバルト、ニッケルなど)を除去する処理を施した、できるだけ分散したカーボンナノチューブを準備した。実施例2で使用したカーボンナノチューブの平均繊維径は10nm、平均繊維長さは200μmである。
<Example 2>
Carbon nanotubes dispersed as much as possible were prepared, which were subjected to treatment for removing the catalyst (iron, cobalt, nickel, etc.). The carbon nanotubes used in Example 2 have an average fiber diameter of 10 nm and an average fiber length of 200 μm.

次に当該カーボンナノチューブを熱処理炉内に設置した。熱処理炉を10-6Torrの減圧下で500℃に加熱し、さらに熱処理炉内の坩堝中の液体Gaを電子ビームで加熱することによってGa蒸気を発生させ、カーボンナノチューブ表面にGaを付着させた。 Next, the carbon nanotube was placed in a heat treatment furnace. The heat treatment furnace was heated to 500 ° C. under a reduced pressure of 10 −6 Torr, and the liquid Ga in the crucible in the heat treatment furnace was heated with an electron beam to generate Ga vapor, thereby attaching Ga to the carbon nanotube surface. .

その後、Gaを付着させたCNTを積層させ、厚さ0.5mm程度で5mm×20mm角の大きさのシートを成形した。その後、シートに10kgf/cm2(9.8×105Pa)の圧力をかけるとともに熱処理炉内の温度を900℃に昇温した後、圧力をかけた状態で室温まで冷却した。 Thereafter, CNTs to which Ga was attached were laminated, and a sheet having a thickness of about 0.5 mm and a size of 5 mm × 20 mm square was formed. Thereafter, a pressure of 10 kgf / cm 2 (9.8 × 10 5 Pa) was applied to the sheet and the temperature in the heat treatment furnace was raised to 900 ° C., and then the sheet was cooled to room temperature while the pressure was applied.

得られたシート状の成形体の引張破断強度を引っ張り試験機で測定した。
実施例2の成形体の引張破断強度は4GPaであった。
The tensile strength at break of the obtained sheet-like molded body was measured with a tensile tester.
The tensile strength at break of the molded body of Example 2 was 4 GPa.

<実施例3>
触媒(鉄、コバルト、ニッケルなど)を除去する処理を施した、できるだけ分散したカーボンナノチューブを準備した。実施例3で使用したカーボンナノチューブの平均繊維径は30nm、平均繊維長さは200μmである。
<Example 3>
Carbon nanotubes dispersed as much as possible were prepared, which were subjected to treatment for removing the catalyst (iron, cobalt, nickel, etc.). The carbon nanotubes used in Example 3 have an average fiber diameter of 30 nm and an average fiber length of 200 μm.

次に当該カーボンナノチューブを熱処理炉内に設置した。熱処理炉を10-6Torrの減圧下で600℃に加熱し、熱処理炉内の坩堝中の液体Gaを気化してGa蒸気を発生させ、カーボンナノチューブ表面にGaを付着させた。 Next, the carbon nanotube was placed in a heat treatment furnace. The heat treatment furnace was heated to 600 ° C. under a reduced pressure of 10 −6 Torr, the liquid Ga in the crucible in the heat treatment furnace was vaporized to generate Ga vapor, and Ga was adhered to the carbon nanotube surface.

その後、Gaを付着させたCNTを積層させ、厚さ1mm程度の波型シートを成形した。その後、シートに50kgf/cm2(49×105Pa)の圧力をかけるとともに熱処理炉内の温度を800℃に昇温した後、圧力をかけた状態で室温まで冷却した。 Thereafter, CNTs to which Ga was attached were laminated to form a corrugated sheet having a thickness of about 1 mm. Thereafter, a pressure of 50 kgf / cm 2 (49 × 10 5 Pa) was applied to the sheet, and the temperature in the heat treatment furnace was raised to 800 ° C., and then the sheet was cooled to room temperature while the pressure was applied.

得られたシート状の成形体の引張破断強度を引っ張り試験機で測定した。
実施例3の成形体の引張破断強度は3GPaであった。
The tensile strength at break of the obtained sheet-like molded body was measured with a tensile tester.
The tensile strength at break of the molded body of Example 3 was 3 GPa.

<実施例4>
触媒(鉄、コバルト、ニッケルなど)を除去する処理を施した、できるだけ分散したカーボンナノチューブを準備した。実施例4で使用したカーボンナノチューブの平均繊維径は10nm、平均繊維長さは200μmである。
<Example 4>
Carbon nanotubes dispersed as much as possible were prepared, which were subjected to treatment for removing the catalyst (iron, cobalt, nickel, etc.). The carbon nanotubes used in Example 4 have an average fiber diameter of 10 nm and an average fiber length of 200 μm.

次に当該カーボンナノチューブを熱処理炉内に設置した。熱処理炉を10-6Torrの減圧下で450℃に加熱し、さらに熱処理炉内の坩堝中のGaIn合金(Ga85In15)を900℃に加熱してGaIn合金を気化させ、カーボンナノチューブ表面にGaIn合金を付着させた。 Next, the carbon nanotube was placed in a heat treatment furnace. The heat treatment furnace is heated to 450 ° C. under a reduced pressure of 10 −6 Torr, and the GaIn alloy (Ga85In15) in the crucible in the heat treatment furnace is heated to 900 ° C. to vaporize the GaIn alloy, and the GaIn alloy is formed on the carbon nanotube surface. Attached.

その後、GaIn合金を付着させたCNTを積層させ、厚さ0.5mm程度で5mm×20mm角の大きさのシートを成形した。その後、シートに100kgf/cm2(98×105Pa)の圧力をかけるとともに熱処理炉内の温度を900℃に昇温した後、圧力をかけた状態で室温まで冷却した。 Thereafter, CNTs to which a GaIn alloy was adhered were laminated, and a sheet having a thickness of about 0.5 mm and a size of 5 mm × 20 mm square was formed. Thereafter, a pressure of 100 kgf / cm 2 (98 × 10 5 Pa) was applied to the sheet, and the temperature in the heat treatment furnace was raised to 900 ° C., and then the sheet was cooled to room temperature while the pressure was applied.

得られたシート状の成形体の引張破断強度を引っ張り試験機で測定した。
実施例4の成形体の引張破断強度は3GPaであった。
The tensile strength at break of the obtained sheet-like molded body was measured with a tensile tester.
The tensile strength at break of the molded body of Example 4 was 3 GPa.

<実施例5>
触媒(鉄、コバルト、ニッケルなど)を除去する処理を施した、できるだけ分散したカーボンナノチューブを準備した。実施例5で使用したカーボンナノチューブの平均繊維径は10nm、平均繊維長さは500μmである。
<Example 5>
Carbon nanotubes dispersed as much as possible were prepared, which were subjected to treatment for removing the catalyst (iron, cobalt, nickel, etc.). The carbon nanotubes used in Example 5 have an average fiber diameter of 10 nm and an average fiber length of 500 μm.

次に当該カーボンナノチューブを熱処理炉内に設置した。熱処理炉を10-6Torrの減圧下で300℃に加熱し、熱処理炉内の坩堝中の液体Gaを気化してGa蒸気を発生させ、カーボンナノチューブ表面にGaを付着させた。 Next, the carbon nanotube was placed in a heat treatment furnace. The heat treatment furnace was heated to 300 ° C. under a reduced pressure of 10 −6 Torr, the liquid Ga in the crucible in the heat treatment furnace was vaporized to generate Ga vapor, and Ga was adhered to the carbon nanotube surface.

その後、Gaを付着させたCNTを積層させ、厚さ0.5mm程度のシートを成形した。その後、シートに5kgf/cm2(4.9×105Pa)の圧力をかけるとともに熱処理炉内の温度を600℃に昇温した後、圧力をかけた状態で室温まで冷却した。 Thereafter, CNTs to which Ga was attached were laminated to form a sheet having a thickness of about 0.5 mm. Thereafter, a pressure of 5 kgf / cm 2 (4.9 × 10 5 Pa) was applied to the sheet, and the temperature in the heat treatment furnace was raised to 600 ° C., and then the sheet was cooled to room temperature while the pressure was applied.

得られたシート状の成形体の引張破断強度を引っ張り試験機で測定した。
実施例5の成形体の引張破断強度は2GPaであった。
The tensile strength at break of the obtained sheet-like molded body was measured with a tensile tester.
The tensile strength at break of the molded body of Example 5 was 2 GPa.

<比較例1>
比較例1は液体Gaを用いない以外は実施例1と同様の工程で成形体を準備した。
<Comparative Example 1>
In Comparative Example 1, a molded body was prepared in the same process as in Example 1 except that liquid Ga was not used.

得られたシート状の成形体の引張破断強度を引っ張り試験機で測定した。
比較例1の成形体の引張破断強度は1GPaであった。
The tensile strength at break of the obtained sheet-like molded body was measured with a tensile tester.
The molded article of Comparative Example 1 had a tensile strength at break of 1 GPa.

実施例1〜4および比較例1の製造条件および結果を表1に示す。   The production conditions and results of Examples 1 to 4 and Comparative Example 1 are shown in Table 1.

Figure 0005463566
Figure 0005463566

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 繊維状炭素、10 成形体、2 Ga原子、20 液体Ga、21 Ga蒸気、22 チャンバ、22a 真空排気系、23 ヒーター、24 容器、25 Gaを付着させるための装置、3 グラフェン欠陥端部。   DESCRIPTION OF SYMBOLS 1 Fibrous carbon, 10 molded object, 2 Ga atom, 20 liquid Ga, 21 Ga vapor | steam, 22 chamber, 22a vacuum exhaust system, 23 heater, 24 container, apparatus for attaching 25 Ga, 3 graphene defect edge part.

Claims (9)

繊維径1μm以下の互いに結合した複数の繊維状炭素と、Ga原子とを含み、
前記繊維状炭素はカーボンナノチューブまたはカーボンナノファイバーであり、
前記複数の繊維状炭素同士が炭素の共有結合で結合している、成形体。
A plurality of fibrous carbon bonded to each other following a fiber diameter 1 [mu] m, and a Ga atom seen including,
The fibrous carbon is a carbon nanotube or a carbon nanofiber,
The molded body in which the plurality of fibrous carbons are bonded by a covalent bond of carbon .
シート状の形状を有する、請求項1に記載の成形体。 The molded object according to claim 1, which has a sheet-like shape. 繊維径1μm以下の複数の繊維状炭素の各々の表面にGa原子を付着させる工程と、
前記Ga原子を付着させた複数の繊維状炭素同士を圧接する工程とを含み、
前記複数の繊維状炭素の各々の表面にGa原子を付着させる工程は、繊維状炭素の各々の表面をGa蒸気またはInGa蒸気に接触させる工程を含む、成形体の製造方法。
Attaching Ga atoms to the surface of each of a plurality of fibrous carbons having a fiber diameter of 1 μm or less;
Look including the step of pressing a plurality of fibrous carbon together with attached the Ga atom,
The step of attaching Ga atoms to the surface of each of the plurality of fibrous carbons includes a step of bringing each surface of the fibrous carbon into contact with Ga vapor or InGa vapor .
前記複数の繊維状炭素の各々の表面にGa原子を付着させる工程は、10The step of attaching Ga atoms to the surface of each of the plurality of fibrous carbons is 10 −6-6 Torr以下の減圧下で液体GaまたはInGa合金を加熱する工程を含む、請求項3に記載の成形体の製造方法。The manufacturing method of the molded object of Claim 3 including the process of heating liquid Ga or InGa alloy under the reduced pressure below Torr. 前記液体GaまたはInGa合金の加熱温度は、600〜2000℃である、請求項4に記載の成形体の製造方法。The method for producing a molded body according to claim 4, wherein a heating temperature of the liquid Ga or InGa alloy is 600 to 2000 ° C. 前記複数の繊維状炭素同士を圧接する工程は、前記複数の繊維状炭素の各々の表面を加熱する工程を含む、請求項3〜5のいずれか1項に記載の成形体の製造方法。 The method for producing a molded body according to any one of claims 3 to 5 , wherein the step of press-contacting the plurality of fibrous carbons includes a step of heating each surface of the plurality of fibrous carbons. 前記複数の繊維状炭素同士を圧接する工程の後で、前記複数の繊維状炭素の各々の表面を加熱する工程をさらに備える、請求項3〜5のいずれか1項に記載の成形体の製造方法。 The manufacturing of the molded body according to any one of claims 3 to 5 , further comprising a step of heating the surface of each of the plurality of fibrous carbons after the step of press-contacting the plurality of fibrous carbons. Method. 前記複数の繊維状炭素の各々の表面を加熱する工程は、前記複数の繊維状炭素を600℃以上に加熱する工程を含む、請求項6または7に記載の成形体の製造方法。   The method for manufacturing a molded body according to claim 6 or 7, wherein the step of heating the surface of each of the plurality of fibrous carbons includes a step of heating the plurality of fibrous carbons to 600 ° C or higher. 前記複数の繊維状炭素同士を圧接する工程は、前記複数の繊維状炭素に1×105Pa以上の圧力をかける工程を含む、請求項〜8のいずれか1に記載の成形体の製造方法。 The step of pressing said plurality of fibrous carbon each other, comprising the step of applying a pressure of 1 × 10 5 Pa or more to the plurality of the fibrous carbon, the molded body according to any one of claims 3-8 Production method.
JP2009133218A 2009-06-02 2009-06-02 Molded body and method for producing the same Active JP5463566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133218A JP5463566B2 (en) 2009-06-02 2009-06-02 Molded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133218A JP5463566B2 (en) 2009-06-02 2009-06-02 Molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010280517A JP2010280517A (en) 2010-12-16
JP5463566B2 true JP5463566B2 (en) 2014-04-09

Family

ID=43537654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133218A Active JP5463566B2 (en) 2009-06-02 2009-06-02 Molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5463566B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079649A (en) * 2010-12-20 2011-06-01 哈尔滨工业大学 Self-sensing concrete material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546114B2 (en) * 1992-12-22 1996-10-23 日本電気株式会社 Foreign substance-encapsulated carbon nanotubes and method for producing the same
JP3432818B1 (en) * 2002-03-07 2003-08-04 科学技術振興事業団 Nanohorn carrier and method for producing the same
ATE474658T1 (en) * 2003-03-07 2010-08-15 Seldon Technologies Llc CLEANING LIQUIDS WITH NANOMATERIALS
JP2007022875A (en) * 2005-07-20 2007-02-01 Toyota Motor Corp Composite material and molded item using it
JP5578640B2 (en) * 2008-08-27 2014-08-27 住友電気工業株式会社 Conductive film, conductive substrate, transparent conductive film, and production method thereof
JP5578639B2 (en) * 2008-08-04 2014-08-27 住友電気工業株式会社 Graphite film manufacturing method
EP2298697B1 (en) * 2008-05-16 2019-02-13 Sumitomo Electric Industries, Ltd. Method for producing a carbon wire assembly and a conductive film

Also Published As

Publication number Publication date
JP2010280517A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP6975678B2 (en) Method of forming carbon nanotube pellicle film
US9650501B2 (en) Composite materials formed by shear mixing of carbon nanostructures and related methods
AU2010328139B2 (en) CNT-infused fibers in thermoplastic matrices
US20110123735A1 (en) Cnt-infused fibers in thermoset matrices
US20140065447A1 (en) Hybrid capacitor-battery and supercapacitor with active bi-functional electrolyte
Chen et al. Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays
TWI565653B (en) Method for making carbon nanotube composite wire
Ci et al. Multifunctional Macroarchitectures of Double‐Walled Carbon Nanotube Fibers
JP2010281025A (en) Method for producing carbon nanotube linear structure
JP2012246209A (en) Method for producing graphene/carbon nanotube composite structure
JP2007516923A (en) Continuous production of carbon nanotubes
JP2013542551A5 (en)
JP2010052972A (en) Conductive membrane, conductive substrate, transparent conductive film, and methods for manufacturing these
US9828253B2 (en) Nanotube film structure
US20190048519A1 (en) Method for manufacturing composite fabric, composite fabric, and carbon fiber reinforced molding
US20070137786A1 (en) Nanotube elongation
Pint et al. Odako growth of dense arrays of single-walled carbon nanotubes attached to carbon surfaces
JP4273364B2 (en) Method for modifying carbon nanotubes and aggregates of carbon nanotubes
JP5463566B2 (en) Molded body and method for producing the same
JP5353689B2 (en) CNT fiber and method for producing the same
US20090061208A1 (en) Carbon nanotube composite preform and method for making the same
WO2003023806A1 (en) Field electron emitting device
Liu et al. Formation of free-standing carbon nanotube array on super-aligned carbon nanotube film and its field emission properties
KR102006831B1 (en) Flexible electrode device with carbon nanotube yarn, method for making the same, and heating apparatus using the same
JP2011138703A (en) Electric conduction wire and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R150 Certificate of patent or registration of utility model

Ref document number: 5463566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250